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§ 1. Introducsion. In this paper we study the commutators of
singular integral operators and then show its direct application
to some mixed problems for hyperbolic equation of general order,
using reflection method. In  treating o f hyperbolic equations,
properties of commutators of singular integral operators in con-
nection with th e  operator A (where A  is  a square root of the
Laplacian) will play the most important ro le . In Theorem 1 given
in  §2 , w e re lax  th e  assumption on which A. P. Calderon and
A . Zygmund [3] obtained th e  theorem fo r commutators. By
virtue of Theorem 1, for example, we can show the existence of
the solution of Cauchy problem fo r th e  first order system of
regularly hyperbolic equation, under the assumption that the coef-
ficients are continuous and piecewise smooth in (0, 00)x R ", in other
words piecewise in  C 1 +'( a >0 )  relative to some hypersurfaces in
(0, 00)x R n  (cf. definition in  § 2 ) .  Permitting the coefficients to
be piecewise smooth, has a  physical meaning. Let us consider,
for example, Burgers' equation

a au(1.1) — u +u —  = 0,at ax
f o r  x<0 ,

(1. 2)u ( x ,  0) = u -

u , f o r  x>0 .

If u - <u ± , a s  is well-known, the solution is continuous and piece-
wise smooth and is called rarefaction wave (cf. Gelfand [14]).
A  small purturbation 5 u  satisfies th e  following equation with
coefficient u
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a a 5—(8u)+u—( u) = 0 ,at ax

As for mixed problems for hyperbolic equation of higher order,
S. Mizohata dealt with

(1.3)L  = ( — e.(x)a(x, D))u+ B 2 ,„_i u f ( x ,  t ) ,
at2

where a(x, D) = E a1 1 (x)  a a   +first order
ax, ax ;

E a11(x)12811 2 , a>o, xEn,
c,(x)>c i (x)>o,

(1.4)( 1 )  —

a 
ak ul, = 0 ,k =  0, 1, 2, •••, m -1 ,

an

where —a = E a 1(x) cos (J., x i )  av  outer normal, or
an ax;'

(2). akul s  =  0

u(x, 0) = uo (x ) , •••, yn l u(x, 0) = u,n _i (x)at

in the domain (0, 00) x 11 being the exterior or interior of a
smooth and compact hypersurface in R n , and  showed well-
posedness in  P -sen se . A s  is  p ro ved  la ter in  § 7, a(x , D )  is
transformed locally (near the boundary) to the following form in
R = { x  ; x =(x ', x )=(x 1 , ••• x,2-1, xn)}

a a x,i ) + f i r s t  order, where b, ; (x ', x„) i s  positive
ax,2, ax, ax ;

defin ite. In case of m=2, the author [9 ] extended the equation
(1.3) to the form

a2
(1. 5) — u +(a i (x , D)+a 2 (x , D)+a,(x , D)— u

8t4a t 2
+ a,(x, D)a,(x, D)u + 133 u = f ,

where the elliptic operators ai (x, D ) (i = 1, 2, 3) have the same
conormal direction on S. After suitable local transformation (1. 5)
is written in the following form :
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(1. 5)'
a4

— u -b 2 (x, D) 
 a 2  

 u+ b4(x, D)u+13, = fat2
a2 „_4 a an - 1 a awhere b2(x, D)=b(x) —  +E b i (x' , x.) +E b .(x' , x n )

ax! a x  ax. ,»=-1
J
a x ,  ax

2 a2
b4(x, D) = c(x )11 —  -FE  c;(x' , x   +E„) a

 n a axn )a.4 ax, axn  0 - i ax ,ax ,)

E xt,)(  a  y(  a  )* +lower order.j*.a x , a X t i

Then, by  the assumption that a; (x, D) have the same conormal
direction on S , the relations

( * ) bi (x ', 0) 0  an d  c"(x ', 0) 0  if k  is odd

follows. (cf. (2. 13), (2. 14) in [9]).
Of course this assumption (*) is imposed only on the boundary.
Such a type of restriction seems indispensable, if we consider
the boundary condition of type (1. 4) (1) (c f. P l. A fte r  th a t,
K . Asano-T. Shirota En using singular integral operator in
R =  { x -(x ', x „), x >0}  attached to the same boundary condition
as (1. 4), treated the equation

(1. 6) a 2 m  u+ " 1,; (x, D)(-a-Y  u+132„,_i u = f,at— .,=1 at
a w a \kw h e r e  b  i(x , D ) = E t

0.x„)

O) O, i f  k  is odd.
b2„„(x, D )  is uniformly elliptic,

Now we consider the following equation in (0, co) x

(1. 7) o
a
t
rn
mutE, b i (x, t, D)( a

a
t ) m u + b , ( x ,  t, D )u  =  f (x , t) ,

where b ; (x , t , D )= E  ck ,„(x', x„, t)( aax ,)  (aaxn ) k satisfies

(H) ck (x ', 0, t) = O, i f  k  is odd.

