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§1. Introducsion. In this paper we study the commutators of
singular integral operators and then show its direct application
to some mixed problems for hyperbolic equation of general order,
using reflection method. In treating of hyperbolic equations,
properties of commutators of singular integral operators in con-
nection with the operator A (where A is a square root of the
Laplacian) will play the most important role. In Theorem 1 given
in §2, we relax the assumption on which A.P. Calderon and
A. Zygmund [3] obtained the theorem for commutators. By
virtue of Theorem 1, for example, we can show the existence of
the solution of Cauchy problem for the first order system of
regularly hyperbolic equation, under the assumption that the coef-
ficients are continuous and piecewise smooth in (0, o) x R", in other
words piecewise in C'*®(a>0) relative to some hypersurfaces in
(0, 0)x R” (cf. definition in §2). Permitting the coefficients to
be piecewise smooth, has a physical meaning. Let us consider,
for example, Burgers’ equation

0 Ou
1.1 — — =0,
(1. 1) atu+u6x

u for x<0,

1.2 ,0) =
(1.2)  u(x 0 {u’“, for x>0.

If w~<u*, as is well-known, the solution is continuous and piece-
wise smooth and is called rarefaction wave (cf. Gelfand [14]).
A small purturbation du satisfies the following equation with
coefficient «
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0 Gl
-—(8 —(8u) =10,
6t( u)+uax( u)

As for mixed problems for hyperbolic equation of higher order,
S. Mizohata dealt with

1.3) L-— H(aa —c®)alx, D)>u+B,,,, = fx, B,

where a(x, D) =3 a; j(x) 5 8——+ﬁrst order

i0X;
Zaij(x)glgzzslglzy 8>0) xEQ,
Cia(2)>c(2)>0, @i=1, -, m—1)

1.4 Q) aiakms:o, k=0,1,2, -, m—1,
n

where 2 _ > a; (%) cos (v, x,.)i v outer normal, or
on ox;’
@). aful, =0
u(x, 0) = uo(x), -, (%)mu(x 0) = t1(2),

in the domain (0, 0)x Q, Q being the exterior or interior of a
smooth and compact hypersurface in R”, and showed well-
posedness in L’-sense. As is proved later in §7, a(x, D) is
transformed locally (near the boundary) to the following form in

R,"‘F:{x; x=(xl’ xn):(xu oy Xnoas xn)} :
2 +Z A, x,,)— —+ﬁrst order, where b,,(x’, x,) is positive
x,. Hi= 0x;

J

definite. In case of m=2, the author [9] extended the equation
(1.3) to the form
64

.5  ru+(aln D)+ aln, D)+afx, D)g—;u

+a,(x, D)a,(x, DYu+Bu = f,
where the elliptic operators a.x, D) (i =1, 2, 3) have the same

conormal direction on S. After suitable local transformation (1. 5)
is written in the following form :
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9"

(1. 5Y a—t‘u b, (x, D) u+b (2, DYu+B, = f
n-1 8
where b,(x, D)=b(x) — +S b.(x', x,)—— n
(%, D)=tlx) o H 0, 5 >8 ,ax,,+2 b 25
b(x, D) = ¢(x) ﬁ < & ck(x, x,,) +Z ch(x, x,,)i i)
k=1 \9x2 0x,0x, i= ox 8x

J

® k
= 2V Cral¥, xn)<i> ( 0 ) +lower order.
@=4-k, jn axj ax

n

Then, by the assumption that «(x, D) have the same conormal
direction on S, the relations

(*)  b(x,0)=0 and c¢,(x,0)=0 if kis odd

follows. (cf. (2.13), (2.14) in [9]).

Of course this assumption (*) is imposed only on the boundary.
Such a type of restriction seems indispensable, if we consider
the boundary condition of type (1.4) (1) (cf. [8]). After that,
K. Asano-T. Shirota [2], using singular integral operator in
Rt ={x=(x, x,), x,>0} attached to the same boundary condition
as (1.4), treated the equation

azm <i j _
e 2 DY LY ut By = f,
where b;(x, D)=3\c; "’<6a >‘”<86 )k
Xn

cralx’,0) =0, if & is odd.
b,.(x, D) is uniformly elliptic,
Now we consider the following equation in (0, o) x R%

(1.7) %ﬂ+2butzw Yﬁwww(nn%Jﬂu=ﬂ%ﬁ,

where b,(x, ¢, D)=k+§] CralXy Xy t)( aax )a<ai )k satisfies

(H) (2, 0, 1) =0, if k is odd.

We may assume that boundary condition is the following simple
ones (cf. Lemma 7. 2).
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B) () ule=0,  k=01[" 1],

ox, 2

0 \?&+! m—2
B2 < ) x =o=09 k:O, 1’ ""['—])
(B,) o Ul m 2

The assumption that b,(x, ¢, D) is elliptic is not necessary, even
if m=2m'. The detailed statement of our theorem concerning
above mixed problems will be given in §3. Here let us remark
that the reflection method discussed in §4 is closely connected
with so-called Fourier’s method for the wave equation. Consider
0° o

—u——u =0 in (0, )
ot 0x°

#(0) = u,, %u(O) —u,, u(0) = u(z) =0

(1.8)

The solution takes the form ;
1.9 u= Zj‘ ax(t) sin (kx) ,

where a,(f) are determined by considering the initial data. We
can regard (1. 9) as the restriction to (0, =) of Fourier expansion of

(x, t) = { u(x, t) 0<x<n
—u(—x, 1) —7<x<0,

because of S:z?(x, t) cos (kx)dx =0, for every k (cf. [2]).
The outline of our argument in this paper is as follows. After
extending the coefficients of (1.7) and # into (0, «<)x R”, we reduce
the mixed problems to evolution equations in some Hilbert spaces.
Then we use Friedrichs’'mollifier which is suitable to those Hilbert
spaces and apply the inequality given by S. Mizohata for the
singular integral operator with positive definite symbol, in order
to obtain the energy inequality, (§4). The energy inequality plays
the essential role in the proof of existence of the solution, (§5).
By virtue of Holmgren transformation at the boundary (6.1) and
a geometrical lemma, we can show that the solution has a finite
speed of propagation, (§6). Using property and considering local
transformation discussed in § 7, we can construct the solution for
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some mixed problems in a general domain Qx (0, «), (§8).

The author wishes to express his sincere gratitude to Pro-
fessor S. Mizohata for his invaluable suggestions and continuous
encouragement.

§2. Commutators of singular integral operators.

At first we remember the original definition of singular inte-
gral operator in R* given by A.P. Calderon and A.Zygmund [3].
Our argument is also based on their expansion of the symbol in
spherical harmonics. This method is sometimes more powerful
than any other definition of pseudo-differential operator, because
of the fact that coefficients of the expansion make rapidly con-

vergent numerical series. Let us denote by x=(x,, --+, x,) a point
x in R*, by x/, x’=%. The sphere |x| =1 in R* will be denoted
x

by =, the elements of surface area on X by do. By C% «a>0,
we denote the class of complex valued continuous bounded func-
tions on K* with bounded continuous derivatives up to order [«a]
and with derivative of order [«] satisfying a Horder condition
of order a—[a]. #H(x, £)eC; means that A(x, £) is in C* with
respect to £ and every derivative with respect to & is in C<
We shall denote &7,(R*¥) simply by L? and its L? norm |[[-]|,.

