Unstable Homotopy Groups of Classical Groups (odd primary components).

by
Hideki Imanishi
(Received in March 13, 1967)

Introduction.

The purpose of this paper is to compute the p-primary components of unstable homotopy groups of classical groups (in this paper p always denotes an odd prime). In [2] B. Harris has shown the following direct sum decompositions and isomorphism, so we are enough to compute only for unitary and symplectic groups.

$$
\begin{align*}
& { }^{p} \pi_{i}(S U(2 n)) \cong{ }^{p} \pi_{i}(S p(n))+{ }^{p} \pi_{i}(S U(2 n) / S p(n)), \\
& { }^{p} \pi_{i}(S U(2 n+1)) \cong{ }^{p} \pi_{i}(S O(2 n+1)) \\
& \quad+{ }^{p} \pi_{i}(S U(2 n+1) / S O(2 n+1)), \\
& { }^{p} \pi_{i}(S O(2 n)) \cong{ }^{p} \pi_{i}(S O(2 n-1))+{ }^{p} \pi_{i}\left(S^{2 n-1}\right), \tag{0.1}\\
& { }^{p} \pi_{i}(S O(2 n+1)) \cong{ }^{p} \pi_{i}(S p(n)),
\end{align*}
$$

where ${ }^{p} \pi_{i}$ stands for a subgroup of the i-th homotopy group π_{i} with an index prime to p and having no q-primary part for $q \neq p$.

Before stating our results we define functions $N(n, k)$ and $N^{\prime}(n$, k) of integers $n, k, 0 \leqq k<p^{2}-1$ for each odd prime p. Let $t=\left[\frac{k}{p-1}\right]$ and $n+k=q-i$, where $q \equiv 0(\bmod p)$ and $1 \leqq i \leq p$, then we define $N(n, k)$ and $N^{\prime}(n, k)$ as follows

$$
N(n, k)=\left\{\begin{array}{lll}
0 & i>t, \\
\min \left(\nu_{p}(q), t-i+1\right) & i \leqq t, \quad t<p, \\
\min \left(\nu_{p}(q)-1, p\right) & i=1, & t=p \\
\min \left(\nu_{p}(q), p-i+2\right) & i \neq 1, p, \quad t=p,
\end{array}\right.
$$

$$
N^{\prime}(n, k)= \begin{cases} \begin{cases}\min \left(\nu_{p}\left(q-p^{2}\right), 2\right) & i=t=p, \\ \nu_{p}((n+k)!)-t+N(n, k) & t<p \text { or } t=p, i=1, \\ \nu_{p}((n+k)!)-p-1+N(n, k) & t=p, i \neq 1,\end{cases} \end{cases}
$$

where $\nu_{p}(x)$ is defined for any non zero rational number x as the exponent of p in the factorization of x into prime powers and we define $\nu_{p}(0)=0$.

Theorem 1. For $0<k<p^{2}-1, k<(n+1)(p-1)$
(0.2) ${ }^{p} \pi_{2 n+2 k-1}(S U(n)) \cong \begin{cases}Z_{p^{N(n, k)}} & k<p^{2}-2 \text { or } n \neq 0(\bmod p) \\ Z_{p^{N(n, k)}}+Z_{p} & k=p^{2}-2, n \equiv 0(\bmod p) .\end{cases}$

For $0 \leqq k<p^{2}-1, k<(n+1)(p-1)-1$

$$
{ }^{p} \pi_{2 n+2 k}(S U(n)) \cong \begin{cases}Z_{p^{N /(n, k)}} & k<p(p-1)-1 \text { or } k=p^{2}-2 \tag{0.3}\\ & \text { or } n+k \equiv-2(\bmod p) \\ Z_{p^{N /(n, k)}}+Z_{p} & p(p-1)-1 \leqq k<p^{2}-2, \\ & n+k \not \equiv-2(\bmod p) .\end{cases}
$$

Theorem 2. Let $2 k<p^{2}-1$, then

$$
\begin{aligned}
& \text { for } k \leqq(n+1)(p-1):{ }^{p} \pi_{4 n+4 k-1}(S p(n))=0 \text {, } \\
& \text { for } k<(n+1)(p-1):{ }^{p} \pi_{4 n+4 k}(S p(n)) \\
& \cong \begin{cases}0 & 2 k<p(p-1) \text { or } n+k \equiv-1(\bmod p) \\
Z_{p} p(p-1) \leqq 2 k, n+k \not \equiv-1(\bmod p),\end{cases} \\
& \text { for } k<(n+1)(p-1):{ }^{{ }^{\phi} \pi_{4 n+4 k+1}}(S p(n)) \cong Z_{p N(2 n+1,2 k)} \text {, } \\
& \text { for } k<(n+1)(p-1):{ }^{\dagger} \pi_{4 n+4 k+2}(S p(n)) \cong Z_{p N^{\prime}(2 n+1,2 k)} \text {. }
\end{aligned}
$$

The most part of this paper is devoted to prove the formula (0.2). In case of $i=1, t<p, H$. Matsunaga [4] proved (0.2) and the idea of our proof is essentially due to [4]. In §1 we shall reduce our problem to the computation of homotopy groups of a stunted complex projective space and a simple complex $X_{n,}^{0, t}$, using Bott periodicity theorem and I. Yokota's cellular decomposition of special unitary groups. Attaching maps of cells of $X_{n}^{0, t}$ are considered in §2, there we shall use the theory of functional Chern character (Toda [9]), or Adams' invariant e_{c} ([1]), in the form of Lemma 2.1 and
in order to calculate the Chern characters in a complex projective space we use Proposition 2.2. (This proposition is proved in the last section.) In §3 we compute the homotopy groups of some elementary complexes and prove (0.2). Then (0.3) and theorem 2 are proved easily in $\S 4$ and in $\S 5$ respectively.

I wish to thank Professor H. Toda for many available suggestions.

§1. Reduction to a simple complex.

At first we consider the following exact sequence;

$$
\begin{aligned}
\pi_{2 n+2 k}(S U(n+k+1)) & \rightarrow \pi_{2 n+2 k}(S U(n+k+1) / S U(n)) \\
& \rightarrow \pi_{2 n+2 k-1}(S U(n)) \xrightarrow{i_{*}} \pi_{2 n+2 k-1}(S U(n+k+1))
\end{aligned}
$$

where $\pi_{2 n+2 k-1}(S U(n+k+1)) \cong Z, \quad \pi_{2 n+2 k}(S U(n+k+1))=0$ by Bott periodicity and $\pi_{2 n+2 k-1}(S U(n))$ is a finite group so i_{*} is zero map. Therefore:

$$
\begin{equation*}
\pi_{2 n+2 k-1}(S U(n)) \cong \pi_{2 n+2 k}(S U(n+k+1) / S U(n)) \tag{1.1}
\end{equation*}
$$

By the cellular decomposition of special unitary groups ([10]), the $(4 \mathrm{n}+3)$-skeleton of $S U(n+k+1) / S U(n)$ has the cell structure of $S(C P(n+k) / C P(n-1))$ where S is the suspension and $C P(i)$ i-dimensional complex projective space. So if n is sufficiently large with respect to $k, \pi_{2 n+2 k-1}(S U(n)) \cong \pi_{2 n+2 k-1}(C P(n+k) / C P(n-1))$. But by I. M. James' following generalized Freudenthal-Serre suspension theorem ([3] Th. 3.2):

$$
\begin{align*}
& { }^{p} \pi_{i}(S U(n+k+1) / S U(n)) \tag{1.2}\\
& \quad \cong{ }^{p} \pi_{i+2 N b_{k+1}}\left(S U\left(n+k+1+N b_{k+1}\right) / S U\left(n+N b_{k+1}\right)\right)
\end{align*}
$$

for $i<2 p(n+1)-3$, where b_{k+1} is the James number and N is an arbitrary natural number, so we have
(1.3). Under the assumption of (0.2) it is sufficient to prove (0.2) for sufficiently large n.

For, taking $N \cdot b_{k+1}$ a multiple of sufficiently large power of p, the
value $N(n, k)$ does not change. In the future, we always assume n sufficiently large then:

$$
{ }^{p} \pi_{2 n+2 k-1}(S U(n)) \cong^{p} \pi_{2 n+2:-1}(C P(n+k) / C P(n-1))
$$

Now we quote the results on stable homotopy groups of spheres ([7] Th. 4.15)

$$
\begin{array}{ll}
{ }^{p} \pi_{N+2 t(p-1)-1}\left(S^{N}\right) \cong Z_{p}=\left\{\alpha_{t}\right\} & 1 \leqq t<p^{2}, t \not \equiv 0(\bmod p), \\
{ }^{\circ} \pi_{N+2 r p(p-1)-1}\left(S^{N}\right) \cong Z_{p}^{2}=\left\{\alpha_{p p}^{\prime}\right\} & 1 \leqq r<p-1, p \cdot \alpha_{r p}^{\prime}=\alpha_{r p}, \\
{ }^{\circ} \pi_{N+2 \rho(p-1)-2}\left(S^{N}\right) \cong Z_{p}=\{\beta\} & \tag{1.4}\\
{ }^{\circ} \pi_{N+2(p+1)(p-1)-3}\left(S^{N}\right) \cong Z_{p}=\left\{\alpha_{1} \cdot \beta^{\prime}\right\} & \beta^{\prime}=S^{2 p-3} \beta, \\
{ }^{\circ} \pi_{N+i}\left(S^{N}\right)=0 \quad i<2(p+1)(p-1) \text { and except above cases, }
\end{array}
$$

where $\alpha_{i}, \alpha_{i p}^{\prime}, \beta$ denotes generators and α_{i} are defined inductively, using the secondary composition, by $\alpha_{i}=\left\{\alpha_{1}, p, \alpha_{i-1}\right\}$.

