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Let D be an integral domain with identity having quotient
field K. A domain between D and K is called an overring of D,
and a valuation overring of D is an overring of D which is also
a valuation ring. Davis [2], Gilmer and Ohm [6], Goldman [8],
and Pendleton [15] have recently considered domains D with the
QR-property : Each overring of D is a quotient ring of D. A
domain with the QR-property is necessarily Priifer [2; pp. 197-8],
[6; p. 99], and a Noetherian domain has the @QR-property if and
only if it is a Dedekind domain with torsion class group [2; p. 200],
[6; p.100], [8; p. 114].

Davis in [2] and Gilmer in [4] have considered a related
property on a domain D, which we shall refer to here as the QQR-
property : Each overring of D is an intersection of quotient rings
of D. Since any quotient ring of D is an intersection of localiza-
tions of D (that is, quotient rings of D taken with respect to the
complement of prime ideals of D), the Q@QR-property for D is
equivalent to the condition that each overring of D is an inter-
section of localizations of D. It is well-known that any Dedekind
domain has the QQR-property ; more generally, any Priifer domain
has the QQR-property [2; p. 197]. Davis in [2; p. 200] raises
the question of the validity of the converse; he proves that if
each prime ideal of D is of finite rank and if D has the QQR-

1) The first author was supported during the writing of this paper by National
Science Foundation Grant GP-4127.
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property, then D is Priifer. In Section 1 we consider more closely
the relation between the concepts “D is Priifer” and ‘“D has the
QQR-property”’. We are able to generalize the positive result of
Davis just cited (Theorem 1.4) and to add a second positive result
(Corollary 1.7), but we give an example later in Section 4 show-
ing that a domain with the QQ@R-property need not be Priifer.
Theorem 1.9 shows that the domain D has the Q@R-property if
and only if D,, has the QQR-property for each maximal ideal M of
D. Theorem 1.10 states that if J is a quasi-local domain with the
QQR-property which is not integrally closed, then the integral
closure J of J is the unique minimal overring of J in the sense
that each proper overring of J contains J. Hence Section 2 is
devoted to a consideration of domains which admit a unique
minimal overring, and Theorem 3.3 of Section 3 gives a charac-
terization of quasi-local domains with the Q@QR-property.

All domains considered in this paper are assumed to contain
an identity. The terminology is that of Zariski-Samuel [17] [18].

1. Priifer domains and the QQR-property. We establish in
this section some consequences of the Q@QR-property in a domain
D. Theorem 1.4 and Corollary 1.7 relate the QQR-property to
the property of being Priifer. We shall have frequent occasion
to use the following result from [4], which we quote directly :

Suppose D’ is an overring of the Priifer domain D, and let Q
be the set of prime ideals P of D such that PD’CD’. Then

(i) If M is a maximal ideal of D’ and if P=MND, then
Dp=D’y; and M=PDpND’. Therefore D’ is Priifer.

(ii) For P a proper prime ideal of D, P€Q if and only if
Dp2D’. Further, D'= N peaDp.

(iii) If A’ is an ideal of D' and A=A'ND, then A'=AD’.

(iv) {PD’}peq is the set of proper prime ideals of D’.

Also, we shall make use of the following fact concerning
localizations.

If D’ is an overring of the domain D and P is a prime ideal
of D such that D'CD,, then D' pr=Dp where P’=D"NPDp.

1.1 PROPOSITION. Let D be an integral domain and let D’ be
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an overring of D. If D’ is an intersection of quotient rings of D
then D’ is an intersection of localizations of D.

Proposition 1.1 is immediate from the easily-proved fact that
a quotient ring of D is an intersection of localizations of D. (For
example, see [16].)

1.2 COROLLARY. The following statements concerning the
integral domain D are equivalent.

(1) D has the QQR-property.

(2) Each overring of D is an intersection of localizations of D.

(3) Each overring of D which is quasi-local is an intersection
of localizations of D.

Proof. In view of Proposition 1.1 we need only show that (3)
implies (1). Thus suppose D’ is an overring of D and {M,} is
the collection of maximal ideals of D’. By hypothesis, Dy, is
an intersection of localizations of D. Since D'= DD/Ma’ (1) then
follows.