In a point of view of the theory on partial differential equa-
tions it is convenient for us to introduce the singular integral
operator using so called symbol. Let /(x, &) x, £ R*, be a function
in Cgz, 8>0, homogeneous of degree zero in £, and let

@1 Mx, &) = afx)+ 2 aun(2)Vun(E)

be its expansion in spherical harmonics. Then a,,(x) can be
reformed in the following :

(2.2)  Guw(x) = (=1 n"(n+k—-2)" §2(|E’|2Ae)rh(x’ ENYum(ENdo ,
where (|&|°Ag) h(x, £) is also homogeneous of degree zero in £.
(1.2) means that the regularity in & of k&(x, £) make the con-

vergence of of (1.1) more rapid than any series i‘ }; (=2, 3, --+).
7]
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Corresponding each Y, (¢), a bounded operator T,, in L? is
determined as follows. Fourier transformation gives the formula

(2. 3) Ynm(E/) = Bne_}grsrlw g,,-»g[ynm(ey 6, x)] ) Bn = (_ 1)”Bn )

Yum(&, 8, x) = { You(x) x| 7k,  e<|x| <8
0, otherwise,
(2.4) |B.l Zcwn®™ ¢ depends on k,

(T, f)(x) defined, for feL?, p>1, by

@25 Tuwf =] Vas—fdy,  (1=1,2,-)

le—yi>e

converge almost everywhere as €—0, and the estimate

||Tnmef||p£C”f”p) (n:]_’ 2)’"’)

hold for every & Therefore T,,,.f converge in the mean of order
p to a limit T,,f

(2.6) |T,.fll,<ClIfll,, C depend only on p and k.

A. P. Calderéon and A. Zygmund defined the singular integral
operator H with symbol o(H)=h(x, £) by

@7 Hf = e fO+ T QBT onf = T ann(®)8aT o

Considering the number of distinct spherical harmonics Y,, for
each »n and (2.4), we obtain, by virtue of (2. 2),

(2.8) [HfI|,<CMIIfll,,

where M is a bound for the absolute value of A(x, &) and its
derivatives with respect to £ in |£|>1 of order 2k.
Defining H* and H,oH, by

o(H*) = o(H), o(H°H,) = o(H,)o(H,)

A.P. Calderon-A. Zygmund proved Theorem 1 described below
under the condition that «(H,), ¢(H,) and ¢(H) are in C%,,, a>0.
Now we extend the theorem to the case where the symbols are
piecewise in CT,,, a>0.

Definition 1. A function h(x) defined in R* is said to be piecewise
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in C'*® relative to given hypersurfaces S, if h(x) has the properties :
() h(x) is continuous in R* (if) h(x) is in C'**(®), where » is any
connected component of R+—S. (iii) The derivatives of h(x) have
uniformly Horder constant for every o. Denote the class of func-
tion by CL*.

Theorem 1. Assume that h;(x, &) =o(H,)(x, ), (=1, 2) defined
in REX{Rt—{0}} be a C= function of homogeneous degree zero in
& and be in C&® with respect to x. Then we have

(i) HA—AH,, H¥A—AH¥ and (H¥—- H})A are bounded opera-
tors in L? wilh operator norms bounded by CM,.

(i) |(HH,— H.H,)||, is bounded by CM,M,.

where A=FE|F. M, is a bound for the absolute value of h(x, E),

aih,-(x, £) and their derivative with respect to & and their Hirder
X

coristam‘, (i=1,2). C depends on p, k and hypersufaces S.
Let us begin with the following lemma

Lemma 1.1. Assume that c(x) is piecewise smooth in C'** relative
to the hyperplane x,=0, (a>0) in R*. Lel T be a singular integral
operator with the symbol independent of x and of spherical mean
zero. Then for f(x) in LYR™) we have

2.9) @) T—Tex)f.ll,<CCIfll, for i=1,2, -, n,

where C, denote a bound for |c(x)|, |c,(x)| and their uniform
Horder constants in R, and in R*. C, depends on the kernel of T.

Proof.
@10) [ (@)D Ya—2f, (9)dy

has a pointwise limite almost everywhere as & tends to zero
(cf. [3]). By virtue of Fatou’s lemma it suffices to show that
L? norm of (2.10) can be estimated independent of € by C|f]|,.
By integration by parts (2. 10) is equal to

@1) | @)Y —nfGymids,

N Slx—yl>ecyi(y) Y(x _y)f(y)dy
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+S oo D —CONY (2 =) ()dy
+ Sl>|x—y|>e (C(x)_c(y))Yy,(x_y)f(y)dy .

The first and the third terms can be estimated by the same
method as one used in the proof of Hausdorff-Young’s inequality.
In fact, concerning the first term we have the following relation
using Horder’s inequality and Fubini’s theorem,

1] (o —conYa—f oyr.dS, 2dx
= S{Slx_M:E [ (c(x)—c(y)) Y (x—9)1dS, }”/q
({10~ e =1 15)1#17,17dS, Jdx

el L e va—sas iro)ivas
1

¢ oS irerasaron,  (r2=1)

lz-yl=¢ |Xx—Y

The estimate of the second order is well known. Now let us
decompose f(y) as follows:

2.12) f(y) = L) +SL),
fiy) = { ), y.>0 f»n=0, ¥.=>0
0 ¥.<0, | (3,  3.<0.

Then the fourth term of (1.11) is equal to

(2.13) L@+L@ = | (@) )Y, (=) ()

Slx-y

+ Sl>|x—)’|>s (C(x)—c(_y)) Yyi(x_y)fz(y)dy .

Now assume that x=(x,, -*+, x,_;, X,,), ¥,>0. Then in the integrand
of the first term, c¢(x)—c(y) is written in the following form :

”

2.14) cx)—c(y) = 23 (=396, (1) + 0%, 3)

where |b(x, y)| <clx—y|"'? a>0, y,>0.
Remark that |[f,[|,<I|f]|, and that the surface integral of z,Y (2)
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on [z|=1 is equal to zero, (cf. [3], p. 915). The L? norm of
I,(x) defined by I,(x) in x,>0 and zero in x,<0, can be estimated
independently of € by c||f||,. Concerning I,(x) we decompose

(2.15)  c(x)—c(y) = {c(x)—c(x)} +c(x)— (),
= {e@) e} + 5 (1, = 3,00 (B~ DuC,n(E)+ b, 3)
where x°=(x,, x,, -+, X,_s, 0),
16(x%, p)| <c|x"—y|""<clx—y|"™*",  »,<0.

