On the unique factorization theorem for formal power series

By
Hajime Nishimura

(Received Aug. 25, 1967)

Let $R\left\{x_{1}, \cdots, x_{n}\right\}$ be the formal power series ring in a finite number of independent variables x_{1}, \cdots, x_{n} with coefficient ring R. It is known that even if R is a unique factorization domain $R\left\{x_{1}\right\}$ is not always so. ${ }^{1 \text { 1 }}$

We shall denote the following condition for a ring $^{2)} R$ by (*): (*) $R\left\{x_{1}, \cdots, x_{n}\right\}$ is a unique factorization domain, for any n (finite). It is noted that (*) is satisfied by a regular semi-local integral domain R, which follows from the fact that a regular local ring is a unique factorization domain. This naturally raises the question whether the unique factorization theorem still holds for the case of infinitely many variables, provided coefficient domain R satisfies (*). The question is only partially answered below (Theorem 1), where notion of formal power series is taken in a wider sense than the usual one.

As for the usual formal power series, what we show is that if R is a Krull ring then $R\left\{x_{1}, x_{2}, \cdots, x_{n}, \cdots\right\}$ is also a Krull ring, which is an application of Theorem 1.

The auther wishes to express his sincere thanks to Prof. M. Nagata for his valuable suggestion and encouragement.

1. Let R be a ring, X be a set of indeterminates, card. $X=\boldsymbol{N}^{*}$. As usual, by a X-monomial $(x)^{e}$ of degree $n(n=0,1,2, \cdots)$ we mean

[^0]$$
(x)^{e}=\prod_{x \in X} x^{c(x)} ; \quad e(x): \text { integer } \geqslant 0, \quad \sum_{x \in X} e(x)=n .
$$

Let $M(X)$ be the set of all X-monomials. We note that card. $M(X)=$ card. $X=\boldsymbol{\kappa}^{*}$, if $\boldsymbol{\kappa}^{*}$ is not less than $\boldsymbol{\aleph}_{0}$ (the cardinality of a countable set). For each element $\left(a_{e}\right) \in R^{M(X)}$, we consider the formal sum

$$
\begin{equation*}
f=\sum a_{e}(x)^{e} ; \quad a_{e} \in R, \quad(x)^{e} \in M(X) . \tag{1}
\end{equation*}
$$

Let κ be a cardinal number $\geqslant \boldsymbol{\aleph}_{0}$. We call (1) an $\boldsymbol{\kappa}$-series with respect to X over R, if card. $\left\{(x)^{e} \mid a_{e} \neq 0\right\} \leqslant \kappa$.

The set $R\{X\}_{N}$ of all these κ-series forms a ring by the obvious operations. This we see readily even when $\boldsymbol{N}<\boldsymbol{N}^{*}$, taking account of the fact that then for any element f in $R\{X\}_{N}$ there is a subset Y of X such that $f \in R\{Y\}_{N}$ and card. $Y=N$.

We denote by $f_{n}(n=0,1,2, \cdots)$ the homogeneous part of degree n of an κ-series f. The subring $R\{X\}$ of $R\{X\}_{N}$ consisting of those κ-series f such that f_{n} is a finite sum (a polynomial) for every n is nothing but the usual formal power series ring; that is, the (X)-adic completion of the polynomial ring $R[X]$, where (X) is the ideal of $R[X]$ generated by the set X. We note that although merely $R\{X\}_{N}=R\{X\}$ if X is a finite set, otherwise necessarily $R\{X\}_{N} \neq R\{X\}$. $^{3)}$

The above notations will be fixed throughout this note.
Lemma 1. If R is an integral domain, then $R\{X\}_{\mathbb{N}}$ is an integral domain, and so is $R\{X\}$. An element $f \in R\{X\}_{\mathbb{N}}$ (or $\in R\{X\}$) is a unit if and only if the constant term of f is a unit in R.

