J. Math. Kyoto Univ. 5-1 (1965) 45-59

On formal rings

By

Masayoshi MIYANISHI

(Received August 30, 1965)

Part I

1. In the following, we shall fix a ground field K of positive characteristic p.

Let R be an algebraic system composed by a system of sets of *n*-indeterminates, $x = (x_1, \dots, x_n)$, $y = (y_1, \dots, y_n)$, \dots (we call them generic points) and two sets of non-zero formal power series with coefficients in K

 $\varphi_i(x_1, \cdots, x_n; y_1, \cdots, y_n), \quad \psi_i(x_1, \cdots, x_n; y_1, \cdots, y_n), \quad 1 \leq i \leq n,$

with respect to 2*n*-indeterminates x_1, \dots, x_n ; y_1, \dots, y_n , satisfying the following conditions;

(F1) R is an abelian formal group with respect to $(\varphi_1, \dots, \varphi_n)$, (see [1]),

(F2) $\psi_i(\psi(x, y), z) = \psi_i(x, \psi(y, z))$, we call (ψ_1, \dots, ψ_n) the multiplication of x and y in R,

(F3) $\varphi_i(\psi(x, y), \psi(x, z)) = \psi_i(x, \varphi(y, z)),$ $\varphi_i(\psi(x, z), \psi(y, z)) = \psi_i(\varphi(x, y), z), 1 \leq i \leq n.$

We call R a *formal ring* of dimension n defined over K, and write

$$x \cdot y = (\psi_1(x, y), \dots, \psi_n(x, y)), x + y = (\varphi_1(x, y), \dots, \varphi_n(x, y)).$$

We shall follow the notation and the terminology of [1]. 2. Let \mathcal{O} be the ring of all formal power series with respect to x_1, \dots, x_n which have coefficients in K. For $f \in \mathcal{O}$, and two generic points x, y,

put

$$f(\mathbf{y} \cdot \mathbf{x}) = \sum_{\alpha} y^{\alpha}(X_{\alpha}f), \ X_{\alpha}f \in \mathcal{O},$$
 (1)

$$f(\mathbf{x} \cdot \mathbf{y}) = \sum_{\alpha} y^{\alpha}(Y_{\alpha}f), \ Y_{\alpha}f \in \mathcal{O},$$
(2)

$$f(x+y) = \sum_{\beta} y^{\beta}(Z_{\beta}f), \ Z_{\beta}f \in \mathcal{O}.$$
(3)

From the theory of formal groups, it is known that $Z_0 = I$ (identity) and that Z_β is a special semi-derivation of height $h(\beta)$ +1. X_α , Y_α , Z_α , $\alpha \in N^n$ are K-linear endomorphisms of K-vector space \mathcal{O} .

Put

$$(x \cdot y)^{\gamma} = \sum_{\alpha, \beta} c_{\beta \alpha \gamma} x^{\alpha} y^{\beta}, \ c_{\beta \alpha \gamma} \in K$$
(4)

$$(x+y)^{\gamma} = \sum_{\alpha,\beta} d_{\beta\alpha\gamma} x^{\alpha} y^{\beta}, \ d_{\beta\alpha\gamma} \in K.$$
(5)

Note that $d_{\alpha\beta\gamma}=0$ if $|\gamma| > |\alpha| + |\beta|$, $c_{\alpha\beta\gamma}=0$ if $|\gamma| > |\alpha|$, $|\beta|$,

and that $c_{\alpha \varrho \gamma} = c_{\varrho \alpha \gamma} = 0$, (except $c_{\varrho 0 0} = 1$), (6) $d_{\alpha \varrho \gamma} = d_{\varrho \alpha \gamma} = \delta_{\alpha \gamma}, \ d_{\alpha \beta \gamma} = d_{\beta \alpha \gamma}.$

Then applying the argument analogous to the one used in $[1, n^{\circ}11]$, we obtain the following relations,

$$\begin{aligned} X_{\beta}X_{\alpha} &= \sum_{\gamma} c_{\beta\alpha\gamma}X_{\gamma}, \quad Y_{\beta}Y_{\alpha} = \sum_{\gamma} c_{\alpha\beta\gamma}X_{\gamma}, \\ Z_{\beta}Z_{\alpha} &= \sum_{\gamma} d_{\beta\alpha\gamma}Z_{\gamma}, \qquad X_{\alpha}Y_{\beta} = Y_{\beta}X_{\alpha}, \\ Z_{\beta}X_{\alpha} &= \sum_{\substack{\alpha \leq \gamma \leq \alpha \\ \beta \neq \beta \neq \alpha}} c_{\beta\gamma\delta}X_{\alpha-\gamma}Z_{\delta}, \quad Z_{\beta}Y_{\alpha} = \sum_{\substack{\alpha \leq \gamma \leq \alpha \\ \beta \neq \beta \neq \alpha}} c_{\gamma\beta\delta}Y_{\alpha-\gamma}Z_{\delta}. \end{aligned}$$
(7)

Moreover we have "the generalized Leibnitz formula",

$$T_{\alpha}(fg) = \sum_{0 \leq \beta \leq \alpha} (T_{\beta}f) (T_{\alpha-\beta}g), \quad T = X, \quad Y, \quad Z, \text{ for } f, g \in \mathcal{O}.$$
(8)

The next result is easily obtained.

Proposition 1. The following conditions are equivalent.

- (1) The multiplication of R is commutative.
- (2) $X_{\alpha} = Y_{\alpha}$, for all $\alpha \in \mathbb{N}^{n}$.
- (3) $c_{\alpha\beta\gamma} = c_{\beta\alpha\gamma}$, for all α , β , $\gamma \in N^n$.

Then $X_{\beta}X_{\alpha} = X_{\alpha}X_{\beta}$ for all $\alpha, \beta \in \mathbb{N}^n$.

