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The present paper continues the study made in a recent series
of papers [2] and [3]' ) , concerning with an analytic n-dimensional
manifold admitting a  complex r-dimensional distribution satisfying
a certain condition. For brevity, such a structure of a manifold
will be called a gr-structure. In the first paper [2] , the case where
n = 2r + 1 was treated and some results were obtained in  connection
with an almost contact metric structure due to  S. Sasaki. In the
second paper [3] was presented a generalisation o f these results to
the case where n 2 r  and it was found that there is a close relation
between a gr-structure and an fi-structure due to K. Yano.

The purpose of the present paper is to show an existence of a
certain f i -structure a n d  a  symmetric real affine connection on a
manifold with a (gr —P)-structure such that f  is covariant constant.
To do this, we shall first make clear a more precise relation between
a gr-structure and an fi-structure, and discuss an integrable gr-struc-
ture. We shall express our main result [in Theorem 9. It is re-
marked here that we assumed, in  preceding papers, the manifold
under consideration to be analytic, and, however, we shall treat, in
the following, manifolds of class C - , unless otherwise provided.

1 )  Numbers in  brackets refer to the references at the end of the paper.
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§ 1 .  Historical remarks

In 1953, E. M. Patterson published a very interesting paper [4].
In his paper, he dealt, for the first time, with a field of complex
planes (hereafter we call it a  com plex  null distribution) and ob-
tained a geometrical characterisation of Kahler manifolds. That is
to  say, he found several properties of complex null distributions and
proved that a differentiable manifold M 2

'  o f  class C2 admitting an
r-dimensional complex distribution 7rr which is null and parallel with
respect to a  given positive definite metric g  on M `r is  a  Kahler
manifold whose Kahler metric is g .  I t  is  important, in the proof
o f this theorem, that the distribution n r  and its conjugate complex
distribution Tr ' have only the zero vector in  common. Though the
above property is derived from the fact that g  is  positive definite,

the existence of a metric g  is not necessarily essential. From the
above consideration he finally concluded that, i f  a  differentiable
manifold /1/2 '  o f class C2 admits a  complex distribution 7rr, such
that 7Vr and Ttr at each point have only the zero vector in common,
and a symmetric affine connection P  with respect to which 7Cr is
parallel, then the manifold M 2 r  is a complex analytic manifold.

In  these theorems, Patterson treated only the case where the
dimension n  of the manifold is 2 r .  It is obvious that, i f  there is
such an r-dimensional distribution, the number n  has to be equal or
more than 2r. Accordingly it will be interesting to study on a
structure of a manifold such as n>2r.

The present author firstly treated the case n = 2 r+ 1  [2 ]  and
obtained the theorem that a manifold M 2 r  + 1  admitting a :field 7(
which satisfies the similar conditions as in Patterson's first theorem
admits a (y7, 72, g)-structure having the covariant constant (0-tensor.
The notion of (y2, v , g ) - s t r u c tu r e  in  odd dimensional manifolds
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was introduced by S. Sasaki, which is equivalent to the almost con-
tact metric structure.

Recently, K. Yano [12] , [13] introduced the notion of an f
structure including an almost complex structure and an almost con-
tact structure, and obtained a  number o f interesting results. The
present author found, in  his paper [3] , the close relation between
an f,-structure satisfying a certain condition and the existence of a
complex distribution nr (2r satisfying the similar conditions as
in Patterson's second theorem.

On the other hand, A. G. Walker [9] and, a t the same time,
T . J. Willmore [10] studied on connections for integrable real dis-
tributions, and they succeeded in  proving that for any system of
integrable real distributions there exists an affine connection in the
large with respect to which the distributions are parallel and which
is symmetric. The present paper gives a condition of the existence
of a real symmetric affine connection r  with respect to which the
complex distribution 7 r"  is parallel, which is an extension of Walker
and Willmore's result in a real distribution and also can be regarded
as an analytic interpretation of the assumption in Patterson's theorem
[4 ] and the present author's [3].

§ 2 .  Manifolds with 7r-structures

In this paper we treat n-dimensional differentiable manifolds of

class C .  We shall begin with a definition of a 7e-structure.