Proof. We may make X a well-ordered set. We order X monomials by their degree, and then for X-monomials of the same degree we order lexicographically. Namely: $\Pi x^{e(x)}<\Pi x^{e \prime(x)}$, if either (i) $\sum e(x)<\sum e^{\prime}(x)$ or (ii) $\sum e(x)=\sum e^{\prime}(x)$ and $e(y)>e^{\prime}(y)$ where y is the first variable such that $e(y) \neq e^{\prime}(y)$. Thus we make $M(X)$ a well-ordered set in such a way that if m_{1}, m_{2}, m_{3}, and m_{4} are four X-monomials with $m_{1} \leqslant m_{2}$ and $m_{3} \leqslant m_{4}$ then we have $m_{1} \cdot m_{3} \leqslant m_{2} \cdot m_{4}$.

Let f and g be non-zero elements of $R\{X\}_{N}$, and let $a_{m} \cdot m$

[^1]On the unique factorization theorem for formal power series 153
and $b_{m^{\prime}} \cdot m^{\prime}\left(m, m^{\prime} \in M(X) ; a_{m}, b_{m^{\prime}} \in R\right)$ be the first monomials which appear with non-zero coefficients in f and g respectively. Then, clearly, $a_{m} \cdot b_{m^{\prime}} \cdot m \cdot m^{\prime}$ is the first monomial which actually occurs in $f \cdot g$. Thus $f \cdot g \neq 0$, and the first assertion is proved.

The second assertion is proved also by the same way as in the case of a finite number of variables; by virtue of the ordering of $M(X)$.
q.e.d.

Lemma 2. Let R be an integral domain and let Ω be the field of quotients of $R\{X\}$, then we have

$$
R\{X\}=R\{X\}_{\mathbb{*}} \cap \Omega
$$

Proof. Assume that there is an element f in $R\{X\}_{\aleph} \cap \Omega$ which is not contained in $R\{X\}$. Then f is an \aleph-series and we have

$$
\begin{equation*}
f \cdot F=G, \quad \text { with } \quad F, G \in R\{X\} . \tag{2}
\end{equation*}
$$

Let f_{n}, F_{n}, and G_{n} be the homogeneous parts of degree n of f, F, and G respectively. Let F_{q} be the leading form of F; that is, the homogeneous part $\neq 0$ of F of the least degree. Since $f \notin R\{X\}$, there exists an integer n for which f_{n} involves infinitely many variables actually. Of all these integers let n be the least. From (2),

$$
\begin{equation*}
G_{n+q}=f_{n} \cdot F_{q}+\cdots+f_{0} \cdot F_{n+q} . \tag{3}
\end{equation*}
$$

Both sides of (3), except for $f_{n} \cdot F_{q}$, involve only a finite number of variables. While $f_{n} \cdot F_{q} \neq 0$ and involves infinitely many variables actually among terms with non-zero coefficients, which is a contradiction.
q.e.d.
2. We consider a well-ordering of X, and fix it henceforth. Let α be the ordinal number of the ordered set X. For each ordinal number $\xi<\alpha$, we denote by x_{ξ} the element y of X such that ξ is the ordinal number of $\{x \in X \mid x<y\}$; so that for each $\xi \leqslant \alpha$ the set $X_{\xi}=\left\{x_{\nu} \mid \nu<\xi\right\}$ has the ordinal number ξ.

For ξ and η with $\eta<\xi \leqslant \alpha$ and for any cardinal number $\boldsymbol{\kappa}^{\prime}$ not less than κ, we have the ring homomorphism, denoted by ρ_{η}^{ξ},

$$
\begin{equation*}
\rho_{\eta}^{\frac{\xi}{\xi}}: R\left\{X_{\xi}\right\}_{\mathbb{K}} \rightarrow R\left\{X_{\eta}\right\}_{\mathbb{R}^{\prime}} ; \tag{4}
\end{equation*}
$$

by taking the residue class of each element of $R\left\{X_{\xi}\right\}_{»}$ modulo the ideal generated by $\left\{x_{\nu} \mid \eta \leqslant \nu<\xi\right\}$. Then the following lemma follows readily from Lemma 1.

