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Introduction

The purpose o f this paper is to show the existence and the
uniqueness o f a  M arkov process corresponding to the operator
A f(x)—  a(x) f  B f ( x ) ,  where B  is the infinitesinal generator of
1-dimensional symmetric Cauchy process and a  is  a  bounded
measurable function. I f  a  is Lipschitz continuous, this problem
can be solved a s  a  particular case o f the general theory of
stochastic integral equations due to K . Ito . The difficulty arises
i f  a  is not Lipschitz continuous. In  this paper, by making use
of the method initiated by D. W. Stroock and S. R. S. Varadhan
[1 3 ], we shall solve the above problem when a  is a measurable
function which lie s  in  a  sufficiently small neighborhood (with
respect t o  the supremum norm) of a constant function. The
problem has important meaning in the so-called boundary problems
of diffusion processes since the process corresponding to A
becomes the Markov process on the boundary o f  a  Brownian
motion with an oblique reflection on the upper half plane. As
for the IvIarkov process on the boundary of diffusion processes
and its role in the boundary problems of diffusion processes, we
refer to M. M otoo [8], K. Sato-T. U eno [11] and N. Ikeda [2 ].

Now we summarize the content o f  this paper. In  § 1, we
prepare the notations and some preliminary facts. I n  § 2, we
construct the operator K , such that Kx(X/— A ) = / .  Formally, Kx

is expressed as
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where 7. ,,f(x)= a(x)  d Gx f (x ) and G,, is the resolvent operator of
dx

the Cauchy process, i. e., Gx =(x/— B ) .  The above expression is
justified in § 2. In § 3, following [13], the problem is formulated
as a martingale problem, i. e., a  problem to find a  probability
measure on a function space such that a certain functional will
be a martingale. In  §4 , t h e  uniqueness of solutions of the
martingale problem is proved, while the existence of solution is
shown in § 5. In  § 6, we collect all the previous results to get
the main theorem that there exists a unique Markov process cor-
responding to A  i f  a  lies in  some neighborhood of a constant
function. Some supplements are given in § 7.
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§ 1 .  Notations and preliminaries

In this paper we are mainly concerned with the symmetric
Cauchy process on the real line R .  First o f all let us racall the
definitions and some properties of the process. It is a spatially
homogeneous Markov process on R  with the transition function

P ( t , x , E )= p(t, x— y)dy , where p(1, x)- 1  t  
27 1 '  

for 1 > 0  and
t 2 + X

x e R .  The corresponding semigroup given by II, f (x )—  r.sf(x  +y)

p(t, y )dy , is  a  strongly continuous on C O( R ) ' and if B  is  the
infinitesimal generator o f  {H}, then its domain contains Cl(R) 2 )

and for f eC i(R ), B f (x )=S -  [f (x +y )—  f (x )  f (x )]  dY . Let
1 + y2n y 2

1) Co (R )  is  the space of continuous functions on R  tending to 0 at infinity.

2) C Z (R ) is the space o f C " functions on R with compact supports.



O n a sm all drif t of  Cauchy  processes 477

G ,f(s, x )= se - ii f ( t , y )p ( t— s , x — y )d y d t. It is the resolvent of

the space-time Cauchy process. When f (s, x )=f (x ), G,,f (s, x )
-.. G ,f (x )=V * e- '4 11,f (x )dt and it is the resolvent o f {lit}' 0

The following facts are verified easily.

Proposition 1. 1. (1) For each p  in  1 <p so o , GA  is  a bounded
1operator on L p (E)(L p (R))3) w ith  the norm liGx lip S—
x

.

(ii) For each t>0,

1  1 1  (1.1) sup I Htf(x)1
7r 1

lifilp4) f o r  a l l  f e L p (R),
'ER 11+

Prov ided 1<p, q<00 an d  1 +- 1 - .1 .
P  q

(iii) Fo r each p  i n  1 <P<0 0 , th e re  is  a constant C„. p  depending
only on p  and X such that

(1.2) sup I Gxf(x) I I fi Ip f o r all f E L p (R)

and GA  is a  bounded operator from L(R) to C„(R). 5)

§ 2. Construction of ICA

First we shall state some lemmas which lean upon a funda-
mental theorem o f B. F. Jones [5 ]  and D. W. Stroock—S. R. S.
Varadhan [13].

