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Let D be an integral domain with identity having quotient
field K .  A  domain between D and K  is called an overring of D,
and a valuation overring o f D  is  an overring o f D  which is also
a valuation ring. Davis [2 ], Gilmer and Ohm [6 ], Goldman [8],
and Pendleton [15 ] have recently considered domains D with the
QR-property: Each overring o f D  i s  a quotient ring of D .  A
domain with the QR-property is necessarily Prtifer [2 ; pp . 197-8],
[6 ; p. 99], and a Noetherian domain has the QR-property if and
only if it is a Dedekind domain with torsion class group [2; p. 200],
[6 ; p. 100], [ 8 ;  p. 114].

Davis in [2 ]  and Gilmer in  [4 ]  have considered a related
property on a domain D, which we shall refer to here as the QQR-
property: Each overring of D is  an intersection of quotient rings
of D .  Since any quotient ring of D is an intersection of localiza-
tions of D (that is, quotient rings of D taken with respect to the
complement of prime ideals o f D ), the QQR-property for D  is
equivalent to the condition that each overring of D is  an inter-
section of localizations of D .  It is well-known that any Dedekind
domain has the QQR-property ; more generally, any Pr tifer domain
has the QQR-property [ 2 ;  p . 197]. Davis in [ 2 ;  p . 200] raises
the question of the valid ity of the converse ;  he proves that if
each prime ideal o f D  i s  o f finite rank and if D has the QQR-

1 )  The first author was supported during the writing of this paper by National
Science Foundation Grant GP-4127.
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property, then D is Prtifer. In Section 1 we consider more closely
the relation between the concepts "D  is Prilfer" and "D  has the
QQR-property". W e are able to generalize the positive result of
Davis just cited (Theorem 1.4) and to add a second positive result
(Corollary 1.7), but we give an example later in Section 4 show-
ing that a  domain with the QQR-property need not be Priifer.
Theorem 1.9 shows that the domain D has the QQR-property if
and only if Dm  has the QQR-property for each maximal ideal M of
D .  Theorem 1.10 states that if J is a quasi-local domain with the
QQR-property which is not integrally closed, then the integral
closure J o f J is the unique minimal overring of J in the sense
that each proper overring o f J contains J. H en ce  Section 2 is
devoted to a  consideration o f  domains which admit a unique
minimal overring, and Theorem 3.3 of Section 3 gives a charac-
terization of quasi-local domains with the QQR-property.

All domains considered in this paper are assumed to contain
an identity. The terminology is that of Zariski-Samuel [17] [18].

1. P r t ife r  domains and the QQR-property. We establish in
this section some consequences of the QQR-property in a domain
D .  Theorem 1.4 and Corollary 1.7 relate the QQR-property to
the property o f  being Priifer. We shall have frequent occasion
to use the following result from [4], which we quote directly :

Suppose D ' is  an overring of the Priif er domain D, and let SI
be the set of prime ideals P of D  such  that PD 'cD '. T hen

(i) I f  M  is  a maximal ideal o f  D ' a n d  if  P=M n D , then
Dp—D'm  and III=PDp n D'. Therefore D ' is Priifer.

(ii) For P  a proper Prim e ideal of D , P E  f/ if and only  i f
D D '. Fu rth e r, D '= n p e o p p

(iii) I f  A ' is  an ideal of D ' and A = A ' np , then A ' = A D'.
(iv) {PD'}, „  i s  the set of proper prime ideals of  D'.

Also, we shall make use of the following fact concerning
localizations.

I f  D ' is  an overring of the domain D and P  is  a prime ideal
of D  such that D 'cD p, then D 'pi=D p w here P'=D ' nPD p.

1.1 P R O P O SIT IO N . L et D  be an  integral dom ain and let D ' be
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an  overring o f  D .  I f  D ' is  an intersection of  quotient rings of  D
then D ' is  an intersection of  localizations o f  D.

Proposition 1.1 is immediate from the easily-proved fact that
a quotient ring of D  is  an intersection of localizations of D .  (For
example, see [16]. )

1.2 C O R O LLA R Y . T he follow ing statem ents concerning the
integral dom ain D  are  equivalent.

(1) D  has the QQR-property.
(2) Each averring of  D  is an intersection of localizations of  D.
(3 )  Each ov erring o f  D  w hich is quasi-local is an intersection

o f  localizations o f  D.

P ro o f . In view of Proposition 1.1 we need only show that (3)
implies (1). Thus suppose D ' i s  an overring o f D  and {Md ,} is
the collection of maximal ideals o f D '.  By hypothesis, D' m .  is
an intersection of localizations of D .  Since D '= nD'm ., (1) then
follows.