Lemma 3. An element of $R\left\{X_{\xi}\right\}_{N}$ is a unit if and only if its image by ρ_{η}^{ξ} is a unit.

Lemma 4. Assume that $\boldsymbol{N} \geqslant \mathrm{N}^{*}$. Let a transfinite sequence $\left(f_{\xi}\right)_{\xi<a}$ be such that :

$$
\left\{\begin{array}{l}
f_{\xi} \in R\left\{X_{\xi}\right\}_{\aleph}, \tag{5}\\
\text { and } \rho_{\eta}^{\xi} f_{\xi} \sim f_{\eta} \quad \text { if } \eta<\xi . .^{4)}
\end{array}\right.
$$

Then, there exists a $g \in R\{X\}_{k}$ such that $\rho_{\xi}^{\alpha} g \sim f_{\xi}$ for any $\xi<\alpha$.
Proof. We shall define g_{v} for every $\nu(\leqslant \alpha)$, by transfinite induction, such that

$$
\left\{\begin{array}{l}
g_{\nu} \in R\left\{X_{\nu}\right\}_{N}, \tag{6}\\
g_{\nu} \sim f_{\nu} \text { if } \nu<\alpha, \\
\text { and } \rho_{\mu}^{\nu} g_{\nu}=g_{\mu} \quad \text { if } \mu<\nu \leqslant \alpha .
\end{array}\right.
$$

Set $g_{1}=f_{1}$. Assume g_{ν} has been defined for every ν with $\nu<\xi$, so that (6) is satisfied.

Case 1. $\xi=\alpha$ and α is an isolated number.
Define $g_{\xi}=g_{\xi-1}$.
Case 2. $\quad \xi$ is an isolated number and $\xi<\alpha$.
As $\rho{ }_{\xi-1}^{\xi} f_{\xi} \sim f_{\xi-1} \sim g_{\xi-1}$, we have $\rho_{\xi-1}\left(h_{\xi} \cdot f_{\xi}\right)=g_{\xi-1}$; where h_{ξ} is a unit in $R\left\{X_{\xi}\right\}_{k}$ (Lemma 3). Define $g_{\xi}=h_{\xi} \cdot f_{\xi}$.

Case 3. $\xi=\alpha$ and α is a limit number.
For any given X_{ξ}-monomial $(x)^{e}$, there exists a $\nu(<\xi)$ such that $(x)^{e}$ is already a X_{ν}-monomial, and the coefficient of $(x)^{e}$ in g_{ν} is independent of the choice of ν. Therefore we can consider $\lim _{\nu<\xi} g_{\nu} \in R\left\{X_{\xi}\right\}_{\kappa}$. Define $g_{\xi}=\lim _{\nu<\xi} g_{\nu}$.

Case 4. ξ is a limit number and $\xi<\alpha$.
As $\rho_{\nu}^{\xi} f_{\xi} \sim f_{\nu} \sim g_{\nu}$ for any $\nu<\xi$, we have $\rho_{\nu}^{\xi}\left(h_{\nu} \cdot f_{\xi}\right)=g_{\nu}$; where h_{ν} is
4) $f \sim g$ means f and g are associates with each other.

On the unique factorization theorem for formal power series 155
a unit in $R\left\{X_{\nu}\right\}_{\kappa}$. As it is easily seen that $\rho_{\mu}^{\nu} h_{\nu}=h_{\mu}$, we can consider $\lim _{\nu<\xi} h_{\nu}=h_{\xi} \in R\left\{X_{\xi}\right\}_{\kappa}$. By Lemma $3, h_{\xi}$ is a unit in $R\left\{X_{\xi}\right\}_{\kappa}$. Define $g_{\xi}=h_{\xi} \cdot f_{\xi}$.
q.e.d.

