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1. Introduction

Let p  be an odd prime number and Z x (X a natural number)
be the ring Z/(Px). SL(2 , Z x ) are called the binary modular con-
gruence groups mod px • In this paper we construct all irreducible
representations (on the complex field) of these groups.

L et u s consider the additive groups G =Z x x Z x _k  (0<k <X)
and let cr and A be integers such that a-so (p ) and A =PkA ' with

' s o (p ) . For u= (u„ u2)  and v= (v„ v 2) G, put

<u, y> = 6 ,, [2(u
1
v

1
+ Au,v 2 )]
Px

where e0.[x ]=e 2 . Then G is self-dual with respect to this func-
tion on G x G.

I f  we restrict th e  projective representation o f  S P(G), the
symplectic group o f  G, defined on L 2(G ) (see  W e il [ 3 ] )  to
SL(2, Z ,) , we obtain a system of representations Rh (0 < k < x ) . It
is shown that representation RI, (0<k <X ) are subrepresentations
of R, or R, and all irreducible representations of these groups are
naturally realized i n  cartain subspaces invariant under the
representations Rh (0<k < X).

In 1946, H. D. Kloosterman [l] constructed the representations
Ro and Rx  by means of transformation formula of theta functions
under the modular group and obtained the larger part of irredu-
cible representations of SL(2, Zx ) by decomposing Ro into invariant
irreducible subspaces. In  [2 ], w e gave the construction of the
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representations R , and R , by means of the projective representa-
tion of Sp(G) (they were also constructed by J.A. Shalika). Recently
T. Shintani has given the classification of all irreducible representa-
tions of those groups by means of the notion of induced representa-
tions. Our results as well as Shintani's were reported at the
Symposium on theory o f group representations and some o f  its
applications held in Kyoto in July, 1967.

2. Construction of system o f  representations R  k  (0<k<X )

Let Z À *  be the set of all invertible elements in Z ,  and (. -)

be the Legendre symbol. For a  Z, we define the homomorphism
a  of G  by ua= (au „ au 2 ).

Let H  be the finite dimensional Hilbert space L 2(G) and let
A (a ) (a  Z x * ) ,  B ( (3) E Z 23  an d  W  b e  the operators on  H
defined by

A(a)(P(u) ( —a ) k 45(ua)

B(8)51)(u) = 0- r u i 2  A u 2 2 ) ].4)(u)
- Px

WO(u) = c EvEGg5(c)c
2(uivi+ Au 2v2) ] , (ci)E H)

Px

Here c  is defined by

p- X 1-(1,12)(A l k  Cr  ) k

P
where

1 (k  odd, (71) = 1)
6 =

(--p1)1 )— (k odd,

(— 1)1' (k even) .

We define elements d,„ (a G Z x *), (13EZ„) and w of SL(2, 4,)
by

/ a  0  \ 1  0\ 0 — 1
V) a - 1 » =  

/ 
1) an d  w  ( 1  0 ) .
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Any element g of S L (2 , Z ) is expressed by d and w :

if ry 0 ( P )(
a  13
y  6 )

and

g  = (c-;  / )  =
—1,a1 'Wd—oXPoa — if ry o(p).

There exists a  representation T (g) of SL(2, Zx )  with representa-
tion space H  such that

T (d 04) = A (a), T ( )  =  B(8) a n d  T (w) = W .

L et us denote this representation by R,(0-, A) or simply by R k .

We often suppress the dependence of representations and opera-
tors on k, g  and A  if confusion does not occur. R o and  R , were
constructed by means of the projective representations of Sp(G)
in  [2, §§ 3, 4]. R k  (2<k <X) can be constructed analogously ;
however we shall construct these a s  subrepresentations of R,
and R 1 .

Let k  be 0 or 1 and let I  be an integer such that k + 2 / X .
Let H , be the subspace of the representation space o f R k (0-, A)
(k= 0, 1) with elements 0 satisfying the following conditions :

1) 0(u1 , u 2) 0 unless u, 0 (Y) ;
2) 0(u 0 , u2) = 95(u1 u2') if u , U2/

( . 2 5 À —  k - 1 )

L e t u s  prove that H ,  is  invariant under th e  representations
R k (o-, A ) and the representation realized on H , turns out to be
Rk + 2 / (0-, mu). For (I) E H o , we define function 46' on Z , x 4 . _ k -2 i by
(t/(ui 1(2) = 4(u1, P'112). We obviously have th a t  A (a)43, B (13» Ho
and

(A ( a) 0 '( u )  = ( u a)

(B(8)615)/ (u) e t u i 2  A P z / u 2 2 ] , ( u ) .