In considering questions concerning overrings of the domain
D  w e find that an important ro le  is  p layed  b y  the valuation
overrings of D — that is, valuation rings lying between D  and K.
Our first results therefore deal w ith the condition that every
valuation overring o f D  is  an intersection of quotient rings of D.

1.3 L E M M A . L et V  be a  valuation overring of  D  which is an
intersection of localizations o f  D : V = n D p  .  Then each D p . is  a

a ' "

valuation ring, the set {/3 } is linearly  ordered under inclusion, and
M = U Pas i s  the center o f  V on D . A lso , Dm g.V  and equality holds

i f  an d  only  i f  DM  i s  a  valuation r i n g .  I f  A  i s  a  nonmaximal
proper ideal o f  V , then A c P aP p . f o r some a.

Pro o f . Since each D p . contains V, each D p . i s  a  valuation
ring and {P„Mp a } is chained under inclusion. Because P o,=
P„Dp. n D for each a ,  {Pc,}  is also chained under inclusion. There-
fore M = U P . is  prime in D .  W e next observe th a t U 13

‘,D p . is

the maximal ideal M ' o f  V .  T hat U /3 „D p .c M ' is  clear. And if

x  i s  a  nonunit o f  V ,11x ,$ V = n D „.  implies 1/x D , fo r  some
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a .  Hence M 'çU P„D p .. Therefore th e  center o f V  o n  D  is

M'n D =(UP„D p.)nD =U(P„D p. n D ) = U P = M .  It follows that

Dm ç  V .  I f  Dm  i s  a  valuation r in g , then Dm — V , for M M '
implies that MDm cM V cM ' ; M D m  th e  m ax im al ideal o f Dm .
Finally, if A  is an ideal of V such that A c M ', then A U PcÔDP .

so A P „D p . for some a .  Hence A cP,,D ,..

1 .4  TH E O RE M . I f  each valuation overring of  D  is  an  inter-
section of  q u o tien t rin g s  o f  D , an d  if  D  satisf ies the ascending
chain condition (a.c.c.) for prime ideals then D  is  a Priifer dom ain.

P ro o f . Let M  be a maximal ideal of D .  There is a valuation
overring of D  having center M  on D .  By Lemma 1.3, there is a
chain {P„} of prime ideal of D such that LJ P„,= M and each Dp.

is a  valuation r in g . Since D satisfies a.c.c. on prime ideals, some
P„ is equal to M , and Dm  is  a  valuation r in g . It follows that D
is a Prtifer domain.

1 .5  TH EO REM . I f  each valuation overring o f  D  is  an  inter-
section of  quotient rings of  D , then for P a nonm ax im al prim e of
D, Dp is  a  valuation ring.

P ro o f . Let M  be a maximal ideal of D  such that P c M  and
let V  be a  valuation overring of D  having prime ideals P ' and
M ' such that P' n D= P, M ' n D= M , and M ' is the maximal ideal
of V . [13 , p . 37 ]. By Lemma 1 .3  there is a set {P„} of prime
ideals o f D  such that V= fl D , , ,  P 'c P „D p .  fo r some a.

Therefore, P= P' n D çPD p . n D= Po,. It follows that Dp.c DP
and Dp is a  valuation ring as we wished to show.

1 .6  T H E O R E M . I f  each valuation ov erring o f  D  is  an  inter-
section of  quotient rings of  D , then D, the integral closure of D, is
a Prüfer dom ain.

P ro o f . If D is not a Prtifer domain, then there is a maximal
ideal M  of D such that Dm  is not a  valuation r in g .  It follows
(see, for example, [18, p. 21]) that there is a  valuation overring
V of D such that V has prime ideals P' c  M ' with P' n =  n
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= M . Hence if nD =M , then P' n D = M  also. By hypothesis
V is an intersection of quotient rings of D .  Thus, there is a set
{P O  of prime ideals o f  D  such that V= p p . ,  and P 'c P aPp.

for some a .  This means that Mg_13 ' nD cP.D p.nD =P 0 3 ; hence
M = P. and Dm = Dp, is a  valuation ring. But M n D= M  implies
that Dm gD,,,-/ ,  and by assumption DM is not a  valuation ring.
This contradiction establishes Theorem 1.6.

1 .7  COROLLARY". I f  D  has the QQR-property, then D, the
integral closure of D , is  Prü f er. T h ere f o re  if  D  is  an integrally
closed domain, D has the QQR-property if and only if D is a P riifer
domain.

If J  is a domain lying between a  domain D  and a quotient
ring D , o f D, then DN =JN . Therefore we have

1.8 PROPOSITION. I f  D  is  a domain with the QQR-property
and if D ' is  an overring of D, then D ' has the QQR-Property.