In considering questions concerning overrings of the domain
D we find that an important role is played by the valuation
overrings of D—that is, valuation rings lying between D and K.
Our first results therefore deal with the condition that every
valuation overring of D is an intersection of quotient rings of D.

1.3 LEMMA. Let V be a valuation overring of D which is an
intersection of localizations of D: V= ﬂme. Then each Dp, is a

valuation ring, the set {P,} is linearly ordered under inclusion, and
M=) P, is the center of V on D. Also, DyyCV and equality holds

if and only if D, is a valuation ving. If A is a nonmaximal

proper ideal of V, then ACP,Dp, for some .

Proof. Since each Dp, contains V, each D,  is a valuation
ring and {P,Dp,} is chained under inclusion. Because P,=
P,Dp,ND for each «a, {P,} is also chained under inclusion. There-
fore M= LJP,,, is prime in D. We next observe that QPmme is

the maximal ideal M’ of V. That waDpagM’ is clear. And if

x is a nonunit of V, 1/x& V= QDPa implies 1/x& Dp, for some
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a. Hence M’QUP,,,DPO,. Therefore the center of V on D is
M'ND=(UP,Dp,)ND= l&J(PaDPwnD)z [aJPO,:M. It follows that
Dy<V. If Dy is a valuation ring, then D,=V, for McM’

implies that MD,,cMVc<M’'; MD,, the maximal ideal of D,,.
Finally, if A is an ideal of V such that ACM’, then A= (] P,Dp,

so A2P,Dp, for some a. Hence ACP,Dp,.

1.4 THEOREM. If each valuation overring of D is an inter-
section of quotient rings of D, and if D satisfies the ascending
chain condition (a.c.c.) for prime ideals then D is a Priifer domain.

Proof. Let M be a maximal ideal of D. There is a valuation
overring of D having center M on D. By Lemma 1.3, there is a
chain {P,} of prime ideal of D such that uPa,zM and each Dp,

is a valuation ring. Since D satisfies a.c.c. on prime ideals, some
P, is equal to M, and D,, is a valuation ring. It follows that D
is a Priifer domain.

1.5 THEOREM. If each valuation overring of D is an inter-
section of quotient rings of D, then for P a nonmaximal prime of
D, Dp is a valuation ring.

Proof. Let M be a maximal ideal of D such that PC M and
let V be a valuation overring of D having prime ideals P’ and
M’ such that P’"ND=P, M'ND=M, and M’ is the maximal ideal
of V. [13, p. 37]. By Lemma 1.3 there is a set {P,} of prime
ideals of D such that V= [;]me, and P'CP,Dp, for some a.

Therefore, P=P' ND<CP,Dp,ND=P,. It follows that Dp CD,,
and D, is a valuation ring as we wished to show.

1.6 THEOREM. If each valuation overring of D is an inter-
section of quotient rings of D, then D, the integral closure of D, is
a Priifer domain.

Proof. If D is not a Priifer domain, then there is a maximal
ideal M of D such that Dj; is not a valuation ring. It follows
(sée, for example, [18, p. 21]) that there is a valuation overring
V of D such that V has prime ideals P’c M’ with P’"ND=M'nD
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=M. Hence if MND=M, then P’ND=M also. By hypothesis
V is an intersection of quotient rings of D. Thus, there is a set
{P,} of prime ideals of D such that V= QDPU, and P'CP,Dp,

for some a. This means that McP'ND<P,Dp,ND=P,; hence
M=P, and Dy=Dp, is a valuation ring. But M N D= M implies
that D, CDy, and by assumption Dy is not a valuation ring.
This contradiction establishes Theorem 1.6.

1.7 COROLLARY?. If D has the QQR-property, then D, the
integral closure of D, is Priifer. Therefore if D is an integrally
closed domain, D has the QQR-property if and only if D is a Priifer
domain.

If J is a domain lying between a domain D and a quotient
ring Dy of D, then Dy=J,. Therefore we have

1.8 PROPOSITION. If D is a domain with the QQR-property
and if D’ is an overring of D, then D’ has the QQR-property.

Our next result reduces the problem of characterizing domains
with the QQR-property to the study of quasi-local domains.