If we put $\varepsilon_i = (0, \dots, 0, \widecheck{1}, 0, \dots, 0), 1 \leq i \leq n$, we have

$$\psi_i(x, y) = (x \cdot y)^{\varepsilon_i} = \sum_{\alpha, \beta} c_{\beta \alpha \varepsilon_i} x^{\alpha} y^{\beta}, \qquad (9)$$

$$\varphi_i(\mathbf{x}, \mathbf{y}) = (\mathbf{x} + \mathbf{y})^{\varepsilon_i} = \sum_{\alpha, \beta} d_{\beta \alpha \varepsilon_i} \mathbf{x}^{\alpha} \mathbf{y}^{\beta}.$$
(10)

3. Conversely:

Proposition 2. For each $\alpha \in N^n$, let X_{α} , Y_{α} , Z_{α} be K-linear endomorphisms of \mathcal{O} such that

(i) $Z_0 = I$ (identity),

(ii) Z_{α} is a special semi-derivation of height $h(\alpha) + 1$,

(iii) these operators verify the conditions (6), (7), (8) for the sets of operators $\{c_{\alpha\beta\gamma}, d_{\alpha\beta\gamma}\}, (\alpha, \beta, \gamma) \in \mathbb{N}^n \times \mathbb{N}^n,$

(iv) these operators operate on \mathcal{O} with the next formulae, $X_{\beta}x^{\alpha} = \sum_{\gamma} c_{\gamma\beta\alpha}x^{\gamma}$, $Y_{\beta}x^{\alpha} = \sum_{\gamma} c_{\beta\gamma\alpha}x^{\gamma}$, $Z_{\beta}x^{\alpha} = \sum_{\gamma} d_{\gamma\beta\alpha}x^{\gamma}$.

Then formulae (9), (10) define a formal ring, for which (1), (2), (3) are Taylor formulae.

This result can be proved by an argument analogous to the one used in [2].

4. We shall consider a one-dimensional formal ring.

Let $\psi(x, y) = a_{11}xy + \sum_{k \ge 3} \sum_{i+j=k} a_{ij}x^i y^j$, where $a_{ij} \in K$, $a_{i0} = a_{0j} = 0$, $i, j \ge 2$.

We use the following Lemmas.

Lemma 1. If $a_{11}=0$, then $\psi(x, y)=0$.

Proof. Let α be the smallest integer such that $a_{\alpha j} \neq 0$ for some j and let β be the smallest integer such that $a_{\alpha\beta} \neq 0$. Then $\alpha \geq 1$ (when $\alpha = 1$, $\beta \geq 2$). We shall order lexicographically monomials

with respect to x, y, z by putting $cx^iy^jz^k < c'x^{i'}y^{j'}z^{k'}$, c, $c' \in K$, c, $c' \neq 0$, if the first non-zero difference of i'-i, j'-j, k'-k is positive. In $(x \cdot y) \cdot z$ the minimal monomial is $a_{\alpha\beta}^{\alpha+1}x^{\alpha}y^{\alpha\beta}z^{\beta}$ and in $x \cdot (y \cdot z)$, the minimal monomial is $a_{\alpha\beta}^{\beta+1}x^{\alpha}y^{\alpha\beta}z^{\beta^2}$. As $(x \cdot y) \cdot z = x \cdot (y \cdot z)$, we have $\alpha = \beta = 1$, which contradicts the assumption. q.e.d.

Lemma 2. (Theorem of J. Dieudonné [2] concerning the classification of one-dimensional formal groups.) In the following, we write \overline{Z}_k instead of Z_{kk} , $k \ge 0$, and suppose that the ground field K is algebraically closed. Any formal group G of dimension 1 over K is isomorphic to one of the following three types. (1) If $\overline{Z}_0^p = \lambda \overline{Z}_0$, $\lambda \ge 0$, G is isomorphic to the multiplicative group (with the group law $(x, y) \rightarrow x + y + xy$).

(2) If $\overline{Z}_{0}^{p}=0$ and if there exists the smallest integer r>0 such that $\overline{Z}_{r}^{p} \neq 0$, then G is isomorphic to the group with the associated hyperalgebra such that $\overline{Z}_{k}^{p}=0$, for k < r, and $\overline{Z}_{k}^{p}=\overline{Z}_{k-r}$, for $k \geq r$.

(3) If $\overline{Z}_{k}^{p}=0$, for all $k\geq 0$, then G is isomorphic to the additive group (with the group law $(x, y) \rightarrow x+y$).

Lemma 3. (1) $c_{\mu\nu}, \delta = 0$ for any δ and $k \ge 0$. (2) $\overline{Z}_{\mu}X_{0} = 0$, for $k \ge 0$.

Proof. (1) is trivial.

(2) If $f(x) = \sum_{\alpha} a_{\alpha} x^{\alpha}$, then $X_0 f = a_0$, that is, X_0 is a function which takes as a value a constant term of f(x). Therefore $\overline{Z}_k X_0 = 0$, $k \ge 0$ is trivial.

Lemma 4. As the addition of one-dimensional formal ring, we cannot take the group law of type (1) and (2) of Lemma 2.

Proof. Type (1). We have $Z_1^{\flat}X_1 = \lambda Z_1X_1$. However, $Z_1X_1 = \sum_{\delta} (c_{11\delta}X_0Z_{\delta} + c_{10\delta}X_1Z_{\delta}) = \sum_{\delta} c_{11\delta}X_0Z_{\delta}$. Therefore $Z_1^{\flat}X_1 = 0$ from Lemma 3. Hence $Z_1X_1 = 0$. But when we take x for f(x), we have Z_1X_1f $= Z_1(a_{11}x + \sum_{i>2} a_{1i}x^i)$, and $(Z_1X_1f)(e) = a_{11} \neq 0$. This gives a contradiction.