Then it suffices to discuss the following two terms

J@={  —n Y= iy

1>lx-y1>e

ORAN

>lx-yl

>E(C(x)—C(x"))Yy,.(x—y)fz(y)a'y
Take the absolute value of the integrand of J(x) and we have

J@i<e] I rdy<e| B r ) ay

1>1x-31>e [ X — Y| " 1>1z-yl>e | x— y| "

Similarly from |c(x)—c(x°)| <cx, the relation

x X,—
< A d < S n " Vn
@] el dyse )y
Taking account of the surface integral of | zl':'“ on |z|=1 being
2

zero, we can obtain the desired estimate for I,(x) defined by
I(x) in x,>0 and zero in x,<0. For another half space R"=
{x:2=(x1, ***, Xp_1, X4), ¥,<0}, we can follow the same argument.
q.e.d.

Now we can extend Lemma 1 to the case where c(x) is
piecewise smooth in C'*® relative to smooth hypersurface S in R”".

Lemma 2. Assume that c(x) belongs to C}*®, where S is a smooth
hypersurface satisfying the following conditions.

1) For every point x° on S they exists a positive number §, such
that SN Bs(x°) is a connected component of S. Here Bis(x°)=
{x;|x—2°| <8}
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2) SN B(x° is mapped into the hyperplane x,=0 and x° to origin
by a suitable local transformation from Bs(x°) to a neighbourhood
of origin.

3) In each B(x°), S is represented by x,=@(x) such that o(x) has
uniformly bounded first order derivatives. Then (2.9) holds. c,
depends on T and S.

Proof. Similarly to (2.11) we consider

216) | (€)=Y, (x=3 F($)dy .

§>lx-yl>e

By virtue of a parallel transition and a rotation of the coordinate
we can assume that x=(0, 0, ---,0, @) (¢>0) and x,=0 is the
tangent hyperplane at 0=(0, ---,0) of S: x,=@(x). Now consider
the following transformation.

xj = x;"’{(éai(xi)";xf—l)/m)}xé ]:1, 2> "')n_l’
X,
2.17) i

/ ’ 0

Xn = ¢(x1’ Yy xn-1)+ {af
” 2y1/2

m = {Z (%(x{’ ) x1’l_1)> } .

j=1 ax]

(x4, -, xﬁ_l)/M}x; ,

Here ¢ satisfies
(2. 18)

920)=0, j=1,-,n-1 22(0)%0.
0x; 0x,

J

Therefore in the neighbourhood of origin we have

2.19) |x,—xi] <clx]|®

Let us decompose f(y) in (2.16)

(2.20) f(») =FN+f), Fy) = { A(y), where o(»)=>0

0 elsewhere

fLy) = { 0, where @(y)>0
f(y) elsewhere.

@20) L@ = (@)Y, () (2

§>lx-yl>e
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is transformed by (2.17) to

@22) L= @) Iy

where Jacobian J is close to 1, and x'=(0, 0, -+, 0,a)=x. Y, (x'—y)
satisfies from (2.19)
(2.23) |V, (¥ —y)-Y,(a—9)| <clx—y|™".
Corresponding to (2.15), we have
(2.24) e(x)—e(y) = {&(x")—e(0)} +2(0)—e(y)

= {2l 2O} + 5 (x5~ )6, (0) — 366, (0)+ B(0, ')
where [5(0, ¥)| <c|y'|'""*<c|x'—y"|"**

le(x)—¢(0)]| <ca

x-y

Substituting them into (2.22), and considering (2.19) we have

@25) | G-V

8> lx-yl>e

(5= 3) Y5 =D fpdy+e | L2 1 (3)ay

Ss>|x—yi>s lx—y|"

where b(x, y) is a bounded function. The second term of (1.25)
can be easily estimated and the first term is a well-known one.
Corresponding to J,(x) in Lemma 1 we have

(2.26) |J(x)| =¢ Y, (&' =)y ]dy

Ss>|x—y|>e

<c Ia Y, (x—=3)f( y)dy|

SS>Ix—yl>e

| b ) 12— £ dy

’

Here the second is an easy term and the first term is the same
one as in Lemma 1. For J(x) the argument is the same as J(x)
just like in the case of Lemma 1. q.e.d.

Remark. Even if the surface S is replaced by many hypersurfaces
or piecewise smooth hypersurfaces. Lemma 2 is also true. In
fact, we may decompose f(y), corresponding to (2.20) or (2.12),
into many factors.
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3) = 3 F49)

Now we proceed to the proof of Theorem 1. For f(x) in L3(R*),
k

using A=3] R,»a— we can write
=1 ax,

(AH~ HNf = 33 RAS @B Ton ey 2 @08, Tun(S R, 1)
= 23 BuR{@(0)): T S+ 2 B Ry @ = G RN T f s,

Here we have used that relation

Tnlefx, = RlTnm % = Rl(Tnmf)x, .
(@w(%)), (@um(x)), and their uniform local Horder constants c,,
make absolutely convergent series with sufficient rapidity, by virtue
of the formula (2.2). Now we apply (2. 9) to the second term and

use (2.6), then we can see that HA—AH is a bounded operator.
By the definition of H we have

(H* - H#)Af = 1,2" (_ l)nIBn( Tnm dnm - anm Tnm)(le)x .

Again Lemma 2 shows that (H*—H*)A is a bounded operator.
Let H,=>0,,,(2)B% Trmms H, =3 C1s(2)B%T,,,, Then from (2.2)
and (2.6), 3 bumCuBxByTnmT . is absolutely convergent in oper-
ator norm in L?. Therefore we can see

HioH, = 23 by ot BBy T Ton s

(H\H,— HH)Af = 23 BuBbumCos Tom Ton— 23 BulBslum TamCo TR, f),,
=2 BaBbum(Csn Tom— TomCu TR, f),, .

Lemma 2 and (2.2) complete thd proof of Theorem 1.

Remark 2. If the symbol A(x, £) is C~ with respect to £ and
bounded measurable in x up to all derivatives. Then the singular
integral operator defined by (2.7) is a bounded operator in L?
and satisfies (2. 8).

Remark 3. If A(x, £) involves a parametert { and is continuous
in ¢ in the following sense.

(2. 27) \ 5 ((%)“{h(x, £, )~ £, 1)} <clt—1]

i¥|=2k
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Then we have
(2.28) ||H({t)—H@)||,<CM|t—1].

§3. Statement of some mixed problems

In this section we give the detailed statements of the mixed
problems introduced in §1. Consider the following regularly
hyperbolic equation of general order in (0, )X R%, Rt ={x;x=
(&, ) =(x,, *, Xu_y, X,), X,>0} :

o & o o
(B)  Lu+Bu=2us$ip, a1, D)atm_ju+B<x, L2, D)u
= flx, t)
Inf IN (%, 8, E)—ne(x, 8, E)| >8>0, where N (x, ¢, ) are

*ERY, & =1, j*k
characteristic roots of (E). B(x, t, 582, D) is a lower order oper-

ator. And we impose the following assumption on every b;

b, t, D) =, 5 anale, D(20) (2]

dx,/ \ox’
(H) ar (', x,, 1) vanish on x,=0, if k is odd.
All the coefficients are in piecewise ¢ relative to some smooth

hyperplanes in R**' (x—t¢ space). Let us takes account of the
boundary conditions :

(B) ( 9 )kax,,:o ~0, k=01, [’”—‘1]

0x, 2
(B,) < 0 )%Hul,,,,:o -0, k=0,1, [’ﬂ]
o0x, 2

Corresponding to (B,) or (B,), we assume that the second
member f(x, t) is in &;(Dp(R%))° or in E(LIRY)).
Now we state our theorem in a half space.