Lemma 2. 1. Set G*g(t, x )= . —  s , x — y )g ( s , y )d y d s  for

g E C Z (E ). T hen, f or each p  in  1<P<00 , there is a  constant B p

(depending only on p )  such that

3) E - 10, ocs,s<R , L ( E )  (re sp . L p (R ) )  is  t h e  L ,-sp a c e  with respect to the
Lebesgue measure o n  E (re sp . R).

4) : f , 10- -- (  _ I f ( x ) 1 P dx) 1" .

5 )  q (R )  is  th e  space o f  bounded functions on R  which have bounded con-

tinuous derivatives up to m -th  order. C°,(R)=Cb(f?).



478 Masaaki Tsuchiya

(2. 1) IID G *R 11_.<B p lIg lip f o r  all geC Z (E ), 6 )

aw here D=—  (spatial derivative).
ax

tP ro o f. Let u s  set k (t, x )= — p(t, x)= — 2  x  ow =  t
ax 7r. (12+ x2)2'

and t1(x)= — 2 X  ,  then all conditions of B. F. Jones' theorem
7/. (1+ x 2 )2

[5] pp. 443-444 are satisfied. Hence, the statement follows at
once. Q. E. D.

Lemma 2. 2. Fo r f E C Z (E ), l e t  u s  s e t  h = G , f .  T hen for
each p  in  i<p<00, there  is  a  constant A p  depending only  on p
(independent o f  x )  such that

(2.2)I l D h i l p_<Apilf f o r all f EC Z (E).

and

(2.3)I jD /z I I ^ AflfIIf o r  all f e C l ( R ) .

P ro o f. W e can define Gf(s, x)= M p(t— s, x — y )f (t, y )dy dt

for f e C ( E )  and show that Gf(s, x )=1im  G,f (s, x )EC;(E). There-
A /O

fore, using the resolvent equation,

h(s, x) = p(1—s, x—y)[f(t, y)— xh(t, y)]dyilt

for f E C ;( E ) .  Let us set u= f  — x h. Then for gECZ(E),

I = g(s, x)Dh(s, x)dxds = Dg(s, x)h(s, x)dxds0 — 0 —

= Dg(s, x)[ p(t — s, x — y)u(t, y)dydt]dxds_-

- u(t, y)[
0

—s, x—y)Dg(s, x )dx ds]dy dt —

0
u(1, y)DG*g(t, y)dydt

6) C Z ( E )  is  the space o f C ° ' functions on E  with compact supports.

7) F o r  a  function f  on  E (resp. 1?), f denotes the norm o f f  in L ( E )
(resp. L (R ) ) .
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Hence from Holder's inequality, it follows that

II ^BqIIuIIpIIgiIq,

provided 1<p, q<00, —

1  
+ —

1
= 1 .  Therefore,p  q

2/3911f

Setting A p = 2B ,, w e have (2. 2). ( 2 .  3 )  can be proved similarly
by setting f(s, x)= f(x)e  for feC I(R ). Q.E.D.

We define the operator T  as follows:

T x f (x ) = B )G ,f(x ) =  a (x ) d
d
x G ,f(x ) for fE C Z (R ).

Then for each p in  i<p<co,

(2.4) II ."

Therefore, we can uniquely extend Tx to  b e  a  bounded operator
on L o(R).

Now we will put the following assumption on a.

Assumption (p): IlallAp<1.

If a  is  a  measurable function on R  satisfying the ASSUMP-
TION (p) for some p, 1<p<00, we define the operator KX as
follows:

(2. 5) K x = Gx (I— ,

which is a  bounded operator on L p(R ) and from (1.2) and (2.3)
w e have a t  once the following

Proposition 2. 2. K ,  i s  a  bounded operator from  L ( R )  to
Cb(R ) and

C X p 
sup  K x f  ( x ) I f o r all fE Lp (R ).