Type (2). It follows that $\overline{Z}_{k}X_{1} = \sum_{\delta} (c_{\rho^{k},1,\delta}X_{0}Z_{\delta} + c_{\rho^{k},0,\delta}X_{1}Z_{\delta}) = \sum_{\delta} (c_{\rho^{k},1,\delta}X_{0}Z_{\delta})$. Hence $\overline{Z}_{k}^{\rho}X_{1} = 0$. If we take r for k and x for f(x), we have $\overline{Z}_{r}^{\rho}X_{1} = Z_{1}X_{1} = 0$ and $Z_{1}X_{1}f \neq 0$. This gives a contradiction. q.e.d.

Lemma 5. If the addition is given by $\varphi(x, y) = x + y$, then with some change of variables of type $x \rightarrow x + \sum_{i=1}^{n} a_i x^{p_i}$, we can transfer the multiplication to $\psi(x, y) = xy$.

Proof $\psi(x, y)$ is given in the next form $\psi(x, y) = b_{00}xy + \sum_{i,j} b_{ij}x^{p^i}y^{p^j}$, $b_{00} \neq 0$. If we change variables by $v_0^{-1}(x) = (1/b_{00})x$, we have $\psi_0(x, y) = xy + \sum_{i,j} b_{ij}^{(0)}x^{p^i}y^{p^j}$. If some coefficients $b_{i0}^{(0)}$, $b_{0j}^{(0)}$ are not zero, then take α the smallest positive integer such that $b_{\alpha 0}^{(0)} \neq 0$. We can easily show that $b_{0\alpha}^{(0)} \neq 0$, $b_{\alpha 0}^{(0)} = b_{0\alpha}^{(0)}$, and $b_{0i}^{(0)} = 0$ for $0 < i < \alpha$. By a change of variables $v_{(\alpha)}^{-1}(x) = x - b_{0\alpha}^{(0)}x^{p^{\alpha}}$, we have a new formal series for the multiplication $\psi_{(\alpha)}(x, y) = xy + \sum_{i,j} b_{ij}^{(\alpha)}x^{p^i}y^{p^j}$, where $b_{i0}^{(\alpha)} = b_{0i}^{(\alpha)} = 0$, for $0 < i \le \alpha$. Let β be the smallest positive integer such that $b_{\beta 0}^{(\alpha)} \neq 0$. Then $\beta > \alpha$. By the analogous process, a change of variables $v_{(\beta)}^{-1}(x) = x - b_{0\beta}^{(\alpha)}x^{p^{\beta}}$, where $b_{i0}^{(\beta)} = b_{0i}^{(\alpha)} = 0$, if $0 < i \le \beta$.

Thus continuing this process, we have the following. By the change of variables $v = v_0 v_\alpha v_\beta \cdots$, we have $\bar{\psi}(x, y) = xy + \sum_{(i,j) \ge (1,1)} \bar{a}_{ij} x^{pi} y^{pj}$. But from the associative law for the multiplication, we have $\bar{\psi}(x, y) = xy$. = xy. q.e.d.

Summarizing the preceding Lemmas, we get:

Theorem. If the ground field K of characteristic p>0 is algebraically closed, any one-dimensional formal ring is isomorphic to the formal ring of type (x+y, xy).

Corollary. Any one-dimensional formal ring is commutative.

Remark. We can prove Corollary by the method of M. Lazard. [7]. In his argument, we have only to replace h(x, y) by $x \cdot y - y \cdot x$.

5. Let R be a formal ring of dimension n. Define $\theta_{ij}(x) \in \mathcal{O}$, $1 \leq i_{j}$, $j \leq n$, as follows;

 $\psi_i(y, x) = \sum_{j=1}^n \theta_{ij}(x) y_j + (\text{terms of total degree} \ge 2 \text{ with respect}$ to $y = (y_1, \dots, y_n)).$

Then from the distributive law $\psi_i(z, \varphi(x, y)) = \varphi_i(\psi(z, x), \psi(z, y))$, we get $\theta_{ij}(\varphi(x, y)) = \theta_{ij}(x) + \theta_{ij}(y)$, $1 \leq i, j \leq n$. Also from the associative law, $\psi_i(z, \psi(x, y)) = \psi_i(\psi(z, x), y)$, we get $\theta_{ij}(\psi(x, y)) = \sum_{k=1}^n \theta_{ik}(x) \theta_{kj}(y)$, $1 \leq i, j \leq n$.

If we associate to R a $n \times n$ -matrix $\theta(x) = (\theta_{ij}(x))$, we have a representation of R, $\theta(\varphi(x, y)) = \theta(x) + \theta(y)$, $\theta(\psi(x, y)) = \theta(x) \cdot \theta(y)$.

Lemma 6. If all $\theta_{ij}(x)$, $1 \leq i, j \leq n$ are zero, then all $\psi_i(x, y) \leq 1 \leq i \leq n$, are zero.

Proof. Assume that $\psi_i(y, x)$ is not zero. Let *s* be the smallest integer such that in $\psi_i(y, x)$, there exists a term $ax^{\gamma}y^{\delta}$ where $|\delta| = s$, and $a \neq 0$. Then $s \geq 2$. Let $z = (z_1, \dots, z_n)$ be another generic point. We have $\psi_i(z, \psi(y, x)) = \psi_i(\psi(z, y), x)$. In the left hand side, the minimal value of total degree with respect to *z* is *s*, but in the right hand side, the minimal value of total degree with respect to *z* is >*s*. This gives a contradiction. q. e. d.

Part 2

In Part 2 and Part 3, the ground field K is assumed to be algebraically closed. Moreover we add the next condition to the definition of formal ring:

(F4) ψ_1, \dots, ψ_n are analytically independent over K.

We shall prove that the underlying additive group of a formal ring is unipotent.

