Irreducible representations of the binary modular congruence groups $\bmod \boldsymbol{p}^{\boldsymbol{x}}$

By
Shun'ichi Tanaka*
(Communicated by Prof. Yoshizawa on August 8, 1967)

1. Introduction

Let p be an odd prime number and \boldsymbol{Z}_{λ} (λ a natural number) be the ring $\boldsymbol{Z} /\left(p^{\lambda}\right) . S L\left(2, \boldsymbol{Z}_{\lambda}\right)$ are called the binary modular congruence groups mod p^{λ}. In this paper we construct all irreducible representations (on the complex field) of these groups.

Let us consider the additive groups $G=\boldsymbol{Z}_{\lambda} \times \boldsymbol{Z}_{\lambda-k}(0 \leq k \leq \lambda)$ and let σ and Δ be integers such that $\sigma \neq 0(p)$ and $\Delta=p^{k} \Delta^{\prime}$ with $\Delta^{\prime} \equiv 0(p)$. For $u=\left(u_{1}, u_{2}\right)$ and $v=\left(v_{1}, v_{2}\right) \in G$, put

$$
\langle u, v\rangle=e_{\sigma}\left[\frac{2\left(u_{1} v_{1}+\Delta u_{2} v_{2}\right)}{p^{\lambda}}\right],
$$

where $e_{\sigma}[x]=e^{2 \pi i \sigma x}$. Then G is self-dual with respect to this function on $G \times G$.

If we restrict the projective representation of $S p(G)$, the symplectic group of G, defined on $L_{2}(G)$ (see Weil [3]) to $S L\left(2, \boldsymbol{Z}_{\lambda}\right)$, we obtain a system of representations $R_{k}(0 \leq k \leq \lambda)$. It is shown that representation $R_{k}(0 \leq k \leq \lambda)$ are subrepresentations of R_{0} or R_{1} and all irreducible representations of these groups are naturally realized in cartain subspaces invariant under the representations $R_{k}(0 \leq k \leq \lambda)$.

In 1946, H. D. Kloosterman [1] constructed the representations R_{0} and $R_{\mathrm{\lambda}}$ by means of transformation formula of theta functions under the modular group and obtained the larger part of irreducible representations of $S L\left(2, \boldsymbol{Z}_{\lambda}\right)$ by decomposing R_{0} into invariant irreducible subspaces. In [2], we gave the construction of the

[^0]representations R_{0} and R_{1} by means of the projective representation of $S p(G)$ (they were also constructed by J.A. Shalika). Recently T. Shintani has given the classification of all irreducible representations of those groups by means of the notion of induced representations. Our results as well as Shintani's were reported at the Symposium on theory of group representations and some of its applications held in Kyoto in July, 1967.
2. Construction of system of representations $\boldsymbol{R}_{\boldsymbol{k}}(0 \leq \boldsymbol{k} \leq \boldsymbol{\lambda})$

Let $\boldsymbol{Z}_{\lambda}{ }^{*}$ be the set of all invertible elements in \boldsymbol{Z}_{λ} and $\left(\frac{\cdot}{p}\right)$ be the Legendre symbol. For $\alpha \in \boldsymbol{Z}$, we define the homomorphism α of G by $u \alpha=\left(\alpha u_{1}, \alpha u_{2}\right)$.

Let H be the finite dimensional Hilbert space $L_{2}(G)$ and let $A(\alpha)\left(\alpha \in \boldsymbol{Z}_{\lambda}{ }^{*}\right), B(\beta)\left(\beta \in \boldsymbol{Z}_{\lambda}\right)$ and W be the operators on H defined by

$$
\begin{aligned}
A(\alpha) \phi(u) & =\left(\frac{\alpha}{p}\right)^{k} \phi(u \alpha), \\
B(\beta) \phi(u) & =e_{\sigma}\left[\frac{\beta\left(u_{1}^{2}+\Delta u_{2}^{2}\right)}{p^{\lambda}}\right] \phi(u), \\
W \phi(u) & =c \sum_{v \in G} \phi(v) e_{\sigma}\left[-\frac{2\left(u_{1} v_{1}+\Delta u_{2} v_{2}\right)}{p^{\lambda}}\right], \quad(\phi \in H) .
\end{aligned}
$$

