On the unique factorization theorem for formal power series

By

Hajime NISHIMURA

(Received Aug. 25, 1967)

Let $R\{x_1, \dots, x_n\}$ be the formal power series ring in a finite number of independent variables x_1, \dots, x_n with coefficient ring R. It is known that even if R is a unique factorization domain $R\{x_1\}$ is not always so.¹⁾

We shall denote the following condition for a ring² R by (*):

(*) $R\{x_1, \dots, x_n\}$ is a unique factorization domain, for any n (finite).

It is noted that (*) is satisfied by a regular semi-local integral domain R, which follows from the fact that a regular local ring is a unique factorization domain. This naturally raises the question whether the unique factorization theorem still holds for the case of infinitely many variables, provided coefficient domain R satisfies (*). The question is only partially answered below (Theorem 1), where notion of formal power series is taken in a wider sense than the usual one.

As for the usual formal power series, what we show is that if R is a Krull ring then $R\{x_1, x_2, \dots, x_n, \dots\}$ is also a Krull ring, which is an application of Theorem 1.

The auther wishes to express his sincere thanks to Prof. M. Nagata for his valuable suggestion and encouragement.

1. Let R be a ring, X be a set of indeterminates, card. $X = \aleph^*$. As usual, by a X-monomial $(x)^e$ of degree n $(n=0, 1, 2, \cdots)$ we mean

¹⁾ See P. Samuel, Anneaux factoriels, Publicações da Sociedade de Matemática de São Paulo, 1963, pp. 58-63.

²⁾ A ring in this note always means a commutative ring with 1.

Hajime Nishimura

$$(x)^c = \prod_{x \in X} x^{c(x)}; \quad e(x): integer \ge 0, \quad \sum_{x \in X} e(x) = n.$$

Let M(X) be the set of all X-monomials. We note that card. M(X) = card. $X = \aleph^*$, if \aleph^* is not less than \aleph_0 (the cardinality of a countable set). For each element $(a_c) \in R^{M(X)}$, we consider the formal sum

(1)
$$f = \sum a_e(x)^e; a_e \in R, (x)^e \in M(X).$$

Let \aleph be a cardinal number $\ge \aleph_0$. We call (1) an \aleph -series with respect to X over R, if card. $\{(x)^e | a_e \neq 0\} \le \aleph$.

The set $R{X}_{\aleph}$ of all these \aleph -series forms a ring by the obvious operations. This we see readily even when $\aleph < \aleph^*$, taking account of the fact that then for any element f in $R{X}_{\aleph}$ there is a subset Y of X such that $f \in R{Y}_{\aleph}$ and card. $Y = \aleph$.

We denote by f_n $(n = 0, 1, 2, \cdots)$ the homogeneous part of degree *n* of an \aleph -series *f*. The subring $R\{X\}$ of $R\{X\}_{\aleph}$ consisting of those \aleph -series *f* such that f_n is a finite sum (a polynomial) for every *n* is nothing but the *usual formal power series ring*; that is, the (X)-adic completion of the polynomial ring R[X], where (X) is the ideal of R[X] generated by the set *X*. We note that although merely $R\{X\}_{\aleph} = R\{X\}$ if *X* is a finite set, otherwise necessarily $R\{X\}_{\aleph} \neq R\{X\}^{3}$

The above notations will be fixed throughout this note.

Lemma 1. If R is an integral domain, then $R{X}_{\aleph}$ is an integral domain, and so is $R{X}$. An element $f \in R{X}_{\aleph}$ (or $\in R{X}$) is a unit if and only if the constant term of f is a unit in R.

Proof. We may make X a well-ordered set. We order X-monomials by their degree, and then for X-monomials of the same degree we order lexicographically. Namely: $\prod x^{e(x)} < \prod x^{e'(x)}$, if either (i) $\sum e(x) < \sum e'(x)$ or (ii) $\sum e(x) = \sum e'(x)$ and e(y) > e'(y) where y is the first variable such that $e(y) \neq e'(y)$. Thus we make M(X) a well-ordered set in such a way that if m_1, m_2, m_3 , and m_4 are four X-monomials with $m_1 \leq m_2$ and $m_3 \leq m_4$ then we have $m_1 \cdot m_3 \leq m_2 \cdot m_4$.