50

Lemma 1. (Homomorphism theorem, [1])

Let G and \overline{G} be formal groups of dimension m and n defined over K and u be a homomorphism from G to \overline{G} defined over K. By appropriate changes of variables in G and \overline{G} , we can suppose that we have,

$$u_{i}(x) = x_{i}, \quad for \quad 1 \leq i \leq r_{0},$$

$$u_{i}(x) = x_{i}^{p}, \quad for \quad r_{0} + 1 \leq i \leq r_{0} + r_{1},$$

$$\dots$$

$$u_{i}(x) = x_{i}^{p^{t}}, \quad for \quad r_{0} + \dots + r_{t-1} + 1 \leq i \leq r_{0} + \dots + r_{t},$$

$$u_{i}(x) = 0, \quad for \quad i > r_{0} + \dots + r_{t}.$$

We shall denote $\rho = r_0 + \cdots + r_t$ and call ρ the rank of u and t (the greatest integer such that $r_t \neq 0$) the height of u. We say that u is *injective* if $\rho = \dim G$, surjective if $\rho = \dim \overline{G}$, and isogeny if u is both injective and surjective.

Corollary. Let (G, u) be a subgroup of a formal group G'. Then there exist an isomorphism $G' \rightarrow G'_1$ and an isogeny $G \rightarrow H_1$ of G onto a typical subgroup of G'_1 such that the diagram $G \longrightarrow G'$ is commutative. $\begin{vmatrix} u \end{vmatrix}$

$$\stackrel{\downarrow}{H_1}\longrightarrow\stackrel{\downarrow}{\longrightarrow}\stackrel{\downarrow}{G_1}$$

The proof is given in [1], [5].

Lemma 2. Any abelian formal group over K is isogenous to a direct product of additive Witt groups, multiplicative groups and simple groups. (See [4], [8])

Lemma 3. Any abelian simple group of dimension n over K is isogenous to a group $G_{n,1,m}$ where m is a positive integer prime to n. $G_{n,1,m}$ has a hyperalgebra characterized by the following multiplication law,

$$\begin{split} \overline{Z}_{h,i}^{\flat} = \overline{Z}_{h,i+1}, & h = 0, 1, \cdots; 1 \leq i \leq n-1, \\ \overline{Z}_{h,n}^{\flat} = 0, & 0 \leq h \leq m, \\ \overline{Z}_{m+h,n}^{\flat} = \overline{Z}_{h,1}, & h = 0, 1, \cdots. & Here \quad \overline{Z}_{h,i} = Z_{\mu} \delta_{\varepsilon_{i}}. \end{split}$$

2. Any abelian formal group G of dimension n is isogenous to a group $G' = \prod_{i} W_{n_i} \times \prod_{j} G_{n_j,1,m_j} \times (G_m)^i$, $(n_j, m_j) = 1$, $\sum_{i} n_i + \sum_{j} n_j + l = n$. Let u be an isogeny from G' to G. Then there exists a unipotent subgroup $u(\prod_{i} W_{n_i}) = U$ in G. By Corollary, there exist an isomorphism $G \rightarrow G_1$ and an isogeny $U \rightarrow U_1$ of U onto a typical subgroup U_1 of G_1 such that:

- (1) G_1/U_1 has no unipotent subgroup,
- (2) the diagram $G \longrightarrow G_1$ is commutative.

$$U \longrightarrow U_1$$

We have the next result of J. Dieudonné [5].

Lemma 4. Let G be a commutative formal group of dimension n and let (J, L) be an arbitrary partition of [1, n]. There exist two uniquely determined systems of power series without constant terms $u(x) = (u_i(x))_{1 \le i \le n}$ and $v(x) = (v_i(x))_{1 \le i \le n}$ such that $u_k(x) = 0$ for $k \in L$, $v_j(x) = 0$ for $j \in J$ and u(x) + v(x) = x.

3. Let R be a formal ring of dimension n. For our purpose, we can assume that R contains a typical unipotent subgroup U such that R/U has no unipotent subgroup. Let J be a subset of [1, n] corresponding to U. Then J satisfies the following conditions;

(1) Card $(J) = \dim U$,

(2) for any system $(y_i)_{i\in J} = y$ of indeterminates, define $j(y) = (j_i(y))$ as the system of power series $j_i(y) = y_i$, for $i \in J$, $j_i(y) = 0$ otherwise; then we have $\varphi_i(j(y), j(z)) = 0$, for all $i \notin J$.

By Lemma 4, there exist two uniquely determined systems of power series $r(x) = (r_i(x))_{i \in J}$ and $h(x) = (h_i(x))_{1 \le i \le n}$ such that $h_i(x)$ =0 for $i \in J$, and x = j(r(x)) + h(x). Then we have h(x+y) = h(h(x) + h(y)), $h(x \cdot y) = h(h(x) \cdot h(y))$.

52

On formal rings

For the proof of the latter equality, we need the next Lemma.

Lemma 5. Let G, G' be abelian formal groups with their typical unipotent subgroups (U, j), (U', j') such that G/U, G'/U' have no unipotent subgroup, and u be a homomorphism from G to G'. Then there exists a homomorphism $u': U \rightarrow U'$ such that $u \cdot j = j' \cdot u'$,

$$\begin{array}{c}
\mathbf{U} \longrightarrow G \\
\downarrow u' \stackrel{j}{\longrightarrow} \downarrow u \\
\mathbf{U}' \longrightarrow G' \\
j'
\end{array}$$

Proof. Let x=j(r(x)+h(x), x'=j'(r'(x'))+h'(x') be partitions corresponding to (G, U) and (G', U') respectively. Since U is unipotent and G'/U' has no unipotent subgroup, a composition of homomorphisms $U \rightarrow G \rightarrow G' \rightarrow G'/U'$ is trivial. Hence, for a generic point x of U, h'(u(j(x))) = 0 and u(j(x)) = j'(r'(u(j(x)))). We can prove easily that $r' \cdot u \cdot j$ is a homomorphism. Therefore we have only to take $r' \cdot u \cdot j$ as u'.