Our next result reduces the problem of characterizing domains
with the QQR-property to the study of quasi-local domains.

1 .9  T H E O R E M . The domain D has the QQR-property if  and
only if Dm a has the QQR-property fo r each maximal ideal M os o f  D.

P ro o f . I f  D  has the QQR-property, then by Proposition 1.8
each Dm ,  has the QQR-property. W e assume, conversely, that
each Dm .  has the QQR-property. By Proposition 1.2, D will have
the QQR-property if each quasi-local overring of D  is  an inter-
section o f  localizations o f  D .  Hence, le t  D ' b e  a quasi-local
overring of D  with maximal ideal M'. I f  P= M ' n D and if Ma,
is a maximal ideal o f D containing P, then Dm a c D p c D '.  Since
Dm ,„ has the QQR-property, D ' is an intersection of localizations
of Dm .. But each localization of Dm a  is  a localization o f D, hence
D ' is an intersection of localizations o f D  as we wished to show.

TERMINOLOGY. We will say that the overring D , of the

2 )  Corollary 1.7 can also be obtained as  a  special case o f Corollary 1 o f [2 ].
A  domain D  such that each valuation overring o f  D  is  an intersection of quotient
rings o f D  need not have the QQR-property. Example 4. 2 illustrates this fact.
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domain D  is the unique minimal overring of D  if DcD, and if for
any overring D , of D  not equal to D  we have D ,cD ,.

1.10 THEOREM. Let D be a quasi-local domain with maximal
ideal M .  I f  D  has the QQR-property  and is not a valuation ring,
then D, the integral closure of D, is the unique minimal overring of D.

P ro o f . Since D  is quasi-local and is not a  valuation ring, D
is not Prtifer, so that D c b .  If D ' is an overring of D, there is
a  s e t  {P } o f  p r im e  ideals o f D  such that D '= r D ,  ,  and if

D * D ',  then iffE {P „} since Dm = D .  Therefore each Pa,  is non-
maximal, and Theorem 1.5 shows that each Dp c, is then a valuation
r in g . Therefore D '= f l  D ,  is an integrally closed domain contain-. a,

ing D .  Hence r) g D ',  and  we conclude that D is the unique
minimal overring of D.

2. Unique minimal overrings. Theorem 1.10 leads us to an
investigation of domains which possess a unique minimal overring.
From the fact that a  domain is the intersection of the localiza-
tions taken with respect to its set of maximal ideals, it follows
that a domain which has a unique minimal overring is quasi-local.
Also, since a n  integrally closed domain is an intersection of
valuation rings, if D is integrally closed and has a unique minimal
overring, then D  is  a  valuation ring . O ur primary interest lies
in the case where D  is quasi-local and D, the integral closure of
D, is the unique minimal overring of D.

W e consider first the situation when D  and D , a re  domains
with D c D , such that there are no domains properly between D
and D,.

2.1 LEM M A. If  A  and B  are distinct ideals of  D , such that
A n D =B  n D , then A n B = A n D . Therefore, A n B  is an ideal of D.

P ro o f . W e have A n D = ( A n D ) n ( B n p ) g A n B .  If An D c
A fl B, then there is an  xE(A n B )— D, and  since there are no
domains properly between D  an d  D „ w e have D i = D [ x ] .  If
yE A , then y= do + d i x  + ••• +d n x " where d,, d 1 , •••, d„E D . Hence
do= y— d,x — • • — dn x"E A nD =B  n D , and y = do + d i x + • • • + clnx" B.
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I t  follows that Ac  B ; similarly B c A , so that A = B .  Consequently,
if A  and B  are distinct ideals of D , such that A  nD =B nD , then
An B =A  n D.

2 .2  C O RO LLA RY . I f  P  is  a prim e ideal of  D, then there are
at m ost tw o prim e ideals o f  D , ly ing over P. In  p artic u lar, if  D
i s  quasi-local and D , is  in teg ral o v er D , D , has at m ost tw o
maximal ideals.

2 .3  L E M M A . A ssum e th at  D  i s  quasi-local w ith  maximal
ideal M .  I f  D , is integral ov er D , then M  is  the conductor of  D
in  D1 .

P ro o f . Let y E M  and assume that yD, D .  Then there is an
x Ey D,— D; say y•-=- x. Since x E D , since there are no  domains
properly between D  and D „ and since D , is integral over D, we
have D ,=D +D x + •••+D x " for some positive integer n. We choose
n  minimal with this property. There are d ,,••• ,d „E D  such that
r = clo +d i x + • • •  +d „x " . Hence f =y "  r = Yn clo+ ••• -1--yndn x "  and
e(1- yncl)= "'d o + ••• +lid x " " .  Since D is quasi-local and y E M,
1 — yndt, is a unit of D  and Xn  E D +D x + • • •  +D x '.  It follows that
Di =D +D x +•••  +D x " ', which contradicts our choice o f n. We
conclude that M  is the conductor of D  in  D,.