1.9 THEOREM. The domain D has the QQR-property if and
only if Dy, has the QQR-property for each maximal ideal M, of D.

Proof. If D has the QQR-property, then by Proposition 1.8
each D, has the QQR-property. We assume, conversely, that
each D,,, has the QQR-property. By Proposition 1.2, D will have
the QQR-property if each quasi-local overring of D is an inter-
section of localizations of D. Hence, let D’ be a quasi-local
overring of D with maximal ideal M’. If P=M’'ND and if M,
is a maximal ideal of D containing P, then D, CD,<D’. Since
Dy, has the QQR-property, D’ is an intersection of localizations
of D,y,. But each localization of D,,, is a localization of D, hence
D’ is an intersection of localizations of D as we wished to show.

TERMINOLOGY. We will say that the overring D, of the

2) Corollary 1.7 can also be obtained as a special case of Corollary 1 of [2].
A domain D such that each valuation overring of D is an intersection of quotient
rings of D need not have the QQR-property. Example 4. 2 illustrates this fact.
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domain D is the wunique minimal overring of D if DcC D, and if for
any overring D, of D not equal to D we have D,CD,.

1.10 THEOREM. Let D be a quasi-local domain with maximal
ideal M. If D has the QQR-property and is not a valuation rving,
then D, the integral closure of D, is the unique minimal overring of D.

Proof. Since D is quasi-local and is not a valuation ring, D
is not Priifer, so that DcD. If D’ is an overring of D, there is
a set {P,} of prime ideals of D such that D’=(]|Dp, , and if

D=D’, then Me {P,} since Dy=D. Therefore each P, is non-
maximal, and Theorem 1.5 shows that each Dy is then a valuation
ring. Therefore D’= []|Dp, is an integrally closed domain contain-

ing D. Hence DcD’, and we conclude that D is the unique
minimal overring of D.

2. Unique minimal overrings. Theorem 1.10 leads us to an
investigation of domains which possess a unique minimal overring.
From the fact that a domain is the intersection of the localiza-
tions taken with respect to its set of maximal ideals, it follows
that a domain which has a unique minimal overring is quasi-local.
Also, since an integrally closed domain is an intersection of
valuation rings, if D is integrally closed and has a unique minimal
overring, then D is a valuation ring. Our primary interest lies
in the case where D is quasi-local and D, the integral closure of
D, is the unique minimal overring of D.

We consider first the situation when D and D, are domains
with DcD, such that there are no domains properly between D
and D,.

2.1 LEMMA. If A and B are distinct ideals of D, such that
AND=BND, then ANB=AND. Therefore, ANB is an ideal of D.

Proof. We have AND=(AND)NBND)SANB. If AnDC
ANB, then there is an x(ANB)—D, and since there are no
domains properly between D and D,, we have D,=D[x] If
yeA, then y=d,+d, x+ -+ +d,x" where d,,d,, -, d,eD. Hence
d=y—dx—-—dx"€AND=BND, and y=d,+dx+--+d x"=B.
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It follows that AC B ; similarly BC A, so that A=B. Consequently,
if A and B are distinct ideals of D, such that AND=BND, then
ANB=AnND.

2.2 COROLLARY. If P is a prime ideal of D, then there are
at most two prime ideals of D, lying over P. In particular, if D
is quasi-local and D, is integral over D, D, has at wmost two
maximal ideals.

2.3 LEMMA. Assume that D is quasi-local with wmaximal
ideal M. If D, is integral over D, then M is the conductor of D
in D,.

Proof. Let yeM and assume that yD,<D. Then there is an
x€yD,—D; say ye=x. Since x& D, since there are no domains
properly between D and D,, and since D, is integral over D, we
have D,=D+ Dx+ -+ Dx" for some positive integer n. We choose
n minimal with this property. There are d,, ---,d,=D such that
g'=d,+d,x+ - +d,x". Hence x"=y"E"=3"d,+ - +y"d,x" and
2"1—y"d,)=y"d,+---+y"d,_x""". Since D is quasi-local and yeM,
1—3"d,is a unit of D and x"€D+Dx+.--+Dx""'. It follows that
D,=D+Dx+ -+ +Dx""', which contradicts our choice of n. We
conclude that M is the conductor of D in D,.