For generic points x, y of R, we have

$$\begin{aligned} x \cdot y &= j(r(x \cdot y)) + h(x \cdot y) \\ &= (j(r(x)) + h(x)) \cdot (j(r(y)) + h(y)) \\ &= j(r(x)) \cdot \{j(r(y)) + h(y)\} + h(x) \cdot j(r(y)) \\ &+ j(h(x) \cdot h(y)) + h(h(x) \cdot h(y)) \end{aligned}$$

Here from Lemma 5, $j(r(x)) \cdot \{j(r(y)) + h(y)\}$, $h(x) \cdot j(r(y))$ are contained in j(U) because the multiplication by j(r(y)) + h(y), h(x) are homomorphisms of the formal group R. Hence we have the equality $h(x \cdot y) = h(h(x) \cdot h(y))$.

Put L = [1, n] - J. For a system $\overline{x} = (\overline{x}_k)_{k \in L}$ of indeterminates, let $\sigma(\overline{x})$ be the system $(\sigma_i(\overline{x}))_{1 \leq i \leq n}$ of power series such that $\sigma_i(\overline{x}) = 0$ for $i \in J$, $\sigma_i(\overline{x}) = \overline{x}_i$ for $i \in L$.

Put
$$\sigma \varPhi(\overline{x}, \overline{y}) = h(\sigma(\overline{x}) + \sigma(\overline{y})), \ \sigma \varPsi(\overline{x}, \overline{y}) = h(\sigma(\overline{x}) \cdot \sigma(\overline{y})),$$

Then we can show that \emptyset , Ψ define a ring law on the quotient group R/U, and that the system $\overline{h}(x) = (h_i(x))_{i \in L}$ is a homomorphism from R to R/U.

Now we consider the next assertion:

Theorem 1. There is no formal ring of which underlying formal group is isogenous to $(G_m)^i \times \prod_{(n,m)=1}^{m} G_{n,1,m}$, where G_m is the multiplicative group.

If we can prove Theorem 1, we know that there exists only trivial ring law on R/U, that is, all $(\Psi_i)_{i \in L}$ are zero.

Therefore
$$x \cdot y = j(r(x \cdot y)) + h(x \cdot y) = j(r(x \cdot y)) + h(h(x) \cdot h(y))$$

 $= j(r(x \cdot y)) + h(\sigma \overline{h}(x) \cdot \sigma \overline{h}(y))$
 $= j(r(x \cdot y)) + \sigma \overline{\Psi}(\overline{h}(x), \overline{h}(y))$
 $= j(r(x \cdot y)).$

This contradicts to our hypothesis that ψ_1, \dots, ψ_n are analytically independent over K, if $R/U \neq 0$. Hence we have:

Theorem 2. The underlying abelian formal group of a formal ring is unipotent.

Part 3

1. We denote by \mathcal{O}_r , the ring $\mathcal{O}^{p'}$, $r \in \mathbb{Z}$ and put $\mathcal{O}' = \bigcup \mathcal{O}_r$.

From now on, when we denote an index by $\alpha = (\alpha_1, \dots, \alpha_n)$, it always means the index of which components are of the following type,

$$a_{-t}p^{-t} + a_{-t+1}p^{-t+1} + \dots + a_{-1}p^{-1} + a_0 + a_1p + \dots + a_rp^r \qquad (*)$$

where a_{-t}, \dots, a_r are integers such that $0 \leq a_{-t}, \dots, a_r \leq p-1$.

For such α , we define $h(\alpha)$ the smallest integer r for which $\alpha_i < p^{r+1}$, $1 \leq i \leq n$ and $\alpha! = \prod_{h=-\infty}^{r} \prod_{i=1}^{n} (\lambda_{hi})!$ where $\alpha_i = \sum_{h=-\infty}^{r} \lambda_{hi} p^h$, $1 \leq i \leq n$, are expressions of α_i in the form (*).

On formal rings

Let G be a commutative formal group of dimension n. In the following, we shall extend the notion in $[1, n^{\circ}4, 5, 6, 7, 12]$, following verbatim the argument in [1]. We call a K-endomorphism Δ of \mathcal{O}' a semi-derivation of height r if Δ satisfies $\Delta(\mathcal{O}_r) \subset \mathcal{O}_r$, $\Delta(fg) = f\Delta(g) + g\Delta(f)$, for $f \in \mathcal{O}_r$, $g \in \mathcal{O}'$, and a special semi-derivation if Δ is semi-derivation and satisfies $\Delta(f) = 0$, for $f \in \mathcal{O}_r$. Denote by $D_{r,i}$ a semi-derivation of height r such that if $\alpha_i = ap^r + b + c$, $0 \leq a < p$, $a \in \mathbb{Z}$; $0 \leq b < p^r$, $p^{-r-1}c \in \mathbb{N}$, we have $D_{r,i}(x_1^{\alpha_1} \cdots x_n^{\alpha_n}) = ax_1^{\alpha_1} \cdots x_{i-1}^{\alpha_{i-1}} \cdot x_i^{\alpha_{i-1}} \cdots x_n^{\alpha_n}$. Put $D_{\alpha} = \prod_{h=-\infty}^r \prod_{i=1}^n D_{h,i}^{\lambda_{h_i}}$ for $\alpha = (\alpha_1, \dots, \alpha_n)$, $\alpha_i = \sum_{h=-\infty}^r \lambda_{h_i} p^h$, $1 \leq i \leq n$.