Definition. A manifold w ith  a iv '-structure  is a manifold
adm itting an r-dim ensional complex distribution n ' satisfy ing the
relation 7t r  (- 17—cr =  {  }  at each point of the manifold where Tr' means
a conjugate complex distribution of iv'.

As is well known, an f,-structure defined by Yano [12] is an

example of such a structure. That is to say, in a manifold admit-

ting a real non-zero tensor field f  of type (1, 1) such that

(2. 1) f  f  = 0 , rank  o f ( f )  =2r,
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r-dimensional eigen vector spaces fr  and 7, spanned by eigen vectors

corresponding respectively to eigen value —1/ —1 and V —1, are
defined globally. S in ce  th ey  are mutually disjoint and conjugate
complex, they construct a e-structure. We call the distribution fr
The complex f-distribution hereafter.

Now we consider the converse of this fact and prove

Theorem 1. A  m anif old M "  admits a  n'-structure if  and
only i f  M " admits an f,-structure.

P ro o f. I f  I l l "  admits an f,-structure, then it admits a n'-struc-

ture as is shown above.

Conversely, let M " admit a n'-structure, then at each point of
I l l" ,  the relation

(2.2)e n T r r = { 0 }

holds good. Then the direct sum n7 -T-Ter constructs a  complex 2r-
dimensional distribution and has a real basis, that is, 7creïrr contains
a  real 2r-dimensional distribution .1,2 ' = S e [nr(DT-rr], which does not
depend on the choice of basis of i v ' .  In tangent space at each point
of M ", we take a real complementary distribution of Dr, which we
denote by Let 2( a)  and N ( A )

2 ) b e  basic contravariant vectors

of nr and M " '  respectively, then ;1( „)  are basic vectors o f T r ', and

the determinant IA I I )  j- ex) , ..(a), N ( A )  I does not vanish. Hence we
construct the inverse ( p )  of the matrix (A), which is expressed by

(z2(/ ) , 14A ) )  in  terms of local coordinate (xi, U ) .  Then we have
directly =  Tc»4 ) , T ( B

)  = it (  B )  , (Te = a+ r).
Next, let us define a complex tensor field ço of type (1, 1) by

(2. 3) ço = E Â(cop(a);

the tensor ço does not depend on the choice of the basis o f re, and

2 )  In  this paper the indices a, b ,  c ,  d, e  run over the range 1, ..., 2r; h, i ,  j ,
r, s , t  the range 1, n ; A , B , C , D , E  the range 2r+1, n ; a, 0 , y , 8  the

range 1, ..., r ;  d, $, Y the range r+ 1 , ..., 2 r ; and for example, a means a+ r.
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it is easy to show that the following equations are satisfied:

(2 • 4) ça2—ço , —À (Œ ), =  0 ,  ■!7N ( A )
=  0 ,

where v2 and v2( Œ) mean, in terms o f (xi, U), çoko; and 6,1 O E ) respec-
tively, from which it follows that g9 is  a projection tensor of iv ' .

It is obvious from (2.4) that the projection tensor 1k  of Tr" is given
by *---E:T ( 80 -,F2( a.) ,  and satisfies

(2. 5) *  = 0 , 'p = O, *ço = 0 ,  * 2 =* •

Now, making use of the tensor ç as above obtained, we shall
construct an [-structure by putting

(2.6)f  =  —  — 1(ço—p).

The tensor f  constructs a  real tensor field of type (1, 1) and
satisfies the relation f 3 + f  = 0  by virtue of the relations (2. 4) and
(2. 5). The tensor f  also satisfies

(2. 7) Poo— —  V-1 A(a), f  2(a) — V - 1 2(a), f N ( A ) = - 0,

from which the rank o f  ( f )  is equal to 2r. Q.E.D.

Rem ark. In the proof of the above theorem, we showed an
existence of a special [-structure in  11/1" admitting a iv'-structure.
Though we could construct the [-structure by (2. 6), it is clear that
the tensor f  depends on the choice of the complementary distribu-
tion M - 2 '. But, the [-structure defined by (2. 6) has an interest-
ing property that f '  coincides with n r .  Therefore we shall call an
f,-structure defined by (2. 6) an induced one from  n r  (correspond-
ing to the complementary M" - " ) ,  and the above L 2 ' a real f -distri-
bution hereafter.