Let $K=S \cup e_{1} \cup \cdots \cup e_{m}$ be a CW-complex such that $S=S^{N}$ (N : large) and e_{i} are $N+2 i(p-1)$-cells. By use of stable homotopy exact sequences it follows easily from (1.4) the following (1.5).

$$
{ }^{p^{\prime} \pi_{N+j}(K)}\left\{\begin{array}{r}
=0 \text { if } 0<j<2(p+1)(p-1)-3, j \not \equiv-1,0(\bmod \tag{1.5}\\
2(p-1)) \text { and } j \neq 2 p(p-1)-2, \\
\cong Z \text { if } j=2 k(p-1) \text { and } 0 \leqq k \leqq m \leqq p .
\end{array}\right.
$$

Lemma 1.1. Let K be a simply connected finite $C W$-complex and the order of the attaching map of each cell of K (in this paper we identify an attaching map and its homotopy class) be finite then there existe a finite $C W$-conplex K^{\prime} and a cellular map f of K^{\prime} into K satisfying the following conditions:
(i) f induces the \mathcal{C}_{p}-isomarphism $f_{*}: \pi_{i}\left(K^{\prime}\right) \rightarrow \pi_{i}(K)\left(\mathcal{C}_{p}\right.$ is a class of finite abelian groups whose orders are prime to p.)
(ii) The order of the attaching map of each cell of K^{\prime} is a power of p. Especially if the dimension of each cell of K is even that is $K=S^{2 n} \cup \cdots \cup e^{2 k}$ and $n<k, k-n<p^{2}-2$, then by (1.4) K^{\prime} is a one point union of complexes K_{i} and the dimension of each cell of K_{i} equals to $2 i$ modulo $2(p-1), 0 \leqq i \leq p-2$.

Proof. The case $K=S^{m}$ is trivial and we construct the com-
plex K^{\prime} and the map f inductively. Suppose $K=K_{0} \cup_{\gamma} e^{n}$ and the complex K_{0}^{\prime}, the map f_{0} of K_{0}^{\prime} into K_{0} satisfying (i), (ii) are already constructed. If the order of r is $p^{r} q, q \not \equiv 0(\bmod p)$ then $q \cdot \gamma$ $\in^{p} \pi_{n-1}\left(K_{0}\right)$, so there exists $r^{\prime} \in^{p} \pi_{n-1}\left(K_{0}^{\prime}\right)$ such that $f_{0 *}\left(\gamma^{\prime}\right)=q \cdot \gamma$. We define $K^{\prime}=K_{0} \cup{ }_{y}^{\prime} e^{n}, \quad f\left|K_{0}=f_{0}, f\right| e^{n}: e^{n} \rightarrow e^{n}$ a map of degree q. Here we may assume that K has no 1 -cell, then by our construction, K_{0}^{\prime} is simply connected, $f_{0 *}: \pi_{2}\left(K^{\prime}\right) \rightarrow \pi_{2}(K)$ is onto and f induces an isomorphism of the homology mod p. In virtue of Serre's \mathcal{C}-theory [6], K^{\prime} and f clearly satisfy (i), (ii). q.e.d.
$C P(n+k) / C P(n-1)=S^{2 n} \cup e^{2 n+2} \cup \cdots \cup e^{2 n+2 k}$ satisfies the condition of Lemma 1.1 so if $k<p^{2}-2$, it follows from (1.5) that ($C P(n+$ $k) / C P(n-1))^{\prime}$ has the following cell structure up to homotopy type

$$
(C P(n+k) / C P(n-1))^{\prime}=\left[\bigvee_{i=0}^{l} X_{n+i}^{0, t}\right] \bigvee\left[\bigvee_{j=l+1}^{p-2} X_{n+j}^{0, t-1}\right]
$$

where V denotes one point union of complexes, $n+k=n+l+t$ ($p-$ 1), $0 \leqq l \leqq p-2$ and $X_{n+i}^{0, t}=S^{2 n+2 i} \cup e^{2 n+2 i+2(p-1)} \cup \cdots \cup e^{2 n+2 i+2 t(p-1)}$. So by (1.5),

$$
f_{*}:{ }^{p} \pi_{2 n+2 l+2 t(p-1)-1}\left(X_{n+1}^{0, t}\right) \rightarrow^{p} \pi_{2 n+2 k-1}(C P(n+k) / C P(n-1))
$$

is an isomorphism. In the sequel we get the following isomorphisms.
Proposition 1.2. Under the condition of (0.2)

$$
\begin{aligned}
& { }^{p} \pi_{2 n+2 k-1}(S U(n)) \cong{ }^{p} \pi_{2 m+2 l+2 t(p-1)-1}\left(X_{m+1}^{0, t}\right) \\
& { }^{p} \pi_{2 n+2 p^{p}-5}(S U(n)) \cong^{p} \pi_{2 m+2 p^{2}-5}\left(\left(X_{m}^{0, p} \vee X_{m+p-2}^{0, p-1}\right) \cup e^{2 m+2 p^{2-4}}\right)
\end{aligned}
$$

for some large m with $N(n, k)=N(m, k)$.
In computing these groups we may assume $l=0$ and n sufficiently large.

§2. Attaching maps of $X_{n}^{0, t}$.

We shall recall the definition and some properties of the functional Chern character $C H$ ([9] §6), or Adams' invariant e_{c} ([1]), CH is a homomorphism of $\pi_{2 a+2 b-1}\left(S^{2 a}\right)$ into the rational numbers modulo 1: Q / Z, defined as follows. Let γ be any element of $\pi_{2 a+2 b-1}\left(S^{2 a}\right)$,
consider its mapping cone $C_{\gamma}=S^{2 a} \bigcup_{\gamma} e^{2 a+2 b}$ and if ξ is an element of $\widetilde{K}\left(C_{\gamma}\right)$ such that $c h_{a} \xi=S^{2 a}, c h_{a+b} \xi=\lambda \cdot e^{2 a+2 b}$ then we define $C H(\gamma)=$ $\{\lambda\} \in Q / Z$. This does not depend on the choice of ξ. By definition CH is evidently an invariant of double suspension and the following properties are known.
(i) There exists an element α_{1} of ${ }^{p} \pi_{2 N+2 p-3}\left(S^{2 N}\right)$ such that $C H\left(\alpha_{1}\right)=\frac{1}{p} . ~([1]$ Cor. 8.4)
(ii) If $\alpha \in \pi_{2 a-2}\left(S^{2 b-1}\right), \beta \in \pi_{2 b-1}\left(S^{2 c}\right)$ and $\left(q_{\ell}\right) \cdot \alpha=0, \beta \cdot\left(q_{\ell}\right)=0$, $q \in Z$ (e is the homotopy class of the identity map of $S^{2 b-1}$) then

$$
\begin{equation*}
C H\left\{\beta, q_{\ell}, \alpha\right\}= \pm q C H(S \alpha) C H(\beta) \tag{1}
\end{equation*}
$$

Therefore by (1.4) CH($\left.\boldsymbol{\alpha}_{i}\right)= \pm \frac{1}{p}, C H\left(\boldsymbol{\alpha}_{i p}^{\prime}\right)= \pm \frac{1}{p^{2}}$ (replacing the generator $\alpha_{i p}^{\prime}$ if it is necessary) and $C H:{ }^{p} \pi_{2 N+2 k(p-1)-1}\left(S^{2 N}\right) \rightarrow Q / Z$ is injective if $k<p(p-1)$; in other words, in the complex $S^{2 N} \cup_{\gamma}^{2 N+2 i(p-1)}$, $r \in^{p} \pi_{2 N+2 i(p-1)-1}\left(S^{2 N}\right) i<p(p-1), r$ is trivial if and only if $C H(r)=0$.

Let Q_{p} denotes the ring of rational numbers whose denominators are prime to p, and we define a homomorphism $c h_{n}$ of $\widetilde{K}(X) \otimes Q_{p}$ into $H^{2 n}(X: Q)$ by an evident manner, that is for any $\eta=\Sigma a_{i} \xi_{i} \in \widetilde{K}$ $(X) \otimes Q_{\rho}, a_{i} \in Q_{p} \xi_{i} \in \widetilde{K}(X), c h_{n} \eta=\Sigma a_{i} c h_{n} \xi_{i}$. Then the next lemma is a trivial restatement of the above fact.

Lemma 2.1. Let $X=S^{2 N} \bigcup_{\gamma} e^{2 N+2 k(p-1)}, r \in^{p} \pi_{2 N+2 k(p-1)-1}\left(S^{2 N}\right) k<p(p$ $-1)$, and ξ is an element of $K(X) \otimes Q_{p}$ such that $c h_{N} \xi=a \cdot S^{2 N}$, $a \in Z a \neq 0(\bmod p)$, then r is trivial if and only if $\nu_{p}\left(c h_{N+k(p-1) \xi}\right)$ $\geqq 0$. (Here we identify $\lambda \cdot e^{2 N+2 k(\rho-1)} \in H^{2 N+2 k(p-1)}(X ; Q)$ with $\lambda \in Q$; such an identification will be made frequently.)

Let $\widetilde{\xi}$ be the dual bundle to the canonical line bundle over $C P$ (n) and $x \in H^{2}(C P(n) ; Z)$ be the Chern class of $\widetilde{\xi}$ then it is well known that $\widetilde{K}(C P(n))$ (respectively $\widetilde{H}^{*}(C P(n) ; Z)$) is a truncated polynomial ring with the single generator $\xi=\widetilde{\xi}-1(x)$ and a single relation $\xi^{n+1}=0^{\prime}\left(x^{n+1}=0\right)$. The next exact sequence shows that we
can identify $\widetilde{K}(C P(n) / C P(m)), m<n,\left(\widetilde{H}^{*}(C P(n) / C P(m))\right)$ with an ideal in $\widetilde{K}(C P(n))\left(\widetilde{H}^{*}(C P(n))\right)$ generated by $\xi^{m+1}\left(x^{m+1}\right)$.

$$
\begin{aligned}
& 0 \rightarrow \widetilde{K}(C P(n) / C P(m)) \rightarrow \widetilde{K}(C P(n)) \rightarrow \widetilde{K}(C P(m)) \rightarrow 0 \\
& \left(0 \rightarrow \widetilde{H}^{*}(C P(n) / C P(m)) \rightarrow \widetilde{H}^{*}(C P(n)) \rightarrow \widetilde{H}^{*}(C P(m)) \rightarrow 0\right)
\end{aligned}
$$

Obviously $\operatorname{ch} \xi=e^{x}-1$. The following proposition will be proved in § 6.