We define a differential operator D as a linear combination $\sum_{\alpha} u_{\alpha} D_{\alpha}$ where $u_{\alpha} \in \mathcal{O}'$ and $u_{\alpha} = 0$ for α such that $h(\alpha)$ is large enough. For any differential operator D we can define uniquely an *invariant* differential operator Z such that Z(e)f = D(e)f, $f \in \mathcal{O}'$. Denote by Z_{α} the invariant differential operator characterized by the initial condition $Z_{\alpha}(e) := (1/\alpha) D_{\alpha}(e)$. Put $X_{\alpha} = \prod_{h=-\infty}^{r} \prod_{i=1}^{n} \overline{Z}_{h,i}^{h,i}$, for $\alpha = (\alpha_{1}, \dots, \alpha_{n})$, $\alpha_{i} = \sum_{h=-\infty}^{r} \lambda_{hi} p^{h}$, $1 \leq i \leq n$, where $\overline{Z}_{h,i} = Z_{ph \in i}$.

We denote by \mathcal{G} the algebra formed (over K) by invariant differential operators of \mathcal{O}' and call it the *hyperalgebra* of G. Also we denote by \mathcal{G}_r (resp. \mathcal{S}_r) the set of semi-derivations (resp. special semi-derivations) of height r of \mathcal{G} . Then $\mathcal{G} = \bigcup_r \mathcal{G}_r$, \mathcal{G}_r is Lie algebra and \mathcal{S}_r is the ideal of \mathcal{G}_r . Moreover \mathcal{S}_r is the associative algebra over K. Then Theorem 2 of $[1, n^\circ 9]$ holds in our case.

Lemma 1. The associative algebra S, has the special semiderivations X_{α} , $0 \leq \alpha_i < p^r$ as its base over K; the Lie algebra \mathcal{G} , is the direct sum of S, and the vector space over K which has $\overline{Z}_{r,1}, \dots, \overline{Z}_{r,n}$ as its base.

Remark. Z_{α} can be defined from "Taylor series" for $f \in \mathcal{O}'$, $f(x+y) = \sum_{\alpha} y^{\alpha}(Z_{\alpha}f), \ Z_{\alpha}f \in \mathcal{O}'.$

2. Let \overline{G} be another commutative formal group of dimension mand let $u = (u_1, \dots, u_m)$ be a homomorphism from G to \overline{G} , where we admit to take elements of \mathcal{O}' as u_i , $1 \leq i \leq m$. For $Z \in \mathcal{G}$, $f \in \mathcal{O}'(\overline{G})$, we define an invariant differential operator $u'(Z) \in \overline{\mathcal{G}}$ by $u'(Z)(e)\overline{f}$ $= Z(e)(\overline{f} \cdot u)$. Then u' is a homomorphism from \mathcal{G} to $\overline{\mathcal{G}}$ such that $u'(\mathcal{G}_r) \subset \overline{\mathcal{G}}_{r+i}$, $u'(\mathcal{S}_r) \subset \overline{\mathcal{S}}_{r+i}$, for $r \in Z$, where t is an integer such that $u_i \in \mathcal{O}_{-i}$, $1 \leq i \leq m$. Moreover if v is a homomorphism of \overline{G} to another commutative formal group \overline{G} , we have $(v \cdot u)' = v' \cdot u'$. It is trivial that for the identity I of formal group G, (I)' is the identity of Lie hyperalgebra \mathcal{G} of G.

3. Lemma 2. (1) For $G_{n,1,m}$, (n, m) = 1, we have the following relations,

$$\overline{Z}_{h,i}^{p} = \overline{Z}_{h,i+1}, \ 1 \leq i \leq n-1, \ h=0, \ \pm 1, \ \pm 2, \ \cdots,$$
$$\overline{Z}_{h,n}^{p} = \overline{Z}_{h-m, 1}, \qquad h=0, \ \pm 1, \ \pm 2, \ \cdots.$$

(2) For multiplicative group G_m , we have the relations,

 $\overline{Z}_{h}^{p} = \overline{Z}_{h}, h = 0, \pm 1, \pm 2, \cdots$

Proof. (1) First we prove that the relations

 $\overline{Z}_{h,i}^{p} = \overline{Z}_{h,i+1}, \ 1 \leq i \leq n-1, \ h=0, \ 1, \ 2, \ \cdots,$

 $\overline{Z}_{h+m,n}^{p} = \overline{Z}_{h,1}, h = 0, 1, \cdots$, described in Lemma 3, Part 2 hold

if they are considered as K-linear endomorphisms of \mathcal{O}' . Let f be an element of \mathcal{O}_{-t} , t: positive integer. Taking account of the fact that the group laws of $G_{n,1,m}$ are defined over the prime field, it is easy to show that $Z_{\alpha}f = \{Z_{pt_{\alpha}}(f \cdot p^{t})\}(p^{-t})$, for any $Z_{\alpha} \in \mathcal{G}$ where p (resp. p^{-1}) is a homomorphism $p: x \to x^{p}$ (resp. $p^{-1}: x \to x^{p^{-1}}$). Taking $\overline{Z}_{h,i}$ (resp. $\overline{Z}_{h+m,n}$), we have $\overline{Z}_{h,i}^{p}f = \{\overline{Z}_{h+t,i}^{p}(f \cdot p^{t})\}(p^{-t}) =$ $\{\overline{Z}_{h+t,i+1}(f \cdot p^{t})\}(p^{-t}) = \overline{Z}_{h,i+1}f$, (resp. $\overline{Z}_{h+m,n}^{p}f = \{\overline{Z}_{h+m+t,n}^{p}(f \cdot p^{t})\}(p^{-t}) =$ $\{\overline{Z}_{h+t,i}(f \cdot p^{t})\}(p^{-t}) = \overline{Z}_{h,i}f$.) Hence follows the requirement.