Here c is defined by

$$
p^{-\lambda+(k / 2)}\left(\frac{\Delta^{\prime}}{p}\right)^{\lambda-k}\left(\frac{\sigma}{p}\right)^{k} \varepsilon,
$$

where

$$
\varepsilon=\left\{\begin{aligned}
1 & \left(k \text { odd, } \quad\left(\frac{-1}{p}\right)=1\right) \\
-i & \left(k \text { odd, } \quad\left(\frac{-1}{p}\right)=-1\right) \\
(-1)^{\lambda} & (k \text { even })
\end{aligned}\right.
$$

We define elements $d_{\infty}\left(\alpha \in \boldsymbol{Z}_{\lambda}{ }^{*}\right), \zeta_{\beta}\left(\beta \in \boldsymbol{Z}_{\lambda}\right)$ and w of $S L\left(2, \boldsymbol{Z}_{\lambda}\right)$ by

$$
d_{\alpha}=\left(\begin{array}{ll}
\alpha & 0 \\
0 & \alpha^{-1}
\end{array}\right), \quad \zeta_{\beta}=\left(\begin{array}{cc}
1 & \beta \\
0 & 1
\end{array}\right) \quad \text { and } \quad w=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right) .
$$

Any element g of $S L\left(2, \boldsymbol{Z}_{\lambda}\right)$ is expressed by $d_{\infty}, \zeta_{\beta}$ and w :

$$
g=\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)=\zeta_{\alpha \gamma-1} w d_{\gamma} \zeta_{\delta \gamma-1}, \quad \text { if } \quad \gamma \neq 0(p)
$$

and

$$
g=\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)=w \zeta_{-\gamma \alpha}^{-1} w d_{-\alpha} \zeta_{\beta \alpha-1}, \quad \text { if } \quad \gamma \equiv 0(p)
$$

There exists a representation $T(g)$ of $S L\left(2, \boldsymbol{Z}_{\lambda}\right)$ with representation space H such that

$$
T\left(d_{\infty}\right)=A(\alpha), \quad T\left(\zeta_{\beta}\right)=B(\beta) \quad \text { and } \quad T(w)=W
$$

Let us denote this representation by $R_{k}(\sigma, \Delta)$ or simply by R_{k}. We often suppress the dependence of representations and operators on k, σ and Δ if confusion does not occur. R_{0} and R_{1} were constructed by means of the projective representations of $S p(G)$ in $[2, \S \S 3,4] . R_{k}(2 \leq k \leq \lambda)$ can be constructed analogously; however we shall construct these as subrepresentations of R_{0} and R_{1}.

Let k be 0 or 1 and let l be an integer such that $k+2 l \leq \lambda$. Let H_{0} be the subspace of the representation space of $R_{k}(\sigma, \Delta)$ ($k=0,1$) with elements ϕ satisfying the following conditions:

1) $\phi\left(u_{1}, u_{2}\right)=0 \quad$ unless $\quad u_{2} \equiv 0\left(p^{l}\right)$;
2) $\phi\left(u_{0}, u_{2}\right)=\phi\left(u_{1}, u_{2}^{\prime}\right) \quad$ if $\quad u_{2} \equiv u_{2}{ }^{\prime}\left(p^{\lambda-k-l}\right)$.