Let f and g be non-zero elements of $R\{X\}_{\aleph}$, and let $a_m \cdot m$

152

³⁾ If $\aleph^* \ge \aleph_0$, the \aleph -series $\sum_{x \in Y} x$ of degree 1, where Y is a subset of X with card. $Y = \aleph_0$, is not in $R\{X\}$.

and $b_{m'} \cdot m'$ $(m, m' \in M(X); a_m, b_{m'} \in R)$ be the first monomials which appear with non-zero coefficients in f and g respectively. Then, clearly, $a_m \cdot b_{m'} \cdot m \cdot m'$ is the first monomial which actually occurs in $f \cdot g$. Thus $f \cdot g \neq 0$, and the first assertion is proved.

The second assertion is proved also by the same way as in the case of a finite number of variables; by virtue of the ordering of M(X). q.e.d.

Lemma 2. Let R be an integral domain and let Ω be the field of quotients of $R\{X\}$, then we have

$$R\{X\} = R\{X\}_{st} \cap \Omega$$
 .

Proof. Assume that there is an element f in $R\{X\}_{\aleph} \cap \Omega$ which is not contained in $R\{X\}$. Then f is an \aleph -series and we have

(2)
$$f \cdot F = G$$
, with $F, G \in \mathbb{R} \{X\}$.

Let f_n , F_n , and G_n be the homogeneous parts of degree n of f, F, and G respectively. Let F_q be the leading form of F; that is, the homogeneous part ± 0 of F of the least degree. Since $f \notin R\{X\}$, there exists an integer n for which f_n involves infinitely many variables actually. Of all these integers let n be the least. From (2),

$$(3) \qquad \qquad G_{n+q} = f_n \cdot F_q + \dots + f_0 \cdot F_{n+q}.$$

Both sides of (3), except for $f_n \cdot F_q$, involve only a finite number of variables. While $f_n \cdot F_q \pm 0$ and involves infinitely many variables actually among terms with non-zero coefficients, which is a contradiction. q.e.d.

2. We consider a well-ordering of X, and fix it henceforth. Let α be the ordinal number of the ordered set X. For each ordinal number $\xi < \alpha$, we denote by x_{ξ} the element y of X such that ξ is the ordinal number of $\{x \in X | x < y\}$; so that for each $\xi \leq \alpha$ the set $X_{\xi} = \{x_{\nu} | \nu < \xi\}$ has the ordinal number ξ .

For ξ and η with $\eta < \xi \leq \alpha$ and for any cardinal number \mathbf{x}' not less than \mathbf{x} , we have the ring homomorphism, denoted by ρ_{η}^{ξ} ,

$$(4) \qquad \qquad \rho_{\eta}^{\sharp} \colon R\{X_{\sharp}\}_{\aleph} \to R\{X_{\eta}\}_{\aleph'};$$

by taking the residue class of each element of $R\{X_{\xi}\}_{\aleph}$ modulo the ideal generated by $\{x_{\nu} | \eta \leq \nu < \xi\}$. Then the following lemma follows readily from Lemma 1.

Lemma 3. An element of $R{X_{\xi}}_{\aleph}$ is a unit if and only if its image by ρ_{η}^{ξ} is a unit.

Lemma 4. Assume that $\aleph \ge \aleph^*$. Let a transfinite sequence $(f_{\xi})_{\xi < \omega}$ be such that:

(5)
$$\begin{cases} f_{\xi} \in R\{X_{\xi}\}_{\aleph}, \\ and \quad \rho_{\eta}^{\xi} f_{\xi} \sim f_{\eta} \quad if \; \eta < \xi^{4} \end{cases}$$

Then, there exists a $g \in R\{X\}_{\aleph}$ such that $\rho_{\xi}^{\alpha} g \sim f_{\xi}$ for any $\xi < \alpha$.

