On formal rings

By
Masayoshi MiYANISHI
(Received August 30, 1965)

Part I

1. In the following, we shall fix a ground field K of positive characteristic p.

Let R be an algebraic system composed by a system of sets of n-indeterminates, $x=\left(x_{1}, \cdots, x_{n}\right), y=\left(y_{1}, \cdots, y_{n}\right), \cdots$ (we call them generic points) and two sets of non-zero formal power series with coefficients in K

$$
\varphi_{i}\left(x_{1}, \cdots, x_{n} ; y_{1}, \cdots, y_{n}\right), \quad \psi_{i}\left(x_{1}, \cdots, x_{n} ; y_{1}, \cdots, y_{n}\right), \quad 1 \leqq i \leqq n
$$

with respect to $2 n$-indeterminates $x_{1}, \cdots, x_{n} ; y_{1}, \cdots, y_{n}$, satisfying the following conditions;
(F1) R is an abelian formal group with respect to $\left(\varphi_{1}, \cdots, \varphi_{n}\right)$, (see [1]),
(F2) $\psi_{i}(\psi(x, y), z)=\psi_{i}(x, \psi(y, z))$, we call $\left(\psi_{1}, \cdots, \psi_{n}\right)$ the multiplication of x and y in R,
(F3) $\quad \varphi_{i}(\psi(x, y), \psi(x, z))=\psi_{i}(x, \varphi(y, z))$,

$$
\varphi_{i}(\psi(x, z), \psi(y, z))=\psi_{i}(\varphi(x, y), z), 1 \leqq i \leqq n .
$$

We call R a formal ring of dimension n defined over K, and write

$$
x \cdot y=\left(\psi_{1}(x, y), \cdots, \psi_{n}(x, y)\right), x \dot{+} y=\left(\varphi_{1}(x, y), \cdots, \varphi_{n}(x, y)\right)
$$

We shall follow the notation and the terminology of [1].
2. Let \mathcal{O} be the ring of all formal power series with respect to" x_{1}, \cdots, x_{n} which have coefficients in K. For $f \in \mathcal{O}$, and two generic points x, y,
put

$$
\begin{align*}
& f(y \cdot x)=\sum_{\alpha} y^{\alpha}\left(X_{\alpha} f\right), \quad X_{\alpha} f \in \mathcal{O}, \tag{1}\\
& f(x \cdot y)=\sum_{\alpha} y^{\alpha}\left(Y_{\alpha} f\right), \quad Y_{\alpha} f \in \mathcal{O}, \tag{2}\\
& f(x+y)=\sum_{\beta} y^{\beta}\left(Z_{\beta} f\right), \quad Z_{\beta} f \in \mathcal{O} . \tag{3}
\end{align*}
$$

From the theory of formal groups, it is known that $Z_{0}=I$ (identity) and that Z_{β} is a special semi-derivation of height $h(\beta)$ +1. $X_{\alpha}, Y_{\alpha}, Z_{\alpha}, \alpha \in N^{n}$ are K-linear endomorphisms of K-vector: space \mathcal{O}.

Put

$$
\begin{align*}
& (x \cdot y)^{\gamma}=\sum_{\alpha, \beta} c_{\beta \alpha \gamma} x^{\alpha} y^{\beta}, \quad c_{\beta \alpha \gamma} \in K \tag{4}\\
& (x \dot{+} y)^{\gamma}=\sum_{\alpha, \beta} d_{\beta \alpha \gamma} x^{\alpha} y^{\beta}, d_{\beta \alpha \gamma} \in K . \tag{5}
\end{align*}
$$

Note that $d_{\alpha \beta \gamma}=0$ if $|\gamma|>|\alpha|+|\beta|, c_{\alpha \beta \gamma}=0$ if $|\gamma|>|\alpha|,|\beta|$, and that $c_{\alpha c \gamma}=c_{0 \alpha \gamma}=0$, (except $c_{000}=1$), $d_{\alpha 0 \gamma}=d_{0 \alpha \gamma}=\delta_{\alpha \gamma}, d_{\alpha \beta \gamma}=d_{\beta \alpha \gamma}$.

Then applying the argument analogous to the one used in [1, $n^{\circ} 11$, we obtain the following relations,

$$
\begin{align*}
& X_{\beta} X_{\alpha}=\sum_{\gamma} c_{\beta \alpha \gamma} X_{\gamma}, \quad Y_{\beta} Y_{\alpha}=\sum_{\gamma} c_{\alpha \beta \gamma} X_{\gamma}, \\
& Z_{\beta} Z_{\alpha}=\sum_{\gamma} d_{\beta \alpha \gamma} Z_{\gamma}, \quad X_{\alpha} Y_{\beta}=Y_{\beta} X_{\alpha}, \\
& Z_{\beta} X_{\alpha}=\sum_{0 \leq\lceil>\delta \infty} c_{\beta \gamma \delta} X_{\alpha-\gamma} Z_{\delta}, \quad Z_{\beta} Y_{\alpha}=\sum_{0 \leq \gamma \leq \alpha} c_{\gamma \beta \delta} Y_{\alpha-\gamma} Z_{\delta} . \tag{7}
\end{align*}
$$

Moreover we have "the generalized Leibnitz formula",

$$
T_{\alpha}(f g)=\sum_{0 \leq \beta \leq \alpha}\left(T_{\beta} f\right)\left(T_{\alpha-\beta} g\right), T=X, Y, Z, \text { for } f, g \in \mathcal{O} .
$$

The next result is easily obtained.

Proposition 1. The following conditions are equivalent.
(1) The multiplication of R is commutative.
(2) $X_{\alpha}=Y_{\alpha}$, for all $\alpha \in N^{n}$.
(3) $c_{\alpha \beta \gamma}=c_{\beta \alpha \gamma}$, for all $\alpha, \beta, \gamma \in N^{n}$.