Proposition 2.2. There exists an element $\eta \in \widetilde{K}(C P(\infty)) \otimes Q_{p}$ such that

$$
\operatorname{ch} \eta^{n} \equiv \sum_{k=0}^{p}\left(-\frac{1}{p}\right)^{k} \frac{n(n+k p-1)!}{k!(n+k p-k)!} x^{n+k(p-1)}\left(\bmod x^{n+p^{2}-1}\right),
$$

that is, $c h_{n} \eta^{n}=x^{n}$ and

$$
\begin{aligned}
& c h_{n+t(p-1)} n^{n+s(p-1)} \\
& \quad=\frac{(n+s(p-1)) \prod_{i=1}^{t-s-1}(n+t(p-1)+i)}{(-1)^{t-s}(t-s)!p^{t-s}} x^{n+t(p-1)}
\end{aligned}
$$

for $0 \leqq t-s \leqq p$.
REMARK. (i) Among the factors of the numerators of the last formula, at most one factor is a multiple of p, since $n+s(p-1)=n$ $+t(p-1)+(s-t) p+t-s$. (ii) In the future we consider η^{n} as an element of $K(C P(m) / C P(n-1)) \otimes Q_{p}, m \geqq n$.

Now let us consider the attaching maps of cells of $X_{n}^{0, t}$, for the simplicity, we denote e_{i} the $(2 n+2 i(p-1))$-cell of $X_{n}^{0, t}$ i. e. $X_{n}^{0, t}=$ $S_{0} \cup e_{1} \cup \cdots \cup e_{t}$ and $X_{n}^{i, j}, 0 \leqq i \leqq j \leqq t$, is the complex obtained from $X_{n}^{0, j}$ smashing the subcomplex $X_{n}^{0, i-1}$ to a point. Le $\gamma_{i} \in^{p} \pi_{2 n+2 i(p-1)}\left(X_{n}^{0, i-1}\right)$ be the attaching map of the cell e_{i} of $X_{n}^{0, i}$ and $\gamma_{i}^{\prime} \in^{p} \pi_{2 n+2 i(p-1)-1}\left(S_{i-l}\right)$, $S_{i-1}=X_{n}^{i-1, i-1}$, the attaching map of e_{i} of $X_{n}^{i-1, i}$, we say γ_{i} is essential (trivial) to e_{i-1} if $\gamma_{i}^{\prime} \neq 0\left(\gamma_{i}^{\prime}=0\right)$. Also we denote $P_{n}^{i, j}$ the stunted complex projective space $C P(n+j(p-1)) / C P(n+i(p-1)-1)$ then the map f induces naturally a map f of $X_{n}^{i, j}$ into $P_{n}^{i, j}, 0 \leqq i \leqq$ $j \leqq t$.

Proposition 2.3. Let $n+t(p-1)=q-i, q \equiv 0(\bmod p), 1 \leq i \leq p$, $t \leqq p$, then in the complex $X_{n}^{j-1, j}=S_{j-1 r_{j}^{\prime}}^{Ч} e_{j}, r_{j}^{\prime}=0$ if and only if
$j=t-i+1$.
Proof. Let us consider the next commutative diagram and let

$$
\begin{aligned}
& \xi=\left(f^{\prime} \otimes 1\right) \eta^{n+(j-1)(p-1)} \in \widetilde{K}\left(X_{n}^{j-1, j}\right) \otimes Q_{p}: \\
& \begin{array}{c}
\widetilde{K}\left(P_{n}^{j-1, j}\right) \otimes Q_{\triangleright} \xrightarrow{f!\otimes 1} \widetilde{K}\left(X_{n}^{j-1, j}\right) \otimes Q_{p} \\
\widetilde{H}^{*}\left(P_{n}^{j-1, j} ; Q\right) \xrightarrow{f^{*}} \widetilde{H}^{*}\left(X_{n}^{j-1, j} ; Q\right),
\end{array}
\end{aligned}
$$

then by construction of f and by Proposition 2.2

$$
\begin{aligned}
c h_{n+(j-1)(p-1)} \xi & =f^{*} c h_{n+(j-1)(p-1) \eta^{n+(j-1)(p-1)}} \\
& =a \cdot S_{j-1} \quad a \in Z, a \neq 0(\bmod p), \\
\nu_{p}\left(c h_{n+j(p-1)} \xi\right) & =\nu_{p}\left(f^{*} c h_{n+j(p-1) \eta^{n+(j-1)(p-1)}}\right) \\
& =\nu_{p}\left(c h_{\left.n+j(p-1) \eta^{n+(j-1)(p-1)}\right)}\right. \\
& =\nu_{p}((n+(j-1)(p-1)) / p) \\
& =\nu_{p}(n+(j-1)(p-1))-1,
\end{aligned}
$$

so by Lemma $2.1 \gamma_{j}^{\prime}=0$ if and only if $n+(j-1)(p-1) \equiv 0(\bmod p)$, and $n+(j-1)(p-1)=q-(t-j+1) p+t+1-i-j$ therefore $r_{j}^{\prime}=0$ if and only if $j=t-i+1$. q. e.d.
(This proposition is also proved easily by using the reduced power operation.)

Proposition 2.4. Under the assumption of Proposition 2.3 let p^{x} be the order of $\gamma_{t} \in^{p} \pi_{2 n+2(p-1)-1}\left(X_{n}^{0, t-1}\right)$ then

$$
x= \begin{cases}\max \left(t-\nu_{p}(q), i-1\right) & t<p, i \leqq t \\ t & i>t, \\ \max \left(p+1-\nu_{p}(q), i-1\right) & t=p, i \neq p \\ \max \left(p+1-\nu_{p}\left(q-p^{2}\right), p-1\right) & t=p, i=p\end{cases}
$$

Proof. Let $X_{\varepsilon}^{0}(\varepsilon=0,1)$ be the complex obtained from $X_{n}^{0, t-1}$ attaching a $(2 n+2 t(p-1))$-cell by the map $p^{x-\varepsilon} \cdot \gamma_{t}$ and we naturally define a map g_{ε} of X_{ε}^{0} into $X_{n}^{0, t}$ that is $g_{\varepsilon} \mid X_{n}^{0, t-1}$ is the identity map and $g_{\varepsilon} \mid e^{2 n+2 t(p-1)}: e^{2 n+2 t(p-1)} \rightarrow e_{t}$ is a map of degree $p^{x-\varepsilon}$. Let $X_{\varepsilon}^{j}(j=0,1,2, \cdots, t-1)$ be the complex obtained from X_{ε}^{0} by smashing the subcomplex $X_{n}^{0, j-1}$ to a point and the map g_{ε} of X_{ε}^{j} into
$X_{n}^{j, t}$ is also defined naturally. Then
(i) for $\varepsilon=1, p^{x-1} \cdot r_{t} \neq 0$, so there exists $j(0 \leqq j \leqq t-1)$ such that the attaching map of the $(2 n+2 t(p-1))$-cell of X_{1}^{0} is reducible to $X_{n}^{0, j}$ but not reducible to $X_{n}^{0, j-1}$; that is X_{1}^{j} contains a subcomplex $X_{1}=S^{2 n+2 j(p-1)} \cup e^{2 n-2 t(p-1)}$ (for the simplicity we denote $X_{1}=S_{j} \cup e_{t}$) and the attaching map of e_{t} is not trivial:
(ii) for $\varepsilon=0, p^{x} \cdot \gamma_{t}=0$, so for any $j(0 \leqq j \leqq t-1)$ the complex X_{0}^{j} contains a subcomplex $X_{0}=S_{j} \cup e_{t}$ a:d the attaching map of e_{t} is trivial.

We shall restate (i) and (ii) using the next commutative diagram and Lemma 2.1, where i_{ε} is the natural inclusion $X_{\varepsilon} \subset X_{\varepsilon}^{0}$.

Let $\xi_{\varepsilon}=\left(i_{\varepsilon}^{!} \otimes 1\right)(g!\otimes 1)(f!\otimes 1) \eta^{n+j(p-1)}$ then by definitions of f, g_{ε} and i_{ε}

$$
\begin{aligned}
& c h_{n+j(p-1)} \xi_{\varepsilon}=i_{\varepsilon}^{*} \cdot g_{\varepsilon}^{*} \cdot f^{*}\left(c h_{n+j(p-1)} \eta^{n+j(p-1)}\right) \\
&=a \cdot S_{j}, \quad a \in Z, a \neq 0(\bmod p), \\
&\left.\nu_{p}\left(c h_{n+t(p-1)}\right)_{\varepsilon}\right)=\nu_{p}\left(i_{\varepsilon}^{*} \cdot g_{\varepsilon}^{*} \cdot f^{*}\left(c h_{n+t(p-1)} \eta^{n+j(p-1)}\right)\right), \\
&=x-\varepsilon+\nu_{p}\left(c h_{n+t(p-1)} \eta^{n+j(p-1)}\right),
\end{aligned}
$$

so by Lemma 2.1.
(i) $\quad 0 \leq{ }^{\mathrm{a}} j \leq t-1, x-1+\nu_{p}\left(c h_{n+t(p-1)} \eta^{n+j(p-1)}\right)<0$,
(ii) $0 \leqq \forall j \leqq t-1, x+\nu_{p}\left(c h_{n+t(\rho-1)} n^{n+j(\rho-1)}\right) \geqq 0$.

Therefore $\left.x=\operatorname{Max}_{0 \leqq j \leq t-1}\left(-\nu_{p}\left(c h_{n+\ell(p-1)}\right) \eta^{n+j(p-1)}\right)\right)$.
By Proposition 2.2

$$
\nu_{p}\left(c h_{\left.n+(p-1) \eta^{n+j(p-1)}\right)}\right) \begin{cases}\nu_{p}(q)-p-1 & t=p, i \neq p, j=0, \\ \nu_{p}\left(q-p^{2}\right)-p-1 & t=i=p, j=0, \\ \nu_{p}(q)-t+j & 0 \leqq j \leqq t-i-1 \text { and }(t, j) \neq(p, 0), \\ \nu_{p}(q-i p)-i & j=t-i, \\ j-t & t-i+1 \leqq j \leqq t-1,\end{cases}
$$

then the proposition is a direct consequence.
q. e. d.

§ 3. Proof of (0.2).

Proposition 3.1. Consider a $C W$-complex $X=S \cup e_{1} \cup e_{2} \cup \ldots \cup e_{m}$ where S is an N-sphere (N large) and $e_{i}(1 \leq i \leqq m)$ are $(N+2 i$ ($p-1$))-cells. Let us assume that the attaching map of e_{i} has an order which is a power of p and is essential to e_{i-1} for any $i(1 \leqq i \leq m)$, then
(i) ${ }^{p} \pi_{N+2 t(p-)-1}(X) \cong Z_{p^{m+1}} \quad 0 \leqq m<t<p$,
(ii) ${ }^{p} \pi_{N+2 p(p-1)-1}(X) \cong Z_{p^{m+2}} \quad 0 \leqq m \leqq p-2$,
(iii) ${ }^{p} \pi_{N+2 \rho(p-1)-1}(X) \cong Z_{p^{p}} \quad m=p-1$,
(iv) in cases of (i), (ii) a map is a generator if and only if it is essential to the $(N+2 m(p-1))$-cell of X.