Proof. We shall define g_{ν} for every $\nu \ (\leq \alpha)$, by transfinite induction, such that

(6)
$$\begin{cases} g_{\nu} \in R\{X_{\nu}\}_{\aleph}, \\ g_{\nu} \sim f_{\nu} \quad if \quad \nu < \alpha, \\ and \quad \rho_{\mu}^{\nu}g_{\nu} = g_{\mu} \quad if \quad \mu < \nu \leq \alpha \end{cases}$$

Set $g_1 = f_1$. Assume g_{ν} has been defined for every ν with $\nu < \xi$, so that (6) is satisfied.

Case 1. $\xi = \alpha$ and α is an isolated number. Define $g_{\xi} = g_{\xi-1}$.

Case 2. ξ is an isolated number and $\xi < \alpha$. As $\rho_{\xi-1}^{\xi} f_{\xi} \sim f_{\xi-1} \sim g_{\xi-1}$, we have $\rho_{\xi-1}^{\xi} (h_{\xi} \cdot f_{\xi}) = g_{\xi-1}$; where h_{ξ} is a unit in $R\{X_{\xi}\}_{\aleph}$ (Lemma 3). Define $g_{\xi} = h_{\xi} \cdot f_{\xi}$.

Case 3. $\xi = \alpha$ and α is a limit number. For any given X_{ξ} -monomial $(x)^{e}$, there exists a $\nu(<\xi)$ such that $(x)^{e}$ is already a X_{ν} -monomial, and the coefficient of $(x)^{e}$ in g_{ν} is independent of the choice of ν . Therefore we can consider $\lim_{\nu < \xi} g_{\nu} \in R\{X_{\xi}\}_{\aleph}$. Define $g_{\xi} = \lim_{\nu < \xi} g_{\nu}$.

Case 4. ξ is a limit number and $\xi < \alpha$. As $\rho_{\nu}^{\xi} f_{\xi} \sim f_{\nu} \sim g_{\nu}$ for any $\nu < \xi$, we have $\rho_{\nu}^{\xi} (h_{\nu} \cdot f_{\xi}) = g_{\nu}$; where h_{ν} is

⁴⁾ $f \sim g$ means f and g are associates with each other.

a unit in $R\{X_{\nu}\}_{\aleph}$. As it is easily seen that $\rho_{\mu}^{\nu}h_{\nu}=h_{\mu}$, we can consider $\lim_{\nu < \xi} h_{\nu} = h_{\xi} \in R\{X_{\xi}\}_{\aleph}$. By Lemma 3, h_{ξ} is a unit in $R\{X_{\xi}\}_{\aleph}$. Define $g_{\xi} = h_{\xi} \cdot f_{\xi}$. q.e.d.

Theorem 1.⁵⁾ If a ring R satisfies the condition (*), then $R\{X\}_{\aleph}$ is a unique factorization domain.

Proof. We use transfinite induction on \aleph^* (= the cardinality of X). When X is a finite set, the assertion is trivial. Let $\aleph^* \ge \aleph_0$. Assume the assertion holds for variables of less cardinality.

Let α be the least ordinal number which has cardinality \aleph^* . We reorder X so that the ordinal type of the ordered set X is α . With respect to this ordering, let x_{ξ}, X_{ξ} , and ρ_{η}^{ξ} be as above. Then, for every $\xi < \alpha$, the cardinality of $X_{\xi} = \{x_{\nu} | \nu < \xi\}$ is less than \aleph^* ; so that $R\{X_{\xi}\}_{\aleph}$ is a unique factorization domain by the induction assumption. We note that α is a limit number; for otherwise α is an isolated number (not finite), and therefore $\alpha - 1$ would also have cardinality \aleph^* .