2 .4  T H E O R E M . Let D be a quasi-local dom ain w ith maximal
ideal M  and integral closure D such that D c D .  I f  D  is  Priif er
and if  there are no domains properly between D  and D , then D is
the unique m inim al ov erring o f  D.

P ro o f . By Lemma 2.3 , M  is the conductor of D in D and by
Corollary 2 .2 , D has at most two maximal ideals. For xEK — D
we show that D g D [ x ] .  If xED— D, then D= D [x ] by hypothesis.
If D is quasi-local with maximal ideal M , then since D is integral
over D, M  is the only prime of D  lying over M .  Hence M= MD
has radical M  in  D . For x E D , we have 1 /x E M , since D  is  a
valuation ring , so that (1 /x )"E M  for some positive integer n.
Thus for E D , w e  h a v e  ---- (1 /x ")x "E D [x ] and D g D [x ] .

The remaining case is when D  has two maximal ideals—say
MI and M , .  By Lemma 2.1 , M =M ,n  M 2  and since D is  Prüfer
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r), and Dm , are valuation rings. For x Er /3, we have xEriim i  or
x  bm ,. Assume x  r), ; then 1/x E /O k i . Hence 1/x= u/v
where uc M, and v ii .)—A4-1 . If y E M2 M „  then 1/x= uylvy and
vy 15 —M,. Thus xuy= vy D - D .  But uy E Mi  n m, c D .  Hence
D = D [v y ]c D [x ] .  We conclude that D is  the unique minimal
overring of D  and Theorem 2.4 is established.

We remark that without the condition that D is  a Priifer
domain the conclusion of Theorem 2.4 need not follow. For ex-
ample if  F=R(Nr2 )(x), where R  is the field of rational numbers
and x is transcendental over R then the power series ring M y ] ]
is a  rank one valuation ring of the form F + M  where M  is the
maximal ideal of M A ] .  D = R + M  is a quasi-local domain with
integral closure D=R( N/ 2 )+ M .  There are no domains properly
between D  and D; however D is not a unique minimal overring
of D  because r) D[x].

We consider now the question of what domains admit a unique
m inim al overring. As w e have already mentioned, i f  D  is  an
integrally closed domain which has a unique minimal overring,
then D  is a  valuation r in g . I f  D  is not integrally closed and has
a unique minimal overring D „  then D E D ,c D  where D is  the
integral closure of D .  We show by example in Section 4 that the
unique minimal overring D, of D  need not be quasi-local. How-
ever, Corollary 2.2 shows that D, has at most two maximal ideals.
We consider this case in Proposition 2.5.

2.5 PROPOSITION. I f  D „ the unique minimal overring of D,
has tw o maximal ideals, then D, the integral closure o f D , i s  an
intersection of two valuation rings V , and V , .  I f  N i  is the maximal
ideal o f V i , then N i  n N,—M, the maximal ideal o f D.

P ro o f . Let M , and M2 be the maximal ideals of D , .  I f  V,
and V, a re  valuation overrings o f D  such that Vi has maximal
ideal N „  where N i n D ,=M i ,  a n d  if  x E (N, n N 2 ) — M, w e have
D , g D [x ] .  Hence if e D 1 , do+ d,x + ••• +dn x " ,  where d„
••• , cln D .  Also —c/o E D , a n d  d,x+ ••• +d n xnEN, n N 2 ; thus

d o N i n n  Di = M, n m, . By Lemma 2 .1 , M, n m, M g D .
Therefore th e  assumption that x e  (N, n N 2 ) — M  implies that
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—do ED and h en ce  E D . This contradicts the fact that D cD ,.
We conclude that N  n M .  If a valuation ring V, is an overring
of D and if N „ the maximal ideal of V 3 , is such that N, n D= M,
then Di g V , and N, n Di  is e ither M i  or M2—say N ,n Di = M i . By
the argument just given, N 3 f1N 3 — M . We show that this implies
that V1 = V 3 . T =  V i n v, n v, is  a domain such that TN , n r=  V, for
each i [1, P .  132]. It follows that (N ,n T )n (N ,n T )=(N , n N,) n T
=mn TcNi n T .  Because there a re  n o  containment relations
between V1 =T N 1 n g - and V2 = TN,n T s  it follows that N 2 fl T N 1 n T.
Hence N, n T g N i n T , and because of the symmetry of our argu-
ment, N ,n  T  N i n T so that V ,—  isr,n r= TN i n T =  V,. Therefore V,
and V. are the only valuation rings which are overrings of D  and
which have center M  on D .  It follows that D= V, n V2 , [18, P. 171
and the proof of Proposition 2.5 is complete.