Then $X_{\beta} X_{\alpha}=X_{\alpha} X_{\beta}$ for all $\alpha, \beta \in N^{n}$.
If we put $\varepsilon_{i}=(0, \cdots, 0, \stackrel{i}{1}, 0, \cdots, 0), 1 \leqq i \leqq n$, we have

$$
\begin{align*}
& \psi_{i}(x, y)=(x \cdot y)^{\varepsilon_{i}}=\sum_{\alpha, \beta} c_{\beta \alpha \varepsilon_{i}} x^{\alpha} y^{\beta}, \tag{9}\\
& \varphi_{i}(x, y)=(x+y)^{\varepsilon_{i}}=\sum_{\alpha, \beta} d_{\beta \alpha \varepsilon_{i}} x^{\alpha} y^{\beta} . \tag{10}
\end{align*}
$$

3. Conversely :

Proposition 2. For each $\alpha \in N^{n}$, let $X_{\alpha}, Y_{\alpha}, Z_{\alpha}$ be K-linear endomorphisms of \mathcal{O} such that
(i) $Z_{0}=I$ (identity),
(ii) Z_{α} is a special semi-derivation of height $h(\alpha)+1$,
(iii) these operators verify the conditions (6), (7), (8) for the sets of operators $\left\{c_{\alpha \beta \gamma}, d_{\alpha \beta \gamma}\right\},(\alpha, \beta, \gamma) \in N^{n} \times N^{n} \times N^{n}$,
(iv) these operators operate on \mathcal{O} with the next formulae, $X_{\beta} x^{\alpha}$ $=\sum_{\gamma} c_{\gamma \beta \alpha} x^{\gamma}, \quad Y_{\beta} x^{\alpha}=\sum_{\gamma} c_{\beta \gamma \alpha} x^{\gamma}, Z_{\beta} x^{\alpha}=\sum_{\gamma} d_{\gamma \beta \alpha} x^{\gamma}$.
Then formulae (9), (10) define a formal ring, for which (1), (2), (3) are Taylor formulae.

This result can be proved by an argument analogous to the one used in [2].
4. We shall consider a one-dimensional formal ring.

Let $\psi(x, y)=a_{11} x y+\sum_{k \geq 3} \sum_{i+j=k} a_{i j} x^{i} y^{j}, \quad$ where $\quad a_{i j} \in K, \quad a_{i 0}=a_{0 j}=0$, $i, j \geqq 2$.

We use the following Lemmas.
Lemma 1. If $a_{11}=0$, then $\psi(x, y)=0$.
Proof. Let α be the smallest integer such that $a_{\alpha j} \neq 0$ for some j and let β be the smallest integer such that $a_{\alpha \beta} \neq 0$. Then $\alpha \geqq 1$ (when $\alpha=1, \beta \geqq 2$). We shall order lexicographically monomials.
with respect to x, y, z by putting $c x^{i} y^{j} z^{k}<c^{\prime} x^{i} y^{j} z^{k^{\prime}}, c, c^{\prime} \in K, c$, $c^{\prime} \neq 0$, if the first non-zero difference of $i^{\prime}-i, j^{\prime}-j, k^{\prime}-k$ is positive. In $(x \cdot y) \cdot z$ the minimal monomial is $a_{\alpha \beta}^{\alpha+1} x^{\alpha 2} y^{\alpha \beta} z^{\beta}$ and in $x \cdot(y \cdot z)$, the minimal monomial is $a_{\alpha \beta}^{\beta+1} x^{\alpha} y^{\alpha \beta} z^{\beta 2}$. As $(x \cdot y) \cdot z=x \cdot(y \cdot z)$, we have $\alpha=\beta=1$, which contradicts the assumption. q.e.d.

Lemma 2. (Theorem of J. Dieudonne [2] concerning the classification of one-dimensional formal groups.) In the following, we write \bar{Z}_{k} instead of $Z_{p k}, k \geqq 0$, and suppose that the ground field K is algebraically closed. Any formal group G of dimension 1 over K is isomorphic to one of the following three types.
(1) If $\bar{Z}_{0}^{p}=\lambda \bar{Z}_{0}, \lambda \neq 0, G$ is isomorphic to the multiplicative group (with the group law $(x, y) \rightarrow x+y+x y$).
(2) If $\bar{Z}_{0}^{p}=0$ and if there exists the smallest integer $r>0$ such that $\bar{Z}_{r}^{p} \neq 0$, then G is isomorphic to the group with the associated hyperalgebra such that $\bar{Z}_{k}^{p}=0$, for $k<r$, and $\bar{Z}_{k}^{p}=\bar{Z}_{k-r}$, for $k \geqq r$.
(3) If $\overline{Z_{k}^{p}}=0$, for all $k \geqq 0$, then G is isomorphic to the additive group (with the group law $(x, y) \rightarrow x+y$).

Lemma 3. (1) $c_{p k}, 0, \delta=0$ for any δ and $k \geqq 0$.
(2) $\bar{Z}_{k} X_{0}=0$, for $k \geqq 0$.

Proof. (1) is trivial.
(2) If $f(x)=\sum_{\alpha} a_{\alpha} x^{\alpha}$, then $X_{0} f=a_{0}$, that is, X_{0} is a function which takes as a value a constant term of $f(x)$. Therefore $\bar{Z}_{k} X_{0}=0, k \geqq 0$ is trivial.

Lemma 4. As the addition of one-dimensional formal ring, we cannot take the group law of type (1) and (2) of Lemma 2.

Proof. Type (1). We have $Z_{1}^{p} X_{1}=\lambda Z_{1} X_{1}$. However, $Z_{1} X_{1}=$ $\sum_{\delta}\left(c_{11 \delta} X_{0} Z_{\delta}+c_{10 \delta} X_{1} Z_{\delta}\right)=\sum_{\delta} c_{11 \delta} X_{0} Z_{\delta}$. Therefore $Z_{1}^{p} X_{1}=0$ from Lemma 3. Hence $Z_{1} X_{1}=0$. But when we take x for $f(x)$, we have $Z_{1} X_{1} f$ $=Z_{1}\left(a_{11} x+\sum_{j \geq 2} a_{1} x^{j}\right)$, and $\left(Z_{1} X_{1} f\right)(e)=a_{11} \neq 0$. This gives a contra-
diction.
Type (2). It follows that $\overline{Z_{k}} X_{1}=\sum_{\delta}\left(c_{p^{k}, 1, \delta} X_{0} Z_{\delta}+c_{p^{k}, 0, \delta} X_{1} Z_{\delta}\right)=$ $\sum_{\delta}\left(c_{\rho^{k}, 1, \delta} X_{0} Z_{\delta}\right)$. Hence $\overline{Z_{k}^{p}} X_{1}=0$. If we take r for k and x for $f(x)$, we have $\bar{Z}_{r}^{p} X_{1}=Z_{1} X_{1}=0$ and $Z_{1} X_{1} f \neq 0$. This gives a contradiction. q.e.d.