The proof will be given at the end of this section.
Lemma 3.2. Consider the next exact sequence where G is an abelian group:

$$
0 \rightarrow Z_{p^{j}} \rightarrow G \xrightarrow{\varphi} Z_{p^{i} \rightarrow 0} .
$$

Let γ be an element of G such that $\varphi(\gamma)$ is a generator of $Z_{p^{i}}$ and the order of γ is p^{k} then $G /\{r\} \cong Z_{p^{i+j-k}}$ where $\{r\}$ is the subgroup G generated by r.

Proof. If G has only one generator the lemma is trivial. If G has generators α and β then $\gamma=x \alpha+y \beta$. But $\varphi(\gamma)=x_{\varphi}(\alpha)+y_{\varphi}(\beta)$ is a generator of $Z x \bar{\alpha}$ so we can assume $x \not \equiv 0(\bmod p), x \alpha$ and β generate G, and $x \bar{\alpha}=-y \bar{\beta}(\bar{\lambda}$ denotes the element of $G /\{r\}$ correspoding to $\lambda \in G)$. Therefore $\bar{\beta}$ generates $G /\{r\}$ so considering orders of G and $G /\{r\}$, we get the lemma. q.e.d.

Proof of (0.2). Clearly ${ }^{p} \pi_{2 n+2(p-1)}\left(X_{n}^{0, t}\right)$ is isomorphic with ${ }^{p} \pi_{2 n+2 t(p-1)-1}\left(X_{n}^{0, t-1}\right) /\left\{r_{t}\right\}$.
(i) If $i>t$, by Proposition 2, 3, $X_{n}^{0, t-1}$ satisfies the condition of Proposition 3.1 and γ_{t} is a generator of ${ }^{p} \pi_{2 n+2!(p-1)-1}\left(X_{n}^{0, t-1}\right)$. Therefore ${ }^{\dagger} \pi_{2 n+2 t(\rho-1)-1}\left(X_{n}^{0, t}\right)=0$.
(ii) If $i=1, X_{n}^{0, t-1}$ satisfies the condition of Proposition 3.1 and ${ }^{p} \pi_{2 n+2(\rho-1)-1}\left(X_{n}^{0, t-1}\right)=Z_{p^{t}}$ hence ${ }^{p} \pi_{2 n+2 t(p-1)-1}\left(X_{n}^{0, t}\right)=Z_{p^{\prime}-x}$ for $t \leqq p$.
(iii) If $1<i \leqq t, X_{n}^{0, t-i}$ and $X_{n}^{t-i+1, t-1}$ satisfy the condition of Proposition 3.1. Consider the stable homotopy exact sequence of the pair $\left(X_{n}^{0, t-1}, X_{n}^{0, t-i}\right)$:

$$
\begin{aligned}
& { }^{p} \pi_{2 n+2 t(p-1)}\left(X_{n}^{t-i+1, t-1}\right) \rightarrow{ }^{p} \pi_{2 n+2(p-1)-1}\left(X_{n}^{0, t-i}\right) \\
& \quad \rightarrow{ }^{p} \pi_{2 n+2 t(p-1)-1}\left(X_{n}^{0, t-1}\right) \xrightarrow{j_{*} p} \pi_{2 n+2 t(p-1)-1}\left(X_{n}^{t-i+1, t-1}\right) .
\end{aligned}
$$

By (1.5) the first group of this sequence is 0 and, by Proposition 2.3 and Proposition 3.1, (iv), $j_{*}\left(\gamma_{t}\right)$ is a generator of ${ }^{p} \pi_{2 n+2(p-1)-1}$ ($X_{n}^{t-i+1, t-1}$). Further ${ }^{\rho} \pi_{2 n+2(p-1)-1}\left(X_{n}^{0, t-i}\right) \cong Z_{p^{t-i+1}}$ for $t<p,{ }^{p} \pi_{2 n+2 \rho(p-1)-1}$ $\left(X_{n}^{0, p-i}\right) \cong Z_{p^{p-i+2}}$, and ${ }^{p} \pi_{2 n+2(p-1)-1}\left(X_{n}^{t-i+1, t-1}\right) \cong Z_{p^{i-1}}$ for $t \leqq p$. Therefore by Lemma $3.2{ }^{p} \pi_{2 n+2(\rho-1)-1}\left(X_{n}^{0, t}\right) \cong Z_{t^{t-x}}$ for $t<p$ and ${ }^{p} \pi_{2 n+2(p-1)-1}$ $\left(X_{n}^{0, p}\right) \cong Z_{p^{p+1-x}}$.

Let $k<p^{2}-2$. By Proposition 1.2,

$$
{ }^{\rho} \pi_{2 n+2 k-1}(S U(n)) \cong{ }^{p} \pi_{2(n-1)+2(p-1)-1}\left(X_{n^{\prime}+t}^{0, t}\right) \cong \begin{cases}Z_{p^{t-x}} & \text { for } t<p \\ Z_{p^{p+1-x}} & \text { for } t=p\end{cases}
$$

where $n+k=n+l+t(p-1), 0 \leqq l \leqq p-2$ and x is given by Proposition 2.4 for $q-i=(n+l)+t(p-1)=n+k$. By definition of $N(n, k)$, we have $N(n, k)=t-x$ or $=p+1-x$ for $t<p$ or $t=p$ respectively. Thus (0.2) is proved for $k<p^{2}-2$.

When $k=p^{2}-2$ let us consider the complex $\left(X_{n}^{0, p} \vee X_{n+p-2}^{0, p-1}\right)_{\gamma}^{\cup} e^{2 n+2 p^{2-4}}$. As remarked in §1 we assume n sufficiently large, so ${ }^{p} \pi_{2 n+2 p^{2}-5}\left(X_{n}^{0, p} \vee\right.$ $\left.X_{n+p-2}^{0, p-1}\right) \cong{ }^{p} \pi_{2 n+2 p^{2}-5}\left(X_{n}^{0, \phi}\right)+{ }^{p} \pi_{2 n+2 p^{2}-5}\left(X_{n+p-2}^{0, p-1}\right)$ therefore we can consider that r is a sum of the attaching map r_{p} of $\left(2 n+2 p^{2}-4\right)$-cell of $X_{n+p-2}^{0, p}$ and an element of ${ }^{p} \pi_{2 n+2 \rho^{2}-5}\left(X_{n}^{0, p}\right)$.

Lemma 3.3.

$$
{ }^{p} \pi_{2 n+2 p^{2}-5}\left(X_{n}^{0, p}\right) \cong \begin{cases}0 & n \not \equiv 0(\bmod p) \\ Z_{p} & n \equiv 0(\bmod p) .\end{cases}
$$

Proof. Consider the exact sequence:
${ }^{p} \pi_{2 n+2 p^{2}-4}\left(X_{n}^{2, p}\right) \rightarrow{ }^{p} \pi_{2 n+2 p^{2}-5}\left(X_{n}^{0,1}\right) \rightarrow{ }^{p} \pi_{2 n+2 p^{2}-5}\left(X_{n}^{0, p}\right) \rightarrow{ }^{p} \pi_{2 n+2 p^{2}-5}\left(X_{n}^{2, p}\right)$
where ${ }^{\rho} \pi_{2 n+2 p^{2}-4}\left(X_{n}^{2, p}\right) \cong{ }^{\rho} \pi_{2 n+2 p^{2}-5}\left(X_{n}^{2, p}\right)=0$ by (1.5), therefore

$$
{ }^{p} \pi_{2 n+2 p^{2}-5}\left(X_{n}^{0, p}\right) \cong \cong^{p} \pi_{2 n+2 p^{2}-5}\left(X_{n}^{0,1}\right) \cong \cong^{p} \pi_{2 n+2 p^{2}-5}\left(S_{\gamma}^{2 n} \bigcup^{2 n+2(p-1)}\right),
$$

As the proof of Proposition 2.3 shows, $\gamma_{1}=0$ if and only if $n \equiv 0$ $(\bmod p)$ and in this case

$$
{ }^{p} \pi_{2 n+2 p^{2}-5}\left(X^{0,1}\right) \cong{ }^{\phi} \pi_{2 n+2 p^{2}-5}\left(S^{2 n} \backslash S^{2 n+2(p-1)}\right) \cong Z_{t} .
$$

When $n \not \equiv 0(\bmod p)$ we can assume $\gamma_{1}=\alpha_{1}$ and we denote $X_{n}^{0,1}=S \cup_{\alpha_{1}} e$. Let E be a $(2 n+2 p-2)$-cell, ∂E its boundary and $x:(E, \partial E) \rightarrow\left(S \bigcup_{\alpha_{1}} e\right.$, $S)$ the characteristic map of $(2 n+2 p-2)$-cell of $X_{n}^{0,1}$. Let us consider the commutative diagramm:

$$
\begin{gathered}
{ }^{p} \pi_{2 n+2 p^{2}-4}\left(S_{\alpha_{1}}^{\cup} e, s\right) \xrightarrow{\partial}{ }^{p} \pi_{2 n+2 p^{2}-5}(S) \rightarrow{ }^{p} \pi_{2 n+2 p^{2}-5}\left(S \cup \alpha_{\alpha_{1}}^{\cup} e\right) \rightarrow 0 \\
\uparrow x_{*} \quad \uparrow(\chi \mid \partial E)_{*} \\
{ }^{p} \pi_{2 n+2 p^{2}-4}(E, \partial E) \rightarrow{ }^{p} \pi_{2 n+2 p^{2}-5}(\partial E)
\end{gathered}
$$

where the low is exact, $(\chi \mid \partial E)_{*}=\alpha_{1 *}$ and ${ }^{\phi} \pi_{2 n+2 \rho^{2}-4}\left(S \cup_{\alpha_{1}}^{\cup} e, S\right) \cong^{\phi} \pi_{2 n+2 \rho^{2}-4}$ $\left(S^{2 n+2 p-2}\right) \cong Z_{p}=\{\beta\}$, therefore $\partial(\beta)=\alpha_{1} \beta$ and ∂ is an isomorphism. This proves the lemma. q.e.d.