8 ) l f jj sup,If(x)1.
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§ 3. Martingale problem and stochatic integral equation

Let S-2=D([0, 00)-.R ) be the space o f right continuous func-
tions having the left-hand limit at each t>0 with Skorohod
topology. The space 12 is a  Polish space. We denote generic
element o f n by w and w (t)=x (t, (0 )=x (t). g , is the smallest cr-

algebra with respect to which x(s, w) are measurable for 0<s< t
and g=9 - ..=  V  if,.

t O

W e w ill say that a  probability measure P  on (n, g )  is  a
solution of the martingale problem fo r  A  starting from x ,  if
1[x(0)=x]=1 and

(3. 1) Xe(t) exp [i0 (x (t)-x (0 ))-i0K a (x (s ))ds

- t (ea' " -  1  - 
iOu d u ] t > 0 ,

1- u 'l

is a P-martingale for all O ER, and also that P  is a solution of
the stochastic integral equation fo r  A starting from x, i f  there
is a Cauchy process w i t h  respect to  P (j. e ., P [(0 )= 0 ]= 1  and

E [ e " " " - " " l g  3 ] =  exp [ ( t - s )

such that

(3.2)x ( t )  x + K a ( x ( s ) ) d s + W )

(e,9„ 02le ) 7dr i14121(t > S))

.t
=  x+ ci(x(s))ds uq(ds, du)+ up(ds, du) ,

0 luis, 0 1.!> ,

where p, q  are random measures appearing in tne Lévy-Ito de-
1composition of (t ), [cf. 3, 4, 12] and ei(x)=-a(x)+
_Sittisi1+u2

1 f. i (
•

it,i>11+u'

Proposition 3. 1. The following statements a re  equivalent:

( i )  P  i s  a  solution o f  the martingale problem for A  starting

from  x.

9 )  If (Xe(t), R ) is a martingale, then we call that Xe(t) is a P  martingale.



O n a sm all drif t o f  Cauchy Processes 481

(ii) P  is  a solution of  the stochastic equation for A  starting from
X.

P ro o f. The implication " (i)- .( ii)"  is clear since i f  we set

(t)=x (t)-x -Ç a(x (s))ds, then “ t )  is  a Cauchy process with

respect to  P .  Now we shall prove "(ii)--(i)" Let us set y(t)
1= -  log X e(t)=

0

u q ( d s ,  d u ) - r tu p ( d s ,  d u ) - [ (eiPu -1
1,,1 110 1.1>,

- i0u) 
d

-
u

2

( e 1 "  -  1 ) —
d u

]  and F (x )= e 1 . Then using the
7r/i 1.1>i T U

2

formula of H . K unita and S. Watanabe [ 5 ]  on the stochastic
integral,

1
X 0(t ) = F(y(t))

0

[F ( y ( s ) - ru ) -  F ( y ( s ) ]q ( d s ,  du)

is a  P-martingale. Q. E. D.
It should be noticed that Stroock-Varadhan's Theorem ([13]

Theorem 3 .1 , p. 356) is valid in our case, and their theorem is
used to prove the Markov property of the solution of the mar-
t ingaleproblem.

§ 4 .  Uniqueness of the solution of the stochastic integral
equation

In this section, it is assumed that a  is a measurable function
satisfying the ASSUMPTION ( p )  for some p ,  l< P< co , and this
p  is fixed. The following Lemma is essential to show the uni-
queness of the solution, which is similar to the corresponding
Lemma 5 .1  of Stroock-Varadhan [13].

Lemma 4 . 1 .  L et xo e R  be an  arbitrary  but f ixed point, P  be
any solution o f  the  m artingale problem f o r A  starting  f rom  xo ,

an d  se t  p,,,(f ) =  e - x t  f ( x ( t ) ) d t ]  f o r each bounded measurable0
function f  and x > 0 .  Then, Ax ( f )  is given as

p,j ( f )  =  . f ( x )g , (x )d x

by som e non-negative integrable function  g ( x )  such that  g ( x )
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E L g (R )") and

C,
I to.(f)1 ilp f o r a ll f E  L p (R) .