We shall now examine a change of a induced [-structure when
a complementary distribution M " '  is replaced by an another one
/V l a - 2 r .

Theorem 2 .  In a manifold with a iv'-structure, induced f , -

structures f  and f '  corresponding to the complementary distri-
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butions M" - 2 r and M '" - - 2 r o f th e  real f -d istribu tion  L" satisfy
equations h f =0 , — Ph =h , where h= f '— f .

P ro o f. Let us denote basic vectors of M '" - 2 '  by MA )  and the

inverse matrix o f (2 ( a) , 2 ( « ) , M A )) by (d ), then we have

h= —V —1 E  [2 0 ,0 /2'(") —  2(a)/-1( a )  2 (a )T - 1 " )+  -2(a)Ti ( a ) ]
a

from which M T  find -

h f = — E  [Accott( ' ) —  2(.),u( " ) + IccoTt ( œ) — '2(coïta] =O.

In the same way, we have h f '= 0 ,  which gives us f f '— (f '—
h ) f '— f " .  These results, therefore, lead us to

f 2 ( f '—  f ) - - f ' 3 + f 3 =1"— f Q.E.D.

Now, let us consider the converse of Theorem 2. For this pur-

pose, we have first

Lemma 1 .  In a manifold with an f r -struc ture ,if  there exists
a tensor field h of type (1, 1) satisfying hf  =0, the vectors M A )

=N ( A ) +f h N ( A ) a r e  linearly independent where N ( A )  are basic
vectors of a distribution M  defined by a projection tensor m =
f 2 ±

P ro o f. It is obvious that the tensor m is a projection operator

and the distribution M  defined by m  is  (n-2r)-dim ensional [12].

Then there exist n - 2 r  linearly independent vectors N ( A )  i n  M.
Now the relation h f =0  shows that the determinant 1/ -1 -fh  does

not vanish. Thus the vectors M( A ) —  ( / - 1-fh)N( A ) a r e  linearly in-
dependent.

Theorem 3. In a manifold M " with an f ,-structure, i f  there
exists a tensor field h of type (1, 1 ) satisfying

(2.8)h f  = 0 ,  —  f 2h =h ,

then a ;tensor field f ' = f + h  constructs an f ,-s tru c tu re  in  M ",
whose complex f -distribution coincides with that of f .
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Pro o f . The conditions (2.8) give us directly h2 =0. From this
and (2. 1), we can easily verify the relation f " +  f ' = O . The defini-

tion of the complex f-distribution f r  gives us A( c) =1/-1 f2 ( a) , which

leads us to

( f ' + V I)2 ( . ) — f 2( c) + it2(a)+ V  — 1 2 ( a) = V  — 1 hf2 (
)
= O.

Then we see that the rank o f ( f ') 2 r .  On the other hand, from
the result of Lemma 1, the vectors 1 Nr(A)= (  f h )N (A ) construct an

(n -2 r) -d im e n s io n al real distribution. Since the definition of the
vectors N(A ) given in  Lemma 1 shows fN ( A ) =0 , we find f'ArA)=.
PhA T ( A) +hN(A ) = 0 .  Thus the rank o f ( f ')  2 r  must hold. Con-
sequently the rank o f ( f )  =2 r .

§ 3 . An [-structure whose complex f-distribution
is integrable

In a manifold with a e-structure, if we take a  complementary
distribution of the real distribution 1.2 r we can define an induced
[-structure by (2. 6). Moreover Remark o f Theorem 1 shows that
the complex f-distribution f r  corresponding to the above induced
[-structure coincide with the given distribution 7r". Therefore in
order to consider a manifold with a  7e-structure whose distribution
7 r '  is integrable, it is convenient to treat a manifold with an f
structure whose complex f-distribution is integrable. Hence in this
section we treat a manifold with an [-structure.

Now, the projection tensor ça of the complex f-distribution f r  is
given by

(3. 1) v =
1
 ( —  +  — 1 f ) .2

Then, the relation (2. 4) holds good.