Let us prove that H_{0} is invariant under the representations $R_{k}(\sigma, \Delta)$ and the representation realized on H_{0} turns out to be $R_{k+2 l}\left(\sigma, \Delta \phi^{2 l}\right)$. For $\phi \in H_{0}$, we define function ϕ^{\prime} on $\boldsymbol{Z}_{\lambda} \times \boldsymbol{Z}_{\lambda-k-2 l}$ by $\phi^{\prime}\left(u_{1}, u_{2}\right)=\phi\left(u_{1}, p^{l} u_{2}\right)$. We obviously have that $A(\alpha) \phi, B(\beta) \phi \in H_{0}$ and

$$
\begin{aligned}
& (A(\alpha) \phi)^{\prime}(u)=\phi^{\prime}(u \alpha), \\
& (B(\beta) \phi)^{\prime}(u)=e_{\sigma}\left[\frac{u_{1}^{2}+\Delta p^{2 l} u_{2}^{2}}{p^{\lambda}}\right] \phi^{\prime}(u) .
\end{aligned}
$$

For the operator W, we need some calculation.

$$
W \phi(u)=c \sum_{v \in G} \phi(v) e_{\sigma}\left[\frac{-2\left(u_{1} v_{1}+\Delta u_{2} v_{2}\right)}{p^{\lambda}}\right]
$$

$$
\begin{aligned}
& =c \sum \phi\left(v_{1}, p^{l}\left(a+p^{\lambda-k-2 l} b\right)\right) e_{\sigma}\left[-\frac{2\left\{u_{1} v_{1}+\Delta u_{2}\left(p^{l} a+p^{\lambda-k-l} b\right)\right\}}{p^{\lambda}}\right] \\
& \qquad \begin{array}{r}
\left(v_{1} \in \boldsymbol{Z}_{\lambda}, \quad a \in \boldsymbol{Z}_{\lambda-k-2 l} \quad \text { and } \quad b \in Z_{l}\right) \\
=c \sum_{v_{1} \in \boldsymbol{Z}_{\lambda}, a \in \boldsymbol{Z}_{\lambda-k-2 l}} \phi\left(v_{1}, p^{l} a\right) e_{\sigma}\left[-\frac{2\left(u_{1} v_{1}+\Delta p^{l} u_{2} a\right)}{p^{\lambda}}\right] \\
\quad \times \sum_{b \in \boldsymbol{Z}_{l}} e_{\sigma}\left[-\frac{2 \Delta^{\prime} u_{2} b}{p^{2}}\right] .
\end{array}
\end{aligned}
$$

So we have shown that $W \phi(u)=0$ if $u_{2} \equiv 0\left(p^{l}\right)$ and that

$$
W \phi(u)=c p^{l} \sum_{v_{1} \in Z_{\lambda}, a \in Z_{\lambda-k-2 l}} \phi\left(v_{1}, p^{l} a\right) e_{\sigma}\left[-\frac{2\left(u_{1} v_{1}+\Delta p^{l} u_{2} a\right)}{p^{\lambda}}\right]
$$

$$
\text { if } \quad u_{2} \equiv 0\left(p^{l}\right)
$$

Therefore $W \phi \in H_{0}$ and

$$
(W \phi)^{\prime}(u)=c p^{\prime} \sum_{v_{1} \in Z_{\lambda}, v_{2} \in \boldsymbol{Z}_{\lambda-k-2 l}} \phi^{\prime}\left(v_{1}, v_{2}\right) e_{\sigma}\left[-\frac{2\left(u_{1} v_{1}+\Delta p^{2 l} u_{2} v_{2}\right)}{p^{\lambda}}\right] .
$$

So H_{0} is invariant under $R_{k}(\sigma, \Delta)(k=0,1)$ and the restriction of the representation $R_{k}(\sigma, \Delta)$ to H_{0} is equivalent to the representation which we called $R_{k+2 l}\left(\sigma, \Delta p^{2 l}\right)$.

Let us write, for representation $R_{k}(\sigma, \Delta)(0 \leq k \leq \lambda)$,

$$
T(g) \phi(u)=\sum_{v \in G} K(g \mid u, v) \phi(v) \quad(\phi \in H) .
$$

Explicit form of $K(g \mid u, v)$ is determined by the expression of $g \in S L\left(2, \boldsymbol{Z}_{\lambda}\right)$ by $d_{\alpha}, \zeta_{\beta}$ and w.
3. Preliminary results for the decomposition of the representations $R_{k}(\sigma, \Delta)(0 \leq k \leq \lambda-1)$.