Proo f. In  th e  preceding section, we see that x (t) satisfies
the equation

x(t) = x0 +1: a(x(s))ds +

= x o + d (x (s))d s uq(ds, du)+ up(ds, du).losi 0 101>i

Let 41„(s) be defined as  follows ;

k
2k"

for < s < - -  k=0, ±1, ±n2"
2" — 2"

(M s) = n f o  s>n
— (n+ 1) for s<— n

Then, there exist a subsequence { n'}  and a point se e[0, 1] satis-
fying the following condition: if  we define

(4. 1) = x 0 +  a(x(4)„, (t — so )+ so pds + ,0

then x„, (t) , x (t) in  probability as  n'— co for each t 0.(*) There-
fore,

urn E [f ( x „ , ( t ) ) d t ]  =  E [ o e - À: f(x(t))dt]

for any bounded continuous function f ( x ) .  This means
for every f e C o (R ) (n'—.00), where we denote

p r ) ( f )  =  E [  e - xt f(x,e(tpdt] .. 0

Applying the formula of H. Kunita and S. Watanabe [6 ] on the
stochastic integrals to (4.1). we have

10)

( 0 )  T h is  will be proved in 7 (1°).
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f(x „, (t)) = f(x,)+ a(x(¢ , (s — so) + sa) f'(x „, (s))ds
0

r  r

+ 0 )  1 0 1 , Ef(x„ , (s)+ u)—f(x. , (s))i q(ds, du)

id  _du
f (x .'(s)+ it) — f(x. , (s)) — f/(x. , (s)) u

+ 13 i n i > , [f (x „, (s) + u)— f(x„, (s))]p(ds, du)

for any f C ( R ) .  M ultiplying both sides by xe - '4 ,  integrating
from 0 to co and taking the expectation with respect to  P, we
have

pr'DI Bfi = .f(x0)+ a(x(4),;(s — so) + s0)).nx ./(t)) dt] .

If we choose f =Gx h where h  belongs to C2(R), then

(4. 2) te ) (h -r hail g ' (  I DG), h I ) •

On the other hand, ti,Z1')  is  a  bounded linear functional on L p (R)
for each n4 " ) •  Therefore from (4.2) and (2.3), it follows that

CA p

where 1)tr'l I p  is the norm  of the bounded linear functional AZI')

on L p (R). Since pr ')--.Ax fo r every f E C b(R ) when n' 0  ,

CA p
I PA( f )  

for a ll feC,(R)n L p (R ). Therefore, we can extend ,ax I c b(R )n
L p (R) to  b e  a  bounded linear functional Tbx  o n  L p (R), where
ILA  C b (R )n L p (R), is the restriction of px to the subset Cb (R )n L p (R).
Hence there exists a  function gx o f L,(R) such that

Tx( f) = f(x)gx (x)dx

for all f E L I,(R ) .  On the other hand, J A  is defined by a  bounded

m easu re  on R ; f  ) =  f ( x )  A x (dx), fe C h(R) a n d  thus,

( " )  T h is  will be proved in  *7  (2 ').
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f(x) 14(d x) = f (x )g x (x )d x  for any fE C b (RI)n L p ( R ) .  There-

fore, grÀ  is non-negative and integrable with respect to the Lebesgue
measure d x .  Thus, lix (dx)= gA (x )dx  and

C  p

I PA( f )1 1 _  • for all f E L p (R).
Q. E. D.

Lemma 4. 2. L et P  be the sam e as in  Lemma 4. 1. Then,

f )  =  I f x f  (x 0) f o r a ll fE L  p (R) .

Proo f. Applying the formula on the stochastic integral to
(3. 2) and  using th e  same calculation o f Lemma 4. 1, we have

iiALXf — B f  = f (x 0)+
0

 a ( x ( s ) ) r( x ( s ) ) d s ] and hence if f = Gx h,

h E C Z (R ), w e  h a v e  p„),(h)=f(xo) + pA (T x h). Thus, ,L À (g)=f(x0)
=G A (1 — g ( x „ ) =  f ), g(x o ) f o r  g= (I — Tx) h , h E C ;( R ) .  Hence,
by Lemma 4. 1, IL),(f ) = - Kxf(x0 ) for a l l  f E L p (R). Q. E. D.

