PL-submanifolds and homology classes of a PL-manifold II

By
Masahisa Adachi

(Received August 7, 1967)

In [1] we have proved the fundamental theorem of the realization problem of homology classes by submanifolds in the $P L$-case. In the present paper we shall give some consequences. One is based on the results of Browder-Liulevicius-Peterson [2] on the homotopy types of the $P L$ Thom spectrum $M P L$, and the other on the results of Kuiper-Lashof [5] on the homotopy groups of $P L_{1}$.

We use the notations and terminologies in [1].
We wish to thank Professors F. P. Peterson and H. Toda for their help in the preparation of this paper.

1. Statements of the results

Theorem 1. Let V^{n} be a closed PL-manifold of dimension n. For $k \leq n / 2$, all homology classes of $H_{k}\left(V^{n}, Z_{2}\right)$ can be realized by PL-submanifolds which have normal PL-microbundles.

Theorem 2. Let V^{n} be a closed PL-manifold of dimension n. All homology classes of $H_{n-1}\left(V^{n}, Z_{2}\right)$ can be rerlized by PL-submanifolds which have normal PL-microbundles.

These results are quite parallel to those of C^{∞}-case in Thom [8].
2. Study of the homotopy type of Thom complexes MPL_{k}
a) Preliminaries.

Let $\boldsymbol{M P L}=\left\{M P L_{n}, \mu_{n} ; n \geqq 0\right\}$ be the $P L$ Thom spectrum defined
by Williamson [10]. In Browder-Liulevicius-Peterson [2], the following proposition is obtained:

Proposition 1. There is a map

$$
\boldsymbol{h}: \boldsymbol{M P L} \rightarrow \prod_{i} \boldsymbol{K}\left(Z_{2}, n_{i}\right),
$$

such that

$$
\boldsymbol{h}^{*}: H^{*}\left(\Pi_{i} \boldsymbol{K}\left(Z_{2}, n_{i}\right), Z_{2}\right) \rightarrow H^{*}\left(\boldsymbol{M P L}, Z_{2}\right)
$$

is an isomorphism.
On the other hand the following proposition was proved by Williamson [10].

Proposition 2. The PL cobordism group $\mathfrak{R}_{P L}^{n}$ is isomorphic to the homotopy group of the PL Thom spectrum $\pi_{n}(\mathbf{M P L})$.
b) Stability theorem for $M P L_{k}$.

Haefliger-Wall [3] proved the following stability theorem.
Proposition 3. Let

$$
i_{n}: P L_{n} \rightarrow P L_{n+1}
$$

be the natural inclusion. Then

$$
\left(i_{n}\right)_{*}: \pi_{q}\left(P L_{n}\right) \rightarrow \pi_{я}\left(P L_{n+1}\right)
$$

is an isomorphism for $q<n-1$ and an epimorphism for $q=n-1$.
The inclusion $i_{n}: P L_{n} \rightarrow P L_{n+1}$ induces naturaally the following map

$$
\rho_{n}: B P L_{n} \rightarrow B P L_{n+1}
$$

By Propesition 3, the homomorphism

$$
\left(\rho_{n}\right)_{*}: \pi_{\vartheta}\left(B P L_{n}\right) \rightarrow \pi_{q}\left(B P L_{n+1}\right)
$$

is an isomorphisms for $q<n$ and an epimorphism for $q=n$. Then by the theorem of J. H. C. Whitehead [9], the homomorphism

$$
\left(\rho_{n}\right)^{*}: H^{\bullet}\left(B P L_{n+1}, Z\right) \rightarrow H^{\bullet}\left(B P L_{n}, Z\right)
$$

is an isomorphism for $q<n$ and a monomorphism for $q=n$.

We shall denote by

$$
s^{*}: H^{q+n+1}\left(S M P L_{n}, Z_{p}\right) \rightarrow H^{q+n}\left(M P L_{n}, Z_{p}\right)
$$

the homomorphisms induced from suspension, where p is a prime, and by σ_{n} the compositipon of the following two homomorphisms:

$$
\begin{aligned}
\sigma_{n}: H^{q+n+1}\left(M P L_{n+1}, Z_{p}\right) & \xrightarrow{\left(\mu_{n}\right)^{*}} H^{q+n+1}\left(S M P L_{n}, Z_{p}\right) \\
& \xrightarrow{s^{*}} H^{q+n}\left(M P L_{n}, Z_{p}\right)
\end{aligned}
$$