Next we consider a homomorphism $p^{-1}: x \to x^{p^{-1}}$. Then the derived homomorphism $(p^{-1})'$ of the hyperalgebra of $G_{n,1,m}$ is characterized

On formal rings

by

$$(\boldsymbol{p}^{-1})'(\overline{\boldsymbol{Z}}_{h,i}) = \overline{\boldsymbol{Z}}_{h+1,i}, \ h=0, \ \pm 1, \ \pm 2, \ \cdots, \ 1 \leq i \leq n$$

To prove the relations (1), operate $(p^{-1})'$ on $\overline{Z}_{h,i}$, $1 \leq i \leq n-1$, (resp. $\overline{Z}_{h,n}$) by *t*-times repeatedly so that h+t (resp. h+t-m) is positive. Then putting $q = (p^{-1})'$, we have

$$q^{t}(\overline{Z}_{h,i}^{p}) = (q^{t}(\overline{Z}_{h,i}))^{p} = \overline{Z}_{h+t,i}^{p} = \overline{Z}_{h+t,i+1}^{p} = q^{t}(\overline{Z}_{h,i+1})$$

(resp. $q^{t}(\overline{Z}_{h,n}^{p}) = \overline{Z}_{h+t,n}^{p} = \overline{Z}_{h+t-m,1} = q^{t}(\overline{Z}_{h-m,1}).$)

Therefore we get the requirement, taking account of the fact that $(p^{-1})'$ is bijective.

(2) The proof is completely analogous to the one of (1), using the fact that $\overline{Z}_{k}^{p} = \overline{Z}_{k}$, $h = 0, 1, 2, \cdots$. q.e.d.

From Lemma 1 and Lemma 2, we have:

Corollary. If a commutative formal group G is isomorphic to a direct product of multiplicative groups and simple groups $G_{n,1,m}$, (n, m) = 1, the mapping of the hyperalgebra \mathcal{G} of G; $Z \in \mathcal{G} \rightarrow Z^{p} \in \mathcal{G}$ is bijective.

4. We shall define a *quasi-formal ring* R with the same definition as a formal ring, only adding the following requirement:

(1) $\varphi_1, \dots, \varphi_n$ are formal series which admit no terms but those of the following type, $x_1^{\alpha_1} \cdots x_n^{\alpha_n} y_1^{\beta_1} \cdots y_n^{\beta_n}$, $\alpha_1, \dots, \alpha_n$; β_1, \dots, β_n being non-negative integers,

(2) ψ_1, \dots, ψ_n admit terms $x_1^{\alpha_1} \dots x_n^{\alpha_n} y_1^{\beta_1} \dots y_n^{\beta_n}, \alpha_1, \dots, \alpha_n; \beta_1, \dots, \beta_n$ being non-negative numbers of the type (*).

For $f \in \mathcal{O}'$, write $f(y \cdot x) = \sum_{\alpha} y^{\alpha}(X_{\alpha}f)$, $f(x \cdot y) = \sum_{\alpha} y^{\alpha}(Y_{\alpha}f)$, $f(x+y) = \sum_{\alpha} y^{\alpha}(Z_{\alpha}f)$, $X_{\alpha}f$, $Y_{\alpha}f$, $Z_{\alpha}f \in \mathcal{O}'$. Then X_{α} , Y_{α} , Z_{α} are *K*-linear endomorphisms of \mathcal{O}' . Moreover put $(x \cdot y)^{\gamma} = \sum_{\alpha,\beta} c_{\beta\alpha\gamma} x^{\alpha} y^{\beta}$, $(x+y)^{\gamma} = \sum_{\alpha,\beta} d_{\beta\alpha\gamma} x^{\alpha} y^{\beta}$, $c_{\alpha\beta\gamma}$, $d_{\alpha\beta\gamma} \in K$. Then we write

$$X_{\beta}X_{\alpha} = \sum_{\gamma} c_{\beta\alpha\gamma}X_{\gamma}, \quad Y_{\beta}Y_{\alpha} = \sum_{\gamma} c_{\alpha\beta\gamma}Y_{\gamma}, \quad Z_{\beta}Z_{\alpha} = \sum_{\gamma} d_{\beta\alpha\gamma}Z_{\gamma},$$

$$Z_{eta}X_{lpha} = \sum_{\substack{0 \leq \gamma \leq lpha \\ \delta}} c_{eta\gamma\delta}X_{lpha-\gamma}Z_{\delta}, \ Z_{eta}Y_{\gamma} = \sum_{\substack{0 \leq \gamma \leq lpha \\ \delta}} c_{\gammaeta\delta}Y_{lpha-\gamma}Z_{\delta}.$$

5. Let R be a formal ring of dimension n and assume that there exists an isogeny u from the underlying additive group of R to G, where G is isomorphic to $(G_m)^l \times \prod_{\substack{(n_i,m_i)=1 \\ n_i,m_i \neq 1}} G_{n_i,1,m_i}, l + \sum_i n_i = n.$

Let $\overline{\varphi} = (\overline{\varphi}_1, \dots, \overline{\varphi}_n)$, $\overline{\psi} = (\overline{\psi}_1, \dots, \overline{\psi}_n)$ be ring laws for R and $\varphi = (\varphi_1, \dots, \varphi_n)$ be the group law for G. Then by Lemma 1, Part 2, changing variables in R and G, we can suppose that u is a homomorphism of the form written in Lemma 1, and that $\overline{\varphi}$, $\overline{\psi}$, φ are laws defined for the variables which have been changed, $\overline{x}_1, \dots, \overline{x}_n$ for R and x_1, \dots, x_n for G. Then $x_i = u_i(\overline{x}) = \overline{x}_i^{i\hbar}$, if $r_0 + \dots + r_{h-1} + 1 \leq i \leq r_0 + \dots + r_h$, $0 \leq h \leq t$.