For $x_{1} \in Z_{\lambda}$ and $x_{2} \in Z_{\lambda-k}$, consider the matrix

$$
V=V\left(x_{1}, x_{2}\right)=\left(\begin{array}{cc}
x_{1}-\Delta x_{2} \\
x_{2} & x_{1}
\end{array}\right),
$$

and let it operate on G by the formula

$$
V u=\left(\begin{array}{cc}
x_{1}-\Delta x_{2} \\
x_{2} & x_{1}
\end{array}\right)\binom{u_{1}}{u_{2}}=\binom{x_{1} u_{1}-\Delta x_{2} u_{2}}{x_{2} u_{1}+x_{1} u_{2}} .
$$

The totality of V which satisfy

$$
x_{1}^{2}+\Delta x_{2}^{2} \equiv 1\left(p^{\lambda}\right)
$$

forms an abelian group C with respect to matrix multiplication. The order of the group C is $p^{\lambda-1}\left(p-\left(\frac{-\Delta}{p}\right)\right)[1$, p. 351] if $k=0$ and $2 p^{\lambda-k}$ if $1 \leq k \leq \lambda-1 . \quad u_{1}^{2}+\Delta u_{2}^{2}$ is invariant mod p^{λ} under transformations $V \in C$, so operators of H induced by $V \in C$ commute with operators of the representations.

Let χ be a character of C and H_{x} be the subspace of H which is formed by the elements satisfying

$$
\phi(V u)=\chi(V) \phi(u) .
$$

H_{χ} is invariant under the representation $R_{k}(\sigma, \Delta)$ and we denote the restriction of $R_{k}(\sigma, \Delta)$ to H_{χ} by $R_{k}(\sigma, \Delta, \chi)$ or simply by $R_{k}(\chi)$ and its operators by $T_{\mathrm{x}}(g)$.

Let $G_{l}(k \leq l \leq \lambda)$ be the set of those $u \in G$ which satisfy i) u_{1} and $u_{2} \equiv 0\left(p^{\lambda-l}\right)$ and ii) u_{1} or u_{2} is not divisible by $p^{\lambda-l+1}$. Let $C_{l}(k \leq l \leq \lambda)$ be the subgroups of C of those $V\left(x_{1}, x_{2}\right)$ which satisfy $x_{1} \equiv 1\left(p^{l}\right)$ and $x_{2} \equiv 0\left(p^{l-k}\right)$. It is proved that the stationary subgroup of C at $u \in G_{l}$ is C_{l}. We call a character of C primitive if its restriction to $C_{\lambda-1}$ is not trivial. The number of the primitive characters is $p^{\lambda-2}(p-1)\left(p-\frac{-\Delta}{p}\right)$ if $k=0$ and $p^{\lambda-1}-p^{\lambda-2}$ if $1 \leq k \leq \lambda-1$.

Let $\phi \in H_{x}(\chi$ primitive $)$, then $\phi(u)=0$ unless $u \in G_{\lambda}$. Let θ be a system of representatives of the C-transitive parts of G_{λ}. Then for $\phi \in H_{x}$

$$
T(g) \phi(u)=\sum_{v \in \theta} K_{\mathrm{x}}(g \mid u, v) \phi(v)
$$

where

$$
K_{\chi}(g \mid u, v)=\sum_{V \in C} K(g \mid u, V v) \chi(V) .
$$

4. Irreducibility and equivalence of the representations $\boldsymbol{R}_{k}(\sigma, \Delta, \chi)(1 \leq k \leq \lambda-1)$ corresponding to primitive characters
In this section, we assume $\lambda \geq 2$ and $1 \leq k \leq \lambda-1$.
Lemma 1. Let

$$
u_{1}^{2}+\Delta u_{2}^{2} \equiv v_{1}^{2}+\Delta v_{2}^{2}\left(p^{\lambda}\right) \quad\left(u, v \in G_{\lambda}\right)
$$