2.4 THEOREM. Let D be a quasi-local domain with maximal
ideal M and integral closure D such that DcD. If D is Priifer
and if there are no domains properly between D and D, then D is
the unique minimal overring of D.

Proof. By Lemma 2.3, M is the conductor of D in D and by
Corollary 2.2, D has at most two maximal ideals. For xK—D
we show that DcD[«]. If x&D—D, then D=D[x] by hypothesis.
If D is quasi-local with maximal ideal M, then since D is integral
over D, M is the only prime of D lying over M. Hence M=MD
has radical M in D. For x&D, we have 1/xeM, since D is a
valuation ring, so that (1/x)"eM for some positive integer .
Thus for ¢€D, we have £=£(1/x")x"€D[x] and D<D[x].

The remaining case is when D has two maximal ideals—say
M, and M,. By Lemma 2.1, M=M,NM, and since D is Priifer
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Dy, and Dy, are valuation rings. For xe:D, we have xeD,, or
x&Dy,. Assume x&D,,; then 1/x&M,Dj,. Hence 1/x=u/v
where ueM, and veD—-M,. If yeM,—M,, then 1/x=uy/vy and
vyeD—M,. Thus xuy=vycD—-D. But uyesM,NnM,cD. Hence
D=D[vy]cD[x]. We conclude that D is the unique minimal
overring of D and Theorem 2.4 is established.

We remark that without the condition that D is a Priifer
domain the conclusion of Theorem 2.4 need not follow. For ex-
ample if F=R(/2)(x), where R is the field of rational numbers
and x is transcendental over R then the power series ring F[[ y]]
is a rank one valuation ring of the form F+M where M is the
maximal ideal of F[[y]]. D=R-+M is a quasi-local domain with
integral closure D=R(v/2)+M. There are no domains properly
between D and D; however D is not a unique minimal overring
of D because DED[x].

We consider now the question of what domains admit a unique
minimal overring. As we have already mentioned, if D is an
integrally closed domain which has a unique minimal overring,
then D is a valuation ring. If D is not integrally closed and has
a unique minimal overring D,, then DcD,cD where D is the
integral closure of D. We show by example in Section 4 that the
unique minimal overring D, of D need not be quasi-local. How-
ever, Corollary 2.2 shows that D, has at most two maximal ideals.
We consider this case in Proposition 2.5.

2.5 PROPOSITION. If D,, the unique minimal overring of D,
has two maximal ideals, then D, the integral closure of D, is an
intersection of two valuation rings V, and V,. If N; is the maximal
ideal of V;, then N,N\N,=M, the maximal ideal of D.

Proof. Let M, and M, be the maximal ideals of D,. If V,
and V, are valuation overrings of D such that V,; has maximal
ideal N;, where N;ND,=M;, and if x=(N,NN, —M, we have
D,cD[x]. Hence if teD,, ¢=d,+dx+ - +d,x", where d,,
v, d,eD. Also £—-d,eD, and dx+ - +d,x"€N,NN,; thus
¢—d,eN,NN,ND,=M,NM,. By Lemma 2.1, M,NM,=McD.
Therefore the assumption that x=(WN,NN,)—M implies that
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£—d,eD and hence £=D. This contradicts the fact that DcD,.
We conclude that N,N N,=M. If a valuation ring V, is an overring
of D and if N,, the maximal ideal of V,, is such that N,ND=M,
then D,CV, and N,ND, is either M, or M,—say N,ND,=M,. By
the argument just given, N,NN,=M. We show that this implies
that V,=V,. T=V,NnV,NnV, is a domain such that Ty,nr=V; for
each i [1, p. 132]. It follows that (N,N T)N(N,N T)=(N,NN,)NT
=MNT<N,NT. Because there are no containment relations
between V,= Ty nr and V,= Ty,nr, it follows that N,n TN, N T.
Hence N,N T<N,N T, and because of the symmetry of our argu-
ment, N,N T=N,N T so that V;= Ty nr=Ty,nr="V,. Therefore V,
and V, are the only valuation rings which are overrings of D and
which have center M on D. It follows that D=V,nV,, [18, p.17],
and the proof of Proposition 2.5 is complete.