Lemma 5. If the addition is given by $\varphi(x, y)=x+y$, then with some change of variables of type $x \rightarrow x+\sum_{i=1} a_{i} x^{p^{i}}$, we can transfer the multiplication to $\psi(x, y)=x y$.

Proof $\psi(x, y)$ is given in the next form $\psi(x, y)=b_{00} x y+$ $\sum_{i, j} b_{i} x^{p^{i}} y^{p^{j}}, b_{00} \neq 0$. If we change variables by $v_{0}^{-1}(x)=\left(1 / b_{00}\right) x$, we have $\psi_{0}(x, y)=x y+\sum_{i, j} b_{i j}^{(0)} x^{p^{i}} y^{p^{j}}$. If some coefficients $b_{i 0}^{(0)}, b_{0 j}^{(0)}$ are not zero, then take α the smallest positive integer such that $b_{\alpha 0}^{(0)} \neq 0$. We can easily show that $b_{0 \alpha}^{(0)} \neq 0, b_{\alpha 0}^{(0)}=b_{0 \alpha}^{(0)}$, and $b_{0 i}^{(0)}=0$ for $0<i<\alpha$. By a change of variables $v_{(\alpha)}^{-1}(x)=x-b_{0 \alpha}^{00} x^{\rho^{\alpha}}$, we have a new formal series for the multiplication $\psi_{(\alpha)}(x, y)=x y+\sum_{i, j} b_{i j}^{(\alpha)} x^{p i} y^{p j}$, where $b_{i 0}^{(\alpha)}$ $=b_{0 i}^{(\alpha)}=0$, for $0<i \leqq \alpha$. Let β be the smallest positive integer such that $b_{\beta 0}^{(\alpha)} \neq 0$, if there exists some coefficient $b_{i 0}^{(\alpha)} \neq 0$. Then $\beta>\alpha$. By the analogous process, a change of variables $v_{(\beta)}^{-1}(x)=x-b_{0 \beta}^{(\alpha)} x^{\rho^{\beta}}$ transfers $\psi_{(\alpha)}(x, y)$ to $\psi_{(\beta)}(x, y)=x y+\sum_{i, j} b_{i j}^{(\beta)} x^{p i} y^{p j}$, where $b_{i 0}^{(\beta)}=b_{0 i}^{(\beta)}$ $=0$, if $0<i \leqq \beta$.
Thus continuing this process, we have the following. By the change of variables $v=v_{0} v_{\alpha} v_{\beta} \cdots$, we have $\bar{\psi}(x, y)=x y+\sum_{(i, j) \geq(1,1)} \bar{a}_{i j} x^{p^{i}} y^{p j}$. But from the associative law for the multiplication, we have $\bar{\psi}(x, y)$ $=x y$.
q.e.d.

Summarizing the preceding Lemmas, we get:
Theorem. If the ground field K of characteristic $p>0$ is algebraically closed, any one-dimensional formal ring is isomorphic to the formal ring of type $(x+y, x y)$.

Corollary. Any one-dimensional formal ring is commutative.

Remark. We can prove Corollary by the method of M. Lazard. [7]. In his argument, we have only to replace $h(x, y)$ by $x \cdot y-$ $y \cdot x$.
5. Let R be a formal ring of dimension n. Define $\theta_{i j}(x) \in \mathcal{O}, 1 \leqq i$, $j \leqq n$, as follows;
$\psi_{i}(y, x)=\sum_{j=1}^{n} \theta_{i j}(x) y_{j}+$ (terms of total degree $\geqq 2$ with respect
to $\left.y=\left(y_{1}, \cdots, y_{n}\right)\right)$.
 we get $\theta_{i j}(\varphi(x, y))=\theta_{i j}(x)+\theta_{i j}(y), 1 \leqq i, j \leqq n$. Also from the associative law, $\psi_{i}(z, \psi(x, y))=\psi_{i}(\psi(z, x), y)$, we get $\theta_{i j}(\psi(x, y))=$ $\sum_{k=1}^{n} \theta_{i k}(x) \theta_{k j}(y), 1 \leqq i, j \leqq n$.

If we associate to R a $n \times n$-matrix $\theta(x)=\left(\theta_{i j}(x)\right)$, we have a representation of $R, \theta(\varphi(x, y))=\theta(x)+\theta(y), \theta(\psi(x, y))=\theta(x) \cdot \theta(y)$.

Lemma 6. If all $\theta_{i j}(x), 1 \leqq i, j \leqq n$ are zero, then all $\psi_{i}(x, y)$. $1 \leqq i \leqq n$, are zero.

Proof. Assume that $\psi_{i}(y, x)$ is not zero. Let s be the smallest integer such that in $\psi_{i}(y, x)$, there exists a term $a x^{\gamma} y^{\delta}$ where $|\delta|$ $=s$, and $a \neq 0$. Then $s \geqq 2$. Let $z=\left(z_{1}, \cdots, z_{n}\right)$ be another generic point. We have $\psi_{i}(z, \psi(y, x))=\psi_{i}(\psi(z, y), x)$. In the left hand side, the minimal value of total degree with respect to z is s, but in the right hand side, the minimal value of total degree with respect to z is $>s$. This gives a contradiction.
q. e. d.

Part 2

In Part 2 and Part 3, the ground field K is assumed to be algebraically closed. Moreover we add the next condition to the definition of formal ring:
(F4) $\psi_{1}, \cdots, \psi_{n}$ are analytically independent over K.
We shall prove that the underlying additive group of a formal ring is unipotent.

1. First we quote some results of J. Dieudonné from [1], [4], [5].

Lemma 1. (Homomorphism theorem, [1])
Let G and \bar{G} be formal groups of dimension m and $n d e-$ fined over K and u be a homomorphism from G to \bar{G} defined over K. By appropriate changes of variables in G and \bar{G}, we can suppose that we have,

$$
\begin{array}{lll}
u_{i}(x)=x_{i}, & \text { for } & 1 \leqq i \leqq r_{0} \\
u_{i}(x)=x_{i}^{p}, & \text { for } & r_{0}+1 \leqq i \leqq r_{0}+r_{1}
\end{array}
$$

$$
\begin{array}{lll}
u_{i}(x)=x_{i}^{t^{\prime}}, & \text { for } & r_{0}+\cdots+r_{t-1}+1 \leqq i \leqq r_{0}+\cdots+r_{t} \\
u_{i}(x)=0, & \text { for } & i>r_{0}+\cdots+r_{t} .
\end{array}
$$

We shall denote $\rho=r_{0}+\cdots+r_{t}$ and call ρ the rank of u and t (the greatest integer such that $r_{t} \neq 0$) the height of u. We say that u is injective if $\rho=\operatorname{dim} G$, surjective if $\rho=\operatorname{dim} \bar{G}$, and isogeny if u is both injective and surjective.