We shall now extend the results given by Walker [9] in the
case of real distributions to that of the complex distributions. In
the first place, we have
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Lemma 2 .  I f  th e  complex f -distribution f r is integrable, the
equation

(3. 2) (9 „— çO' p )  ( p i 0

holds good, where commas denote partial differentiation.

P ro o f. For the differential operator X a = 2 . ) 80  the condition
for f '  to be integrable can be written in the form ( X„X3— XaXG)
= 0 X y . These are also equivalent to

4a), 2 f = 47) •

Multiplying by /43 ) ,a;(4 ) (8̀ , - 9 ,̀ )  and summing for a, and q , it can
be verified that these equations are equivalent to the condition
(3. 2).

Lemma 3 .  A  necessary and sufficient condition for the com-
plex f -d istribution f r to be parallel with respect to a given affine
connection r  is that the projection tensor (p satisfies

(3.3)P Ç O Ç O  = 0  ,

where, expressed in  terms of  local coordinate (x ', U),I 7 9y , means

Cr k6)Çòi

P ro o f. If the distribution f r  is parallel with respect to  the
connection P , then there exist Y. '  local covariant vector fields ,ea k

with respect to which the relation

(3. 4) r k2(a) = Z i a i k 2 a)

holds good. From the relations (3. 4 )  and (2. 4)2, it follows that
9172( a ) =172( a) . Differentiating (2. 4) 2 covarian tly  and using the above
result, we have V A ( )  = O .  On the other hand, the relations (2. 4) 8

and (2. 4) 4 g iv e  17991( a) = 0  and 17 99N ( A ) = 0 .  Thus we obtain the
relation V çay, = O.

Conversely, if the condition 17  yoyo = 0  is satisfied, (2. 4) 2 gives
172( a) =917 2( «) ,  which shows us that the distribution f r  is parallel.

Q.E.D.
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Rem ark. In this Lemma it is to be noted that the affine con-
nection r  is not necessarily real one.

Now let L =  ( L ,,)  be an arbitrary symmetric affine connection
defined over the M " , and denote by I covariant differentiation with
respect to L , then the quantity r  defined by

(3.5) r  = L + T

gives an affine connection over M "  where T  is a tensor field whose
local components have the following form:

(3. 6) T jk = — v ipli§9:— §9ipik§9 +g9 ipiaçor•ei •

Then we get

Lemma 4. The complex f - d i s t rib u t io n  f ' is parallel w ith
respect to  the af f in e  connection r  defined by :(3 . 5 ) and (3. 6)
where L  is  an arbitrary  sym m etric af f ine  connection.

Pro o f . Denoting by 17 the covariant differentiation with respect
to the r,  we find, using the relations (3 . 5 ), (3 . 6 ) and e = v ,  rkvid.;
=pq4 I kej . On the other hand, the relation v 2 =0 , gives 49f,41ke, =O.
Consequently we obtain 17 vq, =O. Thus Lemma 4  follows at once
from Lemma 3.

Theorem 4 .  I f  th e  complex f - d is t rib u t io n  f "  is integrable,
there  ex ists a  sym m etric af f in e  connection r  w ith  respect to
which f '  is parallel.

P ro o f . From the result o f  Lemma 4 ,  the distribution f r  is
parallel with respect to r  given by the relations (3 . 5 ) and (3. 6).
Hence it remains for us to prove that the P  is symmetric. To do
this, using the relation e=, and (3 . 2 ), we find

= kO ip  „ +  Lpyoqi] yo:vq;

= (goip g p ) q ) :  ço,

=0 .
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Theorem 5. In a manifold w ith an f ,-structure whose com-
plex  f -distribution  f '  and real f -distribution L 2 r a re  both inte-

grab le , there ex ists a  real sy m m etric affine connection r  with
respect to which f "  is parallel.