If $v_{1} \neq 0(p)$, there exists a $V \in C$ such that $u=V v$.
Let $G_{\lambda}{ }^{1}$ and $G_{\lambda}{ }^{2}$ denote the subsets of G_{λ} consisting of elements u which satisfy $u_{1} \equiv 0(p)$ or $u_{1} \equiv 0(p)$ respectively and put $\theta^{i}=\theta \cap G_{\lambda}{ }^{i} \quad(i=1,2)$. We denote the subspace of H_{χ} consisting of elements whose carriers are in $G_{\lambda}{ }^{i}(i=1,2)$ by $H_{x}{ }^{i}$.

Lemma 2. Let u^{1}, \cdots, u^{m} be pairwise C-inequivalent elements of $G_{\lambda}{ }^{2}$ and χ be primitive. Then the linear transformation from $H_{\chi}{ }^{1}$ to C^{m} defined by

$$
\phi \longrightarrow\left(\left(T_{\chi}(w) \phi\right)\left(u^{1}\right), \cdots,\left(T_{x}(w) \phi\right)\left(u^{m}\right)\right)
$$

is onto.
Proof. It is sufficient to prove that the adjoint transformation is one-to-one. Let, for $\phi \in H_{x}{ }^{2}$ and for all $v \in G_{\lambda}{ }^{1}$, $\left(T_{\mathrm{x}}(-w) \phi\right)(v)=0$.

Then

$$
0=T_{x}(-w) \phi(v)=\bar{c} \sum_{u \in G} e_{\sigma}\left[\frac{2\left(u_{1} v_{1}+\Delta u_{2} v_{2}\right)}{p^{\lambda}}\right] \phi(u) .
$$

Now let $V=V\left(x_{1}, x_{2}\right) \in C_{\lambda-1}$. Then $x_{1} \equiv 1\left(p^{\lambda-1}\right)$ and if $u_{1} \equiv 0(p)$, we have

$$
\begin{aligned}
& (V u)_{1}=x_{1} u_{1}-\Delta x_{2} u_{2} \equiv u_{1}\left(p^{\lambda-1}\right) \\
& (V u)_{2}=x_{2} u_{1}+x_{1} u_{2} \equiv u_{2}\left(p^{\lambda-k}\right) .
\end{aligned}
$$

Therefore $e_{\sigma}\left[\frac{2\left(u_{1} v_{1}+\Delta u_{2} v_{2}\right)}{p^{\lambda}}\right]\left(v_{1} \equiv 0(p)\right)$ is a $C_{\lambda-1}$-invariant function of u defined on $G_{\lambda}{ }^{2}$. So by primitivity of χ, we have

$$
\sum_{u \in G} e_{\sigma}\left[\frac{2\left(u_{1} v_{1}+\Delta u_{2} v_{2}\right)}{p^{\lambda}}\right] \phi(u)=0
$$

if $v_{1} \equiv 0(p)$. Because Fourier transform of ϕ is 0 , we have $\phi=0$. The Lemma is thus proved.

Let S be $\left\{s=u_{1}^{2}+\Delta u_{2}{ }^{2} ; u \in \theta\right\}$ and θ_{s} be $\left\{u \in \theta ; u_{1}^{2}+\Delta u_{2}{ }^{2}=s\right\}$. Let n_{s} denote the number of elements in θ_{s}. By Lemma 1 if $s \neq 0(p)$, then $n_{s}=1$. Also by Lemma 1, we can replace $\theta^{1}=\theta \cap G_{\lambda}{ }^{1}$ by $\left\{u_{0} \alpha, \alpha \in \boldsymbol{Z}_{\lambda}{ }^{*} /\{ \pm 1\}\right\}$, where u_{0} is an arbitrarily fixed element in $G_{\lambda}{ }^{1}$. From now on we take this specially chosen θ.