Then we know the following commutative diagram:

$$
\begin{array}{ll}
H^{q+n+1}\left(M P L_{n+1}, Z_{2}\right) & \xrightarrow{\sigma_{n}} H^{q+n}\left(M P L_{n}, Z_{2}\right) \\
\varphi_{n+1}^{*} \uparrow & \stackrel{\varphi_{n}^{*} \uparrow}{H^{q}\left(B P L_{n+1}, Z_{2}\right)} \quad \xrightarrow{\left(\rho_{n}\right)^{*}} H^{q}\left(B P L_{n}, Z_{2}\right)
\end{array}
$$

where $\varphi_{n}^{*}, \varphi_{n+1}^{*}$ are Thom isomorphisms (cf. Williamson [10]). Thus we have the following:

Proposition 4. The homomorphism

$$
\sigma_{n}: H^{q+n+1}\left(M P L_{n+1}, Z_{2}\right) \rightarrow H^{q+n}\left(M P L_{n}, Z_{2}\right)
$$

is an isomorphism for $q<n$ and a monomerphism for $q=n$.
Kuiper-Lashof [4] proved that very $P L$-microbundle over a locally finite simplicial complex contains an R^{n}-bundle, and this bundle is unique up to equivalence. Therefore, the universal $P L$-microbundle

$$
Y\left(P L_{n}\right): B P L_{n} \xrightarrow{i_{n}} E P L_{n} \xrightarrow{j_{n}} B P L_{n}
$$

contains an R^{n}-bondle $u=\left(E, p, B P L_{n}\right)$. For an odd prime p, we have the following commutative diagram:
where T_{n} is the "faisceau tordu" associated with the orientation of R^{n}-bundles u, and $\left(\rho_{n}^{\prime}\right)^{*}$ is the homomorphism induced from $\rho_{n}: B P L_{n}$ $\rightarrow B P L_{n+1}$ (see R. Thom [7], Chapter I, §II). Since $\left(\rho_{n}\right)_{*}: \pi_{1}\left(B P L_{n}\right)$
$\rightarrow \pi_{1}\left(B P L_{n+1}\right)$ is an isomorphim for $n \geqq 2$, we have that the homomorphism ($\left.\rho_{n}^{\prime}\right)^{*}$ is an isomorphism for $q<n, n \geqq 2$ and a monomorphism for $q=n \geqq 2$. Thus we have

Proposition 4'. Let $n \geqq 2$ and p be an odd prime. Then the homomorphism

$$
\sigma_{n}: H^{q+n+1}\left(M P L_{n+1}, Z_{p}\right) \rightarrow H^{q+n}\left(M P L_{n}, Z_{p}\right)
$$

is an isomorphism for $q<n$ and a moncrphism for $q=n$.
c) $2 n$-type of the Thom complex $M P L_{n}$.

We know the following commutative diagram:

In the above diagram the bottom horizontal map \boldsymbol{h}^{*} is an isomorphism by Proposition 1, the right vertical map is an isomorphism for $q<n$ and a monomorphism for $q=n$, and the left vertical map is an isomorphism for $q \leq n$. Therefore,

$$
\left(h_{n}\right)^{*}: H^{j}\left(\prod_{i} K\left(Z_{2}, n+n_{i}\right), Z_{2}\right) \rightarrow H^{j}\left(M P L_{n}, Z_{2}\right)
$$

is an isomorphism for $j<2 n$ and a monomorphism for $j=2 n$.
For an odd prime p, we have the following commutative diagram:

We know that $H^{s}\left(\prod_{i} K\left(Z_{2}, n_{i}\right), Z_{q}\right)$ is zero. Moreover, by Proposition 2 and Serre's \mathcal{C}-theory [6], we know that $H^{q}\left(\boldsymbol{M P L}, Z_{p}\right)$ is also zero.

Therefore, in the above diagram the bottom horizontal map \boldsymbol{h}^{*} is an isomorphism. Moreover, by Proposition 4', the right vertical map is an isomorphism for $q<n$ and a monomorphism for $q=n, n \geqq 2$, and the left vertical map is an isomorphism for $q \geqq n$. Therefore, for any odd prime p,

$$
\left(n_{n}\right)^{*}: H^{j}\left(\prod_{j} K\left(Z_{2}, n+n_{i}\right), Z_{p}\right) \rightarrow H^{j}\left(M P L_{n}, Z_{p}\right)
$$

is an isomorphism for $j<2 n$ and a monomorphism for $j=2 n, n \geqq 2$. Consequently, by the theorem of J. H. C. Whitenead [9], we have the following proposition.

Proposition 5. Let $n \geqq 2$. There exists a mapping g of the $2 n$-skeleton of $\Pi K\left(Z_{2}, n+n_{i}\right)$ to $M P L_{n}$ such that $h_{n} \circ g$ and $g \circ h_{n}$ (restricted to the $2 n$-skeleton of $M P L_{n}$) are homotopic to the identities.
d) Thom complex $M P L_{1}$.