Pro o f . It follows, from the definition of the real f-distribution
L ", that the tensor 1= — f 2 is  a real projection operator of L 2 '. A s
the distribution L 2 r is integrable, from the well known Walker's
Theorem [9] , [10] there exists a  real symmetric affine connection

r  satisfying the equation 1711=0. Hence, on taking P  instead of L
in Lemma 4, the tensor T  is determined by (3. 6). Now putting

(3. 7)
*
r=r+T +T  ,

we get a real affine connection F. T h e n  the proof o f Theorem 4

shows us r  is symmetric. To complete the proof o f this theorem,

it is sufficient to show 17'w  = 0 .  However, from Theorem 4, relation

Vioyo= 0 holds good with respect to  the affine connection P =P +T .

Hence we have 17 ,4ofv1; = ( — ço,, 17' ) 4  Substituting (3. 6) into
the right hand member of the last equation, and taking account of
(2. 5), we have

v* A2;sp'; =—çoiprniv7P:—v imiisoiX  .

Moreover we substitute (3. 1) into the right hand member o f this

equation, and making use of the relations l f = f 1 = f ,  (1)11=0 and

171f=0, we find

41;kA 9 1.f —  — 8
1

 [  — V— 1 f;:im(1:1".; +frft +11 —1 lf f — -117. ft)

— 1f ,,(1 +fk 'f l— V —117f1)]

=0 .

Thus the proof is completed. Moreover, considering the Theorem
1 and Theorem 5, we obtain
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Corollary. In  a  manifold with a e-structure whose complex
distribution e and real distribution Dr=S te[eEP,e] are both in-

tegrable, there exists a  real symmetric aff ine connection r  with
respect to which the distribution nr is parallel.

§ 4 .  A manifold with a  (rr — /)-structure

Let us consider a  manifold 111" with a  nr-structure. In such a
manifold we defined a  (e—r)-structure in the paper [3] as follows:

Definition. A  m anif o ld  M " with a (e— r)-struc ture  is  a
manifold M " admitting a r'-structure a n d  a  real symmetric
affine connection r  with respect to which the distribution 7 r ' is
parallel.

Now we shall prove

Theorem 6 .  A  necessary and sufficient condition for a mani-
fo ld  M " to admit a (e— r)-structure is that the M " adm it a 7rr -
structure whose complex distribution nr a n d  rea l distribution
D r=ge[e(B le] are  both integrable.

P ro o f .  The conditions are sufficient because o f  Corollary of
Theorem 5. To prove the necessity, we first write the basic vectors
,10,0  o f  7rr in  the form

(4.1)2 ( a )  =  a ( a ) + 1 b(a)

where a( „) and b ( a)  a re  both real vectors. When we use the notations

(4. 2) c(00=a(a), c(a ) b (a )

the 2r vectors cw  a r e  real basic vectors of th e  real f-distribution
1,2 '. Since the manifold M " admits a (iv'— T ) -structure, the relations

(4. 3) E te (u361,2 i(a)

(4. 4) k Cf,,) = E  A M k C i(b)

hold good for suitable covariant vectors /24;k  and M a ;k. Now we put
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(4. 5) 4606, = X ,  C 1 = X ,

then, by making use of (4. 3) and (4. 4), we have

(4.6)(  X „  X f3— X3 X a ) = E Co Xy
Y

(4.7)X b X , ) h̀abXc

where we p u t ,e( a ) /473;, -26/411 ; = C a a n d  CLArb
)
) , — Ci(b)AC̀2).7=  b  -

That is to say, the distribution 7r" and L " are both integrable.
Q.E.D.

Next, we shall give a simple proof of a theorem in a preceding
paper [3] , i.e.

Theorem 7. I f  a m an if o ld  M "  admits a  (7E7  —P)-structure,
then an  f,-structure induced from th e  n'-structure satisfies the
relation

(4.8)F f f = 0  .

P ro o f. By virtue of Theorem 1 and its Remark, we know that,
for an f,-structure induced from the given 7e-structure, the complex
f-distribution  coincides with the distribution 7r'. Therefore the
distribution f r  is assumed to be parallel with respect to  the given
connection P. Then Lemma 3  shows us that 17'w  = 0 , which can be
rewritten by means o f (3 . 1) as

(— fl7 ff 2 + 2 F f f )+ V -1 (2 F f f 2 + fF f f ) = 0 .

Since f  and P  are both real, the real part and im agirary part of
the last equation are equal to zero. Then straightforward calcula-
tion gives (4. 8). Q.E.D.