Furthermore, we may assume $\aleph \ge \aleph^*$. Indeed, if $\aleph < \aleph^*$, then, letting Y run over all subsets of X such that card. $Y = \aleph$, we have $R\{X\}_{\aleph} = \bigcup R\{Y\}_{\aleph}$. The assertion in the case where $\aleph < \aleph^*$ follows from the facts that $R\{Y\}_{\aleph}$ is a unique factorization domain, that any finite number of elements of $R\{X\}_{\aleph}$ can be contained in a suitable $R\{Y\}_{\aleph}$ at the same time, and that an element of $R\{X\}_{\aleph}$ is irreducible if and only if it is so in a $R\{Y\}_{\aleph}$.

First we shall show that:

UF 1. every element $f \neq 0$ of $R\{X\}_{\aleph}$ is expressed as a product of a finite number of irreducible elements.

Write $\rho_{\nu}^{\alpha} f = f_{\nu}$. We consider a sufficiently large ν ($<\alpha$) such that $f_{\nu} \neq 0$. In the unique factorization domain $R\{X_{\nu}\}_{\aleph}$, let the factorization of f_{ν} into irreducible factors be

(7)
$$f_{\nu} = h_{\nu} \cdot \prod_{i=1}^{m(\nu)} p_{\nu,i}^{e(\nu,i)};$$

⁵⁾ The case where $\aleph \ge \aleph^*$ has been obtained by E. D. Cashwell and C. J. Everett, Formal power series, Pacific J. Math. 13, 1963, pp. 45-64; D. Deckard, M. A. Thesis, Rice University, 1961; D. Deckard and L. K. Durst, Unique factorization, Pacific J. Math. 16, 1966 pp. 239-242.

where h_{ν} is a unit, $p_{\nu,i}$ is an irreducible non-unit in $R\{X_{\nu}\}_{\aleph}$ such that $p_{\nu,i} \approx p_{\nu,j}$ for $i \neq j$. The number of non-unit factors in (7) is denoted by $d(\nu): d(\nu) = \sum_{i=1}^{m(\nu)} e(\nu, i)$. If $\nu < \mu < \alpha$, then $f_{\mu} \neq 0$, and we get another factorization of f_{ν} by going down from μ :

(8)
$$f_{\nu} = \rho_{\nu}^{\mu} f_{\mu} = (\rho_{\nu}^{\mu} h_{\mu}) \cdot \prod_{i=1}^{m(\mu)} (\rho_{\nu}^{\mu} p_{\mu,i})^{e(\mu,i)}$$

In (8) we see that each foctor $\rho_{\nu}^{\mu} p_{\mu,i}$ $(1 \le i \le m(\mu))$ is a non-unit and $\rho_{\nu}^{\mu} h_{\mu}$ is a unit in $R\{X_{\nu}\}_{\aleph}$, by Lemma 3.

Since of all factorization of f_{ν} the factorization into irreducible factors has the largest number of non-unit factors, it follows from (7) and (8) that $d(\nu)$ is monotone decreasing with ν . Hence, there exists a ν_1 such that if $\nu_1 < \nu$, $d(\nu)$ is a constant : = d. When $d(\nu) = d$, each factor $\rho_{\nu}^{\mu} p_{\mu,i}$ in (8) ($\nu < \mu < \alpha$, $1 \le i \le m(\mu)$) must be irreducible in $R\{X_{\nu}\}_{\mathbb{R}}$.