§ 5. Existence

Assume that a  is a  measurable function satisfying ASSUMP-
TION (p) for some p  (1<p<0.0) . Then, there exists a  sequence
{a„} such that every a„ belongs to cg(R), and a ,i (x)
—..a(x) in LNa—.00)." )  We consider the sequence of the following
equations on some probability space ( W, Q):

X ( t)  = x 0 +
0

 a„(X „(s))ds +v(t) ,

where ?(t) is a Cauchy process on ( W, Q ) .  Since X„ satisfies the
following conditions
(1) for every T <

lim sup Q[ sup I X,,(s)I >k] =05,  ST

(2) for every T< co and E>O,

I I )  I f  a, --. a  in L ( I )  ( n ., ) fo r  any fin ite interval I, then it is denoted as
a” - - a  in  1.),°'(11 - 0 , )
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lim sup Q[te",„,(a)>E]=0' ,
8 ;o  I G n ‹ , ,

from a result of Skorohod [12] (cf. DJ [9]) it follows that there
exists a  sequence o f  processes {(X„, ii„)} on a probability space
(W, 0) such that finite dimensional distributions of the processes
(X„, 4,,) and (X„, n) coincide and (g„, ii„) converges in probability
to a certain limit (X„, ;1 ) whose trajectrie_s belong to D([0,00)--R)
and they satisfy the following equations :

„(t) xo Ço a (t„ (s))d s-i-ii„ (t), n= 1 ,2 , ••• .

We can show that

D a„(-X- „(s))ds-> fe a (go (s ))d s  in probability ( n - ,-0.0)

fo r each t>0, using the similar arguments as Krylov ([7] pp.
344-345). In fact, we have

1(n) =  0[Ç t
o a n (g „ ( s ) )d s  - t

o a (g,(s))d s!>  El

__,Q[ g
o x,.(X0(s))1 a(X)(s))— a N (ff„(s))I ds> 3

E-1

- 0 [  {a Ag e(s))— a N ( I n(s))). dsr
i —3

6

Q[S.:X I ( „(s)) I a N (g„(s))— a„( (s))I ds

- OE sup  ig0(s)1 sup OE sup I X„(s)1 >1] ,
os,s, 1 < o o

where r < l  and X(x) is the indicator function of the set ( -b , b ).
On the other hand, using the same argument as in Lemma 4. 1,
we can prove the following iequalities

rt pEL ) I fan(S ))1 !flip

for fE L 0 (12) and n=0, 1, 2, • where E[• ]  denotes the expectation
with respect to Q. Therefore,

1 2 ) Sec [1 ]  fo r  the definition of w'.
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1(n) (-) [1ro ta,(go(s)) —  a, (g.(s))). ds i
l >

3  em
1— ila 4iiAp (ION — all.,+

+  
E 

+ sup (4 sup I X,s(s) I ._.1]+ 0[ sup I go(s) I ,
is”<— os,s,

where

I lp,b b g(x)I Pds)vP

Therefore, )U 0  satisfies the following equation ;

g o(t) = x o + a(go(spds+0
Thus we have the following

Proposition 5 . 1 .  L e t a be a  m easurable function satisfy ing
the A ssumption (p ) f o r some p (1 < p< 0 0 ). Then there is a solution
of  the m artingale problem.

§ 6. Main theorem

Theorem 6 . 1 .  L et a be a  measurable function satisfying the
A ssumption (p )  f o r some p ,  i< p < 0 0 . Then the m artingale Pro-
blem  has unique solution Px. f o r each starting Point x .  Moreover,
(Px ) is a strong Feller process which satisfies the following equation;

re
(6. 1) Tt,f(x)—f(x) =  TsAf(x)ds" )

0
f o r each t and fe cg(R).

Proof. From Lemma 4.2 it follows that P(t, x , dy)=Px (x(t)
e dy ) is uniquely determined. Therefore, (Px )  becomes a  strong
Markov process(*** )  and consequently Px  is uniquely determined.
The formula (6. 1) is verified from (3. 2) using the formula on
the stochastic integral. Q .  E .  D .