Corollary. Let (G, u) be a subgroup of a formal group G^{\prime}. Then there exist an isomorphism $G^{\prime} \rightarrow G_{1}^{\prime}$ and an isogeny $G \rightarrow$ H_{1} of G onto a typical subgroup of G_{1}^{\prime} such that the diagram

The proof is given in [1], [5].
Lemma 2. Any abelian formal group over K is isogenous to a direct product of additive Witt groups, multiplicative groups and simple groups. (See [4], [8])

Lemma 3. Any abelian simple group of dimension n over K is isogenous to a group $G_{n, 1, m}$ where m is a positive integer prime to $n . G_{n, 1, m}$ has a hyperalgebra characterized by the following multiplication law,

$$
\begin{array}{ll}
\bar{Z}_{h, i}^{b}=\bar{Z}_{h, i+1}, & h=0,1, \cdots ; 1 \leqq i \leqq n-1, \\
\bar{Z}_{h, n}^{p}=0, & 0 \leqq h \leqq m, \\
\bar{Z}_{m+h, n}^{p}=\bar{Z}_{h, 1}, & h=0,1, \cdots . \quad \text { Here } \quad \bar{Z}_{h, i}=Z_{p^{k} \varepsilon_{i}} .
\end{array}
$$

2. Any abelian formal group G of dimension n is isogenous to a $\operatorname{group} G^{\prime}=\prod_{i} W_{n_{i}} \times \prod_{j} G_{n_{j}, 1, m_{j}} \times\left(G_{m}\right)^{\prime}, \quad\left(n_{j}, m_{j}\right)=1, \quad \sum_{i} n_{i}+\sum_{j} n_{j}+l=n$. Let u be an isogeny from G^{\prime} to G. Then there exists a unipotent subgroup $u\left(\prod_{i} W_{n_{i}}\right)=\boldsymbol{U}$ in G. By Corollary, there exist an isomorphism $G \rightarrow G_{1}$ and an isogeny $\boldsymbol{U} \rightarrow \boldsymbol{U}_{1}$ of \boldsymbol{U} onto a typical subgroup \boldsymbol{U}_{1} of G_{1} such that:
(1) $G_{1} / \boldsymbol{U}_{1}$ has no unipotent subgroup,
(2) the diagram $G \longrightarrow G_{1}$ is commutative.

We have the next result of J. Dieudonné [5].
Lemma 4. Let G be a commutative formal group of dimension n and let (J, L) be an arbitrary partition of $[1, n]$. There exist two uniquely determined systems of power series without constant terms $u(x)=\left(u_{i}(x)\right)_{1 \leq i \leq n}$ and $v(x)=\left(v_{i}(x)\right)_{1 \leq i \leq n}$ such that $u_{k}(x)=0$ for $k \in L, v_{j}(x)=0$ for $j \in J$ and $u(x)+\dot{+}(x)=x$.
3. Let R be a formal ring of dimension n. For our purpose, we can assume that R contains a typical unipotent subgroup \boldsymbol{U} such that R / \boldsymbol{U} has no unipotent subgroup. Let J be a subset of $[1, n]$ corresponding to \boldsymbol{U}. Then J satisfies the following conditions;
(1) $\operatorname{Card}(J)=\operatorname{dim} \boldsymbol{U}$,
(2) for any system $\left(y_{j}\right)_{j_{J J}=y}$ of indeterminates, define $j(y)=$ ($j_{i}(y)$) as the system of power series $j_{i}(y)=y_{i}$, for $i \in J, j_{i}(y)=0$ otherwise; then we have $\varphi_{i}(j(y), j(z))=0$, for all $i \notin J$.

By Lemma 4, there exist two uniquely determined systems of power series $r(x)=\left(r_{j}(x)\right)_{j \in J}$ and $h(x)=\left(h_{i}(x)\right)_{1 \leq i \leq n}$ such that $h_{i}(x)$ $=0$ for $i \in J$, and $x=j(r(x))+h(x)$. Then we have $h(x+y)=$ $h(h(x)+h(y)), h(x \cdot y)=h(h(x) \cdot h(y))$.

For the proof of the latter equality, we need the next Lemma.
Lemma 5. Let G, G^{\prime} be abelian formal groups with their typical unipotent subgroups $(\boldsymbol{U}, j),\left(\boldsymbol{U}^{\prime}, j^{\prime}\right)$ such that $G / \boldsymbol{U}, G^{\prime} / \boldsymbol{U}^{r}$ have no unipotent subgroup, and u be a homomorphism from G to G^{\prime}. Then there exists a homomorphism $u^{\prime}: \boldsymbol{U} \rightarrow \boldsymbol{U}^{\prime}$ such that $u \cdot j=j^{\prime} \cdot u^{\prime}$,

Proof. Let $x=j\left(r(x) \dot{+} h(x), x^{\prime}=j^{\prime}\left(r^{\prime}\left(x^{\prime}\right)\right) \dot{+} h^{\prime}\left(x^{\prime}\right)\right.$ be partitions corresponding to (G, \boldsymbol{U}) and ($G^{\prime}, \boldsymbol{U}^{\prime}$) respectively. Since \boldsymbol{U} is unipotent and $G^{\prime} / \boldsymbol{U}^{\prime}$ has no unipotent subgroup, a composition of homomorphisms $\boldsymbol{U} \rightarrow G \rightarrow G^{\prime} \rightarrow G^{\prime} / \boldsymbol{U}^{\prime}$ is trivial. Hence, for a generic point x of $\boldsymbol{U}, h^{\prime}(u(j(x)))=0$ and $u(j(x))=j^{\prime}\left(r^{\prime}(u(j(x)))\right)$. We can prove easily that $r^{\prime} \cdot u \cdot j$ is a homomorphism. Therefore we have only to take $r^{\prime} \cdot u \cdot j$ as u^{\prime}.
q.e.d.