I f  D  is not integrally closed and if D „ the unique minimal
overring of D, is  quasi-local with maximal ideal M i  then we may
have M 1 =M , the maximal ideal of D, or M c M , .  When M cM ,,
Lemma 2.3 shows that M  i s  an  ideal of Di  and  by Lemma 2.1
there are no ideals properly between M  and M i . It then follow
that M 1

2 c M  [17, p. 237]. W e have not been able, in the case
where M c M , and Di  i s  quasi-local, to determine whether the
integral closure of D  is  Prilfer. B u t if  M ,=M  w e show that D
is  a  valuation ring.

2.6 PROPOSITION. Let D, be the unique minimal overring of
D, and assume that D i  i s  quasi-local. If M , the maximal ideal
of  D, is also the maximal ideal o f D „ then D, the integral closure
of D , is a v aluation ring w ith maximal ideal M.

P ro o f . Let V be a valuation ring which is an overring of D
such that V  has center M on D .  If N  is  the maximal ideal of V,
then for x EN either x eM  or Di c D [x ] .  But if D ,g D [x ], then
for E D, we h a v e  =d o +d i x+•••+d„xn where do , •••, d„ E D . Hence

—do =d i x + ••• +dx "EN  n Di =M c  D , which means that
This contradicts the fact that Di D .  Therefore V has maximal
ideal M  and we conclude that V =D , the integral closure o f D
[18, p. 17].
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We remark that under the hypothesis of Proposition 2.6, D,
may be properly contained in D . In fact, D need not be a finite
ring extension of D,.

We summarize the results o f  this section as they apply to
domains with the QQR-property.

2 .7 T H E O R E M . Let D be a quasi-local dom ain w ith maximal
ideal M  hav ing the QQR -property . W e suppose that Dcri ; D the
integral closure o f D . T hen  b is Priifer with at most two maximal
ideals, D i s  the unique minimal ov erring o f D , a n d  M  i s  the
conductor o f D  in  D.

P ro o f . By Theorem 1.10, D is the unique minimal overring
of D .  By Corollary 1.7 , D is P rfife r . Corollary 2 .2  shows that
D has at most two maximal ideals, and Lemma 2 .3  states that
M  is the conductor o f D  in D.

3. A  characterization of quasi-local domains with the QQR-
property. In  this section we denote by D  a quasi-local domain
with maximal ideal M  and by D the integral closure of D.

TERM IN O LO G Y . We say that a prime ideal P of an integral
domain is unbranched if P is the only P-primary ideal. Otherwise
we say that P  is branched [3 , p. 2 5 2 ] .  We remark that a prime
ideal P  of a  Priifer domain is branched if and only if P properly
contains the union of the chain of primes properly contained in
P  [3 ].

3 .1  L E M M A . I f  D i s  a  Priif e r dom ain w ith {X }  the set
o f  maximal ideals of  D and if M  is unbranched, then each M c, is
unbranched.

P ro o f . I f  some M „ is branched and if for that fixed a  we
denote by {Q0 } th e  s e t  o f  M1 1-prim ary ideals, then we have

fl Qp = Po„  a prime ideal o f D properly contained in IlL . 3 ) S ince

D is integral over D, Po, n D = P is  a prime ideal o f  D  properly

3 )  Note that this is the only place where the hypothesis that D is Prnfer is
used see [14].
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contained in M .  Hence there is a j su ch  that (2,n D cM , and
Qt3 n D is M-primary. Therefore M  is branched and Lemma 3.1
is proved.

3 .2  L E M M A . L e t {Mg }  be  the set o f  maximal ideals o f  D.
I f  M  i s  the conductor of  D  in  D and if each M g i s  unbranched,
then M  is  unbranched.

Pro o f . I f  Q is  an M-primary ideal o f D , then since M  is
an ideal of D, QM  is an ideal of D . Therefore, QM = nQMD A,f m .

We have QMc Q c M, and QM  and M have the same radical in D.
Thus, {M8 } is  the set of minimal primes of QM  in D since D is
integral over D .  For any 0, QM152,16 is primary for MgDm s , and
hence, QMDm o —Morim o since MF,  is  unbranched. It follows that
M g n M i3E)m g =QMÇQ so that Q =M  and M  is unbranched as we

13
wished to show.

We can give now a  characterization of quasi-local domains
with the QQR-property.