We may assume that boundary condition is the following simple
ones (cf. Lemma 7. 2).
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k =0, 1, • • • , r m - 1 1
r — r u 1 , 0  = 0 ,
ax„ " L  2  _1

/  a  ) 2k

ax„
u — O,k = 0 ,  1 „ [ i l

 ;
2

]

The assumption that b (x , t, D) is elliptic is not necessary, even
if m = 2m '. The detailed statement o f  our theorem concerning
above mixed problems will be given in  § 3. Here let us remark
that the reflection method discussed in § 4 is closely connected
with so-called Fourier's method for the wave equation. Consider

a2 a2
(1.8)- - u  — u = 0 in  (0 , 7r)

ax2
au(o) = u o , - u(o) = u „  u(o) = u(,) = oat

The solution takes the form ;

(1. 9) u = X  a k (t) sin (kx) ,

where ak (t) are determined by considering the initial data. We
can regard (1. 9) as the restriction to (0, r )  of Fourier expansion of

t) = f  u(x , t) 0<x <7.t.
t — u(— x, t) —7r <x <0 ,

because of t) cos (kx)dx =0, for every k  (cf. [2]).

The outline o f our argument in this paper is as follows. After
extending the coefficients of (1. 7) and u into (0, oc)x R n , we reduce
the mixed problems to evolution equations in some Hilbert spaces.
Then we use Friedrichs'mollifier which is suitable to those Hilbert
spaces and apply the inequality given by S. Mizohata for the
singular integral operator with positive definite symbol, in order
to obtain the energy inequality, (§ 4). The energy inequality plays
the essential role in the proof of existence of the solution, (§ 5).
By virtue of Holmgren transformation at the boundary (6. 1) and
a geometrical lemma, we can show that the solution has a finite
speed of propagation, (§ 6). Using property and considering local
transformation discussed in § 7, we can construct the solution for
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some mixed problems in  a  general domain f2 x (0, c o ) ,  (§ 8).
The author wishes to express his sincere gratitude to Pro-

fessor S . Mizohata for his invaluable suggestions and continuous
encouragement.

§ 2. Commutators o f  singular integral operators.

A t first we remember the original definition of singular inte-
gral operator in R k  given by A. P. Calderon and A. Zygmund [3].
Our argument is also based on their expansion of the symbol in
spherical harmonics. This method is sometimes more powerful
than any other definition of pseudo-differential operator, because
of the fact that coefficients of the expansion make rapidly con-
vergent numerical series. Let us denote by x= (x„ •••, x,) a point
x in R k  , by x ', x '= . The sphere x l=  1 in R k  will be denoted

xl
by 1, the elements of surface area  on by do-. B y C', a>0,
we denote the class of complex valued continuous bounded func-
tions on R k  with bounded continuous derivatives up to order [a]
and with derivative o f order [ a ]  satisfying a  Hiirder condition
o f order a — [a ].  h (x ,  .)E C :  means that h(x, is  in  C -  with
respect to and every derivative w ith respect to is  in C .
We shall denote 0 1",p(Rk) simply by Dr'  and its  L P norm IHH .

In a point of view of the theory on partial differential equa-
tions it is convenient fo r us to introduce the singular integral
operator using so called symbol. Let h (x ,) x , ERk, be a function
in  CW, /3>0, homogeneous of degree zero in a n d  l e t
(2. 1) h(x, = a o(x )+  , , a„„,(x)Y „,„(V)

b e  its  expansion in spherical harmonics. Then a„„,(x) can be
reformed in the following :

(2.2)a „ „ , ( x )  =  ( - 1 ) r  n '( n +  k  — 2)' (1V1 2 )rh(x, ') Y„„z(V)do- ,

where (1 12 ,6q )rh(x, is also homogeneous o f degree zero in
(1. 2) means that th e  regularity in o f h(x, m ake the con-
vergence of of (1. 1) more rapid than any series E 1 ( k = 2, 3, •••).„ nk
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Corresponding each Y„,n (V ), a  bounded operator T „„, in V  is
determined as fo llow s. Fourier transformation gives the formula

(2.3)Y „ „ , ( ' )  = lim gx÷e[Y,,,n(e, 8, x)] = (-1)"R.,
E-) 0, 8 * . .