For generic points x, y of R, we have

$$
\begin{aligned}
& x \cdot y= j(r(x \cdot y)) \dot{+} h(x \cdot y) \\
&=(j(r(x))+h(x)) \cdot(j(r(y))+h(y)) \\
&= j(r(x)) \cdot\{j(r(y)) \dot{+} \\
&\quad \dot{+}(y(y)\}+h(x) \cdot h(y))+j(r(y)) \\
& h(h(x) \cdot h(y)) .
\end{aligned}
$$

Here from Lemma $5, j(r(x)) \cdot\{j(r(y)) \dot{+} h(y)\}, h(x) \cdot j(r(y))$ are contained in $j(\boldsymbol{U})$ because the multiplication by $j(r(y)) \dot{+} h(y)$, $h(x)$ are homomorphisms of the formal group R. Hence we have the equality $h(x \cdot y)=h(h(x) \cdot h(y))$.

Put $L=[1, n]-J$. For a system $\bar{x}=\left(\bar{x}_{k}\right)_{k \in L}$ of indeterminates, let $\sigma(\bar{x})$ be the system $\left(\sigma_{i}(\bar{x})\right)_{1 \leq i \leq n}$ of power series such that $\sigma_{i}(\bar{x})$ $=0$ for $i \in J, \sigma_{i}(\bar{x})=\bar{x}_{i}$ for $i \in L$.

Put $\quad \sigma \Phi(\bar{x}, \bar{y})=h(\sigma(\bar{x}) \dot{+} \sigma(\bar{y})), \sigma \Psi(\bar{x}, \bar{y})=h(\sigma(\bar{x}) \cdot \sigma(\bar{y}))$.

Then we can show that \mathscr{D}, Ψ define a ring law on the quotient group R / \boldsymbol{U}, and that the system $\bar{h}(x)=\left(h_{i}(x)\right)_{i \in L}$ is a homomorphism from R to R / \boldsymbol{U}.

Now we consider the next assertion:
Theorem 1. There is no formal ring of which underlying formal group is isogenous to $\left(G_{m}\right)^{l} \times \prod_{(n, m)=1} G_{n, 1, m}$, where G_{m} is the multiplicative group.

If we can prove Theorem 1, we know that there exists only trivial ring law on R / \boldsymbol{U}, that is, all $\left(\Psi_{i}\right)_{i \in L}$ are zero.

Therefore $\quad x \cdot y=j(r(x \cdot y)) \dot{+} h(x \cdot y)=j(r(x \cdot y)) \dot{+} h(h(x) \cdot h(y))$
$=j(r(x \cdot y)) \dot{+} h(\sigma \bar{h}(x) \cdot \sigma \bar{h}(y))$
$=j(r(x \cdot y))+\sigma \Psi(\bar{h}(x), \bar{h}(y))$
$=j(r(x \cdot y))$.
This contradicts to our hypothesis that $\psi_{1}, \cdots, \psi_{n}$ are analytically independent over K, if $R / \boldsymbol{U} \neq 0$. Hence we have:

Theorem 2. The underlying abelian formal group of a formal ring is unipotent.

Part 3

1. We denote by \mathcal{O}_{r} the ring $\mathcal{O}^{\boldsymbol{\beta}^{r}}, r \in \boldsymbol{Z}$ and put $\mathcal{O}^{\prime}=\bigcup_{\rho} \mathcal{O}_{r}$.

From now on, when we denote an index by $\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right)$, it always means the index of which components are of the following type,

$$
\begin{equation*}
a_{-t} p^{-t}+a_{-t+1} p^{-t+1}+\cdots+a_{-1} p^{-1}+a_{0}+a_{1} p+\cdots+a_{r} p^{r} \tag{*}
\end{equation*}
$$

where a_{-t}, \cdots, a_{r} are integers such that $0 \leqq a_{-t}, \cdots, a_{r} \leqq p-1$.
For such α, we define $h(\alpha)$ the smallest integer r for which $\alpha_{i}<p^{r+1}, 1 \leqq i \leqq n$ and $\alpha!=\prod_{n=-\infty}^{r} \prod_{i=1}^{n}\left(\lambda_{n i}\right)!$ where $\alpha_{i}=\sum_{n=-\infty}^{r} \lambda_{n i} p^{n}, 1 \leqq i \leqq n$, are expressions of α_{i} in the form (*).

Let G be a commutative formal group of dimension n. In the following, we shall extend the notion in $\left[1, n^{\circ} 4,5,6,7,12\right]$, following verbatim the argument in [1]. We call a K-endomorphism Δ of \mathcal{O}^{\prime} a semi-derivation of height r if Δ satisfies $\Delta\left(\mathcal{O}_{r}\right) \subset \mathcal{O}_{r}, \Delta(f g)$ $=f \Delta(g)+g \Delta(f)$, for $f \in \mathcal{O}_{r}, g \in \mathcal{O}^{\prime}$, and a special semi-derivation if Δ is semi-derivation and satisfies $\Delta(f)=0$, for $f \in \mathcal{O}_{r}$. Denote by $D_{r, i}$ a semi-derivation of height r such that if $\alpha_{i}=a p^{r}+b+c$, $0 \leqq a<p, a \in \boldsymbol{Z} ; 0 \leqq b<p^{r}, p^{-r-1} c \in \boldsymbol{N}$, we have $D_{r, i}\left(x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}\right)=a x_{1}^{\alpha_{1}} \cdots$ $x_{i-1}^{\alpha_{i-1}} \cdot x_{i}^{\alpha_{i}-{ }^{r} r} \cdot x_{i+1}^{\alpha_{i+1}} \cdots x_{n}^{\alpha_{n}}$. Put $D_{\alpha}=\prod_{n=-\infty}^{r} \prod_{i=1}^{n} D_{h, i}^{\lambda_{n i}}$ for $\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right), \alpha_{i}=$ $\sum_{n=-\infty}^{r} \lambda_{n} p^{n}, 1 \leqq i \leqq n$.

We define a differential operator D as a linear combination $\sum_{\alpha} u_{\alpha} D_{\alpha}$ where $u_{\alpha} \in \mathcal{O}^{\prime}$ and $u_{\alpha}=0$ for α such that $h(\alpha)$ is large enough. For any differential operator D we can define uniquely an invariant differential operator Z such that $Z(e) f=D(e) f, f \in \mathcal{O}^{\prime}$. Denote by Z_{α} the invariant differential operator characterized by the initial condition $Z_{\alpha}(e)=(1 / \alpha) D_{\alpha}(e)$. Put $X_{\alpha}=\prod_{n=-\infty}^{r} \prod_{i=1}^{n} \bar{Z}_{h, i}^{h_{i,}}$, for $\alpha=\left(\alpha_{1}, \cdots\right.$, α_{n}), $\alpha_{i}=\sum_{n=-\infty}^{r} \lambda_{n i} p^{n}, 1 \leqq i \leqq n$, where $\bar{Z}_{h, i}=Z_{p h \varepsilon_{i}}$.