3.3 TH E O RE M . I f  D  is not a  valuation ring, the following
are equivalent :

(a) D  has the QQR-property.
(b) D is  the unique minimal overring of D and the maximal

ideals o f D are unbranched.
(c) There are no domains properly between D and D, D  is  a

Priifer domain, and M  is  unbranched.

P ro o f . (a).—.(b) : By Theorem 1.10, D is the unique minimal
overring of D, and by Corollary 1.7, D is a Prüfer domain. Hence
i f  M a, is  a maximal ideal of D, D M  i s  a valuation ring. Since
Ma, n D = M, we see that D M  an overring of D which is not a
quotient ring of D .  Because D  has the QQR-property, there is
a set {Po }  o f prim e ideals o f  D  such that D M = fl D .  Alsop

Dps = r), where 15 13-= Popp o n r). Hence by Lemma 1.3, Mo,= U P .
13

Since DM n o t  a quotient ring of D , we have iik s,cDp o =Dpo .
Thus PA cilf,„ for each 13, and M„ is the union of a chain of prime
ideals o f D which are properly contained in M . S in c e  D is a
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Prilfer domain, it follows that M as is  unbranched.
(b)---.(c) : It is  c lear that there a re  n o  domains properly

between D and D . Corollary 2.2 shows that D has at most two
maximal ideals. If D has two maximal ideals then by Proposition
2.5, D is  a  Prilfer dom ain . If D is  quasi-local then M D  has
radical M, the maximal ideal of D . By Lemma 2.3, M D =M  and
by hypothesis M  is unbranched ; hence M = M . It follows in  this
case  from  Proposition 2.6 that D is  Prtifer. Since M  is  the
conductor of D in  D, Lemma 3.2 shows that M  is unbranched as
an ideal of D.

(c)—>(a) : Theorem 2.4 shows that D is  the unique minimal
overring o f  D .  L e t D, be a n  overring o f  D .  I f  D= D„ then
D1 = DM . I f  Dc D „ then Dc Di . Since D is  Prtifer, D has the
QQR-property, and there is a set {Pp } of prime ideals of D such
that D,= rlDp

fi .
 If a m axim al ideal M.  { P} , then by Lemma

3.1, M c,  is  unbranched and there is a  s e t  V5 ,1 of non-maximal
prime ideals o f D such that DM= nr), . Therefore D1 = flD1

X

where each Px is a non-maximal prime of D . Hence to show that
D  has the QQR-property it will suffice to show that i f  P  is a
non-maximal prime of D then D p =D , where Pn D = P . Since D
is integral over D, P  is a non-maximal prime of D and D D .
Thus PDp n D= N is a prime ideal of D lying over P  and D N -

Dp ç D. Hence P ç N .  It follows that N = P  and D p =  D .  W e
conclude that D has the QQR-property.

3.4 COROLLARY. I f  J  is  an integral dom ain w ith the QQR-
property  and if each maximal ideal of J  is branched  then  J is a
Priif er domain.

P ro o f . If N  is a maximal ideal of J,  then J ,  has the QQR-
property and N J,  is branched. Hence by Theorem 3.3, J N  i s  a
valuation ring.

3.5 REM A RK . Our results in Section 3 show that in the state-
ment of Theorem 2.7 we can actually say that M  is the Jacobson
radical of D.
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4. Examples. We now consider some examples o f domains
w ith  the QQR-property which are n o t Prilfer dom ains. The
examples indicate in some cases negative answ ers to possible
generalizations of results previously obtained.

We denote by G the countable weak direct sum of the additive
group of integers, ordered lexicographically. We let k  be a field
and k , be a subfield over which k  is  a lgeb ra ic . As in [7, p. 248]
we consider x„ x 2 , •••, x„, ••• elements of an extension field of k
which are algebraically independent over k. We define a valuation
y  on K =k  (x „ x „ •••) as follows. For any nonzero element a of k
and any nonnegative integers r„r„ • - • ,r, ,  we define v(axP x'2. 2•••x.rn)

r 2 , • •• , r„, 0, •-.)EG ; v ( f (x ))=m in im u m  value of the nonzero
monomials occuring in  f ( x ) ,  fo r  an y  f ( x ) E k [x 1 , x 2 ,  • • • ]; and
v ( ) = y ( f ) — y ( g )  fo r  any g E k ( x „ x „ • • • ) .  L e t  V  b e  the
valuation ring associated with y and let M l  b e  the maximal ideal
o f V . We observe th a t V =k  +M , and that M , i s  an unbranched
ideal o f V . Consider the domain D =k o + M „  D is  a quasi-local
domain with maximal ideal M , and integral closure D= V .  Lemma
3.2 shows that M , is  unbranched as an ideal o f D .  There is a
one-to-one correspondence between domains between D and D and
fields between k , and k.