Now, in order to prove the following theorem, let us recollect
the some results obtained in the preceding paper [3] . Consider a
manifold M " with a ( n ' —T')-structure, then the distribution L'' and
TCr are both integrable and the equations (4. 6) and (4 . 7) are satis
fled. Hence a system of differential equations

(4. 9) X,f =0 (a=1, 2, •-•, 2r)
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is completely integrable and has n - 2 r  independent solutions, saying
w 2r+1, w 2r+2, w  which are C - -functions of x ' in each local coordi-
nate neighbourhood (x 1 , U ) .  Similarly the equations (4 . 6 )  shows
that a system of complex partial differential equations

(4. 10) XOEf =0 (a=1 , 2, • •-, r)

is also completely integrable and has n — r independent solutions.
However w A (A =2 r+1 , • • • , n .)  are also the solutions of (4 . 10 ), and
real independent solutions of (4 . 10) are only WA and their functions,
because of the definition of Cw . Now let za — u a +  — 1 e (T x = a + r )
be the other r  complex independent solutions of (4. 10). Then
(z 1, z r .  w 2r+1, w n )  can be regarded as fundamental solutions of
(4 . 1 0 ) , and z a  are necessarily complex valued functions and of
differentiability class

Although a system of complex partial differential equations

(4. 11) ;ia)61f-=0 (a=1 , 2, •••, r)

is also completely integrable, its fundamental solutions are given by
al ,  •  " , w ' 1 , w") . T h a t is  to  say, the relations

(4. 12) ;Icc)0,-Z-3= 0 ,  ,1,08,wA  =0

hold good. Since the n — r functions (2a, WA) are also independent
functions, the rank of the matrix (8,2a, 6 0 A ) is n — r over the M ".

From this fact and the condition (2 . 2 )  of a n'-structure, it follows
that the determinant pg I =--. 12(3).9.2( ") 1 does not vanish. Thus we
can take a matrix (og) over the /14. -  as the inverse of the matrix

On the other hand, it is clear that there is no functional rela-
tionship of the form F (e , • • • ,  z r, -2 1, • • •  r  w 2.+ 1, • • • i e )  0, and hence

( u 1, • • • , u , •• • , v -,  w 2r+i, • ••we can take as a coordinate system
in (x i, U ) ,  which was called a canonical coordinate system in the
paper [3 ].

By means of these results, we have obtained, in the paper [3 ],
the following theorem.
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Theorem 8. In a m anifold w ith a (7r' —r)-structure, integral
submanifolds o f L 2 r[ T c r I 7 - - r r ]  have a complex analytic structure.

For the proof in detail, refer to the paper [ 3 ] .  Here we shall
sketch a brief proof, w hich w e need in  th e proof of th e  n ex t
Theorem 9.

Integral manifolds of L 2 r can be represented by the equations
wA —const.(A=2r +1, • •• , n) in  term s o f th e  canonical coordinate
sy s tem . I f  we take an arbitrary pair U , U ' o f intersecting neigh-
bourhood, admitting canonical coordinate systems (u ", v  W A ), and
(u'a, w "), then (u " ,  l i r )  and (u'a, v'E) can  be regarded  as co-
ordinate systems of an  integral manifold R  o f  L2  i n  U  and U'
respectively, while WA and w "  are solutions of (4. 9) then, on an
integral manifold R, tv'A can be represented by C- -functions of w 2r-",

• ••, tv".
By calculating the components of 4,0  in  a  canonical coordinate

system s, we have the relation 4 ) + -1/ —1 4 ) = 0 . In  th e  integral
manifold R  in Un U', the last equation leads us to the well known
Cauchy-Riemann's differential equations:

(4. 13) au'a av'T' aur3 _

       

aU7

Consequently, z ' "  are o f the form  z'a = (21, •••, z7 )  and (D" are
com plex analytic . T hus the in tegral manifold R  h a s  a  complex
analytic structure.

Now we are in a position to  show the main theorem of the
present paper:

Theorem 9. A manifold w ith a  ( n r  r)-str uctur e adm its an
f ,-structure  f *  induced f rom  nr and a real sy m m etric affine con-

nection w ith respect to w hich the relation '17'f*  = 0  holds good.