Consider μ and ν such that $\nu_1 < \nu < \mu$. Comparing once more (7) with (8), we see that $m(\nu) \leq m(\mu)$; since $m(\nu)$ is the number of distinct irreducible components of f_{ν} . This implies that $m(\nu)$ is monotone increasing with ν if $\nu_1 < \nu$. Moreover, $m(\nu)$ is upperly bounded since $\sum_{i=1}^{m(\nu)} e(\nu, i) = d$. Hence, there exists a ν_0 such that if $\nu_0 < \nu$, $m(\nu)$ is a constant: = m; and therefore if $\nu_0 < \nu \ e(\nu, i)$ $(1 \leq i \leq m)$ must also be a constant: $= e_i$. Thus we get if $\nu_0 < \nu$,

$$(9) \begin{cases} f_{\nu} = h_{\nu} \cdot \prod_{i=1}^{m} p_{\nu,i}^{e_{i}} & (factorization into irreducible \\ factors in R\{X_{\nu}\}_{\Re}) \\ \rho_{\nu}^{\mu} p_{\mu,i} \sim p_{\nu,i} & (\nu_{0} < \nu < \mu < \alpha , \ 1 \leq i \leq m). \end{cases}$$

By using Lemma 4, we can find $q_i \in R\{X\}_{\aleph}$ $(1 \leq i \leq m)$ such that $\rho_{\nu}^{\alpha} q_i \sim p_{\nu,i}$ $(\nu_0 < \nu < \alpha, 1 \leq i \leq m)$. Let h'_{ν} be the unit in $R\{X_{\nu}\}_{\aleph}$ such that $f_{\nu} = h'_{\nu} \cdot \rho_{\nu}^{\alpha} (\prod_{1}^{m} q_i^{e_i})$. As $\rho_{\nu}^{\mu} h'_{\mu} = h'_{\nu}$ and α is a limit number, we can consider $\lim_{\nu_0 < \nu < \alpha} h'_{\nu} = h' \in R\{X\}_{\aleph}$; where h' is a unit, by Lemma 3.

Thus we get a factorization of f in $R{X}_{\aleph}$:

(10)
$$f = h' \cdot \prod_{i=1}^{m} q_i^{e_i}.$$

156

It is clear that every q_i is a non-unit, by Lemma 3. That every q_i is moreover irreducible follows from the fact that if q_i were factorized into two non-units, then, by going down to ν , $(q_i)_{\nu} \sim p_{\nu,i}$ would be factorized into two non-units. This completes the proof of UF 1.

Remark. The following is also a consequence of our argument above.

If f is irreducible, then f_{ν} is irreducible for sufficiently large $\nu(<\alpha)$.

(The converse is also true as we have seen above.)

Indeed, assume the contrary, suppose that f is irreducible and that there are ν arbitrarily large such that f_{ν} is reducible. Then we can find ν such that f_{ν} is reducible and ν is larger than ν_0 defined in (9). Therefore, in (9), $\sum_{i=1}^{m} e_i$ must be >1. Thus, we have $f = h' \cdot \prod_{i=1}^{m} q_i^{e_i}$, $\sum_{i=1}^{m} e_i > 1$; by (10). As each q_i ($1 \le i \le m$) has been a non-unit, we obtain a contradiction.

Finally, we shall show that:

UF 2. if $p|f \cdot g$ with $p, f, g \in R\{X\}_{\aleph}$ and if p is irreducible, then either p|f or p|g.

Indeed, let $\nu(<\alpha)$ be sufficiently large so that $(f \cdot g)_{\nu} \neq 0$, and that p_{ν} is irreducible (by Remark above). From $p|f \cdot g$ we have either $p_{\nu}|f_{\nu}$ or $p_{\nu}|g_{\nu}$. Therefore, we see that either the upper limit of the set $\{\nu|\nu<\alpha, f_{\nu}$ is divisible by $p_{\nu}\}$ or that of the set $\{\nu|\nu<\alpha, g_{\nu}$ is divisible by $p_{\nu}\}$ is equal to α . For otherwise, since α is a limit number, there would be a ν sufficiently large such that neither f_{ν} nor g_{ν} is divisible by p_{ν} .