Theorem 2. For any initial data <§>ju(0)e Li_(R) (j=0,1, -,

1) f(¢t)e &2(H) means that f(¢) is p times continuously differentiable in ¢ with
values in H, (p=0,1,2,--).
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m—1) satisfying the boundary conditions (B,) and for the second

member f(x, t) as above, there exists a unique solution of (E) under

the assumption (H) satisfying (B,) (i=1, 2). The energy inequality
=y

j=0 ‘m—i

hold. ||-|l,,_; means ||-||r3_. Moreover the solution has a finite
speed of propagation just like in the case of Cauchy problem.
Now let us state the problems in a general domain. Let Q be
the interior or exterior of a smooth and compact hypersurface S
in R”. In Qx (0, ) we consider a regularly hyperbolic equation
(E), of type (E). Corresponding to (H), we impose on (E), the
assumption (H), below. Our boundary conditions on Sx (0, o)
are denoted simply by

+[roas)

(B)g  nlx,t, Dy*|, =0, k=0,1,-, [mT_l]

(BZ) n(x’ t’ D)2k+lu|s =0 » k :0) 1, Tt m‘__z’ ’
g 2

where n(x, ¢, D)=Z"] m (%, t)ai. Smooth vector m(x, t)=(m,(x, t),
j=1 xj

my(x, t), -+, m,(x, t)) is transversal on S for every t, i.e.

i} mi(x, t)cos (v, x;)%£0 on S. (v: outer normal of S).

ji=1

Let us note that we can always rewrite an arbitrary j-th
order operator as follows (By virtue of Lemma 7.3 in §7).

(22 bx £, D) = 3¢;.4(5, £, Dinlx, , D,

where (j—k)-th order operator c;_,(x, £, D) is a finite sum of the
product of j—k first order tangential operators, (later in §7 we
give a definition of tangential operator along S). Now we assume
that

(H), All the coefficients of the principal part of c;j_w(x, t, D)
are vanished on s, if k is odd.

Theorem 3. For any initial data (f%)lu(O)eL,ﬂ_,(Q) (7=0,1, -,
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m—1) satisfying the boundary condition (B,), or (B,), and for any
second member f(x,t) being in EWD1AQ)) or in EYLAQ)), there
exists a unique solution of the equation (E), satisfying (B,) or (B;)
under the assumption (H),. The energy inequality (3.1) holds.
The solution also has a finite speed of propagation. (i=1, 2).

§4. Reflection principle and energy inequality

In this section we show how to apply the reflection principle
to the equation (FE), using Theorem 1. At first we reduce the
mixed problems described in the previous section to the evolu-
tion equation in certain Hilbert spaces. Then in those spaces
Friedrichs’ mollfier will be used in order to show the energy
inequality. S. Mizohata’s method in treatment of Cauchy problem
is useful also in these cases. Especially we can use the inequality
for the singular integral operator with positive definite symbol,
an extended form of Gording’s inequality.

1. Reduction to the system
Consider the principal part of (E)

0" 7 4 = flx, t)

(B) L= ut31b,(xt, LA

o™

Assume that %u(t)e EULEL_4(R%)) (=0, 1, ---, m) and satisfy the

boundary condition (B,) or (B,). Let us extend the coefficients
of (E,) and # by the following rule:

(R,) p X, =X, 8) = —ap (¥, x,, 1), if k is odd.

(R,) A WX, —%,, 1) = Qp (&, %,, 1), if £ is even.
(R) w(x', —x, 1) = —u(x, x,, t) in case (B,)
(R,) u(x', —x,, t) = u(x’, x,, t) in case (B,)

Denote by # and #, the extentions of » corresponding to (B,) and
(B,) respectively.

The extended coefficients are piecewise in C'*® relative to
hyperplane x,=0 and other hypersurfaces in R**' by virtue of (H).
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Lemma 4.1 If u belongs to L:E(R%) and satisfies (B,) or (B,), then

the extention @ or u vespectively belongs to LL(R™).

Proof. For o= D(R™)

4.1) <—u <p> = —<u > SR" i 9p a’x S ﬁ;%dx

R"

from the definition of the derivative of distribution. Assume that
u in LZ(R%) satisfies (B,), then we can see that

ERCEE

0x, R"8
4.2) " xa~ ~
l —S i q)dx:S —u(pdxz—s a—ucpa'x
R 0%, R1LOX, R" 0%

hold by the limit process. Therefore from (4. 1) and (4. 2) we have

(4.3) <aixzz,(p>=$ O gy S i(pdx

R% ax R 02X,

9 # belongs to L?*(R™) but also

n

(4.3) means not only that

63’1 (%, —x,)= ), %,>0. Similarly for u in LA(R") satis-
Xn
fying (B,),
( ou
(4.4) <——u ¢)> SR" 6x SR"_a_x,,(pdx

holds, because two boundary integrals cancell each other. Therefore
0 % belongs to L*(R™) and

n

O (s, —x,) = —2w(w’, %), x.>0

ox, ox,
Putting Ou =p, we can repeat the above argument for ». Then
il

5 ¥ and ba—i belong to L*(R*), corresponding that « satisfies (B,)
X, X,

and (B,) respectively. Step by step we can show Lemma 3. 1.
q.e.d.
By virtue of Lemma 4.1, the extention # of the solution «
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of (E,) satisfying the boundary condition (B,) is the solution of
the equation;

o 7 0
a+2bx 1, D)(2)

m—;

i = f(x, 1),

where f(x, t) is the extended one by the rule (R,). Hereafter for
simplicity we denote # and % by u, and the extended coefficients,
by a.., so we consider (E,) as the equation in R”Xx (0, o).
Now let us introduce the following closed subspaces of L R"):

L’[B] = {u; uc L(R"), w(x', —x,) = —u(¥', x,)}

L*[B,] = {u; ucs L(R"), u(x’, —x,) = u(x’, x,)} -
Immediately we have the following Lemma that is the converse
of Lemma 1.

Lemma 4.2, Assume that u belongs to LANL[B;] (i=1,2). Then
we have

( 0 )“m,,._.o —0, k=012 [@;1] in Case i=1,
ox, ' 2

( 9 >2k+1u|,n=0 —0, k=0,1,-, [’Lz] in Case i—2,
0x, 2

where u|,,.,=0 means that the trace of u to hyperplane x,=0 is
equal to zero.
Now we remember Friedrichs’ mollifier (p.*) given by the smooth

function pe(x)=<%)”p<%>, where
(4.5) p(x):,(cexl)(_l—ﬁxlz) (lx] <1)
0 (x| >1)
Sp(x)dx =1

The following lemma plays the important role for us to show
the energy inequality.

Lemma 4.3. For u in L*[B,], u,(x) defined by

(4.6) (@) = pou = | px—3)F()dy
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belongs to LN L[ B;]1(cC~N L} B;]).