We denote by \mathcal{G} the algebra formed (over K) by invariant differential operators of \mathcal{O}^{\prime} and call it the hyperalgebra of G. Also we denote by \mathcal{G}_{r} (resp. \mathcal{S}_{r}) the set of semi-derivations (resp. special semi-derivations) of height r of \mathcal{G}. Then $\mathcal{G}=\bigcup_{r} \mathcal{G}_{r}, \mathcal{G}_{r}$ is Lie algebra and \mathcal{S}_{r} is the ideal of \mathcal{G}_{r}. Moreover \mathcal{S}_{r} is the associative algebra over K. Then Theorem 2 of $\left[1, n^{\circ} 9\right.$] holds in our case.

Lemma 1. The associative algebra \mathcal{S}_{r} has the special semiderivations $X_{\alpha}, 0 \leqq \alpha_{i}<p^{r}$ as its base over K; the Lie algebra \mathcal{G}_{r} is the direct sum of \mathcal{S}_{r} and the vector space over K which has $\bar{Z}_{r, 1}, \cdots, \bar{Z}_{r, n}$ as its base.

Remark. Z_{α} can be defined from "Taylor series" for $f \in \mathcal{O}^{\prime}$,

$$
f(x \dot{+} y)=\sum_{\alpha} y^{\alpha}\left(Z_{\alpha} f\right), \quad Z_{\alpha} f \in \mathcal{O}^{\prime}
$$

2. Let \bar{G} be another commutative formal group of dimension m and let $u=\left(u_{1}, \cdots, u_{m}\right)$ be a homomorphism from G to \bar{G}, where we admit to take elements of \mathcal{O}^{\prime} as $u_{i}, 1 \leqq i \leqq m$. For $Z \in \mathcal{G}, f \in \mathcal{O}^{\prime}(\bar{G})$, we define an invariant differential operator $u^{\prime}(Z) \in \bar{G}$ by $u^{\prime}(Z)(e) \bar{f}$ $=Z(e)(\bar{f} \cdot u)$. Then u^{\prime} is a homomorphism from G to \bar{G} such that $u^{\prime}\left(\mathcal{G}_{r}\right) \subset \overline{\mathcal{G}}_{r+t}, u^{\prime}\left(\mathcal{S}_{r}\right) \subset \overline{\mathcal{S}}_{r+t}$, for $r \in Z$, where t is an integer such that $u_{i} \in \mathcal{O}_{-t}, 1 \leqq i \leqq m$. Moreover if v is a homomorphism of \bar{G} to another commutative formal group $\overline{\bar{G}}$, we have $(v \cdot u)^{\prime}=v^{\prime} \cdot u^{\prime}$. It is trivial that for the identity I of formal group $G,(I)^{\prime}$ is the identity of Lie hyperalgebra \mathcal{G} of G.
3. Lemma 2. (1) For $G_{n, 1, m},(n, m)=1$, we have the following relations,

$$
\begin{array}{ll}
\bar{Z}_{h, i}^{p}=\bar{Z}_{h, i+1}, 1 \leqq i \leqq n-1, & h=0, \pm 1, \pm 2, \cdots \\
\bar{Z}_{h, n}^{p}=\bar{Z}_{h-m, 1}, & h=0, \pm 1, \pm 2, \cdots
\end{array}
$$

(2) For multiplicative group G_{m}, we have the relations,

$$
\bar{Z}_{h}^{p}=\overline{Z_{k}}, h=0, \pm 1, \pm 2, \cdots .
$$

Proof. (1) First we prove that the relations

$$
\begin{aligned}
& \bar{Z}_{h, i}^{p}=\bar{Z}_{h, i+1}, 1 \leqq i \leqq n-1, h=0,1,2, \cdots \\
& \bar{Z}_{h+m, n}^{p}=\bar{Z}_{h, 1}, h=0,1, \cdots, \text { described in Lemma 3, Part } 2 \text { hold }
\end{aligned}
$$

if they are considered as K-linear endomorphisms of \mathcal{O}^{\prime}. Let f be an element of \mathcal{O}_{-t}, t : positive integer. Taking account of the fact that the group laws of $G_{n, 1, m}$ are defined over the prime field, it is easy to show that $Z_{\alpha} f=\left\{Z_{p t_{\alpha}}\left(f \cdot \boldsymbol{p}^{t}\right)\right\}\left(\boldsymbol{p}^{-t}\right)$, for any $Z_{\alpha} \in \mathcal{G}$ where \boldsymbol{p} (resp. \boldsymbol{p}^{-1}) is a homomorphism $\boldsymbol{p}: x \rightarrow x^{\phi}$ (resp. $\boldsymbol{p}^{-1}: x \rightarrow x^{p-1}$). Taking $\bar{Z}_{h, i}$ (resp. $\left.\bar{Z}_{h+m, n}\right)$, we have $\bar{Z}_{h, i}^{b} f=\left\{\bar{Z}_{h+t, i}\left(f \cdot \boldsymbol{p}^{t}\right)\right\}\left(\boldsymbol{p}^{-t}\right)=$ $\left\{\bar{Z}_{h+t, i+1}\left(f \cdot \boldsymbol{p}^{t}\right)\right\}\left(\boldsymbol{p}^{-t}\right)=\bar{Z}_{h, i+1} f, \quad\left(\right.$ resp. $\bar{Z}_{h+m, n}^{p} f=\left\{\bar{Z}_{h+m+t, n}^{p}\left(f \cdot \boldsymbol{p}^{t}\right)\right\}\left(\boldsymbol{p}^{-t}\right)$ $=\left\{\bar{Z}_{h t t, 1}\left(f \cdot \boldsymbol{p}^{t}\right)\right\}\left(\boldsymbol{p}^{-t}\right)=\bar{Z}_{h, 1} f$. $)$ Hence follows the requirement.