We consider the case where the upper limit of the former is α . Then f_{ν} must be divisible by p_{ν} also for every $\nu(<\alpha)$; since if $\nu < \mu$ and $p_{\mu}|f_{\mu}$, then $p_{\nu}|f_{\nu}$. Write $f_{\nu} = p_{\nu} \cdot f'_{\nu}$, then $(f'_{\nu})_{\nu < \alpha}$ satisfies the condition $\rho^{\mu}_{\nu}f'_{\mu} = f'_{\nu}$; and therefore we can consider $\lim_{\nu < \alpha} f'_{\nu} = f'$ in $R\{X\}_{\aleph}$. Thus we conclude $f = p \cdot f'$. This completes the proof of UF 2, and therefore of the theorem, 3. We remark that the question whether $R\{X\}_{\aleph}$ in Theorem 1 is replaced by $R\{X\}$, namely every q_i in (10) can be chosen as an usual formal power series when f is so, remains unsolved.

Now we shall consider $R\{X\}$ under a mild condition that R is a Krull ring. We recall⁶⁾ that an integral domain R is a Krull ring if and only if the following three conditions are satisfied:

- KR 1. $R_{\mathfrak{p}}$ is a discrete valuation ring for any prime ideal \mathfrak{p} of R of height 1.
- KR 2a. Every principal ideal of R has only a finite number of prime divisors \mathfrak{p} such that height $\mathfrak{p}=1$.
- KR 2b. Letting \mathfrak{p} run over prime ideals of height 1 in R, we have $R = \bigcap_{\mathfrak{p}} R_{\mathfrak{p}}$.

Theorem 2. If R is a Krull ring, then so is $R{X}$.

Proof. Let K and Ω be the fields of quotients of R and $R\{X\}$ respectively. Let **x** be any cardinal number $\geq \mathbf{x}_0$. Let **p** be a prime ideal of R of height 1. Since R_p is a discrete valuation ring (KR 1.); using Theorem 1, we see that $R_p\{X\}_{\mathbf{x}}$ is a unique factorization domain, and therefore a Krull ring. Similarly, we see that $K\{X\}_{\mathbf{x}}$ is a Krull ring. Since, by Lemma 2, $K\{X\}$ is expressed as an intersection of $K\{X\}_{\mathbf{x}}$ and a field; $K\{X\}$ is also a Krull ring.⁷⁰

Now, let V be the set consisting of those discrete valuation rings v of the field Ω , such that v is either equal to one of v_q or equal to one of v_{q_1} of the following types:

- (i) $v_q = K\{X\}_q \cap \Omega$, where q is a prime ideal of $K\{X\}$ of height 1.
- (ii) v_{q1}=[R_p{X}_N]_{q1}∩Ω,
 where p is a prime ideal of R of height 1, and q1 is a prime ideal of R_p{X}_N of height 1 such that q1 contains an element whose leading form has all coefficients in pR_p.

⁶⁾ As for the theory of Krull rings see, e.g., M. Nagata, *Local rings*, John Wiley, New York, 1962, pp. 115-118.

⁷⁾ See Theorem (33.6) and (33.7), pp. 116-117, idid.

Owing to the criterion for a Krull ring,⁸⁾ we have only to prove that

1) if an element f of $R\{X\}$ is not zero, then there are only a finite number of v in V such that f is a non-unit in v; 2) $R\{X\} = \bigcap v$

$$2) \quad R\{X\} = \prod_{v \in V} v.$$

Proof of 1). By virtue of KR 2a for $K\{X\}$, almost all prime ideals q of height 1 in $K\{X\}$ do not contain the given f. ("almost all" means all but a finite number.) Whence we see that there are only a finite number of v_q of type (i) in which f is a non-unit.

By virtue of KR 2a for R, there are only a finite number of common prime divisors \mathfrak{p} of height 1 for all the coefficients of the leading form of the given f, For such a common prime divisor \mathfrak{p} , almost all prime ideals \mathfrak{q}_1 of height 1 in $R_{\mathfrak{p}}\{X\}_{\mathfrak{R}}$ do not contain f; by KR 2a for $R_{\mathfrak{p}}\{X\}_{\mathfrak{R}}$. While for a remaining prime ideal \mathfrak{p} of R of height 1, in $R_{\mathfrak{p}}\{X\}_{\mathfrak{R}}$ no prime ideal \mathfrak{q}_1 of height 1 contains both f and an element whose leading form has all coefficients in $\mathfrak{p}R_{\mathfrak{p}}$. (Note that a prime ideal of $R_{\mathfrak{p}}\{X\}_{\mathfrak{R}}$ of height 1 is principal.) Thus we see that there are only a finite number of $v_{\mathfrak{q}_1}$ of type (ii) in which f is a non-unit.