We define ψ_i as follows;

$$\psi_i(x_1, \dots, x_n; y_1, \dots, y_n) = \{ \bar{\psi}_i(x_1, \dots, x_{r_0}, x_{r_0+1}^{p^{-1}}, \dots, x_{r_0+r_1}^{p^{-1}}, \dots, x_n^{p^{-t}}; y_1, \dots, y_{r_0}, y_{r_0+1}^{p^{-1}}, \dots, y_{r_0+r_1}^{p^{-1}}, \dots, y_n^{p^{-t}}) \} p^h,$$

if $r_0 + \dots + r_{h-1} + 1 \leq i \leq r_0 + \dots + r_h, 0 \leq h \leq t.$

Thus we can define a structure of quasi-formal ring on G with $\varphi = (\varphi_1, \dots, \varphi_n), \ \psi = (\psi_1, \dots, \psi_n)$. Then by Lemma 6, Part 1 and the condition (F4), we can easily see that in some ψ_i , there exists a term of the type $a(x)y_i^{ph}$ where a(x) is a formal series in \mathcal{O}' and h is an integer. Let h be the smallest integer such that there appear terms of the preceding type in ψ_i , $1 \leq i \leq n$.

Write
$$\psi_i(y, x) = \sum_{j=1}^n \theta_{ij}(x) y_j^{ph} + (\text{terms of total degree } > p^h \text{ with}$$

respect to $y = (y_1, \dots, y_n)$ or terms
of the following type $a(x) y_1^{\alpha_1} \dots y_n^{\alpha_n}$
where some $\alpha_i, \alpha_i \neq 0, i \neq i$.)

Then from $\varphi_i(\psi(z, x), \psi(z, y)) = \psi_i(z, \varphi(x, y))$, we have

$$\theta_{ij}(\varphi(x, y)) = \theta_{ij}(x) + \theta_{ij}(y), \ 1 \leq i, j \leq n. \qquad \cdots (**)$$

From the assumption, there exists some $\theta_{ij}(x) \neq 0$. From (**), we

58

can know easily that in $\theta_{ij}(x)$, the terms of the smallest total degree have the form $ax_k^{p_i}$, $a \in K$, $1 \leq k \leq n$, t: integer. Therefore we know that in some $\psi_i(x, y)$, $1 \leq i \leq n$ there exists a term $ax_k^{p_i}y_j^{p_k}$. If we operate $\overline{Z}_{i,k}X_{p^{k_{e_j}}}$ to x_{i} , we have

$$(\overline{Z}_{\iota,k}X_{p^k\varepsilon_j}x_i)(e) = \overline{Z}_{\iota,k}(\theta_{ij}(x))(e) = a \neq 0.$$

On the other hand, we have $\overline{Z}_{i,k} = \sum_{\alpha} a_{\alpha} Z_{\alpha}^{b}$, $a_{\alpha} \in K$, from Corollary of Lemma 2. And by operating the above endomorphism to elements of \mathcal{O}_{r} , where r is large enough, it is easy to see that the sum of right hand side does not contain a constant term.

For $\alpha \neq 0$, we have

$$Z_{\alpha}X_{p^{h}\varepsilon_{j}}=\sum\{c_{\alpha,0,\delta}X_{p^{h}\varepsilon_{j}}+c_{\alpha,p^{h}\varepsilon_{j},\delta}X_{0}+\sum_{0<\gamma<\rho}k_{\varepsilon_{j}}c_{\alpha,0,\delta}X_{p^{h}\varepsilon_{j}-\gamma}\}Z_{\delta}.$$

If $0 < \gamma < p^{\flat} \cdot \varepsilon_{j}$, $X_{\flat^{\flat} \varepsilon_{j-\gamma}} Z_{\delta} x_{i} = 0$, for if not $\delta = (\delta_{1}, \dots, \delta_{n})$,

 δ_i : non-negative integers, $Z_{\delta}x_i=0$ by the definition of Z_{δ} and the assumption of group laws of a quasi-formal ring, and if $\delta = (\delta_1, \dots, \delta_n)$, δ_i : non-negative integers, $(X_{p^{\lambda}\varepsilon_j-\gamma}Z_{\delta})x_i=0$ by the assumption on h. We know that $c_{\alpha,0,\delta}=0$ and $Z_{\alpha}X_0=0$. Hence $Z_{\alpha}^{\delta}X_{p^{\lambda}\varepsilon_j}x_i=0$, and $\overline{Z}_{i,k}X_{p^{\lambda}\varepsilon_j}x_i=0$. This gives a contradiction. Thus we have completed the proof of Theorem 1.

Bibliography

- J. Dieudonné, Groupes de Lie et hyperalgèbres de Lie sur un corps de caractéristique p>0, Comm. Math. Helv., 28, 1954, pp. 87-118.
- [2] J. Dieudonné, Lie groups and Lie hyperalgebras over a field of characteristic p>0, (II), Amer. Jour. Math., 77, 1955, pp. 218-244.
- [3] J. Dieudonné, Groupes de Lie et hyperalgèbres de Lie sur un corps de caractéristique p>0, (III), Math. Zeit. 62, 1955, pp. 53-75.
- [4] J. Dieudonn, Groupes de Lie et hyperalgèbres de Lie sur un corps de caractéristique p>0, (VII), Math. Ann., 134, 1957, pp. 114-133.
- [5] J. Dieudonné, Lie groups and Lie hyperalgebras over a field of characteristic p>0, (VIII), Amer. Jour. Math., 80, 1958, pp. 740-772.
- [6] M. J. Greenberg, Algebraic rings, Trans. A. M. S., 3, 1964, pp. 472-481
- [7] M. Lazard, La non-existence des groupes de Lie formels non abéliens à un paramètre, Comt. Rend. (Paris), 239, 1954, pp. 942-945.
- [8] Ju. I. Manin, Theory of commutative formal groups over a field of positive characteristic, Uspekhi Math. Nauk, 18, 1963, pp. 1-90.