Theorem i) If $1 \leq k \leq \lambda-1$ and χ is primitive, $R_{k}(\sigma, \Delta, \chi)$ is irreducible.
ii) $R_{k}\left(\sigma, \Delta, \chi_{1}\right)$ and $R_{k}\left(\sigma, \Delta, \chi_{2}\right)\left(\chi_{1}, \chi_{2}\right.$ primitive) are equivalent if and only if $\chi_{1}=\chi_{2}$ or $\chi_{1}=\chi_{2}^{-1}$.

Proof. Let A be a linear transformation from $H_{x_{1}}$ to $H_{x_{2}}$ commuting with operators of each representation. By commutativity of A with operators corresponding to $\zeta_{\beta}\left(\beta \in \boldsymbol{Z}_{\lambda}\right), A$ can be represented by a matrix-valued functcon on S,

$$
S \ni s \rightarrow\left(a_{s}(u, v)\right)_{u, v \in \theta_{s}} .
$$

If $s \equiv 0(p)$, the above matrix is a scalar which we denote by $a(u)\left(u \in \theta_{s}\right)$. For $v \in \theta^{1}$,

$$
\begin{equation*}
\sum_{w \in \theta_{s}} a_{s}(u, w) K_{\chi_{1}}(g \mid w, v)=K_{\chi_{1}}(g \mid u, v) a(v) \quad\left(u \in \theta_{s}\right) \tag{1}
\end{equation*}
$$

In particular, if $u, v \in \theta^{1}$, we have

$$
\begin{equation*}
a(u) K_{x_{1}}(g \mid u, v)=K_{\times_{2}}(g \mid u, v) a(v) . \tag{2}
\end{equation*}
$$

Putting $g=d_{a}$, we have $a(u \alpha)=a(u)$ if $u \in \theta^{1}$. So $a(u)$ is independent of $u \in \theta^{1}$ and we denote it by a.

Now let $\chi_{1}=\chi_{2}=\chi$. Then for $v \in \theta^{1}$,

$$
\sum_{w \in \theta_{s}} a_{s}(u, w) K_{x}(g \mid w, v)=K_{x}(g \mid u, v) a \quad\left(u \in \theta_{s}\right)
$$

that is, if $\theta_{s}=\left\{w_{1}, \cdots, w_{m}\right\}\left(m=n_{s}\right),{ }^{t}\left(K_{\times}\left(g \mid w_{1}, v\right), \cdots, K_{x}\left(g \mid w_{m}, v\right)\right) \in C^{m}$ is an eigenvector of the matrix $\left(a_{s}(u, v)\right)_{u, v \in \theta_{s}}$ with eigenvalue a. So by Lemma 2 we conclude that $\left(a_{s}(u, v)\right)_{u, v \in \theta_{s}}$ is a diagonal matrix with all diagonal elements equal to a. i) is thus proved.

Let us return to the formula (1) and assume that A is not identically 0 . If $a=0,\left(a_{s}(u, v)\right)_{u, v \in \theta_{s}}$ is zero matrix by Lemma 2, which contradicts to the assumption on A, so we have $a \neq 0$. Therefore for $u, v \in \theta^{1}$ we have by (2)

$$
\begin{equation*}
K_{x_{1}}(g \mid u, v)=K_{\times_{2}}(g \mid u, v) \tag{3}
\end{equation*}
$$

Now $\chi(V)+\chi(V)^{-1}\left(V=V\left(x_{1}, x_{2}\right) \in C\right)$ is independent of x_{2}; hence let $f_{\mathrm{x}}\left(x_{1}\right)\left(x_{1} \in Z_{\lambda}\right)$ be $\chi(V)+\chi(V)^{-1}$ if there exists x_{2} such that $V\left(x_{1}, x_{2}\right) \in C$, and 0 otherwise. Let us define $\tilde{f}_{\mathrm{x}}(\alpha), \alpha \in Z_{\lambda}$ by the formula

$$
\tilde{f}_{\mathrm{x}}(\alpha)=\sum_{V \in C} e_{\sigma}\left[\frac{\alpha x_{1}}{p^{\lambda}}\right] \chi(V)
$$