If D is not integrally closed and if D,, the unique minimal
overring of D, is quasi-local with maximal ideal M, then we may
have M,=M, the maximal ideal of D, or MCM,. When MCM,,
Lemma 2.3 shows that M is an ideal of D, and by Lemma 2.1
there are no ideals properly between M and M,. It then follow
that M*cM [17, p. 237]. We have not been able, in the case
where McM, and D, is quasi-local, to determine whether the
integral closure of D is Priifer. But if M,=M we show that D
is a valuation ring.

2.6 PROPOSITION. Let D, be the unique minimal overring of
D, and assume that D, is quasi-local. If M, the maximal ideal
of D, is also the maximal ideal of D,, then D, the integral closure
of D, is a valuation ring with maximal ideal M.

Proof. Let V be a valuation ring which is an overring of D
such that V has center Mon D. If N is the maximal ideal of V,
then for x&N either x&M or D,cD[«x]. But if D,<D[x], then
for ¢eD, we have ¢=d,+d,x+---+d,x" where d,, ---,d,=D. Hence
g—dy=dx+ - +dx"eNND,=McD, which means that £eD.
This contradicts the fact that D,<D. Therefore V has maximal
ideal M and we conclude that V=D, the integral closure of D
[18, p. 17].
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We remark that under the hypothesis of Proposition 2.6, D,
may be properly contained in D. In fact, D need not be a finite
ring extension of D,.

We summarize the results of this section as they apply to
domains with the QQR-property.

2.7 THEOREM. Let D be a quasi-local domain with maximal
ideal M having the QQR-property. We suppose that DCD; D the
integral closure of D. Then D is Priifer with at most two maximal
ideals, D is the unique minimal overring of D, and M is the
conductor of D in D.

Proof. By Theorem 1.10, D is the unique minimal overring
of D. By Corollary 1.7, D is Priifer. Corollary 2.2 shows that
D has at most two maximal ideals, and Lemma 2.3 states that
M is the conductor of D in D.

3. A characterization of quasi-local domains with the Q@R-
property. In this section we denote by D a quasi-local domain
with maximal ideal M and by D the integral closure of D.

TERMINOLOGY. We say that a prime ideal P of an integral
domain is unbranched if P is the only P-primary ideal. Otherwise
we say that P is branched [3, p.252]. We remark that a prime
ideal P of a Priifer domain is branched if and only if P properly
contains the union of the chain of primes properly contained in

P [3].

3.1 LEMMA. If D is a Priifer domain with {M,} the set
of maximal ideals of D and if M is unbranched, then each M, is
unbranched.

Proof. 1If some M, is branched and if for that fixed a we
denote by {Qp} the set of M,-primary ideals, then we have
(1Qs=P,, a prime ideal of D properly contained in M,.”> Since
B8

D is integral over D, P,ND=P is a prime ideal of D properly

3) Note that this is the only place where the hypothesis that D is Priifer is
used ; see [14].
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contained in M. Hence there is a B8 such that QsNDcCM, and
Q:ND is M-primary. Therefore M is branched and Lemma 3.1
is proved.

3.2 LEMMA. Let {M,} be the set of maximal ideals of D.
If M is the conductor of D in D and if each M, is unbranched,
then M is unbranched.

Proof. If @ is an M-primary ideal of D, then since M is
an ideal of D, QM is an ideal of D. Therefore, QM= QQMDM,-

We have QMcQc M, and QM and M have the same radical in D.
Thus, {M,} is the set of minimal primes of QM in D since D is
integral over D. For any g, QMDMﬂ is primary for MBDMﬂ, and
hence, QMDMﬂ=M£J3M'3 since Mg is unbranched. It follows that
Mc QMBEMﬁzQM CQ so that Q=M and M is unbranched as we

wished to show.
We can give now a characterization of quasi-local domains
with the QQR-property.

3.3 THEOREM. If D is not a valuation ring, the following
are equivalent :

(@) D has the QQR-property.