Next we consider a homomorphism $\boldsymbol{p}^{-1}: x \rightarrow x^{p-1}$. Then the derived homomorphism $\left(\boldsymbol{p}^{-1}\right)^{\prime}$ of the hyperalgebra of $G_{n, 1, m}$ is characterized
by

$$
\left(\boldsymbol{p}^{-1}\right)^{\prime}\left(\bar{Z}_{h, i}\right)=\bar{Z}_{h+1, i}, h=0, \pm 1, \pm 2, \cdots, 1 \leqq i \leqq n .
$$

To prove the relations (1), operate ($\left.\boldsymbol{p}^{-1}\right)^{\prime}$ on $\bar{Z}_{h, i}, 1 \leqq i \leqq n-1$, (resp. $\bar{Z}_{h, n}$) by t-times repeatedly so that $h+t$ (resp. $h+t-m$) is positive. Then putting $\boldsymbol{q}=\left(\boldsymbol{p}^{-1}\right)^{\prime}$, we have

$$
\boldsymbol{q}^{t}\left({\overline{Z_{h}, i}}_{p}\right)=\left(\boldsymbol{q}^{t}\left(\bar{Z}_{h, i}\right)\right)^{p}=\bar{Z}_{h+t, i}^{p}=\bar{Z}_{h+t, i+1}=\boldsymbol{q}^{t}\left(\bar{Z}_{h, i+1}\right),
$$

(resp. $\left.\boldsymbol{q}^{t}\left(\bar{Z}_{h, n}^{p}\right)=\bar{Z}_{h+t, n}^{b}=\bar{Z}_{h+t-m, 1}=\boldsymbol{q}^{t}\left(\bar{Z}_{h-m, 1}\right).\right)$
Therefore we get the requirement, taking account of the fact that $\left(\boldsymbol{p}^{-1}\right)^{\prime}$ is bijective.
(2) The proof is completely analogous to the one of (1), using the fact that $\overline{Z_{h}^{p}}=\overline{Z_{h}}, h=0,1,2, \cdots$. q.e.d.

From Lemma 1 and Lemma 2, we have:
Corollary. If a commutative formal group G is isomorphic to a direct product of multiplicative groups and simple groups $G_{n, 1, m},(n, m)=1$, the mapping of the hyperalgebra \mathcal{G} of G; $Z \in \mathcal{G} \rightarrow Z^{p} \in \mathcal{G}$ is bijective.
4. We shall define a quasi-formal ring R with the same definition as a formal ring, only adding the following requirement:
(1) $\varphi_{1}, \cdots, \varphi_{n}$ are formal series which admit no terms but those of
 negative integers,
(2) $\psi_{1}, \cdots, \psi_{n}$ admit terms $x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}} y_{1}^{\beta_{1} \cdots} y_{n}^{\beta_{n}}, \alpha_{1}, \cdots, \alpha_{n} ; \beta_{1}, \cdots, \beta_{n}$ being non-negative numbers of the type (*).

For $f \in \mathcal{O}^{\prime}$, write $f(y \cdot x)=\sum_{\alpha} y^{\alpha}\left(X_{\alpha} f\right), \quad f(x \cdot y)=\sum_{\alpha} y^{\alpha}\left(Y_{\alpha} f\right)$, $f(x+y)=\sum_{\alpha} y^{\alpha}\left(Z_{\alpha} f\right), X_{\alpha} f, \quad Y_{\alpha} f, Z_{\alpha} f \in \mathcal{O}^{\prime}$. Then $X_{\alpha}, Y_{\alpha}, Z_{\alpha}$ are K-linear endomorphisms of \mathcal{O}^{\prime}. Moreover put $(x \cdot y)^{\gamma}=\sum_{\alpha, \beta} c_{\beta \alpha \gamma} x^{\alpha} y^{\beta}$, $(x+y)^{\gamma}=\sum_{\alpha, \beta} d_{\beta \alpha \gamma} x^{\alpha} y^{\beta}, c_{\alpha \beta \gamma}, d_{\alpha \beta \gamma} \in K$. Then we write

$$
X_{\beta} X_{\alpha}=\sum_{\gamma} c_{\beta \alpha \gamma} X_{\gamma}, \quad Y_{\beta} Y_{\alpha}=\sum_{\gamma} c_{\alpha \beta \gamma} Y_{\gamma}, \quad Z_{\beta} Z_{\alpha}=\sum_{\gamma} d_{\beta \alpha \gamma} Z_{\gamma}
$$

$$
Z_{\beta} X_{\alpha}=\sum_{\substack{0 \leq \gamma \leq \alpha \\ \delta}} c_{\beta \gamma \delta} X_{\alpha-\gamma} Z_{\delta}, Z_{\beta} Y_{\gamma}=\sum_{\substack{0 \leq \gamma>\alpha}} c_{\gamma \beta \delta} Y_{\alpha-\gamma} Z_{\delta} .
$$

5. Let R be a formal ring of dimension n and assume that there exists an isogeny u from the underlying additive group of R to G, where G is isomorphic to $\left(G_{m}\right)^{l} \times \prod_{\substack{n_{i}, m_{i} \\\left(n_{i} ; m_{i}\right)=1}} G_{n_{i}, 1, m_{i}}, l+\sum_{i} n_{i}=n$.

Let $\bar{\varphi}=\left(\bar{\varphi}_{1}, \cdots, \bar{\varphi}_{n}\right), \bar{\psi}=\left(\bar{\psi}_{1}, \cdots, \bar{\psi}_{n}\right)$ be ring laws for R and $\varphi=$ $\left(\varphi_{1}, \cdots, \varphi_{n}\right)$ be the group law for G. Then by Lemma 1, Part 2, changing variables in R and G, we can suppose that u is a homomorphism of the form written in Lemma 1 , and that $\bar{\varphi}, \bar{\psi}, \varphi$ are laws defined for the variables which have been changed, $\bar{x}_{1}, \cdots, \bar{x}_{n}$ for R and x_{1}, \cdots, x_{n} for G. Then $x_{i}=u_{i}(\bar{x})=\bar{x}_{i}^{\not \epsilon k}$, if $r_{0}+\cdots+r_{h-1}+1 \leqq i \leqq r_{0}+\cdots+r_{h}, 0 \leqq h \leqq t$.