Then $\tilde{f}_{\mathrm{x}}(\alpha)$ is the Fourier transform of $f_{\mathrm{x}}\left(x_{1}\right)$:

$$
\tilde{f}_{\mathrm{x}}(\alpha)=\sum x_{x_{1} \in \boldsymbol{Z}_{\lambda} e_{\sigma}\left[\frac{\alpha x_{1}}{p^{\lambda}}\right] f_{\mathrm{x}}\left(x_{1}\right)}
$$

If $\alpha \equiv 0(p), e_{\sigma}\left[\frac{\alpha x_{1}}{p^{\lambda}}\right]$ is $C_{\lambda-1}$-invariant as a function on C, so by primitivity of χ, we have that $\tilde{f}_{x}(\alpha)=0$. On the other hand Formula (3) implies that for $\alpha \not \equiv 0(p)$,

$$
\tilde{f}_{\mathrm{x}_{1}}(\alpha)=\tilde{f}_{\mathrm{x}_{2}}(\alpha)
$$

So by the uniqueness of the Fourier transform, we have

$$
\chi_{1}(V)+\chi_{1}(V)^{-1}=\chi_{2}(V)+\chi_{2}(V)^{-1} .
$$

"Only if" part of ii) is thus proved. "If" part of i) is easy.

5. Description of all irreducible representations

Let first $\lambda \geq 2$. The representation $R_{\lambda}(\sigma)$ was investigated by Kloosterman [1, pp. 368-375]. It contains two inequivalent irreducible representations $R_{\lambda}{ }^{i}(\sigma)(i=0,1)$ of dimension $2^{-1} p^{\lambda-2}\left(p^{2}-1\right)$.

We remark that the dimension of the representation space of $R_{k}(\sigma, \Delta, \chi)(1 \leq k \leq \lambda-1, \chi$ primitive $)$ are equal to $2^{-1} p^{\lambda-2}\left(p^{2}-1\right)$.

Therem i) Let $1 \leq k, k^{\prime} \leq \lambda-1$ and χ_{1}, χ_{2} be primitive characters. Then $R_{k}\left(\sigma_{1}, \Delta_{1}, \chi_{1}\right)$ and $R_{k^{\prime}}\left(\sigma_{2}, \Delta_{2}, \chi_{2}\right)$ are equivalent if and only if $k=k^{\prime},\left(\frac{\sigma_{1}}{p}\right)=\left(\frac{\sigma_{2}}{p}\right),\left(\frac{\Delta_{1}}{p}\right)=\left(\frac{\Delta_{2}}{p}\right)$ and $\chi_{1}=\chi_{2}$ or χ_{2}^{-1}.
ii) $R_{\lambda}{ }^{i}(\sigma)$ and $R_{\lambda}{ }^{i}\left(\sigma^{\prime}\right)(i, j=0,1)$ are equivalent if and only if $\left(\frac{\sigma}{p}\right)=\left(\frac{\sigma^{\prime}}{p}\right)$ and $i=j$.
iii) $R_{k}(\sigma, \Delta, \chi)(1 \leq k \leq \lambda-1, \chi$ primitive $)$ and $R_{\lambda}{ }^{i}(\sigma)$ are inequivalent.

Proof. If part of i) and ii) can be shown easily.
The other part of the proof of the theorem is based on the consideration of the spectral properties of operators corresponding to $\zeta_{\beta}\left(\beta \in \boldsymbol{Z}_{\lambda}\right)$. For this purpose we use the following facts.