Remark 6 . 1 .  I f  the function a  satisfies the same condition

1 3 )  T i f (x )=Elf (x (t)).].
(***) A  proof is given in  § 7  (3 ` ) .
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as in  th e above Theorem, then positive strongly continuous
contraction semigroup {T} on Co(R ) satisfying (6. 1) is uniquely
determined.

Remark 6 .2 . I f  a(x ) is  a  measurable function and a(x)— c
satisfies the Assumption (p) for a constant c, then Theorem 6. 1
remains va lid . For we can prove that Proposition 1. 1, Lemma
2. 1 and Lemma 2. 2 are valid for same constants as in the case
c= 0  respectively when we replace p(t. x ) by fi(t, x) =p(t, x—ct)

1
t 2 +  (X  Cl) 2

§ 7. Some proofs

(1° ) Proof of (*)"). Let us set f(t, (0)— a(x(t, co)) and for each
positive integer m , set

f„,(t, co) = w )  for 0 < t i n

= 0 for t<0, t > m .

Then f„,(t, (0)e L,(Rx a  d t x  d P). Therefore f m (, co)e L 2(R )  for
each ni and almost all (0. Hence, for all t, almost all w and all in,

[f„,(0„(t)+ s, w)— f„,(t + s, (0)] 2  ds—.0 (n---). co)

and the above integral is smaller than 4 f„,(s, co) 2 c/s. There-

fore, for each m,

1- [f„,(4)„(t)+s, w)—f„,(t+s, (0)] 2 dsdPdt— ,-0 co) „

Thus there exist a  subsequence {nk (m )}  o f  {n }  and a null set
N(m) such that {nk (m +1)}  c In „(m)} and

Ef”.(4 m(t)+ s, (0)— f„,(t + s, GOT dt dP—>0 (k-- 00)

for any .ÇE [0, in] n N W ' .1"  Since

14) The proof is a  slight variation of K . Ito ( [ ]  Lemma, p. 336).
15) iNf■:"7n)r is  the complement o f N(m).
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M

0 ,2 [f,„(4)„ x ,„,(t -s)+ s, (0)- f„,(t, c))] 2 dt dP

Efm (O n k ( n )(t)+S, + s, (01' dt dP ,

it follows that

P:k(m ) (S )  = [ fm(1.1),/,/,,,)(t — S ) + S ,  0 — f„,(t, (.0)]2dtdP- , 0Q  

(k-.00) for any S E  [O, m ]n.N (m )c. Therefore, using the diagonal

method, we can choose a point s0 E[0, 1 ] ,-N fl N(m)c and a sub-

sequence {nk } such that /74 (4)-.0 (k--0 ,0) for every m .  Now,
we denote

f`k)(t, w) = f(4),,k(t — so)+ . )
= a(x(4),,k (t - so)± so, (0)) ,

then for each n4

f lo 'f,k)(t, dt-.1 o
m  f(t, co)dt in probability (k - ,-00).

(2 ° )  P ro o f o f  (**). F ir s t , w e  note that ( t )= x ( t ) - x 0

a(x(s))ds is measurable with respect to g ,  a n d  ( t ) - (s ) is
0

independent o f g s  ( s < t ) .  To simplify the calculation, we assume
that s0 =0 anclInil = {n}. Since

E [1  e 's  f(x„(t))d t]

1/2.

it is sufficient to estimate E 0  e 't  f ( x , a(t ))d t], etc. From Pro-

position 1.1 (ii), it follows that

1 1/2.
E L L  e - k e  f(x„(t))dt]l =

1  1  7r
 1 + ),2 1

Jo
1/2" e d t E [f(x0 +  a (xo )t + (t)]ri 2 "  e f II
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L e t  u s  s e t  Y =  w)- 1-„)(t>1- ), z= x 0 + a(xo ) f, s + a ( x ( ) )

(t — P + P y (dy)=P(YEdy)=p(t --In ,  y ) d y  a n d  Pz(dz)

= P (Z E d z ). Then,
2/2"

E [ f(x„(t))dt]
1/2n

2/2"

E  i h n  " f ( x o + a(xo)-1
7 ,+  a (x (f„ ))(t— + .)+ (t ))d t ]

2/

= e-xt dt E[f(Y + Z)]
r2/2nr .