Proof. It suffices to say that u,(x) is in L*[B;], (=1, 2). For
ue L’[B,], we have from (4.5)

u(x', —x,) = SS PX =¥, =X, —3)u(Y, ¥.)3Y' Ay,
= SS Px =Y, —x.+y)u(y, —y.)dydy,
= _SS Pe(x,_y/’ xn_yn)u(y,’ yn)dy/dyn = _ue(x/’ xn)

In the same way u(x’, —x,)=u, (2, x,) holds for » in L’[B,]. q.e.d.
Lemma 4.4. Fourier image of L[ B,] is also L’)[ B;] (i=1, 2).

Proof. By virtue of Lemma 3.3 we can see that 9(R™)N L*[B,]
is dense set in L’[B;]. Let us prove Lemma 4.4 for o(x) in
DRHNLB,]

TFlolE, —&,) = SS eI g (o 1 \d %' dx,
S S e T ICEbg T _ oy — x,)dxdx,

= 3 S e it (3 x Ndx'dx, = — F[p)(E, Ex)

Similarly for @(x) in D(R")NL*[B,], we have F[p](¢, —£&,)
=T [pl#, &) g.e.d.
By Lemma 4.4 (A+1) is a bounded operator from the space
LiN L*[B,] equipped with the canonical norm ||+||;..2 one to one
iANL[B] (i=1,2).
Reduce (E,) to the system by putting

4.7) vj={i(A+1)}'”‘f“<%>ju, (G=0,1, -+, m—1),

where v; belong to LINL*[B;]. Inwhat follows, denote LN L*[ B;]
by 4, i1=1,2). From (4.7) we get

4.8) a%v,:i(/\ﬂ)v,.,,,, (j=0,1, -, m—2).

Then (E,) becomes
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(4.9) a%v,,,_l _ zg H, (OAv,+3 B(tw,+f,

where By(t) are bounded operators in L(R") or LY(R"). Let now
S be the class of singular integral operators mapping L?[B;] into
L*[B;] with symbols being piecewise in Crt,, relative to some
given smooth hypersurfaces. By (R,) and (R,) and Lemma 4.4,
H; (j=1,--,m) in (4.9) belong to S. Moreover H;oH, also
belong to S. Put

(4' 10) U: t(voy Vyy o0y vm—l)) F:(Oy '"70, f)
Then (4.8) and (4.9) is written as

(E) a%U(t) — iHWOAU@)+BOU+F(t) = AU+ F

B(t) is a bounded operator in 4, (=0 or 2).
cH@)=/[0 1

0 .
0 1 £
0 . bk = bk(x) t, 27[8/) ’ EI = To
0 1 €]
_bm"“'" _b1

H(t) maps I L*’[B,] into I L [B;]. Let us simply denote I L[ B;]
by L’[B;] and ﬁj[,. by A, (i=1, 2). We can recognize (E,) as
an evolution equation in #,. Conversely if the solution U(?)
=(vy(?), -+, v,,_(t)) of (E,) belongs to ENL[B,]))NEYIL,), then
u={i(A+1){""*"'v, belongs to EXL:L_,NL[B1)NEALLENL[B,])
and satisfies

ou . —m= =15
i {i(A+1)} i Dy,
and (E,). aaTu is in €NLA_, .NL[BIHNENLL ,NI[B]), (i
=0,1, -, m—1).
2. Energy inequality
In order to show the energy inequality, we use a singular
integral operator N(f#) whose symbol is a diagonalizer of o(H(?)):
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(N (H(1)) = o(D1)a(N()), where o(D(E) =2\ (x, £, E) O

0 Al 1, £)
a(N(t)) satisfies

1) |det a(N(#)| =6>0 (x, H)eR"x (0, =), EER".

2) NeS

3) o(N)x, t, E) is continuous in ¢ in the sense of Remark 3
in §2. Let us remember S. Mizohata’s inequality

Lemma 4.5. Let H be a mXxm matrix whose elements H;, are
singular integral operators of type CB (B>0). And assume

(4.11)  |o(H)x, E)oa| 28 |, >0, a=Ha,, -, a,)
being any complex vector. Then the following inequality holds
(4.12) [|[HAU|F=8'|IAUIP—lIUII*, 8>0, >0
Now we proceed to
Proposition 4.1. The solution U(t) of (E,) belonging to £L*[B;])
NEUIL,) satisfies
t
(4.13) IIU(Z‘)HISC(IIU(O)III-FSOIIF(S)IIIdS), 0<t<T,
where F(t) is in E%YL,).
Let us prove Proposition 4.1 in three steps.

First step. Taking account of the properties of o(N(f)) and
Lemma 4.5, we can introduce a new norms in L*[B,;] (i=1, 2):

(4.14)  UllZ2p00 = (N@U, Nt)U)+ BII(A+ 1) UIP,
B ; large positive.

Then there exists a positive number ¢, and ¢, such that
(4.15) |IUIILIU 2o <clI Ul .
(4.16) %“UHZ[B;J(D = (N@)(AU+F), NU)+(NU, N(AU+F))

+2 Re (N' (1)U, N(t)U)+2 Re B(A+1)(AU+ F),
(A+1)7'0),
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where a(N'(t))=6%a(N(t)).

Corresponding the first and second term, let us consider
4.17) {(N@OH@AU, N(t)U)—(N(@)U, H@)H()AU)} .
By virtue of Theorem 1 we know the facts

(4.18) N@OHG)A=(N()oN@)A = (D(t)oN(t)HA,
(=modulo bounded operator in L?)
D*N=DA .

Remark that 9¥=4 follows from hyperbolicity and use (4.18),
then we obtain

(4.19) {(NOHHAU, NOU)—-(N@U, N(O)YH()AU)} | <ClIU|.

Since the other term can be easily estimated, we have
#.20) LU 25,00 <OV o1 Ull oo IF o)
Integrating (4.20) and using (4. 15), consequently we obtain
@21 UI=<C {10+ [ POt

Second step. Now assume that the solution of (E,) is in £XL3N
L*[BDNEX4H,) and that F(¢) is in EYLINS,). We operate

0 on (E,). Consider
7
d/d ) 9 9 -
4.22 —(-—U) _ HA( U)+B< U> ,
( ) dt\ox, (PHA) 0x, ox, +F@)
where F(t)=iH, ()U+ B, U+ aa F@),
xn
9

o(HL() = 2 o(H().

n

If Uisin &(LiN L [B])NENIL), then ai U belongs to E%)N

EXNL[B,]). F(t) is in &£(4,), by virtue of the property of
o(H.(#) and B/, and the assumption that F(¢) is in EYLiNI,).




460 Sadao Miyatake

0 U and

n

Therefore we can apply the result of the first step on
F(¢), to obtain

t
@) | Lu +[ U+ DU+ IFGIES |,
j 0
(Jj=1,-,n)
because the same method is valid for 56—U (7=mn) and for the case
X

i—2. Summation of (4.23) and (4.21) gives (4.13).