Y„„,(6, 8, x ) = J Y„„,(x')Ixj - k
o,

(2.4)8 „ 1 < c  n' 1 2 4 F11 , c  depends on k,

(T„,n ,f ) (x )  defined, for fE  LP, p > i, by

(2.5)T „ „ „ f  = Y „„,(x—y)f(y)dy, (n=1 , 2, • ••)

converge almost everywhere as 6 —.0, and the estimate

T„,nefIl i , C1IfIlp, (n=1, 2, •-•, )

hold for every E. Therefore T n n „ f  converge in the mean of order
p  to a lim it T„„i f

(2.6) I I Tnn,f f  lp , C  depend only on p  and k.

A. P. Calderón and A . Zygmund defined th e  singular integral
operator H  with symbol c(H).= h(x, by

(2. 7) H f = a 0 (x )f (x )+E a„„,(x )8„T „„i f  E a„„,(x)8„T„„,fn o

Considering the number of distinct spherical harmonics Y„,.„ for
each n  and (2. 4), we obtain, by virtue o f (2. 2),

(2.8) U lf ,

where M  i s  a  bound for the absolute value of h ( x , )  and its
derivatives with respect to in I > 1  o f order 2k.

Defining H ° and H 1 oH 2 by

= cr(H )  , c r(H 1 .112 ) = o-(H 1 )o-(112 )

A. P. Calderon-A. Zygmund proved Theorem 1  described below
under the condition that TW A ø-(H 2 ) and 0-(H ) are in C a >O.
Now we extend the theorem to the case where the symbols are
piecewise in C ,  a>0 .

otherwise,

Definition 1. A function k (x ) defined in  Rk is said to be piecewise
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in C'" relcitive to given hypersurfaces S, if  h(x ) has the properties :
h(x) is continuous in  Rk  (ii) h(x ) is  i n  C » ( 0 ,  where co is any

connected component o f  Rk S .  (iii) The deriv ativ es of  h(x ) have
uniform ly  Hdrder constant for every co. Denote the class of  func-
tion by  Ck".

Theorem 1. A ssum e that h i (x, ) = cr(Hi )(x, (i = 1, 2) defined
in Rkx {Rk— {0 } } be a C 's function o f  homogeneous degree zero in

and be in  C l"  w ith respect to x . T hen w e have
(i ) H,A —  A H„ — AHt and (Ht—  HI)A  are bounded opera-
tors in  LP with operator norms bounded by CM„
(ii) H1ll2)1Ip is bounded by CM1M2.
where A = 9 '1  I g .  I l l ,  i s  a bound for the absolute value of h i (x, ),
ah .

z

(x, )  and their derivative w ith respect to and their Hdrderax, 
constant, (i=1, 2). C  depends on P, k  and hyPersufaces S .
Let us begin with the following lemma

Lemma 1. 1. A ssume that c(x) is piecewise smooth in C 1 +' relative
to the hyPerPlane x„= 0, (a>0) in  R . L e t  T  be a  singular integral
operator w ith the symbol independent o f  x  an d  o f  spherical mean
z e ro . Then f or f (x ) in  L i(R ") we have

(2.9) I I(c(x)T —  Tc(x))f p C 1 C 2 lif  p f o r  i = 1, 2, • • • , n,

w here C, denote a  bound f o r c ( x ) 1 ,  l e x , ( x ) 1  a n d  their uniform
Hiirder constants in R I  and in R . C , d e p e n d s  on the kernel of  T .

Proof.

(2.10)( c ( x ) —  c ( y ) ) Y ( x — y ) f y , (y)dy

has a pointwise limite almost everywhere as E  tends to  zero
(cf. [ 3 ] ) .  B y v irtue of Fatou's lemma it suffices to show that
LP norm of (2. 10) can be estimated independent of 6  by CI If II P•
By integration by parts (2. 10) is equal to

(2.11)(c (x )—  c (y ))Y  (x  —  y )f (y )7  i dS yix-yHE

ycy.( )Y (x — y)f(y)dy
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Ix - y

i>i (c(x)—  c(y))1'(x —  y)f(y)dy

+S i > i , i > , (c(x)— c(y))Y y ,(x — y)f (y)dy

The first and the th ird  term s can be estim ated by the same
method as one used in the proof of Hausdorff-Young's inequality.
In fact, concerning the first term we have the following relation
using H 6rder 's  inequality and F u b in i's  theorem,

(c(x) — c(Y ))Y (x — y)f  (y )7 i dS y  P dx
lx— yhe

=
(c(x) — c(Y)) 1 7 (x — y)IdSy rlq

x (c(x)— c(Y)) 1 7(x — f(Y )I P 'Y i  PdS y ldx

ff P/q f

tilx -y1 = e d'SY1 J (c(x)—  c(y))Y (x —  y)dS,}  f (y)IPdy

1 dS y ,f  f (Y) P dY f ( Y) , (1 +1= 1)x — yln-1P  q
The estimate of the second order is well known. N ow let us
decompose f  (y ) as follows :