= e-À dt) Pz(dz)j f(Y + z)Py(dY)1/2. —

= e-xtdt P z ( d z )  _AY+ z)P(t — I  , y)dy

Hence from Proposition 1.1 (ii), it follows that
2/2"

E[ e- xt f(x„(t))dt]
1/2n

   

< 1  
1+y2

dt \
1-,/, )11fIlp •

qj °  ( t— = - )

    

Also, the ramainders are estimated by the same calculations as
the above and we have the proof of (**).

(3 ° )  Proof o f the M arkov property of ( P s ) .  T h e  Markov
property of ( P s )  is  p ro v e d  b y  the same method as Stroock-
Varadhan [13], but we give another proof as fo llow s. In order
to  show the Markov and the strong Markov properties of (P s ) ,

it is sufficient to prove the following fact.

Proposition 7. 1. 16
)  L e t  u s  s e t  u= Ax ( f )  f o r fe  L p (R). Then

u (x (T )) =E ,0  e - xl f(x(t))dt19,1 a. s. Px (v x) ,

w h ere  T  i s  {9, }-Markov time" )  a n d  9 ,= { A E 9 :  A n {T

E g t ,  t> 0 } . A lso, the above equation is valid wizen we replace T by

16) This Proposition is suggested by Krylov [7 ].
17) I f  r > 0  and i r S t } E g t  for any t> 0 , then r  is called {9 4-M arkov time.
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{ g,,} 1 "-M arkov tim e and g ,  by

P r o o f .  The following formula is verified from (3. 2) using
the formula on the stochastic integral;

(7. 1) e'T  g(x(7)) = E x [V  e't(X —  A )g(x(t))dt I a.s. Px (vx)

for any gE cg (R ). Let us set f = (I — 71)h where hE C 2(R ). Then

u  = 1LX( f )  = K f  = G ,ItE cg(R ).

Hence from (7. 1)

u(x (T )) = E ,[ e 't f (x (t))dt I a.s. Px (vx).

Therefore if  H  is  a  bounded 9",--measurable function, then for
f  = (I — TA)/z, hEC2(R),

Ex[He - '1f if (x (T ))] = Ex [1 -11 - f ( x ( t ) ) d t ] .

On the other hand, Ex [ H e 'K x f(x(T))] and E ,[1 1 -  e- x` f(x(t))dt]

are bounded linear functionals on L p ( R ) .  Therefore for all f OE L(R)

Ex.[H e'r lf ,f (x (T ))] = E x [HV  e f (x (t))dt].

Thus we proved the proposition. Q. E. D.

§ 8 .  Remarks

In this section we will give some supplementary remarks.

(1 ° ) Space-time case.
Let a(t, x ) be a  measurable function on E  such that

Ila —cl I sup I a(t, x)—cl
,E R Ap

for some p>2 and constant c  and set

8 aA f(t,x ) = f (t, x )+ a(t, x )---f (t, x )+ B f (t, x )at ax

18) g t „ = ng„.
14> 1

19) g , ,= { A a g : A rib-
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f o r  fE C ( E ) ,  w h ere  B  i s  t h e  infinitesim al generator o f  1-
dimensional symmetric C auchy process. Then, we can prove that
Therem 6.1 is  va lid  in  th is case.

(2 ° )  Multi-dimensional case.

L e t  a(x )=(a,(x ), a,(x ), •••, a N (x )) be measurable mapping on
RN such that

II(2 — Cim a x  liai—cill< —
1

1 1ST

for some p>N and constant vector c=(c„ c, ••-, c,„). The operator
A is defined a s  follows :

- aA f (x )  = 
Y

a; (x) — f (x )+B f (x )
ax i

for f E q ( R N )  an d  x =(x ,, x2 , •••, x N )E R N , where B  is  th e  infini-
tesimal generator o f  N-dimensional sym m etric Cauchy process.
Then Theorem 6. 1 is valid  in  this case.
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