Px

For the operator W, we need some calculation.

— 2(uy, + Au 2v2)]
W O (u ) c  E „.c cP (v )e ,[

/3'
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21u  v  + u2 ((p1a +  p " -  '01]c E p q a  + p x-- k-2/0 ) ,1  2  

Px

(v ,E Z ,„ aeZ x -k ,t a n d  bEZ / )
2(u,vi + Aptu2 a)]=c EV1 Z ,„  a E Z x  -  k - 21ç b ( i)a ) e Px

><E e l  2 6 :1 4 2 b 1bEz

So we have shown that W (u )= O if  u2 SO (P0 and that

z,x , a E A-k - 21WOW =  C P 1E v i
e  7 7 „  p/a)e 2(ui vi + Ap'u,a)] ,

Px

if u, 0 ( P 0

Therefore WO E Ho and

( WO) / (u) cP1 Ev,EZ x , v 2 EZ x - k-21° '  ( V ' v2)e
2(u ,v Ap"u2v2 )1

P x

So H, is  invariant under R k (o-, A) (k= 0, 1) and the restriction of
the representation R k (o-, A) to H , is equivalent to the representa-
tion which we called Rk + 2 ,(0-, Ap21 )•

Let us write, for representation R k (o-, A) (0<k<X),

T(g)0(u) = E v„K(glu, v)95(v) (OE H) .

Explicit form o f K (eu, v ) is determ ined by the expression of
gES L (2, 4,) by cl„, and w.

3. Preliminary results for the decomposition of the representa-
tions R k (o-, A) (0 <k  <x — 1).

For x ,E Z À  and  x 2 E Z ),_k ,  consider the matrix

x —V= V(x„ x2 ) = (x :x 1 )

and let it operate on G by the formula

Vu =  ( x 1 —Ax2)(u 1 (x i u 1 —Ax2142)
\x , x 1A u 2 I \ x 2u1 + x,u,

The totality o f V which satisfy
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x 1
2 +  x 2

2i ( p x )

forms an abelian group C with respect to matrix multiplication.
The order of the group C  is px - i(p ° ) )  [1 , p. 351] if k 0

and 2px -  k if  1 < k  < x - 1 .  u 1
2 + Au2

2 i s  invariant mod p x  under
transformations VEC, so operators o f H  induced by VEC com-
mute with operators of the representations.

Let X be a  character o f C  and H  b e  the subspace o f  H
which is formed by the elements satisfying

Vu) = X(V)40(u) .

f i  i s  invariant under the representation R k (cr, A ) and we denote
the restriction of Rk (o- , A) to H by Rk (o-, A, X) or simply by Rk (X)
and its operators by T x (g).

Let G , (k <l<x )  be the set of those uEG which satisfy i)  u,
and u2 .0 (P x - ' )  and i i )  u ,  or u ,  is not divisible by p " H .  Let
C, (k  <1<X ) be the subgroups of C of those V(x„ x2 ) which satisfy
.r1 1  ( p o  and x 2 O ( p ' - ' ). I t  is proved that the stationary
subgroup of C at u c  G , is CI . We call a character of C primitive
i f  its restriction to  Cx _, is not trivial. The number of the pri-

mitive characters is Px -2(P-1)(P _  
- ) i f  k = 0 and p '  - px - 2 if

1<k<X —  1.
Let 0E1-4, (X primitive), then « u ) = 0  unless u E G ,. Let

be a system of representatives of the C-transitive parts of G .
Then for 0E1--1),

T (g).;b(u) = ,E ,K„(g I u, v)0(v) ,
where

Kx(glu, y) E v . c K ( g i u ,  vox (V ) .

4. Irred u c ib ility  a n d  equ ivalence o f  t h e  representations
R k (0-, A, X) (1<k <X -1 )  corresponding to primitive characters

In this section, we assume x > 2 and 1 < k < x —  1.