Proof of 2). Clearly, $R\{X\} \subseteq \bigcap_{v \in V} v$. Conversely, let $f \in \bigcap_{v \in V} v$. Since $\bigcap_{q} v_{q} = K\{X\}$ by KR 2b for $K\{X\}$, we have

$$\bigcap_{v \in V} v = (\bigcap_{\mathfrak{q}} v_{\mathfrak{q}}) \cap (\bigcap_{\mathfrak{p}, \mathfrak{q}_1} v_{\mathfrak{q}_1}) \subseteq K\{X\} \cap (\bigcap_{\mathfrak{p}, \mathfrak{q}_1} [R_{\mathfrak{p}}\{X\}_{\mathfrak{k}}]_{\mathfrak{q}_1}).$$

As an element of $K{X}$, f can be written

(11) $f = \sum a_e(x)^e, a_e \in K$ (formal power series).

We fix \mathfrak{P} for a while. Then as an element of the field of quotients of $R_{\mathfrak{P}}\{X\}_{\mathfrak{R}}$, f is also written

(12)
$$f = G/F; F, G \in R_{\mathfrak{p}}\{X\}_{\mathfrak{s}}, F \neq 0.$$

Since $R_{\mathfrak{p}}\{X\}_{\mathfrak{R}}$ is a unique factorization domain, we may assume that (F, G)=1 in (12); so that F and G in (12) are uniquely

⁸⁾ See Theorem (33, 6), p. 116, *ibid*.

determined by f except for unit factors. Let F_q be the leading form of F. Let p be the prime element of R_p . (We note that pis also a prime element of $R_p\{X\}_{\aleph}$.) Then, $p \not\mid F_q$ in $R_p\{X\}_{\aleph}$. For otherwise a minimal prime divisor q_1 of F in $R_p\{X\}_{\aleph}$ would satisfy the condition in (ii) above; and $F \in q_1$, $G \notin q_1$, so that $[R_p\{X\}_{\aleph}]_{q_1}$ would not contain f = G/F.

We shall show that every coefficient a_e in (11) must be in $R_{\mathfrak{p}}$. Assume the contrary. Of all the homogeneous parts of series (11) one of whose coefficients is not in $R_{\mathfrak{p}}$, let f_n be of the least degree. As f is a formal power series and therefore f_n is a polynomial with coefficients in K, we can write

(13) $f_n = f'_n/p^k$; k: integer > 0, $f'_n \in R_p\{X\}, (f'_n, p) = 1$ in $R_p\{X\}_{\aleph}$. From $f \cdot F = G$, we get

$$G_{n+q} = f_n \cdot F_q + \dots + f_0 \cdot F_{n+q},$$

and so it follows that $f_n \cdot F_q \in R_{\mathfrak{p}}\{X\}_{\mathfrak{R}}$. Therefore, by (13), we have $p^k | f'_n \cdot F_q$ in $R_{\mathfrak{p}}\{X\}_{\mathfrak{R}}$; which contradicts to the fact that $p \not| f'_n$, $p \not| F_q$, and p is irreducible in $R_{\mathfrak{p}}\{X\}_{\mathfrak{R}}$.

Thus, we have shown that in (11) every $a_e \in R_p$, where p may be an arbitrary prime ideal of height 1 in R. Since $\bigcap_p R_p = R$ by KR 2b for R, it follows from this that every coefficient a_e in (11) must be in R, therefore $f \in R\{X\}$ as desired. This completes the proof of 2) and of the theorem.