0
<c{ | —U(0)
L2 { 0x;

L2

Third step. Now we can prove Proposition 1. Operate p,* on (E,),
then we have

dm m am_l
(4.24) —Suet 230,05 £, D)o u

€

#2005, £, D), p1(2)" = £,

where [b,(x, t, D), px]{i(A+1)} ¥ is a bounded operator in 4.
U,(t)=p.xU(t) satisfies the assumptions in the second step. and

(4.25) ‘% UJt) = iH(AUt)+ BtULt)+ CU®#) + F#)
By the result of the second step, follows
.26) 10@=c{Iv o)+ [ cumi+ IR et .

Remark that ||C,U||<C||U|| and that ||C.U(¢)|| tends to zero if &
goes to zero Tending € to zero we can apply Lebesque’s theorem
to obtain (4. 13). q.e.d.

§5. Extence of the solution

1. At first we consider the case where the coefficients are inde-
pendent of t. In this case the corresponding evolution equation is

(E), d% U(t) = AU)+ F(t) = iHAU(£)+ BU(t)+ F(¢)
in 9, (i=1, 2)

Take the definition domain of A as
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DA), = {U: Ucs 4, AUE 4.} .

9D(A), is dense in 9, because L;N L*[B;] contained in D(A), is
dense in L’[B;] by Lemma 4.3. Now introduce in each %, the
following new norm

(U, U) g4, = (NAU, NAU)+B(U, U), (i=1, 2).
Then considering (4. 18) we get (5.1) in the same way as (4. 16)
(5.1) (AU, U) 4+ (U, AU) 4. | <ClIUIl’,
From (5.1) immediately follows
Proposition 5.1. For every U in D(A),, a priori estimate

(5.2)  NOI=A)VUll g, =N =BNUll g, for [N|>B, \: real,
B is a positive number.

Proposition 5.2. (A — A) maps D(A); in a one to one way onto H;.
(i=1,2)

Proof. From proposition 5. 1. (AW —A)D(A), is a closed subspace
of J,. Let us prove that (AW[— A)9D(A); is dense in H,. If there
exist ¢ in 4, such that

(5.3) (A+DA—AU, (A+1)p) =0 for every U in 9(A);,

then we can show in the following way that ¢=0. Remark that
the following relation hold.

(5.4) (A+1DAM—A)U=OI—iHA+B,—BYA+1)U,

where B, = {i{t HA— AH)+(BA—AB)(A+1)"'} is a bounded operator
in L’. In fact
(A+1)Y M —iHA—B)U = W —iHA—B)YA+1)U+i(HA—AH)AU
+(BA—AB)U = W[—iHA—B+B)(A+1)U.
From (5.4) the left-hand side of (5.3) equals to
((WM—iHA—B+B)A+1)U, (A+1)¢)

= (A+1)U, W +iAH*—B*+ B¥)(A+1)p)
=(A+1)U, W +iH*A—B,)(A+1)p).
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Here B, is a bounded operator in L’[B;]. Since (A+1)9D(A), is
dense in L’[B;], it follows that
(WM+iH*A—B,)(A+1)¢ = 0.
And as in (5. 4)
W —iH*A—B,)(A+1) = (A+ 1M +iH*A—B,)(A+1)'%¢ = 0.

Similarly to the proof of proposition 4.1, we can show that
(A+1)"'¢=0, therefore ¢=0. q.e.d.
By virtue of Proposition 5.1 and 5.2, we can apply Hille-
Yosida’'s theorem on (FE,),. For given initial data U, in 9(A),
and second member F(¢) in EY(H,) such that AF(¢) is also in
EAM4,), there exist a unique solution of (E),:

(5.5) U@ = S,U,+ StS,,sF(s)ds
satisfying the energy inequality
t
(5.6) UMy, <e™ Uil +Cl 1Pl gds.  for 5 0<t<T.

For initial data U, in %, and for F(¢) in £Y(4,), we can show
the existence of the solution U(#). Remark pxU,=U,(0) and
pxF(t) = F,(t) satisfy the above condition. Therefore we can
apply (5.4) for the initial data U,0)— U./(0) and second member
F,(t)—F/(t), to obtain

(5- 7) glslla;z(' HUs (t)_ Ue/(t)|'ﬂlgeat||Us(0)_ UEI(O)H

t
+C[ P& = Fo9)l s

Hence {U,(#)} is a Cauchy sequence in £%4,), as € tend to zero.
Passing to the limit of

U,() = U0+ | (AU(5)+ F(s)ds
we can see that

(6.8) U() = U0+ S:(AU(S)+F(S))ds ,

where the integral is the one in L*[B,].
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The solution U(¢#) satisfies of course (5.6), and

%U(t) — AU+ F(@)  in L*[B,]
U©) = U,

2. The case where the coefficients depend on t.

Now we show the existence of the solution of (E), using Cauchy’s
broken-line method. S. Mizohata treated Cauchy problem for
regularly hyperbolic equation, combining that method and energy

inequality. Here we can follow his argument in our space .9, or
L*[B;]. Consider

(5.9) %U(z‘) — A,U®+F(), 0<t<lin L[*[B,],

U0) = U,e 4,
A,@) = A(ﬁ) in ﬁgtg’il, k=0, -, n—1,
n n n

The following lemma is the most important part of our argument.
Lemma 5.1. The solution U,(t) of (5.9) has the estimate.

(5. 10) IIU,,(t)Ilﬂ{i(t)éM. M is independed of t and n,
0<t<l, n=1, 2, .-
where
105ty = (N@OAU, N(OAU)+B(U, U)

Proof. By (5.6) we can see
1

U, —)

(n l

From the continuity of o(V)(x, ¢, £) with respect to # and Remark
3 in §2, we can see

i/n
(5.11) l <™ 1Ullggq0y + . 1F@®)gg0yt) -

I:(0)

(5.12) |||U||5[(t)_||U||.g((t')‘£c|t—t’|, for |IUIIj[(0) =1

(5.1) and (5. 12) give

o2

1/n
< [Ullagasm +C | 1P Ol st
KISV °
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Step by step considering (5.6) and (5.12) we can find M such
that (5.10) holds for every # and ¢, 0<¢t<1. g.e.d.
Now introduce the following closed subspace of Li(R"x (0, 1))
H:10, 1)] = {Ulx, t): Ulx, t)e LR"x(0, 1)), U(x, t)e L*[B,],
for all most every #}

U,(t) are uniformely bounded in %;[(0 1)], from (5.10) and (5. 9).
A weak limit in 4,;[(0, 1)] belongs to £XL*[B;]) and satisfies

(5.13) % U= A®U+F()

in the sense of distribution in R”x (0, 1),
(5.14) txl'_a:?e Ui =U,.

Let us operate p.+ on (5.15), then we have
da
dt

Where C.(¢)U(t) converge boundedly to zero in .4, Since U,(¢)
is in &7(Y;)NENL[B;]), we can apply the energy inequality (4. 13)
to Us(t)— Us/(t)

(5. 15) Ut) = A@)U(t)+ F(t)+ C(t)U(z) .

(5.16) max |U)— Ub)| 5, <C{|[U0)~ Uyl
+ [1Et— Pl [ ico-caenvmar)
U,(t) converge uniformly in ¢ to U(¢), so that U(¢) is in E,).
As U(¢) satisfy
U@)- U, = S:(A(S) U(s)+ F(s))ds
U isin ENI[B.]).