4.1 EX A M PLE. In the above construction we take k  and ko

to  be fields such that ho c k  and such that there are no fields
properly between k ,  and k. Theorem 3.3 then proves that the
domain D=k 0 -1-M, has the QQR-property.

In [2, p. 200], Davis raised what is, in our terminology, this
question : Must a domain D  with the QQR-property be Priifer ?
Davis showed that the answer is affirmative if each prime ideal
of D has finite rank—a result generalized by our Theorem 1.4.
And Example 4.1 shows that the answer to Davis' question is
negative.

4.2 EXAM PLE. In our construction preceding Example 4.1
we choose for h , and k  fields such that there exist proper inter-
mediate fields. Then Theorem 1.10 shows th at D =k o + M , does
not have the QQR-property. But D  does have the property that
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each valuation ring containing D which is an overring of D is  an
intersection of quotient rings of D .  To prove this statement we
observe that since /7)=k +M i  h a s  unbranched maximal ideal,
is  an intersection of valuation rings which properly contain D.
Hence it suffices to show that each valuation r in g  V such that

c V c K , is  a quotient ring of D .  Any such V  i s  of the form
(b ) p  for some prime P  of D , P c M , .  Then i f  m E M ,— P and
xE k , x m eM ,— P, implying that x= x m / m  D p .  It follows that
k  g D p , and hence that k +M ,=D g D p .  Therefore Dp= -  ( P D p n D )

= b =  v .

Example 4 .2  shows th a t  the condition we considered in
Theorems 1.4-1 .6  is weaker than the Q Q R -property. In Example
4 .3  we construct a quasi-local domain D  with the QQR-property
such that the integral closure of D  is not a  valuation ring. T h is
example also shows that the unique minimal overring of a quasi-
local domain may not be quasi-local.

4 .3  EXAMPLED. Let k  denote a prim e field and let x„ x2,
•••, x n , ••• be elements of an extension field which are algebraically
independent over k. W e define a  valuation y  o n  k(x„ x2, •••)
having value group G as in  Example 4 . 1 .  If we let y i = x i - 1  for
each i, then k (y,, y2 , • • • ) =  k  (X „ X 2 • • • ).  Define a  valuation w  on
k(Y „ .Y 2, •••) by w(f (Y,, .Y .))=v(f(x1, •.., x.)) ; w ( ) =w ( f ) — w(g)
w h ere  =f  Ig E k (y

i , y2, • • • ). We denote by V  and W the valuation
rings associated with the valuations y  and w  respectively. If MI
and M 2  are the maximal ideals of V and W, we show easily that
V =k +M „ W =k +M 2 ,  and that M , and M 2  are un branched . Let
D =k +M , where M =M , fl M 2 , and denote by b the integral closure
of D .  We show that b= V  n W . It suffices to observe that each
element t  of V n W  is integral over D .  Thus there are elements
a ,b  of k  such that t— a M „ t— bE M 2  .  And since t —a e  W  and
t —b E  V , it  fo llo w s th a t s =  (t — a)(t — b) n m ,. Therefore,
t 2 — (a + b)t +(ab— s)— 0 , and t  is integral over D .  It follows that
D= W  n V .  Since V * W, D  is  a  Prtifer domain with two maximal

4 )  Constructions like that of Example 4. 3 occur in  [5 ]  and [ 1 0 ] .  In particular,
our proof that b= Vii W  comes from [10 ].
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ideals, M i n r) and M, n  [12 , p . 56 ]. W e observe that D=k + M
is  quasi-local with maximal ideal M , so that D c r ) .  Because
M =M , n M 2 , M  is an ideal of D and is the conductor of D in  D.
We now show that there are no domains properly between D and
D. If M i =M i n r) then Dm i = V and r)  W. Also D/M = DImi nig2
'- 17)/1V116345/111-2 and D//r/v;--_--k. The inclusion map o f D  into D
induces a  map of DIM•-=-k into D /M =-k ek  which we will denote
by T. W e have -7-(1)-1eD1 so that T (a)=ae a for each a s k .  It
is easy to see that k e k  is  a sim ple ring extension of T(k) by
any element of (k ek )— T (k ). Hence for any dsp—  D , we have
D [d ]/M =D /M . Since M c D , it follows that D [d ]=D  and there
are no rings properly between D and D. Because D is a  Prüfer
domain, Theorem 2 .4  implies that D is a unique minimal overring
of D .  Also the valuation rings V and W are the intersection of
valuation rings properly containing them. Since D is  a  Priifer
domain, it follows that the maximal ideals of D are unbranched.
Theorem 3 .3  then shows that D has the QQR-property.