(0) D is the unique minimal overring of D and the maximal
ideals of D are unbranched.

(¢) There are no domains properly between D and D, D is a
Priifer domain, and M is unbranched.

Proof. (a)—(b): By Theorem 1.10, D is the unique minimal
overring of D, and by Corollary 1.7, D is a Priifer domain. Hence
if M, is a maximal ideal of D, BM,, is a valuation ring. Since
M,ND=M, we see that D, is an overring of D which is not a
quotient ring of D. Because D has the QQR-property, there is
a set {Ps} of prime ideals of D such that DM“=DDP5. Also

Dpa=ﬁ,sa where PﬂszDpﬂﬂ]_—). Hence by Lemma 1.3, M, = |] P,.
3

Since D,,, is not a quotient ring of D, we have l_)If,,&CDpﬂzﬁpﬁ.
Thus Psc M, for each B3, and M, is the union of a chain of prime
ideals of D which are properly contained in M,. Since D is a
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Priifer domain, it follows that M, is unbranched.

(b)—(c): It is clear that there are no domains properly
between D and D. Corollary 2.2 shows that D has at most two
maximal ideals. If D has two maximal ideals then by Proposition
2.5, D is a Priifer domain. If D is quasi-local then MD has
radical M, the maximal ideal of D. By Lemma 2.3, MD=M and
by hypothesis M is unbranched ; hence M=M. It follows in this
case from Proposition 2.6 that D is Priifer. Since M is the
conductor of D in D, Lemma 3.2 shows that M is unbranched as
an ideal of D.

(c)—=(a): Theorem 2.4 shows that D is the unique minimal
overring of D. Let D, be an overring of D. If D=D,, then
D,=Dy. If DcD,, then DcD,. Since D is Priifer, D has the
QQR-property, and there is a set {P;} of prime ideals of D such
that D,= Qﬁpﬂ. If a maximal ideal M,& {Pg}, then by Lemma

3.1, M, is unbranched and there is a set {P,} of non-maximal
prime ideals of D such that D,,= Qljpy. Therefore D,= Qﬁp}\
where each P, is a non-maximal prime of D. Hence to show that
D has the QQR-property it will suffice to show that if P is a
non-maximal prime of D then D= D, where PND=P. Since D
is integral over D, P is a non-maximal prime of D and DCDp.
Thus PD,ND=N is a prime ideal of D lying over P and D,=
Dp<Dp. Hence PCN. It follows that N=P and Ds=Dp. We
conclude that D has the QQR-property.

3.4 COROLLARY. If J is an integral domain with the QQR-
Droperty and if each maximal ideal of J is branched then J is a
Priifer domain.

Proof. If N is a maximal ideal of J, then J, has the QQR-
property and NJy is branched. Hence by Theorem 3.3, J, is a
valuation ring.

3.5 REMARK. Our results in Section 3 show that in the state-
ment of Theorem 2.7 we can actually say that M is the Jacobson
radical of D,
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4. Examples. We now consider some examples of domains
with the QQR-property which are not Priifer domains. The
examples indicate in some cases negative answers to possible
generalizations of results previously obtained.

We denote by G the countable weak direct sum of the additive
group of integers, ordered lexicographically. We let & be a field
and %, be a subfield over which % is algebraic. Asin [7, p.248]
we consider x,, x,, **, x,,, --- elements of an extension field of %
which are algebraically independent over k. We define a valuation
v on K=k (x,, x,, --*) as follows. For any nonzero element a« of %
and any nonnegative integers r,,7,, -, 7, we define v(axi1xjz- xin)
="y, 72y s ¥4, 0, - )EG; v(f(x))=minimum value of the nonzero
monomials occuring in f(x), for any f(x)ek[x,, x,, ---]; and
v(E)=v(f)—v(g) for any ¢=f/g€k(x,, x,,-="). Let V be the
valuation ring associated with » and let M, be the maximal ideal
of V. We observe that V=Fk+M, and that M, is an unbranched
ideal of V. Consider the domain D=k,+M,. D is a quasi-local
domain with maximal ideal M, and integral closure D= V. Lemma
3.2 shows that M, is unbranched as an ideal of D. There is a
one-to-one correspondence between domains between D and D and
fields between k, and k.