We define ψ_{i} as follows;

$$
\begin{aligned}
& \psi_{i}\left(x_{1}, \cdots, x_{n} ; y_{1}, \cdots, y_{n}\right)=\left\{\overline { \psi } _ { i } \left(x_{1}, \cdots, x_{r_{0}}, x_{r_{0}+1}^{p-1}, \cdots, x_{r_{0}+r_{1}}^{p-1}, \cdots, x_{n}^{p^{-1}} ;\right.\right. \\
& \left.\left.y_{1}, \cdots, y_{r_{0}}, y_{r_{0}+1}^{p-1}, \cdots, y_{r_{0}+r_{1}}^{p-1}, \cdots y_{n}^{p-t}\right)\right\} p^{h}, \\
& \text { if } r_{0}+\cdots+r_{h-1}+1 \leqq i \leqq r_{0}+\cdots+r_{h}, 0 \leqq h \leqq t \text {. }
\end{aligned}
$$

Thus we can define a structure of quasi-formal ring on G with $\varphi=\left(\varphi_{1}, \cdots, \varphi_{n}\right), \psi=\left(\psi_{1}, \cdots, \psi_{n}\right)$. Then by Lemma 6, Part 1 and the condition (F4), we can easily see that in some ψ_{i}, there exists a term of the type $a(x) y_{j}^{p h}$ where $a(x)$ is a formal series in \mathcal{O}^{\prime} and h is an integer. Let h be the smallest integer such that there appear terms of the preceding type in $\psi_{i}, 1 \leqq i \leqq n$.

$$
\begin{aligned}
\text { Write } \psi_{i}(y, x)=\sum_{j=1}^{n} \theta_{i j}(x) y_{j}^{p_{i}}+ & \text { (terms of total degree }>p^{h} \text { with } \\
& \text { respect to } y=\left(y_{1}, \cdots, y_{n}\right) \text { or terms } \\
& \text { of the following type } a(x) y_{1}^{\alpha_{1}} \cdots y_{n}^{\alpha_{n}} \\
& \text { where some } \left.\alpha_{i}, \alpha_{j} \neq 0, i \neq j .\right)
\end{aligned}
$$

Then from $\varphi_{i}(\psi(z, x), \psi(z, y))=\psi_{i}(z, \varphi(x, y))$, we have

$$
\begin{equation*}
\theta_{i j}(\varphi(x, y))=\theta_{i j}(x)+\theta_{i j}(y), 1 \leqq i, j \leqq n . \tag{**}
\end{equation*}
$$

From the assumption, there exists some $\theta_{i j}(x) \neq 0$. From (**), we
can know easily that in $\theta_{i j}(x)$, the terms of the smallest total degree have the form $a x_{k}^{p t}, a \in K, 1 \leqq k \leqq n, t$: integer. Therefore we know that in some $\psi_{i}(x, y), 1 \leqq i \leqq n$ there exists a term $a x_{k}^{p t} y_{j}^{p h}$. If we operate $\bar{Z}_{t},{ }_{k} X_{p^{n} \varepsilon_{j}}$ to x_{i}, we have

$$
\left(\bar{Z}_{t, k} X_{p^{k} \varepsilon_{j}} x_{i}\right)(e)=\bar{Z}_{t}, k
$$

On the other hand, we have $\bar{Z}_{t, k}=\sum_{\alpha} a_{\alpha} Z_{\alpha}^{p}, a_{\alpha} \in K$, from Corollary of Lemma 2. And by operating the above endomorphism to elements of \mathcal{O}_{r}, where r is large enough, it is easy to see that the sum of right hand side does not contain a constant term.

For $\alpha \neq 0$, we have

$$
Z_{\alpha} X_{p^{k} \varepsilon_{j}}^{\boldsymbol{t}}=\sum\left\{c_{\alpha, 0, \delta} X_{p^{h} \varepsilon_{j}}+c_{\alpha, p^{n} \varepsilon_{j}, \delta} X_{0}+\sum_{0<\gamma<p}{ }^{n \varepsilon_{j}} c_{\alpha, 0, \delta} X_{p^{h} \varepsilon_{j-\gamma}}\right\} Z_{\delta}
$$

If $0<r<p^{h} \cdot \varepsilon_{j}, X_{p^{h} \varepsilon_{j-\gamma}} Z_{\delta} x_{i}=0$, for if not $\delta=\left(\delta_{1}, \cdots, \delta_{n}\right)$,
δ_{i} : non-negative integers, $Z_{\delta} x_{i}=0$ by the definition of Z_{δ} and the assumption of group laws of a quasi-formal ring, and if $\delta=\left(\delta_{1}, \cdots\right.$, $\left.\delta_{n}\right), \delta_{i}$: non-negative integers, $\left(X_{\rho^{h} \varepsilon_{j}-\gamma} Z_{\delta}\right) x_{i}=0$ by the assumption on h. We know that $c_{\alpha, 0, \delta}=0$ and $Z_{\alpha} X_{0}=0$. Hence $Z_{\alpha}^{p} X_{p^{\hbar} \varepsilon_{j}} x_{i}=0$, and $\bar{Z}_{t, k} X_{p^{k} \varepsilon_{j}} x_{i}=0$. This gives a contradiction. Thus we have completed the proof of Theorem 1.

Bibliography

[1] J. Dieudonné, Groupes de Lie et hyperalgèbres de Lie sur un corps de caractéristique $p>0$, Comm. Math. Helv., 28, 1954, pp. 87-118.
[2] J. Dieudonné, Lie groups and Lie hyperalgebras over a field of characteristic $p>0$, (II), Amer. Jour. Math., 77, 1955, pp. 218-244.
[3] J. Dieudonné, Groupes de Lie et hyperalgèbres de Lie sur un corps de caractéristique $p>0$, (III), Math. Zeit. 62, 1955, pp. 53-75.
[4] J. Dieudonn, Groupes de Lie et hyperalgèbres de Lie sur un corps de caractéristique $p>0$, (VII), Math. Ann., 134, 1957, pp. 114-133.
[5] J. Dieudonné, Lie groups and Lie hyperalgebras over a field of characteristic $p>0$, (VIII), Amer. Jour. Math., 80, 1958, pp. 740-772.
[6] M. J. Greenberg, Algebraic rings, Trans. A. M. S., 3, 1964, pp. 472-481
[7] M. Lazard, La non-existence des groupes de Lie formels non abéliens à un paramètre, Comt. Rend. (Paris), 239, 1954, pp. 942-945.
〔8] Ju. I. Manin, Theory of commutative formal groups over a field of positive characteristic, Uspekhi Math. Nauk, 18, 1963, pp. 1-90.