Theorem 1. ${ }^{5}$ If a ring R satisfies the condition (*), then $R\{X\}_{\text {N }}$ is a unique factorization domain.

Proof. We use transfinite induction on \aleph^{*} ($=$ the cardinality of $X)$. When X is a finite set, the assertion is trivial. Let $\boldsymbol{\kappa}^{*} \geqslant \boldsymbol{\kappa}_{0}$. Assume the assertion holds for variables of less cardinality.

Let α be the least ordinal number which has cardinality κ^{*}. We reorder X so that the ordinal type of the ordered set X is α. With respect to this ordering, let x_{ξ}, X_{ξ}, and ρ_{η}^{ξ} be as above. Then, for every $\xi<\alpha$, the cardinality of $X_{\xi}=\left\{x_{\nu} \mid \nu<\xi\right\}$ is less than κ^{*}; so that $R\left\{X_{\xi}\right\}_{\kappa}$ is a unique factorization domain by the induction assumption. We note that α is a limit number; for otherwise α is an isolated number (not finite), and therefore $\alpha-1$ would also have cardinality \boldsymbol{N}^{*}.

Furthermore, we may assume $\boldsymbol{N} \geqslant \boldsymbol{N}^{*}$. Indeed, if $\boldsymbol{\kappa < N ^ { * }}$, then, letting Y run over all subsets of X such that card. $Y=\boldsymbol{N}$, we have $R\{X\}_{\aleph}=\cup R\{Y\}_{\aleph}$. The assertion in the case where $\boldsymbol{x}<\boldsymbol{N}^{*}$ follows from the facts that $R\{Y\}_{\mathbb{K}}$ is a unique factorization domain, that any finite number of elements of $R\{X\}_{\kappa}$ can be contained in a suitable $R\{Y\}_{N}$ at the same time, and that an element of $R\{X\}_{N}$ is irreducible if and only if it is so in a $R\{Y\}_{N}$.

First we shall show that:
UF 1. every element $f \neq 0$ of $R\{X\}_{N}$ is expressed as a product of a finite number of irreducible elements.
Write $\rho_{v}^{\alpha} f=f_{v}$. We consider a sufficiently large $\nu(<\alpha)$ such that $f_{\nu} \neq 0$. In the unique factorization domain $R\left\{X_{\nu}\right\}_{N}$, let the factorization of f_{ν} into ireducible factors be

$$
\begin{equation*}
f_{\nu}=h_{\nu} \cdot \prod_{i=1}^{m(\nu)} p_{\nu, i}{ }^{e(\nu, i)} ; \tag{7}
\end{equation*}
$$

[^2]where h_{ν} is a unit, $p_{\nu, i}$ is an irreducible non-unit in $R\left\{X_{\nu}\right\}_{N}$ such that $p_{v, i} \propto p_{v, j}$ for $i \neq j$. The number of non-unit factors in (7) is denoted by $d(\nu): d(\nu)=\sum_{i=1}^{m(\nu)} e(\nu, i)$. If $\nu<\mu<\alpha$, then $f_{\mu} \neq 0$, and we get another factorization of f_{ν} by going down from μ :
\[

$$
\begin{equation*}
f_{\nu}=\rho_{\nu}^{\mu} f_{\mu}=\left(\rho_{\nu}^{\mu} h_{\mu}\right) \cdot \prod_{i=1}^{m(\mu)}\left(\rho_{\nu}^{\mu} p_{\mu, i}\right)^{e(\mu, i)} . \tag{8}
\end{equation*}
$$

\]

In (8) we see that each foctor $\rho_{\nu}^{\mu} p_{\mu, i}(1 \leqslant i \leqslant m(\mu))$ is a non-unit and $\rho_{\nu}^{\mu} h_{\mu}$ is a unit in $R\left\{X_{\nu}\right\}_{N}$, by Lemma 3.