Now let us turn to the proof of (0.2).
(i) If $n \not \equiv 0(\bmod p)$, by lemma $3.3{ }^{p} \pi_{2 n+2 p^{2}-5}\left(\left(X_{n}^{0, p} \vee X_{n+p-2}^{0, p-1}\right) U_{\gamma}\right.$ $\left.e^{2 n+2 p^{2}-4}\right) \cong^{p} \pi_{2 n+2 p^{2}-5}\left(X_{n+p-2}^{0, p}\right)$ so the problem is reduced to the case $k<$ $p^{2}-2$.
(ii) If $n \equiv 0(\bmod p), n+p^{2}-2 \equiv-2(\bmod p)$, so by Proposition 2. $3 X_{n+p-2}^{0, p-2}$ satisfies the condition of Proposition 3.1, and the next exact sequences show that ${ }^{p} \pi_{2 n+2 p^{2}-5}\left(X_{n+p-1}^{0, p-1}\right) \cong Z_{p^{p}}+Z_{p}$ (we denote n^{\prime} $=n+p-2$ and e_{i} the $\left(2 n^{\prime}+2 i(p-1)\right)$-cell of $X_{n, p-1}^{0, p-1}$.).

$$
\begin{aligned}
& { }^{p} \pi_{2 n+^{\prime} 2 \not 2(p-1)}\left(S_{p-2} \vee S_{p-1}\right) \rightarrow^{p} \pi_{2 n^{\prime}+2 \phi(p-1)-1}\left(X_{r^{\prime}}^{0, p-3}\right) \rightarrow^{\phi} \pi_{2 n^{\prime}+2 \phi(p-1)-1}\left(X_{n^{\prime}}^{0, p-1}\right) \text {, } \\
& \rightarrow^{\ominus} \pi_{2 n^{\prime}+2 \rho(p-1)-1}\left(S_{p-2} \vee S_{p-1}\right) .
\end{aligned}
$$

In fact left hand sides of these sequences are zero, ${ }^{p} \pi_{2 n^{\prime}+2 t(p-1)-1}\left(X_{n, 1}^{0, p-2}\right)$ $\cong Z_{p^{p}}, j_{*}\left(\gamma_{p}\right)=r_{p}^{\prime} \neq 0$ so j_{*} is surjective, and ${ }^{\rho} \pi_{2 n^{\prime}+2(p-1)}\left(S_{p-2} \vee S_{p-1}\right) \cong$ $Z_{p}+Z_{p}$.

Therefore ${ }^{p} \pi_{2 n+2 p^{2}-5}\left(X_{n}^{0, p} \vee X_{n+p-15}^{\substack{0, p-1}} \underset{\substack{p \\ n+p}}{\substack{ \\p^{p}}} Z_{p}\right.$. Let λ, μ, ν be ge-
nerators, then $\gamma=\lambda+p^{p-x} \mu+\nu$ or $\gamma=\lambda+p^{p-x} \mu$ and in any case:

$$
\begin{aligned}
{ }^{p} \pi_{2 n+2 p^{2}-5}\left(\left(X_{n}^{0, p} \vee X_{n+p-2}^{0, p-1}\right) \cup \gamma e^{2 n+2 p^{2-4}}\right) & \cong{ }^{\phi} \pi_{2 \eta+2 p^{2}-s}\left(X_{n}^{0, p} \vee X_{n+p-2}^{0, p-1}\right) /\{r\} \\
& \cong Z_{p^{p-x+1}}+Z_{p} .
\end{aligned}
$$

Thus by Proposition 2.4 and the definition of $N(n, k)$, (0.2) is proved for $k=p^{2}-2$.

Proof of Proposition 3.1.
Proof of (iv). Let us consider the exact sequence:

$$
\begin{aligned}
{ }^{p} \pi_{N+2:(t-1)}\left(S_{m}\right) & \rightarrow{ }^{p} \pi_{N+2:(p-1)-1}\left(S \cup e_{1} \cup \cdots \cup e_{m-1}\right) \\
& \xrightarrow{p_{i}} \pi_{N+2:(\rho-1)-1}\left(S \cup e_{1} \cup \cdots \cup e_{m}\right) \xrightarrow{j_{*} p} \pi_{N+2(p-1)-1}\left(S_{m}\right)
\end{aligned}
$$

where ${ }^{p} \pi_{N+2:(p-1)}\left(S_{m}\right)=0$, so if (i) and (ii) hold and if γ and γ^{\prime} are generators of ${ }^{\triangleright} \pi_{N+2:(p-1)-1}\left(S \cup e_{1} \cup \cdots \cup e_{m-1}\right)$ and ${ }^{\rho} \pi_{N+2(p-1)-1}\left(S \cup e_{1} \cup \cdots \cup e_{m}\right)$ respectively, then $i_{*}(r)=a p \cdot r^{\prime}, a \neq 0(\bmod p)$, and $j_{*}\left(r^{\prime}\right) \neq 0$ that is r^{\prime} is essential to the $(N+2 m(p-1))$-cell of $S \cup e_{1} \cup \cdots \cup e_{m}$. And the converse is trivial.

Proof of (i) (special case). Let N be a suitably large integer such that $N+t(p-1)=q-p, t<p, q \equiv 0(\bmod p)$, and consider the complex $X_{N}^{0, t}$. By Proposition 2.3, $X_{N}^{0, i}(0 \leq i \leq t)$ satisfy the condition of Proposition 3.1 and an easy exact sequence argument shows inductively that the order of ${ }^{p} \pi_{2 N+2(p-1)-1}\left(X_{N}^{0 . i}\right)$ equals to p^{i+1} for $0 \leqq i<t$. But by Proposition 2.4 the order of γ_{t} equals to p^{t}, hence ${ }^{p} \pi_{2 n+2!(p-1)-1}\left(X_{N}^{0, t-1}\right) \cong Z_{p^{\prime}}$.

When $m<t-1$ let us consider the following exact sequence:

$$
\begin{aligned}
{ }^{p} \pi_{2 N+2 t(p-1)}\left(X_{N}^{m+1, t-1}\right) & \rightarrow{ }^{p} \pi_{2 N+2 t(p-1)-1}\left(X_{N}^{0, m^{\prime}}\right) \\
& \rightarrow{ }^{p} \pi_{2 N+2 t(p-1)-1}\left(X_{N}^{0, t-1}\right) \xrightarrow{j_{*} p} \pi_{2 N+2 t(p-1)-1}\left(X_{N}^{m+1, t-1}\right)
\end{aligned}
$$

where ${ }^{p} \pi_{2 n+2 t(p-1)}\left(X_{N}^{0 . t-1}\right)=0,{ }^{p} \pi_{2 N+2(p-1)-1}\left(X_{N}^{0, t-1}\right) \cong Z_{p^{t},}{ }^{p} \pi_{2 N+2 t(\rho-1)-1}\left(X_{N}^{m+1,}\right.$ $\left.{ }^{t-1}\right) \cong Z_{p^{t-m-1}}$, and by (iv) $j_{*}\left(\gamma_{t}\right)$ is a generator, so j_{*} is surjective. Therefore ${ }^{p} \pi_{2 M+2 t(p-1)-1}\left(X_{N}^{0, m}\right) \cong Z_{\rho^{m+1}}$.

Proof of (ii) (special case.) Let N be a suitably large integer such that $N+p(p-1)=q-1, \nu_{p}(q)=1$ and consider the com-
lpex $X_{N}^{0, p}$. By Proposition 2.3, $\gamma^{\prime}=0$ so we can consider γ_{p} as an element of ${ }^{p} \pi_{2 N+2(p-1)-1}\left(X_{N}^{0, p-2}\right)$. By the same argument as (i) the order of ${ }^{p} \pi_{2 N+2 \ell(p-1)-1}\left(X_{N}^{0, p-2}\right)$ is at most p^{p}. But by Proposition 2.4, the order of γ_{p} is p^{p}, so ${ }^{p} \pi_{2 n+2 \rho(p-1)-1}\left(X_{N}^{0 . p-2}\right) \cong Z_{p^{p}}$. When $m<p-2$, (ii) holds by the same argument as the case (i).

Proof of (i), (ii) (general case). Let $X=S \cup e_{1} \cdots \cup e_{m}$ be a complex satisfying the condition of the proposition. By iterating suspensions we can assume the dimension of S is equal to $2 N$ where N is an integer considered above (note that we can take such an integer N arbitrarily large). The attaching map of e_{m} generates ${ }^{p} \pi_{2 N+2 m(\rho-1)-1}\left(X^{m-1}\right), \quad X^{m-1}=S \cup e_{1} \cup \cdots \cup e_{m-1}, \quad$ provided $\quad{ }^{p} \pi_{i}\left(X^{m-1}\right) \cong{ }^{p} \pi_{i}$ $\left(X_{N}^{0, m-1}\right)$. Then it is easy to construct inductively a map f of $X_{N}^{0, m}$ into X which induces a C_{ρ}-isomorphism $f_{*}: \pi_{i}\left(X_{N}^{0, m}\right) \rightarrow \pi_{i}(X), i \geqq 0$. This shows that the general case is reduced to the special one.

Proof of (iii). Let $X=S \cup e_{1} \cdots \cup e_{p-1}$ be a complex satisfying the condition of the proposition. To prove (iii) it is sufficient to prove that j_{*} is trivial in the exact sequence:

If there exists an element $\gamma \in^{\phi} \pi_{N+2 \rho(\phi-1)}(X)$ such that $j_{*}(\gamma) \neq 0$. Then, in the cohomology group $H^{*}\left(X \bigcup_{\gamma} e^{N+2 p(p-1)} ; Z_{p}\right), \mathcal{P}^{1}\left(e_{p-1}\right) \neq 0$ but by the condition of Proposition 3.1 $\mathscr{P}^{p-1}(S) \neq 0$, therefore $\mathscr{P}^{1} \mathcal{P}^{p-1}(S) \neq 0$ which contradicts to Adem's relation.

§4. Proof of (0.3).