Form the argument in §3, (E,) has the solution satisfying the
boundary conditions. Using the energy inequality we can show the
existence the solution of (E) by successive approximation method.

§6. Finiteness of propagation speed

In this section we show that the solution given in §5 has a
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finite speed of propagation. This means essentially that the
solution has a finite speed along the boundary x,=0.
If the solution has this property, the grobal solution can be
constructed by lacal ones. This fact is shown in the last section.
Consider the following Holmgren transformation at the boundary
x,=0
= t+”2_l(xj—x§’)2+x§
(6.1) { =
Y;i=%x; (j=1,-,m) .
By (6.1) the boundary x,=0 is transformed also to y,=0, and
the boundary conditions (B,) and (B,) is invariant in the following
sense.

9 \%* 9 \2kt1 |
Lemma 6.1. By (6.1) ( ) or ( ) is transformed to the
ox, ox,

¢ B 2/-1 @ 2
operator whose coefficients of (_8_) (i) ! or <_8_> < 9 > ! vanish

0y'/ \oy, 0y’/ \oy,
respectively on y,=0. (I<k, |B|+21—1<2k), |a|+2/—1<2k).

Proof. Assume that ( 9

I's
) is transformed to
0x,

0\ _ ,_._,.(_a_)l—:( 9\ i
(6.2) <8x,,) = =§.Ic;jynf op Oyn) , ¢, constants.

i

This is true for /=1. Then

) =G
= + w—
<6x,, 0y, Y ot'/\ox,

-3 ¢, <l+1)—j—i( 0 )(1+1)—j( 0 )j—i
JiJn

o o5,
. a I_j 6 j+1‘l‘
e (1 (8)
2658 ar! \ay,
o AN 9
(3 (2
+23(U—j—i); ¥ o,

J=1y

i 8 \UtLTIf  \iTi
= d. yg+oi '<—> ( ) , dj; constants,
. i;%[+l ];y at/ ay" Jt ants

Hence (6.2) is true for all /. Remark now that
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1) If /is odd and j—i is even, then /—j—i is odd.
2) If / is even and j—i is odd, /—j—{ is also odd.
When /—j—i is odd y4 /7% vanishes on y,=0. This complete the
proof of Lemma 6. 1. q.e.d.
Denote the interior of the backward cone with vertex (x,, #,) by

(6.3)  Cilxt,) = {(x, 8); —(—t)>N|x—2x,], =0}, A>0.

The following geometrical lemma is used in the proof of finiteness
of propagation speed.

Lemma 6.2. Let a=(a,, -, a, ,, a,), S a*=1, r*=(1—a)"”
i=1
a, = (an ey Au_yy 0)-

Then every point on Cy(a, \)N {t>0} N {x,=0} is contained in the
interior of Cy\(a,, ¥»)N {>0} N {x,=0}.

A —

The proof of this lemma will be given later. Form (6. 1)

0 ) 9 )
6.4) -2 = 2 42y, —x5)—, +n.
(6.4) ox, ~ dy, (¥, —x3) o J

9 3 ) ) )

— = +2 n ’ = a7

ox. oy, ey’ ar ot

Therefore the transformed equation of (E) also satisfy (H).
Now our discussion is divided into three parts.
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First step. (local uniqueness near the boundary)
Assume that initial data equal zero in {x:|x—a,| <€} NR%. By
6.1) D.={(x, )eRr x[0,1); |x—a,|"+t<E, t>0} is mapped to

~ n-1

D, = {(y, HeRLx[0,1): X (y;—a;) +y<t'<€}.

j=1
We extend the solution u to {0<¢# <&} N {outside of D,} by zero.
This is possible because # equals zero on ¢'= y§+'§ (y;—a;).
ji=1

The extended # satisfied the extended equation of (E) by keeping
the coefficients constant along y, axis outside of D..

Let us apply the energy inequality, then we can see that # must
be zero in D,.

Second step. Assume that initial data is zero in
(6.5) Cyla,, r't)N{xeRi}N{t = 0}

We consider F. John’s sweeping-out method attached to parabolic
surfaces

(6.6) t=—p{ '_21 (x,—a)+x3}+a, where parameter «
moves in 0<a<r%, and 8>0.

Step by step using the result of first step, we can show that the
solution equals zero in

6.7 Cyla, r't)N{xsR%}.
Third step. Now assume that initial data is zero in
6.8) Cyla, t)N{xeRt}N{t =0}.
By the second step, the solution is zero in (6. 7).
Considering Lemma 6.2 we can again use sweeping-out method
associated with parabolic surfaces

- —B{Jg(xj—a,-)z+(x,,—a,,)2}+a, 0<a<t,, B>0.
Consequently the solution is zero in

Cyla, th)N{xeR1}.

Proof of Lemma 6. 2.
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Without loss of generality we can assume that

a=1(00-,a,), a=0=(0,--,0)

Ci(a, M)N{t=0} and C\(0, xr,)N {t=0} are respectively

S={x:|x—a|l=1}

Sy ={x: [x]| =7

SoN{x, =0} =5N{x,=0}
Now take a point x=(x,, -*+, x,_,, X,) on S such that x,<0. Let
! be the line in x—¢ space passing through (x, 0) and (a, A).
The intersection of / and hyperplane {x,=0} yields a point
(b1y ***s Pu_s» 0, 1,), Where

(6.9) p;=x"

n n

(6.10) £, =n—Fn
Ap— X,

Denote by p the point (p,, -+, p._,, 0) is x—plane. Let ¢=(q,, -,
gn_1, 0) be the intersection of the line op and S°. There exists
a number «a given by

(6.11) ag;=p;, lql =7
6.12) a={1_(""_x">2}'/2-( 2 )

1-a2 Ay— X,
because of the following relations

p1* = @[ x|* = ("
o= (E)( %)

n=1
Dxi=1-(a,—x,)
=1

If the point (p,, -+, Px_., O, £,) be on the line passing through (g, 0)
(0, 7,0\), t, must be

(6.13) ¢, =rM(1—a).
From (6. 10), (6.12) and (6.13) we can show
(6.14) t,<¢,.

This means Lema 6. 2.
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§7. Some Lemmas concerning local transformation

Let S be a smooth and compact hypersurface in R” (#>2) and
be the exterior of interior of 8. We take a suitable open finite
covering {Q,} of S, O, being open sets in R”. Then we fix the
following standart transformations. Denote by » the intersection
of some neighborhood of origin and R%. Q,NQ is mapped in a
one to one way into » and S to {x,=0}, and the outer normal
direction of S to the outer normal direction of {x,=0}, (c.f. [9]
p. 289).