Since of all factorization of f_{ν} the factorization into irreducible factors has the largest number of non-unit factors, it follows from (7) and (8) that $d(\nu)$ is monotone decreasing with ν. Hence, there exists a ν_{1} such that if $\nu_{1}<\nu, d(\nu)$ is a constant : $=d$. When $d(\nu)=d$, each factor $\rho_{\nu}^{\mu} p_{\mu, i}$ in (8) $(\nu<\mu<\alpha, 1 \leqslant i \leqslant m(\mu))$ must be irreducible in $R\left\{X_{\nu}\right\}_{k}$.

Consider μ and ν such that $\nu_{1}<\nu<\mu$. Comparing once more (7) with (8), we see that $m(\nu) \leqslant m(\mu)$; since $m(\nu)$ is the number of distinct irreducible components of f_{ν}. This implies that $m(\nu)$ is monotone increasing with ν if $\nu_{1}<\nu$. Moreover, $m(\nu)$ is upperly bounded since $\sum_{i=1}^{m(\nu)} e(\nu, i)=d$. Hence, there exists a ν_{0} such that if $\nu_{0}<\nu, m(\nu)$ is a constant: $=m$; and therefore if $\nu_{0}<\nu e(\nu, i)$ $(1 \leqslant i \leqslant m)$ must also be a constant: $=e_{i}$. Thus we get if $\nu_{0}<\nu$,
(9) $\left\{\begin{array}{cc}f_{\nu}=h_{\nu} \cdot \prod_{i=1}^{m} p_{\nu, i}{ }^{e} \quad & \quad \text { (factorization into irreducible } \\ \left.\text { factors in } R\left\{X_{\nu}\right\}_{\star}\right) \\ \rho_{\nu}^{\mu} p_{\mu, i} \sim p_{\nu, i} & \left(\nu_{0}<\nu<\mu<\alpha, 1 \leqslant i \leqslant m\right) .\end{array}\right.$

By using Lemma 4, we can find $q_{i} \in R\{X\}_{k}(1 \leqslant i \leqslant m)$ such that $\rho_{\nu}^{\alpha} q_{i} \sim p_{\nu, i}\left(\nu_{0}<\nu<\alpha, 1 \leqslant i \leqslant m\right)$. Let h_{ν}^{\prime} be the unit in $R\left\{X_{\nu}\right\}_{\kappa}$ such that $f_{\nu}=h_{\nu}^{\prime} \cdot \rho_{\nu}^{\alpha}\left(\prod_{1}^{m} q_{i}{ }^{e} i\right)$. As $\rho_{\nu}^{\mu} h_{\mu}^{\prime}=h_{\nu}^{\prime}$ and α is a limit number, we can consider $\lim _{\nu_{0}<\nu<\alpha} h_{\nu}^{\prime}=h^{\prime} \in R\{X\}_{N}$; where h^{\prime} is a unit, by Lemma 3.
Thus we get a factorization of f in $R\{X\}_{\mathbb{N}}$:

$$
\begin{equation*}
f=h^{\prime} \cdot \prod_{i=1}^{m} q_{i}{ }^{{ }^{i}} \tag{10}
\end{equation*}
$$

It is clear that every q_{i} is a non-unit, by Lemma 3. That every q_{i} is moreover irreducible follows from the fact that if q_{i} were factorized into two non-units, then, by going down to $\nu,\left(q_{i}\right)_{v}$ $\sim p_{\nu, i}$ would be factorized into two non-units. This completes the proof of UF 1.

Remark. The following is also a consequence of our argument above.

If f is irreducible, then f_{ν} is irreducible for sufficiently large $\nu(<\alpha)$.
(The converse is also true as we have seen above.)
Indeed, assume the contrary, suppose that f is irreducible and that there are ν arbitrarily large such that f_{ν} is reducible. Then we can find ν such that f_{ν} is reducible and ν is larger than ν_{0} defined in (9). Therefore, in (9), $\sum_{1}^{m} e_{i}$ must be >1. Thus, we have $f=h^{\prime} \cdot \prod_{1}^{m} q_{i}{ }^{e}{ }_{i}, \sum_{1}^{m} e_{i}>1$; by (10). As each $q_{i}(1 \leqslant i \leqslant m)$ has been a non-unit, we obtain a contradiction.