Lemma 1. Let
u i 2 A u 2 2 v i 2 A y  22 ( p x) ( u ,  v  G x ) .



128 S hun'ichi Tanaka

I f  v ,S O  (p), there ex ists a  V E C  such that u = Vv.
Let G,' and G, 2 denote the subsets of G, consisting of elements

u  w h ich  sa tis fy  ui ( p )  o r  it i O  ( p )  respectively and put
9i=0 n G , i  (i= 1, 2). We denote the subspace o f H , consisting of
elements whose carriers are in G,i(i= 1, 2) b y  Hx

1 .

Lemma 2. Let le, •••, um be pairw ise C-inequivalent elements of
G, 2  an d  X  be p rim itiv e . Then the linear transformation f rom  Hx 1

to  e n  defined by

(( T,(w)cp)(u'), • • • ,(Tx(w)(p)(um))
is  onto.

P ro o f . It is sufficient to prove that the adjoint transforma-
tion  is one-to-one. Let, fo r  4 ) E H%

2 a n d  f o r  a l l  v E
( T (  w)0)(v)= O.

Then

2,; ( . _  0 4 0 )  e z . .G e 1 2 ( u iv ,+
Px 

Au,v2)140)

Now let V= V(x„ X 2 ) E Cx_ i . Then x 1—= 1  (px - 1 )  and if u1—=-0 (P),
we have

( V u), = x,u,— Ax2 u 2u ,  (P x - i )
x2 u 1 + xi u 2u 2  ( P x - I ') •

2(u
1
v

1
+ Au

2
V

2
)

]Therefore 
e l

( v , (p)) is a Cx _i-invariant function
Px

o f u  defined on Gx
2 . So by primitivity of X, we have

z u . G e , [2(uy, + Au2v25 0 )  =  ,

i f  vi s o  (p ) .  Because Fourier transform o f 43 is  0, we have 4)=O.
The Lemma is thus proved.

Let S  b e  fs=u 1
2 +Au 2

2 ; uE01 and Os b e  fu E  ;  U 1
2 A U 2

2 =

Let n ,  denote the number o f elements in O .  By Lem m a 1 if
sso (p), then ns — 1. Also by Lemma 1, we can replace 01 =0 n G, 1

b y  {uoa, ceEZ ,*I { ±1} } , where uo i s  an arbitrarily fixed element
in Gxl. From now on we take this specially chosen O.
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Theorem  i) If  1<k  <x  — 1 and X  is Primitive, R k (o-, A, X) is
irreducible.

ii) R k (0-, A, X ) and R k (o-, A, X2) (X„ X, primitive) are equivalent
i f  and only  i f X , or X 1 = X 2

1.
P ro o f . L et A  be a  linear transformation from  11 1 t o  H„,

commuting with operators of each representation. By commuta-
tivity of A  with operators corresponding to t'13 03E43, A  can be
represented by a  matrix-valued functcon on S,

SD s (as (u, v)) 08 .

I f  ss0 (p ) ,  the above matrix is a  scalar which we denote by
a(u )  (u  (M . For v 01,

(1 )E gv „ s as (u, w)K„,(glw, v) v)a(v) (uEI 9 s ) .

In particular, if u, v 01,  we have

( 2 ) a(u)K,i(glu, v) = v)a(v) .

Putting g= cl„, we have a(ua)= a(u) if u e 0 1.  So a(u) is independent
of uE0' and we denote it by a.

Now let X2= X. Then for v 0',

E.Eosas(u, w)K,(glw, v) = v)a( u 0 8 ),

that is, if 08 = {w„ • • • , w„} (m=n s ),t(K x (glw„ v), • • • , v)) Cm E
is  an  eigenvector of the matrix (as (u, v)) 0 3 with eigenvalue a.
So by Lem m a 2  we conclude that (as (u, v))„,„E e s  i s  a diagonal
matrix with all diagonal elements equal to a. i )  is thus proved.

L et u s return to the formula (1) and assume that A  is not
identically O. If a= 0, (as (u, v))„, vees is zero matrix by Lemma 2,
which contradicts to th e  assumption o n  A , so  w e  have a*O.
Therefore for u, v E0' we have by (2)

( 3  ) v) = K„,(glu, y ).