Lemma 4.1. For $k<(n+1)(p-1)-1$

$$
{ }^{p} \pi_{2 n+2 k+1}(S U(n+k+1) / S U(n)) \cong\left\{\begin{array}{l}
Z+Z_{p} \quad \begin{array}{l}
p(p-1) \leq k<p^{2}-2 \\
\text { and } n+k \neq-2(\bmod p) \\
Z \quad \begin{array}{l}
k \leq p^{2}-2 \text { and except } \\
\text { above cases. }
\end{array}
\end{array}, ~
\end{array}\right.
$$

The proof will be given later in this section.
Let us consider the following commutative diagram:

$$
\begin{aligned}
& \begin{array}{l}
\rightarrow \pi_{2 n+2 k}(S U(n)) \rightarrow \pi_{2 n+2 k}(S U(n+k+1)) \\
\rightarrow \pi_{2 n+2 k}(S U(n+k)) \rightarrow \pi_{2 n+2 k}(S U(n+k+1))
\end{array}
\end{aligned}
$$

where lows are exact and by Bott periodicity theorem $\pi_{2 n+2 k+1}(S U(n+$ $k+1)) \cong Z, \pi_{2 n+2 k}(S U(n+k+1))=0$, so, when ${ }^{p} \pi_{2 n+2 k+1}(S U(n+k+1)$ $/ S U(n)) \cong Z$, to prove (0.3) it is sufficient to know the degree of $p_{1 *}$. But by the theorem of Borel-Hirzebruch $\pi_{2 n+2 k}(S U(n+k)) \cong$ $Z_{(n+k)!}$ (e. g. [8]), the degree of $p_{2 *}$ is $(n+k)$! so it is sufficient to know the degree of p_{*}. Now consider the following commutative diagram:

where $k<p^{2}-2$, lows are exact and vertical arrows are \mathcal{C}_{p}-isomorphisms. Clearly $\partial(\imath)=\gamma_{t}$ so the degree of p_{*} is equal to a product of the order of γ_{t} and an integer/ prime to p. (The case $k=p^{2}-2$ follows similarly.) Therefore

$$
{ }^{p} \pi_{2 n+2 k}(S U(n)) \cong Z_{p^{N^{\prime}}} \quad N^{\prime}=\nu_{p}((n+k)!)-x .
$$

When ${ }^{p} \pi_{2 n+2 k-1}(S U(n+k+1) / S U(n)) \cong Z+Z_{p}$, i. e. when $p(p-1)$ $\leqq k<p^{2}-2$ and $n+k \not \equiv-2(\bmod p),{ }^{p} \pi_{2 n+2 k}(S U(n)) \cong Z_{p^{N /}}+Z_{p}$ or $Z_{p^{N /+1}}$ corresponding to whether the image of $p_{1 *}$ is contained or not contained in a complement of Z_{p} in ${ }^{p} \pi_{2 n+2 k+1}(S U(n+k+1) / S U(n))$. But as will be shown in the last of the next section, ${ }^{p} \pi_{2 n+2 k}(S U(n))$ has a direct summand Z_{p} or $Z_{p^{N^{\prime}}}$ hence ${ }^{p} \pi_{2 n+2 k}(S U(n)) \cong Z_{p^{N^{\prime}}}+Z_{p^{\prime}}$. By Proposition 2.4 and the definition of $N^{\prime}(n, k)$ this proves the formula (0.3).

Proof of Lemma 4.1. As in §1, by the theorem of James ([3]), if $k<(n+1)(p-1)-1$ we can assume n sufficiently large and by the cellular decomposition of special unitary groups, ${ }^{p} \pi_{2 n+2 k+1}$ $(S U(n+k+1) / S U(n)) \cong{ }^{p} \pi_{2 n+2 k}(C P(n+k) / C P(n-1))$ so the case $k<$ $p(p-1)-1$ the lemma follows easily from (1.4). When $p(p-1)$ $-1 \leq k<p^{2}-2$ we get, by use of the reduction in $\S 1$,

$$
\begin{aligned}
{ }^{p} \pi_{2 n+2 k}(C P(n+k) / C P(n-1)) & \cong{ }^{\rho} \pi_{2 n+2 k}\left(S^{2 n} \cup e^{2 n+2} \cup \cdots \cup e^{2 n+2 k}\right) \\
& \cong Z+{ }^{\circ} \pi_{2 n^{\prime}+2 \rho(p-1)-2}\left(X_{n,}^{0, p-1}\right),
\end{aligned}
$$

where $n+k=n^{\prime}+p(p-1)-1$. To compute ${ }^{p} \pi_{2 n^{\prime}+2 p(p-1)-2}\left(X_{n}^{0, p-1}\right)$ we consider the next exact sequence:

$$
\begin{aligned}
& { }^{p} \pi_{2 n^{\prime}+2 \rho(p-1)-1}\left(X_{n, p-1}^{0, p-1}\right) \xrightarrow{j_{*}} \pi_{2 n^{\prime}+2 \alpha(p-1)-1}\left(X_{n^{\prime}}^{1, p-1}\right) \rightarrow{ }^{\circ} \pi_{2 n^{\prime}+2 \rho(p-1)-2}\left(S^{2 n^{\prime}}\right) \\
& \rightarrow{ }^{p} \pi_{2 n^{\prime}+2 \rho(p-1)-2}\left(X_{n,}^{0, p-1}\right) \rightarrow^{\phi} \pi_{2 n^{\prime}+2 \rho(p-1)-2}\left(X_{n \prime}^{1, p-1}\right) \text {, }
\end{aligned}
$$

where by (1.4) and (1.5) ${ }^{p} \pi_{2 n^{\prime}+2 f(p-1)-2}\left(X_{n \prime}^{1, t-1}\right)=0$ and ${ }^{p} \pi_{2 n^{\prime}+2 \phi(p-1)-2}\left(S^{2 n^{\prime}}\right)$ $\cong Z_{p}$ so ${ }^{p} \pi_{2 n^{\prime}+2 \rho(p-1)-2}\left(X_{n}^{0, p-1}\right) \cong Z_{p}$ or 0 , if j_{*} is surjective or not surjective respevtively. If $\gamma_{1}=0$ then by Proposition 3.1 and 2.3 , for γ_{p} $\in^{p} \pi_{2 n^{\prime}+2 \rho(p-1)-1}\left(X_{n}^{0, p-1}\right), j_{*}\left(\gamma_{p}\right)$ is a generator of ${ }^{p} \pi_{2 n^{\prime}+2 p(p-1)-1}\left(X_{n \prime}^{1, p-1}\right)$ hence j_{*} is surjective. If $\gamma_{p}^{\prime}=0$ then the proof of Proposition 3.1 (iii) shows that a generator of ${ }^{p} \pi_{2 n^{\prime}+2 \phi(p-1)-1}\left(X_{n,}^{0, p-1}\right)$ is a map which is essential to the $(2 n+2(p-2)(p-1))$-cell of $X_{n, p-1}^{0, p}$ therefore j_{*} is not surjective. When $\gamma_{j}^{\prime}=0,1<j<p$, let us consider the following commutative diagram:

where lows are exact. By Proposition 2.3 and 3.1 , (iv) $j_{1 *}$ is surjective and $j_{2 *}$ is also surjective for $j_{2 *}\left(\gamma_{\rho}\right)$ is a generator of ${ }^{\rho} \pi_{2 n^{\prime}+2(\beta-1)-2}$ ($X_{n,}^{j, p-1}$), therefore j_{*} is surjective. In the sequel ${ }^{p} \pi_{2 n^{\prime}+2 p(p-1)-2}\left(X_{n,}^{0, p-1}\right)$ $\cong 0$ or Z_{p} corresponding to whether γ_{p}^{\prime} is zero or not zero. But by Proposition $2.3 r_{p}^{\prime}=0$ if and only if $n^{\prime}+p(p-1) \equiv-1(\bmod p)$ that is if and only if $n+k \equiv-2(\bmod p)$. This proves the lemma for $k<p^{2}-2$.

In case of $k=p^{2}-2$, it is easily seen that ${ }^{p} \pi_{2 n+2 p^{2}-4}\left(C P\left(n+p^{2}-2\right)\right.$ $/ C P(n-1)) \cong Z+{ }^{p} \pi_{2 n+2 p^{2}-4}\left(X_{n}^{0, p}\right)$ but the second term vanishes. In fact the proof of Lemma 3.3 shows that in the exact sequence:

$$
0 \rightarrow{ }^{p} \pi_{2 n+2 p^{2}-4}\left(X_{n}^{0, p}\right) \rightarrow^{p} \pi_{2 n+2 p^{2}-4}\left(X_{n}^{1, p}\right) \xrightarrow{\partial}{ }^{p} \pi_{2 n+2 p^{2}-5}\left(S^{2 n}\right)
$$

∂_{\sim}° is an isomorphism if $n \not \equiv 0(\bmod p)$ and in this case ${ }^{p} \pi_{2 n+2 p^{2}-4}\left(X_{n}^{0, p}\right)$ $=0$, if $n \equiv 0(\bmod p)$ then $n+p^{2}-2 \equiv-2(\bmod p)$ so ${ }^{p} \pi_{2 n+2 p^{2}-4}\left(X_{n}^{1, p}\right)$ $=0$ and ${ }^{p} \pi_{2 n+2 p^{2}-4}\left(X_{n}^{0, p}\right)=0$. q. e. d.

§ 5. Proof of Theorem 2.

As in §1 we shall reduce the problem to the computation of homotopy groups of Stiefel manifolds. By the theorem of James ([3] Th. 3.2):

$$
\begin{array}{r}
{ }^{p} \pi_{i}(S p(n+k) / S p(n)) \cong{ }^{\phi} \pi_{i+4 N c_{k}}\left(S p\left(n+k+N c_{k}\right) / S p\left(n+N c_{k}\right)\right) \\
\text { for } i<4 p(n+1)-3,
\end{array}
$$

we always assume, under the assumption of Theorem $2, n$ sufficiently large.