Finally, we shall show that:
UF 2. if $p \mid f \cdot g$ with $p, f, g \in R\{X\}_{\aleph}$ and if p is irreducible, then either $p \mid f$ or $p \mid g$.

Indeed, let $\nu(<\alpha)$ be sufficiently large so that $(f \cdot g)_{\nu} \neq 0$, and that p_{v} is irreducible (by Remark above). From $p \mid f \cdot g$ we have either $p_{\nu} \mid f_{\nu}$ or $p_{\nu} \mid g_{\nu}$. Therefore, we see that either the upper limit of the set $\left\{\nu \mid \nu<\alpha, f_{\nu}\right.$ is divisible by $\left.p_{\nu}\right\}$ or that of the set $\left\{\nu \mid \nu<\alpha, g_{\nu}\right.$ is divisible by $\left.p_{\nu}\right\}$ is equal to α. For otherwise, since α is a limit number, there would be a ν sufficiently large such that neither f_{v} nor g_{ν} is divisible by p_{v}.

We consider the case where the upper limit of the former is α. Then f_{ν} must be divisible by p_{ν} also for every $\nu(<\alpha)$; since if $\nu<\mu$ and $p_{\mu} \mid f_{\mu}$, then $p_{\nu} \mid f_{\nu}$. Write $f_{\nu}=p_{\nu} \cdot f_{\nu}^{\prime}$, then $\left(f_{\nu}^{\prime}\right)_{\nu<\alpha}$ satisfies the condition $\rho_{\nu}^{\mu} f_{\mu}^{\prime}=f_{\nu}^{\prime}$; and therefore we can consider $\lim _{\nu<\alpha} f_{\nu}^{\prime}=f^{\prime}$ in $R\{X\}_{\kappa}$. Thus we conclude $f=p \cdot f^{\prime}$. This completes the proof of UF 2 , and therefore of the theorem,
3. We remark that the question whether $R\{X\}_{N}$ in Theorem 1 is replaced by $R\{X\}$, namely every q_{i} in (10) can be chosen as an usual formal power series when f is so, remains unsolved.

Now we shall consider $R\{X\}$ under a mild condition that R is a Krull ring. We recall ${ }^{6)}$ that an integral domain R is a Krull ring if and only if the following three conditions are satisfied:
KR 1. $\quad R_{\mathfrak{p}}$ is a discrete valuation ring for any prime ideal \mathfrak{p} of R of height 1.
KR 2a. Every principal ideal of R has only a finite number of prime divisors \mathfrak{p} such that height $\mathfrak{p}=1$.
KR 2 b . Letting \mathfrak{p} run over prime ideals of height 1 in R, we have $R=\bigcap_{\mathfrak{p}} R_{\mathfrak{p}}$.

Theorem 2. If R is a Krull ring, then so is $R\{X\}$.
Proof. Let K and Ω be the fields of quotients of R and $R\{X\}$ respectively. Let κ be any cardinal number $\geqslant \boldsymbol{N}_{0}$. Let \mathfrak{p} be a prime ideal of R of height 1 . Since $R_{\mathfrak{p}}$ is a discrete valuation ring (KR 1.); using Theorem 1 , we see that $R_{p}\{X\}_{N}$ is a unique factorization domain, and therefore a Krull ring. Similarly, we see that $K\{X\}_{\mathbb{N}}$ is a Krull ring. Since, by Lemma $2, K\{X\}$ is expressed as an intersection of $K\{X\}_{N}$ and a field; $K\{X\}$ is also a Krull ring. ${ }^{7}$)