Now we consider a first order differential operator defined in Q:

(7.1)  m(x, D) = g mi(x)aix,

where m(x)=(m,(x), -+, m,(x)) is sufficiently smooth and transversal
on S. i.e. for v outer unit normal,

z"} my(x)cos (v, x,) = 0 on S.
=1
Here we give the definition of the first order tangential operator

Definition We say that a first order differential operator #(x, D)
is tangential at the boundary S, if #(x, D):icj(x)a—q— satisfies
i X

ch(x) cos (v, x,;,)=0 for all xS. ’

(t(x, D)u, v) = (u, t*(x, D)v(x)) for all, u, ve L3(Q).
Lemma 7.1. We can find other local transformation such that

n(x, D) in Q, is transformed to n .

n

Proof. After a standart transformation we can assume

(7.2)  n(x, D) — im,.(x)ai in o, where m,(x,, -+, %,_,, 0)%0.
i= x;

Let us consider the following system of ordinary differential

equations with a variable y,

(7.3) Z" = mx,, -, %)

n

with initial value
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x](o) :yjr (j=1) 2) '”)n—l)
x,0)=0

The solution of (7.3) and (7.4) is sufficiently smooth with respect
to y, and the initial data y,, (j=1, ., n—1),

(7. 4)

(7° 5) X = xk(yla BT yn) ’ (k:]-’ Sty n) ’

If y, is small, Jacobian ]<;) of (7.5) is close to m,(x,, -+, x,_,, 0)
+0. Therefore y, can be represented by
(7. 6) yk =yk(x1, °tty xn) (k:]., ey, n)

By the transformation (7. 6), Z myx) 58— have the form 88
x; 'y

. q.e.d.

Lemma 7.1 means that the continuous vector field (my(x), -+, m,(x))
in Q,NQ can be transformed to (0, 0, -+, 0, 1) in w.

Corollary 5.1. There exists a family of smooth functions Q

{n;(x)} such that 3 7n,(x)=1 on Q, n(x, D)yn,(x)=0

7.7 . .
in some neighbourhood of S.

Proof. At first let us take the partitions of unity of S,

Sik(s) =1 on S,
such that each 7,(s) has its support in one Q,NS.

After transformation (7.6) we extend 7,(s) defined on &N {y,=0}
to o, with constant value parallel to y,-axis. Summation of the
extended form of 7%, yields the desired partition of unity on Q.

q.e.d.
Now consider

(7.8)  n(x, ¢, D) = STm(x, )2,

i=1 axj
where m(x, t)=(m,(x, t), ---, m,(x, 1)) is transversal on S for every
te [0, §].

Lemma 7.2. We can find a family of local transformation of
the domain Q, to o, depending smoothly on t, such that n(x, t, D)

is transformed to in o for every .

n
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Proof. As above, we can assume that n(x, f, D) is given in o.
Here we consider the system of ordinary differential equations
involving parameter ¢£.

(7 3)/ Zxk = m;(xn **ty Xn»y t)

(7.4 ( 2,0) =3,
2,(0) = 0

The solution x, is sufficienly smooth with respect to y; (=1, :-+, n)
and parameter f.

(7.5 xp = 2.(31, =, Vur 1) (k=1, -, n).

Since Jacobian of (6.5)’ is not zero in place where y, is small.
(7.6Y  ye = ye(xs, -+, X, 1)

Now we consider the transformation

(7‘ 9) { Ve = yk(xly oy Xy t)
v =1

By (7.9) n(x, ¢, D) is transformed to

0y,

Lemma 5.3. Let b(x,t, D) be a k-th order partial differential
operator in Q containing parameter t. Then b(x, t, D) is written as

(7.10) bz, t, D) = 3 c(, ¢, D+ 3(x, t, D),

where ¢ (x,t, D) are the sum of the product of j first order tan-
gential operators.

Proof. Take a partion of unity >17;,(x)=1 on Q, such that the
support of 7,(x) is on Q,, if it intersect S.

(7.11) ux, t, D) = 23 n,(x)b(x, t, D)
After a standart transformation and (7.9), each 7(x)b(x, ¢, D) is

)
0Yn

(7.12) 7T e, D2 = 58,08, Do, (1)

0Ya

where Z,(y, ¢, D) does not involve 61

Y
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Here c,(y, t, D) are the disired type of c{x, ¢, D) in o.
Summation of (7.12) means (7. 10).

Corollary. Let a be a uniformly ellipiic operator of second order
with smooth coefficients involving parameter t in a half space.
d—Zd,,(x t)a é—’» a; (x, HEE; >8IE|%, >0

a; =a; x2€Q, te[0, §]

Then a is transformed to

= 8—24— Eb,- (x, 1’)i i—F first order.
oxz W= 0x,0x;
Proof. We may consider the transformation (7.9)’ generated by
the following ordinary differential equations.
7.4y e _ g (xp)
day,

(7.5Y { x,(0) =

x,0)=0. g.e.d.

§8. Problem in the general domain

Here we give the proof of Theorem 3. Consider in QX (0, o)
the following regularly hyperbolic equation,

®, (=

ot < gt’ D>}u =S,

where each b,(x, ¢, D) satisfies the aassumption (H), described in
§3. Considering Lemma 7.3 we can see that the assumption is an

intrinsic one. Let us show how to contruct the solution of the
equation (F), satisfying the boundary condition :

(Bl)g n(x’ tv D)Zkuls = 0’ k= Oy ly "'»[ﬂz_—l]’

(Bz)g n(x’ Z D)2k+1u[s =0 ’ k= 0’ 1’ ’[mT—z]

Assume that the initial data (6 > #(0)=w'(x) is in L},_; and satisfy
(B))g or (By),. ie.
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n(x, 0, Df*ei|, = 0 k=0, 1, ,["%—1]’

i=0,1, -, m—1.
®.1) nx, 0, DP**wil, =0, k=01, [’ﬁzf;z]

i=0,1, -, m—1.
Now take the partion of unity of Q.

8.2) >Xim(x) =P:§te 7,(%)+ q%}ite 7g(x) =1 on Q,

where 7,(x) has its support in Q and 7,(x) has its support near
the boundary of O, such that

8.3) n(x, 0, D)y, (x)=0 in Q, for every p.

By virtue of Corollary 7.1, (8.3) is possible.
Let us decompose given initial data {w (%)} 1o mo1-

(8.4)  wi(x) =X mw+Xnw = w,+2 we

Because of (8.2), w, satisfy (8.1) for every p.

By the local transformation (7. 9) after standart one, the equation
(E). is reduced to (E) and the boundary condition (B;), to (B)).
Let #,(f) be the solution for the initial data {@}},..,._,, in a
half space. By the fiiniteness of the propagation speed, 7 (f)
still has its support in o for 0<¢<3§,, if we take §, sufficiently
small. The inverse image u,(f) of #,(f) is the solution of (E),
satisfying (B;), (i=1, or 2) and initial data {w}}. For {wi}; s rm_1,
we may consider Cauchy problem for the equation (E),. The
solution of course has a finite speed. Then for 0<¢<$§, the do
not reach at the boundary.

The total sum u(#)=2] u,(¢)+ 2] u,(f) is the desired solution for
0<t<3, 6=min (§,, §,). Step by step we can construct the solution
u(t) for 0<t<oo. wu(t) has a finite speed of propagation and is
the unique solution of (F), satisfying (B;), and given initial data.
Energy inequality hold in L’*-sense.
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