Let $p^{l} \| a$ mean that $p^{l} \mid a$ and a is not divisible by p^{l+1}. Let $1 \leq k \leq \lambda$. If $p^{l} \| u_{1}{ }^{2}+\Delta u_{2}{ }^{2} \quad(u \in \theta, l<k)$, then l is even and $p^{l} \| u_{1}{ }^{2}$. If we put $u_{1}{ }^{2}+\Delta u_{2}{ }^{2}=p^{l} a$ and $u_{1}=p^{l /{ }^{2}} u_{1}^{\prime}$, we have $a \equiv u_{1}^{\prime 2}(p)$.

Now let $1 \leq k \leq \lambda-1$ and $p^{k} \mid u_{1}{ }^{2}+\Delta u_{2}{ }^{2}(u \in \theta)$ (then $u_{1} \equiv 0(p)$ and $\left.u_{2} \equiv 0(p)\right)$ and put $u_{1}{ }^{2}+\Delta u_{2}{ }^{2}=p^{k} a$. Then if k is odd, $a \equiv \Delta^{\prime} u_{2}{ }^{2}(p)$ and if k is even, $a \equiv u_{1}^{\prime 2}+\Delta^{\prime} u_{2}{ }^{2}(p)$ where $u_{1}=p^{k / 2} u_{1}^{\prime}$.

On the other hand $R_{0}\left(\sigma_{1}, \Delta, \chi\right)$ and $R_{0}\left(\sigma_{2}, \Delta, \chi\right)$ are equivalent and Kloosterman [1] proved that $R_{0}(\sigma, \Delta, \chi)(\chi$ primitive) are irreducible representations of dimension $p^{\lambda}+\left(\frac{-\Delta}{p}\right) p^{\lambda-1}$. He also proved that $R_{0}\left(\sigma, \Delta, \chi_{1}\right)$ and $R_{0}\left(\sigma, \Delta, \chi_{2}\right)\left(\chi_{1}, \chi_{2}\right.$ primitive) are equivalent if and only if $\chi_{1}=\chi_{2}$ or $\chi_{1}=\chi_{2}^{-1}$. There were obtained $2^{-1} p^{\lambda-2}(p-1)\left(p-\left(\frac{-\Delta}{p}\right)\right)$ irreducible representations and they are inequivalent to those representations described above because the dimensions of the representation spaces are different.

The irreducible representations of $S L\left(2, \boldsymbol{Z}_{\lambda}\right)$ obtained do not degenerate to those of $S L\left(2, \boldsymbol{Z}_{\lambda-1}\right)$ and the number of them is equal to

$$
\begin{aligned}
& 2^{-1} p^{\lambda-2}(p-1)(p+1)+2^{-1} p^{\lambda-2}(p-1)(p-1)+4 \sum_{k=1}^{\lambda-1}\left(p^{\lambda-k}-p^{\lambda-k-1}\right)+4 \\
& \quad=p^{\lambda}+3 p^{\lambda-1} .
\end{aligned}
$$

On the other hand, the number of the conjugate classes of $S L\left(2, \boldsymbol{Z}_{\lambda}\right)$ is equal to

$$
p^{\lambda}+4 \sum_{k=0}^{\lambda-1} p^{k}
$$

Thus all irreducible representations of $S L\left(2, \boldsymbol{Z}_{\lambda}\right)$ are obtained, because those of $S L\left(2, \boldsymbol{Z}_{1}\right)$ were constructed by Kloosterman [1].

REFERENCES

[1] H. D. Kloosterman: The behaviour of general theta functions under the modular group and the characters of binary modular congruence groups. I, II. Ann. of Math. 47 (1946), 317-447.
[2] S. Tanaka: On irreducible unitary representations of some special linear groups of the second order, II Osaka J. Math. 3 (1966), 229-242.
[3] A. Weil: Sur certains groupes d'opérateurs unitaires, Acta Math., 111 (1953), 143-211.

Added in proof
The author came to notice that classification of irreducible representations of modular congruence groups was also given by
J. A. Shalike in: Representations of the two by two unimodular group over local fields, I, II, Seminar of representations of Lie groups, Institute for Advanced Study, 1966. His method and result are different from those of the present paper.

[^0]: * The author is partially supported by the Sakkokai Foundation.