Now, let V be the set consisting of those discrete valuation rings v of the field Ω, such that v is either equal to one of $v_{\text {q }}$ or equal to one of $v_{\mathrm{a}_{1}}$ of the following types:

```
\(v_{\mathrm{q}}=K\{X\}_{\mathrm{q}} \cap \Omega\),
where \(\mathfrak{q}\) is a prime ideal of \(K\{X\}\) of height 1.
```

(ii) $v_{q_{1}}=\left[R_{p}\{X\}_{\kappa}\right]_{q_{1}} \cap \Omega$,
where \mathfrak{p} is a prime ideal of R of height 1 , and \mathfrak{q}_{1} is a prime ideal of $R_{\mathfrak{p}}\{X\}_{\mathbb{N}}$ of height 1 such that \mathfrak{q}_{1} contains an element whose leading form has all coefficients in $\mathfrak{p} R_{\mathfrak{p}}$.

[^3]On the unique factorization theorem for formal power series 159
Owing to the criterion for a Krull ring, ${ }^{\text {8) }}$ we have only to prove that

1) if an element f of $R\{X\}$ is not zero, then there are only a finite number of v in V such that f is a non-unit in v;
2) $R\{X\}=\bigcap_{v \in V} v$.

Proof of 1). By virtue of KR 2 a for $K\{X\}$, almost all prime ideals \mathfrak{q} of height 1 in $K\{X\}$ do not contain the given f. ("almost all" means all but a finite number.) Whence we see that there are only a finite number of $v_{\text {q }}$ of type (i) in which f is a nonunit.

By virtue of KR 2a for R, there are only a finite number of common prime divisors \mathfrak{p} of height 1 for all the coefficients of the leading form of the given f, For such a common prime divisor \mathfrak{p}, almost all prime ideals \mathfrak{q}_{1} of height 1 in $R_{\mathfrak{p}}\{X\}_{\mathbb{N}}$ do not contain f; by KR 2 a for $R_{p}\{X\}_{N}$. While for a remaining prime ideal \mathfrak{p} of R of height 1 , in $R_{p}\{X\}_{\mathbb{N}}$ no prime ideal \mathfrak{q}_{1} of height 1 contains both f and an element whose leading form has all coefficients in $\mathfrak{p} R_{\mathfrak{p}}$. (Note that a prime ideal of $R_{p}\{X\}_{\mathbb{N}}$ of height 1 is principal.) Thus we see that there are only a finite number of $v_{\mathrm{q}_{1}}$ of type (ii) in which f is a non-unit.

Proof of 2). Clearly, $R\{X\} \subseteq \bigcap_{v \in V} v . \quad$ Conversely, let $f \in \bigcap_{v \in V} v$. Since $\bigcap_{\mathrm{q}} v_{\mathrm{q}}=K\{X\}$ by KR 2 b for $K\{X\}$, we have

$$
\bigcap_{v \in V} v=\left(\bigcap_{\mathfrak{q}} v_{\mathfrak{q}}\right) \cap\left(\bigcap_{\mathfrak{p}, \mathfrak{q}_{1}} v_{\mathfrak{q}_{1}}\right) \subseteq K\{X\} \cap\left(\bigcap_{\mathfrak{p}, \mathfrak{q}_{1}}\left[R_{\mathfrak{p}}\{X\}_{\aleph}\right]_{\mathfrak{q}_{1}}\right) .
$$

As an element of $K\{X\}, f$ can be written

$$
\begin{equation*}
f=\sum a_{e}(x)^{e}, \quad a_{e} \in K \quad(\text { formal power series }) . \tag{11}
\end{equation*}
$$

We fix \mathfrak{p} for a while. Then as an element of the field of quotients of $R_{\mathcal{p}}\{X\}_{\mathcal{K}}, f$ is also written

$$
\begin{equation*}
f=G / F ; \quad F, G \in R_{\mathfrak{p}}\{X\}_{\mathbb{R}}, \quad F \neq 0 . \tag{12}
\end{equation*}
$$