4.1 EXAMPLE. In the above construction we take %k and £k,
to be fields such that k,Ck and such that there are no fields
properly between k, and k. Theorem 3.3 then proves that the
domain D=Fk,+ M, has the QQR-property.

In [2, p. 200], Davis raised what is, in our terminology, this
question: Must a domain D with the QQR-property be Priifer?
Davis showed that the answer is affirmative if each prime ideal
of D has finite rank—a result generalized by our Theorem 1.4.
And Example 4.1 shows that the answer to Davis’ question is
negative.

4.2 EXAMPLE. In our construction preceding Example 4.1
we choose for k, and % fields such that there exist proper inter-
mediate fields. Then Theorem 1.10 shows that D=Fk,+M, does
not have the Q@QR-property. But D does have the property that
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each valuation ring containing D which is an overring of D is an
intersection of quotient rings of D. To prove this statement we
observe that since D=k+M, has unbranched maximal ideal, D
is an intersection of valuation rings which properly contain D.
Hence it suffices to show that each valuation ring V such that
DcCVCK, is a quotient ring of D. Any such V is of the form
(D)p for some prime P of D, PcM,. Then if meM,—P and
xsk, xmeM,— P, implying that x=xm/me Dp. It follows that
kCDp, and hence that k+M,=DZDp. Therefore Dp=Dpp,nb
=Dp="V.

Example 4.2 shows that the condition we considered in
Theorems 1.4-1.6 is weaker than the QQR-property. In Example
4.3 we construct a quasi-local domain D with the Q@R-property
such that the integral closure of D is not a valuation ring. This
example also shows that the unique minimal overring of a quasi-
local domain may not be quasi-local.

4.3 EXAMPLE®. Let k denote a prime field and let x,, x.,
-++, %,, -+ be elements of an extension field which are algebraically
independent over k. We define a valuation v on k(x, x,, )
having value group G as in Example 4.1. If we let y,=x,—1 for
each 7, then k(y,, 5,, ---)=Fk(x,, x,, ---). Define a valuation w on
k(315 Y25 ) BY w(f (31, =, y)=0(f (%1, -+, £,)) 5 w(E)=w(f)—w(g)
where E=f/g€k(¥,,5,, --). We denote by V and W the valuation
rings associated with the valuations » and w respectively. If M,
and M, are the maximal ideals of V and W, we show easily that
V=k+M, W=Fk+M,, and that M, and M, are unbranched. Let
D=Fk+M, where M=M,NM,, and denote by D the integral closure
of D. We show that D=V N W. It suffices to observe that each
element # of VN W is integral over D. Thus there are elements
a, b of k such that t—acsM,, t—b=M,. And since t—ac W and
t—beV, it follows that s=({—a)(t—0)= M,NM,. Therefore,
t*—(a+b)t+(ab—s)=0, and ¢ is integral over D. It follows that
D=WnYV. Since V=W, D is a Priifer domain with two maximal

4) Constructions like that of Example 4. 3 occur in [5] and [[10]. In particular,
our proof that D=V N W comes from [10].
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ideals, M,nD and M,NnD [12, p.56]. We observe that D=k-+M
is quasi-local with maximal ideal M, so that DcD. Because
M=M,NM,, M is an ideal of D and is the conductor of D in D.
We now show that there are no domains properly between D and
D. 1f M;=M;ND then Dy, =V and Dy,=W. Also D/M=D/M,NM,
=~D/M,@®D/M, and D/M;=k. The inclusion map of D into D
induces a map of D/M=<k into D/M=kek which we will denote
by . We have 7(1)=11 so that 7(a)=aPa for each ack. It
is easy to see that k®DFk is a simple ring extension of 7(k) by
any element of (k@k)—(k). Hence for any d=D—D, we have
D[d]/M=D/M. Since Mc D, it follows that D[d]=D and there
are no rings properly between D and D. Because D is a Priifer
domain, Theorem 2.4 implies that D is a unique minimal overring
of D. Also the valuation rings V and W are the intersection of
valuation rings properly containing them. Since D is a Priifer
domain, it follows that the maximal ideals of D are unbranched.
Theorem 3.3 then shows that D has the QQR-property.