Now X( V)+ X( V) - 1  (V =  V(x i , x,) C ) is independent o f  x2;
hence let f ( x )  ( x ,  Z )  be X( V)+ X( V) - 1  i f  there exists x 2 such
that V(x„ x,)e C, and 0 otherwise. Let us define f (a) , a e  Z , by
the formula

.4c(a) = EvEcefaxilx(v).



130 Shun'ichi Tanaka

Then .7),(a ) is the Fourier transform of f,c(xi)

1-,(a)= Ex, E z , e l a  fx (x  ) •
Px

I f  a  0(p), e [ Yx1] is C 1-invariant a s  a  function on C, so by
Px

primitivity o f  X , w e  have that 1 , ( a ) = 0 .  O n the other hand
Formula (3 ) implies that for aS 0(p),

J ( a )  f x , ( a )  •

So by the uniqueness of the Fourier transform, we have

X,(V)+X,(V)' = X 2( V)+X 2( V) - 1 .

"Only if" part of ii) is thus proved. "If" part of i) is easy.

5. Description of all irreducible representations

Let first X >2. The representation R,(0-) was investigated by
Kloosterman [1, pp. 368-375]. It contains two inequivalent ir-
reducible representations Rx

1 (0-) (i= 0, 1) of dimension 2- px - 2(p2— 1).
We remark that the dimension of the representation space

of Rk (0-, A, X) (1<k<X —1, X primitive) are equal to 2- 'px- 2(p2 —1).

Therem i) L et 1<k , le' < X - 1  and X „ X 2 b e  prim itive cha ra cters.
T hen  14(0-,, A i , Xi) and Re(0 -2, A 2 , X2 )  are equ iva len t if and o n ly  i f

' ( - ° ) — ( œ 2 ) ' ( A 1 ) — ( A 2 )P P P P  
and X i =X , or X .

ii) R 1(o) and R ,(0 -') (i, j =0, 1) are  eq u iv a len t  i f  and on ly  i f

( -°--- ) = N  and i= j.
P P

iii) Rk (o-, A , X ) (1 <k<X— 1, X prim itiv e) and R x i(Œ) are
inequivalent.

P r o o f .  If part of i) and ii) can be shown easily.
The other part of the proof of the theorem is based on the

consideration of the spectral properties of operators correspond-
ing to (RE Z À ) .  For this purpose we use the following facts.

Let Pilla mean that a and a  is not divisible by p i " .  Let
1 < k < X . If P'llu

1
2 +Au 2

2 (u 0 ,1 <k ), then 1 is even and p'llu 1
2 .

If we put u,2 + Au 2
2 = p ia  and u,=p 1/2u,', we have a =u1/2(p),
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Now let 1<k<x — 1 and p k iu 12+ Au2
2 (u 0) (then ti, ( )  ( p )  and

( p ) )  and put u12 + Au2
2 — e a .  Then if  k is odd, (2 i i€22 (p )

and if k is even, a - u1'2 +A'u2 2 (p )  w h e r e  u1—P k 1 2 u1'.
On the other hand R0(0- 1, A, X) and R0(0- 2, A, X) are equivalent

and K loosterm an  [1 ] proved that Ro (o-, A, X ) (X  primitive) are

irreducible representations of dimension p x + ( - -
4

) p x
-
1. He also

proved that R o(c ,  A, X1) and R0(cr, A, X2) (X1, X , primitive) are
equivalent if and only i f  X1

-= X, or X1
--- X. There were obtained

2 - ipx - 2 ( p - 1 ) ( p  (  A )) irreducible representations and they are

inequivalent to those representations described above because the
dimensions of the representation spaces are different.

The irreducible representations o f SL(2, Zx )  obtained do not
degenerate to those o f SL(2, ZÀ _ ,) and the number o f them is
equal to

2 - 1 px - 2 (p -1 )(p + 1)+ 2 - 1 px - 2 (p -1 ) (p -1 )+ 4 (p x - k —px - k - 1 ) +4
k=1

pA. 3pX  - 1

On the other hand, the number of the conjugate classes of SL(2, .Z)
is equal to

PÀ+4E ph .
k 0

Thus all irreducible representations o f  SL(2, Zx )  are obtained,
because those o f SL(2, Z 1)  were constructed by Kloosterman [1].
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The author came to  notice that classification of irreducible
representations of modular congruence groups was also given by
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