By the cellular decomposition of symplectic groups ([10]), the $(8 \mathrm{n}+9)$-skeleton of $S p(n+k+1) / S p(n)$ has the cell structure $S^{4 n+3} \cup$ $e^{4 n+7} \cup \cdots \cup e^{4(n+k)+3}$ and the map $i^{*}: H^{4 n+4 i+3}(S U(2 n+2 k+2) / S U(2 n+1))$ $\rightarrow H^{4 n+4 i+3}(S p(n+k+1) / S p(n))$ induced from the natural injection i : $S p(n+k+1) / S p(n) \rightarrow S U(2 n+2 k+2) / S U(2 n+1)$ has the degree ± 1. Let $X=S^{4 n+2} \cup e^{4 n+6} \cup \cdots \cup e^{4(n+k)+2}$ be a complex such that $S X=(S p(n+$ $k+1) / S p(n))^{8 n+9}$, where S denotes the suspension and $(K)^{i}$ denotes the i-skeleton of K, and $\left(X^{\prime}, f^{\prime}\right)$ be a complex and a map of X^{\prime} into X constructed by Lemma 1.1. Then if $2 k<(p+1)(p-1), X^{\prime}$ has the following cell structure.

$$
\begin{aligned}
X^{\prime}= & {\left[\bigvee_{i=0}^{l} X_{2 n+2 i+1}^{\prime 0, t}\right] \bigvee\left[\begin{array}{l}
{\left[\frac{p-2}{2}\right]} \\
\bigcup_{j=1+1}
\end{array} X_{2 n+2 j+1}^{0, t-1}\right] } \\
& X_{2 n+2 i+1}^{\prime 0, t}=S^{4 n+4 i+2} \cup e^{4 n+4 i+2+2(p-1)} \cup \cdots \cup e^{4 n+4 i+2+2(p-1)} .
\end{aligned}
$$

Let $i^{\prime}: X \rightarrow C P(2 n+2 k+1) / C P(2 n)$ be a map such that $S i^{\prime}=$ $i \mid S X$ then clearly $\nu_{p}(x)=\nu_{p}\left(f^{\prime *} \cdot i^{\prime *}(x)\right)$ for $x \in H^{4 n+4 i+2}(C P(2 n+2 k+$
1)/CP(2n): Q) $0 \leq i \leq k$, thus if we replace, in the arguments of $\S 2$, $C P(n+k) / C P(n-1), X_{n}^{0, t}$ and η by $X, X_{2 n+1}^{\prime 0, t}$ and $i^{\prime}(\eta)$ respectively then we can easily see that the attaching maps of $X_{2 n+1}^{\prime 0, t}$ are quite similar to that of $X_{2 n+1}^{0, t}$. So Theorem 2 is virtually a corollary of Theorem 1.

Consider the following exact sequence:

$$
\begin{aligned}
&{ }^{p} \pi_{4 n+i}(S p(\infty)) \rightarrow{ }^{\phi} \pi_{4 n+i}(S p(\infty) / S p(n)) \rightarrow^{p} \pi_{\pi_{n+i-1}}(S p(n)) \\
& \xrightarrow{i_{*}} \pi_{4 n+i-1} \\
&(S p(\infty)),
\end{aligned}
$$

where by Bott periodicity theorem ${ }^{p} \pi_{4 n+i}(S p(\infty))=0 \quad i \neq 4 k+3$ and i_{*} is trivial for $i \geqq 1$. Therefore:

$$
{ }^{p} \pi_{4 n+i-1}(S p(n)) \cong{ }^{p} \pi_{4 n+i}(S p(\infty) / S p(n)) \quad i \neq 4 k+3, i \geqq 1 .
$$

Case 1. $\quad i=4 k . \quad \mathrm{By}(1.5)$

$$
{ }^{p} \pi_{4 n+4 k}(S p(\infty) / S p(n)) \cong{ }^{p} \pi_{4 n+4 k}\left(S^{4 n+3} \cup e^{4 n+7} \cup \cdots \cup e^{4(n+k)+3}\right)=0 .
$$

Case 2. $\quad i=4 k+2$.

$$
\begin{aligned}
{ }^{p} \pi_{4 n+4 k+2}(S p(\infty) & / S p(n)) \cong{ }^{p} \pi_{4 n+4 k+2}\left(S^{4 n+3} \cup e^{4 n+7} \cup \cdots \cup e^{4(n+k)+3}\right) \\
& \cong{ }^{p} \pi_{2(2 n+1+2 l)}\left(X_{{ }_{2 n+1+2 l}, t}^{0, t}\right) 2 k=2 l+t(p-1), t=\left[\frac{2 k}{p-1}\right] \\
& \cong Z_{p^{N(2 n+1,2 k)}}
\end{aligned}
$$

Case 3. $i=4 k+1$

$$
\begin{aligned}
&{ }^{p} \pi_{4 n+4 k+1}(S p(\infty) / S p(n)) \cong{ }^{p} \pi_{4 n+4 k+1}\left(S^{4 n+3} \cup e^{4 n+7} \cup \cdots \cup e^{4(n+k)+3}\right) \\
& \cong \begin{cases}0 & 2 k<p(p-1), \\
{ }_{\pi_{2(2 n+1+2 l)+2 p(p-1)-2}}\left(X_{2 n+2 l+1}^{\prime, p}\right) & 2 k=2 l+p(p-1),\end{cases}
\end{aligned}
$$

where ${ }^{p} \pi_{4 n+4 k}\left(X_{2 n+2 l+1}^{\prime 0, p}\right)=0$ if $n-k \equiv-1(\bmod p)$ and ${ }^{p} \pi_{4 n+4 k}\left(X_{2 n+2 l+1}^{\prime 0, p}\right) \cong$ Z_{p} if $n+k \not \equiv-1(\bmod p)$ by the same argument as the proof of Lemma 4. 1.

Case 4. $i=4 k+3$ Consider the commutative diagram:
where $\pi_{4 n+4 k+3}(S p(n+k+1)) \cong Z$ and $\pi_{4 n+4 k+2}(S p(n+k)) \cong Z_{(2 n+2 k+1)!}, n+$
k : even, $\pi_{4 n+4 k+2}(S p(n+k)) \cong Z_{2(2 n+2 k+1)!}, n+k$: odd (e.g. [5]), so the degree of $p_{2 *}$ is $(2 n+2 k+1)$! or $2(2 n+2 k+1)!$. Moreover ${ }^{p} \pi_{4 n+4 k+3}$ $(S p(n+k+1) / S p(n)) \cong Z$ by (1.5) and the proof of (0.3) shows that the degree of p_{*} is the product of $p^{x(2 n+1,2 k)}$ and an integer prime to p. Therefore

$$
{ }^{p} \pi_{4 n+4 k+2}(S p(n)) \cong Z_{p^{N^{\prime}}} \quad N^{\prime}=\nu_{p}((2 n+2 k+1)!)-x(2 n+1,2 k) .
$$

By Proposition 2.4 and the definition of $N^{\prime}(n, k)$ this proves Theorem 2.

Now let us show that ${ }^{p} \pi_{2 n+2 k}(S U(n)), p(p-1) \leq k<p^{2}-2 n+$ $k \equiv \equiv-2(\bmod p)$, has the direct summand Z_{p} or $Z_{p^{N /}}$. By the theorem of Harris (0.1), ${ }^{p} \pi_{i}(S p(n))$ is a direct summand of ${ }^{p} \pi_{i}(S U(2 n))$ and ${ }^{p} \pi_{i}(S U(2 n+1))$ so by Case $3,{ }^{p} \pi_{4 n+4 k}(S U(2 n))$ and ${ }^{p} \pi_{2(2 n+1)+2(2 k-1)}$ ($S U(2 n+1)$) have the direct summand Z_{p} in case of the question. By Case $4,{ }^{p} \pi_{2(2 n+1)+4 k}(S U(2 n+1))$ has the direct summand $Z_{p^{N /(2 n+1,2 n)}}$ $+1,2 k)$ and the exact sequence

$$
{ }^{p} \pi_{4 n+2(2 k+1)}(S U(2 n)) \rightarrow{ }^{p} \pi_{2(2 n+1)+4 k}(S U(2 n+1)) \rightarrow^{p} \pi_{4 n+4 k+2}\left(S^{4 n+1}\right)
$$

shows that if ${ }^{p} \pi_{2(2 n+1)+4 k}(S U(2 n+1))$ splits then ${ }^{p} \pi_{4 n+2(2 k+1)}(S U(2 n))$ splits in fact ${ }^{p} \pi_{4 n+4 k+2}\left(S^{4 n+1}\right)=0$ for $2 k+1<p^{2}-2$ and the direct summand comes from ${ }^{p} \pi_{2(2 n+1)+4 k}(S p(n))$. This completes the proof of (0.3).

§6. Proof of Proposition 2.2.

To prove Proposition 2.2 it is sufficient to show the following assertions.

Assertion 1. Let $a_{i}(i=1,2, \cdots)$ be rational numbers such that

$$
\sum_{i=1}^{\infty} a_{i}\left(e^{x}-1\right)^{i}=\sum_{k=0}^{\infty}\left(-\frac{1}{p}\right)^{k} \frac{(k p)!}{k!(k p-k+1)!} x^{k p-k+1}
$$

then the denominators of a_{i} are prime to p for $i<p^{2}$.
$\left(\right.$ Remark. $\left.\quad a_{p^{2}} \equiv 1 / p^{2}\left(\bmod Q_{p}\right), a_{i} \in Q_{p}, \quad p^{2}<i<p^{2}+p\right)$

Assertion 2.

$$
\begin{aligned}
\left(\sum_{i=0}^{\infty}\left(-\frac{1}{p}\right)^{i}\right. & \left.\frac{(i p)!}{i!(i p-i+1)!} x^{i p-i+1}\right)^{n} \\
& =\sum_{k=0}^{\infty}\left(-\frac{1}{p}\right)^{k}-n(n+k p-1)! \\
k!(n+k p-k)! & x^{k(p-1)+n} .
\end{aligned}
$$

Lemma A. Let $y=e^{x}-1$ and $f(y)$ be a formal power series with coefficient Q_{p} :

$$
f(y)=\sum_{\substack{n \neq 0(f) \\ n>0}} \frac{(-1)^{n+1}}{n} y^{n}
$$

Then there exists a formal power series $a(y)=b_{p+1} y^{p+1}+b_{p+2} y^{p+2}$ $+\cdots$ such that $b_{p+1} \in Q_{p}$ for $i<p^{2}-p$, more precisely $a(y) \equiv \sum_{n=1}^{\infty}$ $\frac{(1)^{n+1}}{n p^{2}} y^{n p^{2}} \bmod Q_{p}(y)$, and satisfies the relation:

$$
x=f+\frac{1}{p}\left(f^{p}+p a\right)
$$

Proof.

$$
\begin{aligned}
f^{p} & =\left(y-\frac{y^{2}}{2}+\cdots-\frac{y^{p-1}}{p-1}-\frac{y^{p+1}}{p+1}+\cdots\right)^{p} \\
& =\sum_{\substack{n \neq 0(p) \\
n>0}}(-1)^{n-1}-\frac{y^{n p}}{n^{p}}+p h(y) \quad \text { (multinomial expansion) }
\end{aligned}
$$

where $h(y)=* y^{p+1}+* y^{p+2}+\cdots$ is a power series of $y, \frac{y^{2}}{2}, \cdots, \frac{y^{k}}{k}$, $\cdots(k \not \equiv 0(\bmod p))$ with integer coefficients. Let $g(y)=\sum_{n=1}^{\infty} \frac{(-1)^{n p+1}}{n p} y^{n p}$ that is $x=\log (1+y)=f(y)+g(y)$, then for $n \neq 0(\bmod p)$ there exists integers c_{n} such that $n^{p-1}=p c_{n}+1$ and:

$$
\frac{1}{p} \frac{y^{n p}}{n^{p}}-\frac{y^{n p}}{n p}=\frac{y^{n p}}{n^{p} p}\left(1-n^{t-1}\right)=-\frac{c_{n}}{n^{p}} y^{n p}
$$

therefore if we set $a(y)=g-\frac{f^{p}}{p}=\sum_{\substack{n \neq 0(p) \\ n<1}}(-1)^{n+1} \frac{c_{n}}{n^{p}} y^{n p}+\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n p^{2}}$ $y^{n p^{2}}-h(y)$ the lemma is proved.