Let $\lambda: O_{1} \rightarrow P L_{1}$ be the natural monomorphism. Kuiper-Lashof [5] have shown that for all i

$$
\lambda_{*}: \pi_{i}\left(O_{1}\right) \rightarrow \pi_{i}\left(P L_{1}\right)
$$

is an isomorphism. However, we know that $M O(1)$ has the homotopy type of $K\left(Z_{2}, 1\right)$ (see Thom [8]). Therefore, $M P L_{1}$ has the homotopy type of $K\left(Z_{2}, 1\right)$.

3. Proof of theorems

a) Proof of Theorem 1.

Let $k \leqq n / 2,2 \leqq n-k$, and z be a homology class of $H_{k}\left(V^{n}, Z_{2}\right)$. We shall denote by $u \epsilon H^{n-k}\left(V^{n}, Z_{2}\right)$ the cohomology class corresponding to z by the Poincaré duality. There exists a map

$$
f: V^{n} \rightarrow K\left(Z_{2}, n-k\right)
$$

such that $f^{*}\left(\iota_{n-k}\right)=u$, where ι_{n-k} is the fundamental class of $H^{*}\left(Z_{2}\right.$, $n-k ; Z_{2}$). We shall denote by $K^{(g)}$ the q-skeleton of a CW-complex K. By Proposition 5, we have the map

$$
g:\left(\prod_{i} K\left(Z_{2}, n-k+n_{i}\right)\right)^{(n)} \rightarrow M P L_{n-k}
$$

such that there exists the number i with $n_{i}=0$, and $g^{*}\left(U_{n-k}\right)=\iota_{n-k}$, where $U_{n-k} \epsilon H^{n-k}\left(M P L_{n-k}, Z_{2}\right)$ is the fundamental class of the Thom complex $M P L_{n-k}$. Thus we have the map $\varphi=g \circ i_{n} \circ f^{\prime}$:

$$
\begin{gathered}
V^{n} \quad \xrightarrow{\varphi} M P L_{n-k} \\
f^{\prime} \uparrow \\
\left(K\left(Z_{2}, n-k\right)\right)^{(n)} \xrightarrow{i_{n}}\left(\prod_{i} K\left(Z_{2}, n-k+n\right)\right)^{(n)},
\end{gathered}
$$

where f^{\prime} is the cellular approximation to f, and i_{n} is the restriction of inclusion to n-skeleton, and $\varphi^{*}\left(U_{n-k}\right)=u$. By the fundamental theorem in [1], we obtain Theorem 1.

Next we consider the case $n=2, k=1$. $P L$-2-manifold V^{2} has a smoothing α. For C^{∞}-manifold (V^{2}, α), any element of $H_{1}\left(V^{2}, Z_{2}\right)$ is realisable by C^{∞}-submanifold (see Thom [8]). Therefore, in this case, any element of $H_{1}\left(V^{2}, Z_{2}\right)$ is realisable by $P L$-submanifold with normal $P L$-microbundle.
b) Theorem 2 can be easily obtained by the fundamental theorem in [1] and the fact in $\S 2, \mathrm{~d}$).

REFERENCES

[1] M. Adachi, PL-submanifolds and homology classes of a PL-manifold, Nagoya Math. J., 29 (1967), 69-74.
[2] W. Browder-A. Liulevicius-F. Peterson, Cobordism theories, Ann. of Math., 83 (1966), 91-101.
[3] A. Haefliger-C. Wall, Piecewise linear bundles in the stable range, Topology, 4 (1965), 209-214.
[4] N. Kuiper-R. Lashof, Microbundles and bundless, I, Invent. Math., 1 (1966), 1-17.
[5] N. Kuiper-R. Lashof, Microbundles and bundles, Part C, Mimeographed Note.
[6] J.-P. Serre, Groupes d'homotopie et classes de groups abéliens, Ann. of Math., 58 (1953), 258-294.
[7] R. Thom, Espaces fibrés en sphères et carrés de Steenrod, Ann. Sci. École Norm. Sup., 69 (1952), 109-181.
[8] R. Thom, Quelques propriétés globales des variétés différeniiables, Comment. Math. Helv., 28 (1954), 17-86.
[9] J. H. C. Whitehead, Combinatorial homotopy, I, II, Bull. Amer. Math. Soc., 55 (1949), 213-245, 453-496.
[10] R. Williamson Jr., Cobordism of combinatorial manifolds, Ann. of Math., 83 (1966), 1-33.

Mathematical Institute, Kyoto University