We next give an example of a domain with the QQR-property
which is neither Priifer nor quasi-local.

4 .4  EXAM PLE. We consider D= k + M, the quasi-local domain
with the QQR-property which was constructed in  Example 4.3.
L et T  be a  valuation ring on  k (x „ x 2 , •••) of the form  k +M3,
where M , is the maximal ideal of T , and such that there are no
containment relations between T , V, and W.

4 .5  PROPOSITION. D* = Tn D  is  a  dom ain w ith the QQR-
property  w hich is neither quasi-local nor Priifer.

P ro o f . By an argument similar to that given in Example 4.3
we show that any valuation ring containing D* contains either
T , V, or W . Therefore the integral closure of D* is R = T n v n  W
and the maximal ideals of D* are the centers o f T , V and W on
D * . Since D*c D, M , n D * =M ,n  D * =P. Because there are no
containment relations among T , V, and W, R  is a  Prilfer domain
with distinct maximal ideals M,nR, 1112 n R , and M, n R .  There-
fore D * c R  and D *  is not P r iife r . Let N = A n D * .  W e show
that D * N = T  and D*p— D. Since Rm a n  =  T, if xE T, then x =alb
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where a, b E R  and b1$ M 3 n R .  We choose y E (R n mi fl M2)—M3 .
Then x = ay lby , ay E T  n D= D*,byE D*, and by Er D* n m, . There-
fo re x FD * N  a n d  w e conclude that D*N = T .  Since D *pgD ,
it  is  c le a r  th a t P * N  and D * is  n o t quasi-local. If x E D , we
show there exists y E D *— P such that y x E D * .  I f  xE  T ,  then
xF Tn D =D * and we take y = 1 .  If x  T , then x - lE M , .  Let Q
be the radical o f x 'T .  Q  i s  a prime ideal o f T  and Q n D*
m n D * .  This follows because R  is integral over D* and Q n R  is
a prime ideal of R  lying over Q n p * .  Thus by the "going up"
theorem [11, p. 7 4 9 ], i f  Q n D * Ç M n D * , then Q n R is contained
in a prime ideal of R  lying over M n D * .  But m,nR and M, n R
a re  th e  only prim e ideals o f  R  ly ing over M n  D *  and since
RQnR = T o , R m i n R = V, and Rm 2 n R ,---- W, if  either M, n R  o r M, n R
contains Q n R ,  then either V  o r  W  is contained in T 0 .  B u t
xE Vn W  and x EE T Q since x 'E  Q .  Therefore Q n D* is not con-
tained in M n  D * . We choose aE(Q  n D *)— M . There is a positive
integer n such that a" E x - 1 T .  If y = a", then yE D* — M and yx=
e x E  T .  Therefore y x  D *= T n D . We conclude that D* m n D

, = D.
It follows from Theorem 1 .9  that D * has the QQR-property.

4.6 REM ARK. I f  D„ D2 , •••, D„ are quasi-local domains with
the QQR-property such that each Di h a s  quotient field K , then
D= n7=1D1 also has K  as its quotient fie ld . For if M, is the maximal
ideal of Di , then M = n 7,M , is the Jacobson radical of n 7=1( 7 1 n w1)
where V, and W , are valuation rings of K  such that 171 n W. i s  the
integral closure of Di  (we may have Vi = Wi for some i). Since M
is an ideal of D, D and n  i( V n w.) have the same quotient field.
Therefore D  has quotient field K .  The intersection, however, of
a  finite number of quasi-local domains with th e  QQR-property
need not have the QQR-property. In  fact our final example is
an integral domain D  which is an intersection of two quasi-local
domains with the QQR-property each having quotient field K  such
that the integral closure of D is not Priifer.

4.7 EXAMPLE. Let F  be a field of characteristic zero and
let y be transcendental over F .  We construct as in  Example 4.1
a valuation r in g  V = F(y )+M , where M , the maximal ideal of V,
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is unbranched. F(y ) is an algebraic field extension of dimension 2
over each of the fields F(y 2 ) and F(y 2 + y ) .  Therefore Di = F(y 2 )+ M
an d  .1), =F (y 2 + y ) + M  are quasi-local domains with th e  QQR-
property. Since the sum of F(y )  and M , as additive subgroups
of V , is direct, we have D =  n (F(Y 2)nF(y2 + y))+ M .  But it
is not hard to show that F(y 2 ) n F(y 2 +y )=F  [9 , p. 3 1 ] .  Therefore
D =F+M  is an integrally closed quasi-local domain which is not
Priifer.
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