P ro o f .  By m aking use of the inverse m atrix  ( 4 )  defined in
the above, let us take a new basis A( a )  of n' , which is given by

(4.14) Aca)=--- 203)4.



Differentiable manifolds admitting complex d istributions 81

It is easy to  see that 4,0 0,z3 = 0 , 4 ,A V U sing the notations
= 0,TvA = w:1 we have a regular matrix (z) = i ( ,  z ,  ic e ) .  Then,

construct the inverse of the m atrix (z ),  which can be represented
by taking account of (4. 14), as the form (4 ) , ;1- , M A ) ). Since
n — 2r vectors .114. ,t) are rea l and pseudo-normal to  the distribution
7-cre e ,  they construct a real n— 2r dimensional distribution M* - 2 '.
It is  easily  verified  th at the distribution M * ' - '  i s  a global one.
Thus a special induced f -structure f *  is obtained from the distribu-
tions nr and M*" - 2  b y  the process which was used in the proof of

Theorem 1. Of course, from Theorem 7, we have:

(4.15)F f * f *  = 0  .

Now, refering to  a  canonical coordinate system, the matrices
(z )  and (z) - 1  have the following components

 

E', —  — 1  Er , 0
E', — I E r, 0
0 , 0 , .E" - 2 r

1 1
2

E r
'

— 0
2

E r

' 

-V-1 
 E r

—
 1

0
2 2 

0 0 ,  E " - 2 r .

(z)—

 

(z) - 1 =

 

Then, from (2. 3) and (2. 6), the tensors v *  and f are written
down in the form

ÇP*  =

f*  =
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Hence the Nijenhuis tensor N *  corresponding to the tensor f * ,
namely,

N*ij k= f*a/f*ij — f * 1
5 01)`*ik+ f *;aj f *1— f*;80`*ff

is identically zero. Since the affine connection P  is assumed to be
symmetric, N 'i k  =0 is reducible to

(4. 16) f*Lrif*7— f*Tif*T= f*Trkf*ti— f*Tvif

Therefore, if  we put T*ij k=  f*7 3 7 ,,,f * E.;—  f*'„Fif*Z, and consider an

affine connection 1 ' given by r= r+ T * , then the connection P  is

real. Covariant derivative r k f* ;  o f  f * ;  with respect to  r  are
written as

17 0•  4 .  * i; —17  kf*,— f*I'Tmf f* '.17 c *', f * T i ,

+ f*j*T rin f*t.i+ f* j* /,,,PV*7,̀  ,

and, from the equations f * ' -i-f* =0, (4. 15) and (4. 16), we find

Fk.

•  f

* ii — ro f * ;̀+ f * i.ff'11 7 ,1** 7—  f* 1iFif * Z] — r i f
= 0 .

The symmetricity of r  is verified as follows:

* *
1 ),-1 1 ,=T * '; , — T t=— N ;q=0 .

§ 5 .  Riemannian manifolds admitting null distributions

We finally turn to a consideration of an n-dimensional Riemannian
manifold V" with a positive definite Riemannian metric g .  In the
first place, it is assumed that V " admits a  null r-dimensional dis-
tribution 7 7 ,  i.e. a field of null r  planes 7( . The basic vectors 2 ( )

of n r  must satisfy the equations

(5. 1) '20,0g2()= 0 .( e x ,  = 1 ,  2 ,  •  •  • ,  r)

Since g  is positive definite, the vectors 20 x ) a re  complex ones, and
the relation rerr17—rr = { 0 } holds good automatically in  each point of
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the m anifold V". Thus the null distribution 7 ( constructs a  n '-
structure.

Now we take a real (n-2r)-dim ensional distribution M " - - 2 ' which
is orthogonal to the real 2r-dimensional distribution L 2 ' =Re [ 7 e  T r r

with respect to the given metric g .  Hence the distribution nr and
M " '  construct an f,-structure. Thus the manifold V " admits a
positive definite metric g  and an f,-structure f .