We next give an example of a domain with the QQR-property
which is neither Priifer nor quasi-local.

4.4 EXAMPLE. We consider D=k -+ M, the quasi-local domain
with the QQR-property which was constructed in Example 4.3.
Let T be a valuation ring on k(x,, x,,---) of the form k-+M,,
where M, is the maximal ideal of T, and such that there are no
containment relations between T, V, and W.

4.5 PROPOSITION. D*=TnND is a domain with the QQR-
property which is neither quasi-local nor Priifer.

Proof. By an argument similar to that given in Example 4.3
we show that any valuation ring containing D* contains either
T, V,or W. Therefore the integral closure of D* is R=TNnVNnW
and the maximal ideals of D* are the centers of 7, V and W on
D*, Since D*< D, M,ND*=M,NnD*=P. Because there are no
containment relations among 7, V, and W, R is a Priifer domain
with distinct maximal ideals M,NR, M,NR, and M,NR. There-
fore D*CR and D* is not Priifer. Let N=M,ND*. We show
that D*y=T and D*p=D. Since Ry,nr=T,if x& T, then x=a/(b
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where @, b€ R and b&eM,NR. We choose y=(RNM,NM,)—M,.
Then x=ay/by, aye TN D= D*, bye D*, and bye D*NM,. There-
fore xeD*, and we conclude that D*,=7T. Since D*,CD,
it is clear that P+=N and D* is not quasi-local. If x=D, we
show there exists yeD*—P such that yxeD*. If x=7, then
x€TND=D* and we take y=1. If x&¢ T, then x'M,. Let@
be the radical of x™'7. @ is a prime ideal of T and QN D*<
Mn D*. This follows because R is integral over D* and QN KR is
a prime ideal of R lying over @\ D*. Thus by the “going up”
theorem [11, p. 749], if QN D*CM N D*, then QN R is contained
in a prime ideal of R lying over MND*. But M,NR and M,NR
are the only prime ideals of R lying over MN D* and since
Rong=To, Ruynrg=V, and Ry,np= W, if either M\NR or M,NR
contains QN R, then either V or W is contained in T,. But
x€VNW and xe& T, since x'Q. Therefore Q N D* is not con-
tained in M'N D*. We choose a=(Q N D*)—M. There is a positive
integer » such that ¢"=x7'T. If y=a", then yeD*—M and yx=
a"xe 1. Therefore yxe D*=TnND. We conclude that D*,,,,«=D.
It follows from Theorem 1.9 that D* has the QQR-property.

4.6 REMARK. If D, D,, -, D, are quasi-local domains with
the QQR-property such that each D; has quotient field K, then
D=N%_,D; also has K as its quotient field. For if M;is the maximal
ideal of D;, then M= N7?_,M, is the Jacobson radical of N7?_(V;NW,)
where V; and W, are valuation rings of K such that V;n W, is the
integral closure of D, (we may have V= W, for some 7). Since M
is an ideal of D, Dand N?_(V.N W,) have the same quotient field.
Therefore D has quotient field K. The intersection, however, of
a finite number of quasi-local domains with the Q@QR-property
need not have the Q@QR-property. In fact our final example is
an integral domain D which is an intersection of two quasi-local
domains with the QQR-property each having quotient field K such
that the integral closure of D is not Priifer.

4.7 EXAMPLE. Let F be a field of characteristic zero and
let ¥y be transcendental over F. We construct as in Example 4.1
a valuation ring V=F(y)+ M, where M, the maximal ideal of V,
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is unbranched. F(y) is an algebraic field extension of dimension 2
over each of the fields F(3*) and F(»*+y). Therefore D,=F(y*)+M
and D,=F(y»*+y)+M are quasi-local domains with the QQR-
property. Since the sum of F(y) and M, as additive subgroups
of V, is direct, we have D=D,ND,=(F()* ) NF(y+y)+M. But it
is not hard to show that F(¥*)NF(»*+y)=F[9, p. 31]. Therefore
D=F+ M is an integrally closed quasi-local domain which is not
Priifer.
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