Lemma B. By the substitution $x=f+\frac{1}{p}\left(f^{p}+p a\right)$ we get

$$
\sum_{k=0}^{\infty}\left(-\frac{1}{p}\right)^{k} \frac{(k p)!}{k!(k p-k+1)!} x^{k p-k+1}=f+a+\sum_{\substack{i>0 \\ i p j \sum i}} \alpha_{i j} f^{i p-j} a^{j-i+1}
$$

where $\alpha_{i j} \in Q_{p}$ for $1 \leq j-i+1<p, i<p+1$.
Proof.

$$
\begin{aligned}
x^{k p+k+1} & =\sum_{\alpha=0}^{k p-k+1} \frac{1}{p^{\alpha}}\binom{k p-k+1}{\alpha} f^{k p-k+1-\alpha}\left(\sum_{\beta=0}^{\alpha} p^{\beta}\binom{\alpha}{\beta} f^{p(\alpha-\beta)} a^{\beta}\right) \\
& =\sum_{\alpha=0}^{k p-k+1} \sum_{\beta=0}^{\alpha} \frac{1}{p^{\alpha-\beta}}\binom{k p-k+1}{\alpha}\binom{\alpha}{\beta} f^{(k+\alpha-\beta) p+1-k-\alpha} a^{\beta} .
\end{aligned}
$$

We put $i=k+\alpha-\beta, j=k+\alpha-1$ then $\alpha=j-k+1, \beta=j-i+1$ and

$$
x^{k p-k+1}=\sum_{j=k-1}^{k p} \sum_{i=k}^{j+1} \frac{1}{p^{i-k}}\binom{k p-k+1}{j-k+1}\binom{j-k+1}{j-i+1} f^{i p-j} a^{j-i+1} .
$$

Now $x=f+\frac{f^{p}}{p}+a$,

$$
-\frac{1}{p} x^{p}=-\frac{f^{p}}{p}-\frac{f^{2 p-1}}{p}-f^{p-1} a-\cdots-\frac{a^{p}}{p}
$$

hence $\sum_{k=0}^{\infty}\left(-\frac{1}{p}\right) \frac{(k p)!}{k!(k p-k+1)!} x^{k p-k+1}=\sum_{\substack{i \geq 0 \\ i p \geq j \geq i-1}} \alpha_{i j} f^{i p-j} a^{j-i+1}$, where $\alpha_{0,-1}$ $=\alpha_{0,0}=1$ and for $i \geqq 1$,

$$
\begin{aligned}
& \alpha_{i j}=\sum_{k=1}^{i} \frac{(-1)^{k}(k p)}{p^{i} k(k p-k+1)}\binom{k p-k+1}{j-k+1}\binom{j-k+1}{j-i+1} \\
= & \frac{1}{p^{i-1}} \sum_{k=1}^{i} \frac{(-1)^{k}(k p-1)!(k p-k+1)!(j-k+1)!}{(k-1)!(k p-k+1)!(j-k+1)!(k p-j)!(j-i+1)!(i-k)!} \\
= & \frac{1}{p^{i-1}(j-i+1)!} \sum_{k=1}^{i} \frac{(-1)^{k}(k p-1)!}{(k p-j)!(k-1)!(i-k)!} \\
= & \frac{1}{p^{i-1}(j-i+1)!(i-1)!} \sum_{k=1}^{i}(-1)^{k}(k p-1)(k p-2) \cdots(k p-j+1)\binom{i-1}{k-1} .
\end{aligned}
$$

Now let α_{r} be the coefficient of x^{r} in $(x-1)(x-2) \cdots(x-j+1)$ then:

$$
\begin{aligned}
& \sum_{k=1}^{i}(-1)^{k}(k p-1)(k p-2) \cdots(k p-j+1)\binom{i-1}{k-1} \\
& \quad=\sum_{k=1}^{i}(-1)^{k} \sum_{r=0}^{j-1} \alpha_{r} k^{r} p^{r}\binom{i-1}{k-1}=\sum_{r=0}^{j-1} \alpha_{r} p^{r} \sum_{k=1}^{i}(-1)^{k} k^{r}\binom{i-1}{k-1} .
\end{aligned}
$$

By considering the r-th derivative of $\left(1-e^{t}\right)^{n}=\Sigma(-1)^{k}\binom{n}{k} e^{k t}$ at $t=$ 0 , it is easily shown that $\sum_{k=0}^{n}(-1)^{k} k^{k}\binom{n}{k}=0$ for $r<n$. Therefore
$\sum_{k=1}^{i}(-1)^{k} k^{r}\binom{i-1}{k-1}$ vanishes for $r<i-1$ and

$$
\alpha_{i j}=\frac{1}{(j-i+1)!(i-1)!} \sum_{r=j-1}^{j-1} \alpha_{r} p^{r-i+1} \sum_{k=1}^{i}(-1)^{k} k^{r}\binom{i-1}{k-1}
$$

hence $\alpha_{i j}=0$ for $j-i<0$ and the denominators of $\alpha_{i j}$ are prime to p for $j-i+1<p, i-1<p$.

Proof of Assertion 1. By Lemma A the coefficient of y^{r} in $f^{i p-j} a^{j-i+1}, i p-j>0$, is zero for $r<i p-j+(j-i+1)(p+1)=(j-i$ $+1) p+(i-1)(p-1)+p$, so by Lemma B the denominators of the coefficients of y^{r} in $\alpha_{i j} f^{i p-j} a^{j-i+1}$ is prime to p for $r<p^{2}+p$ and one in a is same for $r<p^{2}$. Thus Assertion 1 is proved.

Proof of Assertion 2. Let us define $b_{n, k}(n, k \geqq 0)$ as folldws

$$
\begin{aligned}
& b_{0,0}=1 \\
& b_{n, k}=\frac{n(n+k p-1)!}{k!(n+k p-k)!} \quad(n, k) \neq(0,0)
\end{aligned}
$$

then $b_{n+1, k}-b_{n, k}=b_{n+p, k-1}(k \geqq 1)$, since

$$
\begin{aligned}
b_{n+1, k}-b_{n, k} & =\frac{(n+1)(n+k p)!}{k!(n+k p-k+1)!}-\frac{n(n+k p-1)!}{k!(n+k p-k)!} \\
& =\frac{\{(n+1)(n+k p)-n(n+k p-k+1)\}(n+k p-1)!}{k!(n+k p-k+1)!} \\
& =\frac{k(n+p)(n+k p-1)!}{k!(n+k p-k+1)!}=b_{n+p, k-1} .
\end{aligned}
$$

Next we will show that $b_{n+1, k}=\sum_{i=0}^{k} b_{n, i} b_{1, k-i}$.
We prove the formula by induction on n and k. The cases $k=0$ or $n=0$ are trivial and

$$
\begin{aligned}
b_{n+1, k} & =b_{n, k}+b_{n+p, k-1} \\
& =\sum_{i=0}^{k} b_{n-1, i} b_{1, k-i}+\sum_{j=0}^{k-1} b_{n+p-1, j} b_{1, k-j-1} \\
& =b_{n-1,0} b_{1, k}+\sum_{i=1}^{k} b_{n-1, i} b_{1, k-1}+\sum_{j=0}^{k-1}\left(b_{n, j+1}-b_{n-1, j+1}\right) b_{1, k-(j+1)} \\
& =b_{n, 0} b_{1, k}+\sum_{j=0}^{k-1} b_{n, j+1} b_{1, k-(j+1)} \\
& =\sum_{i=0}^{k} b_{n, i} b_{1, k-1} .
\end{aligned}
$$

Therefore $\sum_{k \geq 0} b_{n+1, k} x^{k}=\left(\sum_{i \geq 0} b_{n, i} x^{i}\right)\left(\sum_{j \geq 0} b_{1, j} x^{j}\right)$ which implies the formula $\left(\sum_{l \geq 0} b_{1, i} x^{i}\right)^{n}=\sum_{k \geq 0} b_{n, k} x^{k}$ inductively, and Assertion 2 follows immediately.

REFERENCES

[1] J. F. Adams: On the groups J(X)-IV, Topology 5 (1966), 21-71.
[2] B. Harris: On the homotopy groups of classical groups, Ann. of Math. 74 (1961), 407-413.
[3] I. M. James: Cross-sections of Stiefel manifolds, Proc. Lodon Math. Soc. 8 (1958), 536-547.
[4] H. Matsunaga: Unstable homotopy groups of unitary groups, Osaka J. Math. 1 (1964), 15-24.
[5] M. Mimura and H. Toda: Homotopy groups of symplectic groups, J. Math. Kyoto Univ. 3 (1964), 251-273.
[6] J. P. Serre: Groupes d'homotopie et classes des groupes abéliens, Ann. of Math. 58 (1953), 258-294.
[7] H. Toda: p-primary components of homotopy groups-IV, Mem. Coll. Sci. Univ. Kyoto, 32 (1959), 297-332.
[8] -: A topological proof of the theorems of Bott and Borel-Hirzebruch for homotopy groups of unitary groups, ibid. 32 (1959), 103-119.
[9] : A survey of homotopy theory, (Japanese) Sugaku 15 (1964), 141-155.
[10] I. Yokota: On the homology of classical Lie groups, J. Inst. Polytech. Osaka City Univ. Ser. A, 8 (1957), 93-120.