Since $R_{\mathbb{p}}\{X\}_{\mathbb{N}}$ is a unique factorization domain, we may assume that $(F, G)=1$ in (12); so that F and G in (12) are uniquely

[^4]determined by f except for unit factors. Let F_{q} be the leading form of F. Let p be the prime element of R_{p}. (We note that p is also a prime element of $R_{p}\{X\}_{\text {R }}$.) Then, $p X F_{q}$ in $R_{p}\{X\}_{\mathcal{K}}$. For otherwise a minimal prime divisor \mathfrak{q}_{1} of F in $R_{\mathfrak{p}}\{X\}_{\mathbb{R}}$ would satisfy the condition in (ii) above ; and $F \in \mathfrak{q}_{1}, G \notin \mathfrak{q}_{1}$, so that $\left[R_{\mathfrak{p}}\{X\}_{\kappa}\right]_{\mathfrak{q}_{1}}$ would not contain $f=G / F$.

We shall show that every coefficient a_{e} in (11) must be in $R_{\mathfrak{p}}$. Assume the contrary. Of all the homogeneous parts of series (11) one of whose coefficients is not in $R_{\mathfrak{p}}$, let f_{n} be of the least degree. As f is a formal power series and therefore f_{n} is a polynomial with coefficients in K, we can write
(13) $f_{n}=f_{n}^{\prime} / p^{k} ; k$: integer $>0, f_{n}^{\prime} \in R_{\mathfrak{p}}\{X\},\left(f_{n}^{\prime}, p\right)=1$ in $R_{p}\{X\}_{\mathrm{N}}$. From $f \cdot F=G$, we get

$$
G_{n+q}=f_{n} \cdot F_{q}+\cdots+f_{0} \cdot F_{n+q},
$$

and so it follows that $f_{n} \cdot F_{q} \in R_{p}\{X\}_{R}$. Therefore, by (13), we have $p^{k} \mid f_{n}^{\prime} \cdot F_{q}$ in $R_{p}\{X\}_{\mathbb{N}}$; which contradicts to the fact that $p X f_{n}^{\prime}$, $p X F_{q}$, and p is irreducible in $R_{\mathfrak{p}}\{X\}_{\mathcal{N}}$.

Thus, we have shown that in (11) every $a_{e} \in R_{\mathfrak{p}}$, where \mathfrak{p} may be an arbitrary prime ideal of height 1 in R. Since $\bigcap_{\mathfrak{p}} R_{\mathfrak{p}}=R$ by KR 2 b for R, it follows from this that every coefficient a_{e} in (11) must be in R, therefore $f \in R\{X\}$ as desired. This completes the proof of 2) and of the theorem.

[^0]: 1) See P. Samuel, Anneaux factoriels, Publicações da Sociedade de Matemática de São Paulo, 1963, pp. 58-63.
 2) A ring in this note always means a commutative ring with 1.
[^1]: 3) If $\mathbb{N}^{*} \geqslant \mathbb{N}_{0}$, the \mathbb{N}-series $\sum_{x \in Y} x$ of degree 1 , where Y is a subset of X with card. $Y=\mathbf{N}_{0}$, is not in $R\{X\}$.
[^2]: 5) The case where $\boldsymbol{N} \geqslant \boldsymbol{N}^{*}$ has been obtained by E. D. Cashwell and C. J. Everett, Formal power series, Pacific J. Math. 13, 1963, pp. 45-64; D. Deckard, M. A. Thesis, Rice University, 1961; D. Deckard and L. K. Durst, Unique factorization, Pacific J. Math. 16, 1966 pp. 239-242.
[^3]: 6) As for the theory of Krull rings see, e.g., M. Nagata, Local rings, John Wiley, New York, 1962, pp. 115-118.
 7) See Theorem (33.6) and (33.7), pp. 116-117, idid.
[^4]: 8) See Theorem (33.6), p. 116, ibid.