As is shown in the equation (2. 7), the distributions L '' and
M " - . 2 r are respectively given by the projection tensors

(5. 2) 1=
 — f 2  a n d  m =f 2 +I.

Definition. A  m anifold w ith an ( f , — g)-structure (cf. [3].)

is  a  R iem annian m anifold w ith a positiv e definite Riemannian
metric g and an  f ,-structure  f  satisfy ing

(5.3) g  _ g m ± i f g f .

Theorem 1 0 . In  order that a  R iem annian m anifold V ' ad-
m its an (f ,— g)-structure, it is necessary  and suf f icient that the
m anifold V" adm its a null r-dimensional distribution with respect
to a given Riemannian metric.

Pro o f . For the necessity refer to Proposition 2  in the paper
[ 3 ] .  That is to say, the basic vectors 2( a )  o f a  complex f-distribu-

tion f r satisfy relations f2 ( „ ) = — —1 2 ( a )  and m2( a ) = O. These rela-
tions and (5 . 3) lead us to  tR( a ) g2 ( ) =t2 ( c ) gm,i0 ) + t( f ik ,o ) g ( f 2 (3)) =

—̀2( c ) g2( 3) . Then t2( Œ ) g - 2( 3) = 0  holds good and the distribution f r  is
a null r-dimensional distribution.

Conversely, suppose that the m anifold V" admits a  null r-

dimensional distribution 7 (  with respect t o  a  given Riemannian
metric g , then V " admits an f,-structure according to the method
described at the beginning of this section. Then it remains for us
to prove (5 . 3 ). To do this, we notice that the rank of the matrix
(0-a a ) defined by

(5. 4) r « -=-12(cog2(a)
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is r,  at each point of V", because of the condition nr r) Tr' ={0}.

Therefore we construct the inverse of the matrix (tra.0 ), which

is denoted by ( r " ) .  Hence the projection tensor ç o  of the distribu-

tion rcr has the form cp = E 2 ( ) (Eg/T )r'3 " )  by means o f ( 2 .  3 ) .  Then

(2 . 6 )  and (5 . 2 )  lead us to

g m+ tfgf g t (pgço + t çog-o + tçpgçog ç o

Since n r  is null with respect to g ,  (5 . 1 )  gives içogy9=0 and t gv
= 0 .  Moreover, (5 . 4 )  gives tv =  g ç ',9. Thus (5 . 3 )  is proved.

Definition. A  manifold with a Orr — g)-structure is a Rieman-
nian manifold adm itting an  r-dim ensional distribution which is
n u ll an d  p aralle l w ith  respect t o  a  g iv e n  positiv e  definite
Riemannian metric g .  (cf. [3] .)

We have already established, in the paper [3] , the relation of
( f , —g) -structure and ( n '  — g)-structure as follows:

Theorem 11. In  order that a m anifold V " adm its a  (ir ' —g)-
structure, it is necessary  and  suf f icient that V " adm its an  ( f ,
— g)-structure satisf y ing the condition 17f=0 w here 17 denotes a
covariant dif ferentiation w ith respect to the given m etric g .  (cf.

[3] .)

In the following we shall give a simple proof o f this theorem.
Suppose the manifold V" admits a ( n ' —g)-structure, then it

follows, from Theorem 1 0 ,  that V " admits a ( f , —g ) -structure.
Since the distribution n "  coincides with the complex f-distribution
and is assumed to be parallel with respect to g ,  Theorem 7  shows

(5.5)F f f  = 0  .

On the other hand, for an (f ,— g)-structure, w e  have the relation
gf -Pf g  = 0 ,  (cf. [12] .) and hence f= — g - " f g .  These equations give
F ff=  —g - " ( f F f ) g ,  and (5 . 5 )  is rewritten as f l 7 f = 0 .  Then we
obtain F f = 0 ,  by virtue of the relation f + f = 0 .

Conversely, suppose V" admits an ( f , — g)-structure satisfying
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the condition rf  = 0, then V " admits a  null r-dimensional distribu-
tion f '  by virtue of Theorem 10. Next, the condition V f =0 gives

çc, = 0. Hence, Lemma 3 shows us that the null r-dimensional dis-
tribution f '  is parallel with respect to g.
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