(2 . 1 2 )  f (Y ) =  f1(Y )+f2(Y ),
fi(Y ) =  f (Y) f z(Y) , .Y„>0

0 y n <0 f (Y) Y.<0
Then the fourth term o f (1. 11) is equal to

(2. 13) / , ( x ) +  / 2 (x ) = (c(x)— c(y))Y yi(x— y)f,(y)dy
i>lx- y i>e

1>lx-yl>e 
(c(x) —  c(Y)) 1 7y,(x Y )f 2(Y )dY

Now assume that x = (x i  , • ••, xn_1, x„), x ,> 0. T hen  in the integrand
of the first term, c(x)—  c(y) is written in the following form

(2. 14) c(x)— c(y) = (x — y i )cx ,(x )+b(x , y) ,

w h ere  b(x , y ) <c x  —  y  I ', a>  0, y ,> 0.
Rem ark that Hf and that the surface integral of z ; 17  zi(z)
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on I 1  is  eq u a l to  zero, (c f . [3 ], p. 915 ). The L P norm of
71(x) defined by 11(x) in  x„ >0 and zero in x„<0, can be estimated
independently of 6  by c Concerning 12(x ) we decompose

(2. 15) c(x)—c(y) = {c(x)— c(x°)} +c(x°)— c(y) ,

= {c(x)— c(x°)}  + (x y  i )cx  i (x°)— y„cx n (x°)+b(x°, y)

where x °— (x „ x „-•,x n , , 0 ) ,

lb(x ° , Y)1 — Y1 1 + 6 x  — .Y11 + 6 , y ,,<0

Then it suffices to discuss the following two terms

J i (x )= — Y. Y y i (x — Y)f 2(Y)dYi>lx-yi>e

.1-2(x) (c(x)—c(x°))Y yi(x—Y )f2(Y )dy

Take the absolute value of the integrand of J 1(x ) and we have

J i(X ) - - C i.>1.zr--Y1>e X — .Y1 n +

— Y . 
i lf2(Y)1dY 1 > l x  y i > e

x n — y n
 i lf2(Y)1dy

Similarly from lc(x)— c(x°)1<cx„ the relation

x

n1 1.f2(Y)Idy c 1.YiNx-yi>e ix— y in + x x —n—y3:: 2(Y )d+1

Taking account of the surface integral of  Z
n

 o n z i  =1  being
zln+1

zero, w e can obtain the desired estimate for 72 (x )  defined by
12 (x ) in x„>0 and zero in x „ < 0 . For another half space R 91=

: x =(x „ -•, x „ x n ), x ,,<01, we can follow the same argument.
q.e.d.

N ow  w e can extend Lem m a 1 to the case where c (x )  is
piecewise smooth in C 1 +°' relative to smooth hypersurface S  in R .

Lem m a 2 . A ssume that c(x ) belongs to CV ', w here S  is a smooth
hypersurf ace satisfy ing the following conditions.
1 )  For every Point x ° o n  S  they  ex ists a positiv e number 3 , such
th at  Sn138(e) i s  a  connected component o f  S .  H ere  Bs (e) =
{x ; . X °  <3}
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2) S n B(x°) is m apped into the hyperplane x n =  0  and x ° to origin
by a  suitable local transform ation f rom  B s (x °) to a  neighbourhood
of origin.
3) In  each B  (x°),S  is represented by x=99(x) such that 99(x) has
uniform ly  bounded f irst order deriv ativ es. T hen (2 . 9) holds. c,
depends on T  and S .

P ro o f . Similarly to (2. 11) we consider

(2. 16) 
15>lx—yl>e 

(c(x)— c(y))Y y ,(x — y) f (y)dy

By virtue of a parallel transition and a rotation of the coordinate
we can assume that x = (0, 0, •••, 0, a) (a>0 )  and x „= 0  is  the
tangent hyperp lane  at 0 = (0, • • • , 0) of S : x  n = 99(x). Now consider
the following transformation.

(2. 17)
x ;  =  x + 1(  6 9 ) (xi, • • • , xL1)/m )}x; j= 1, 2, • • •, n -1 ,

ax ;

ag)x n  =  99 (x;., • • • , { ,  •••, xL i )/m}x,i ,
ax t,

= a9) (XÇ, -X L 1 ))2 }1 1 2a X i

Here 99 satisfies
99(0) = O,q ( a ) > O

(2. 18) aa 9 9  (p) 0, j  = 1 ,  • • •  ,  n -1 , (0)* 0.
x ; a  x , „

 

Therefore in the neighbourhood o f origin we have

(2. 19) l x k —x x 2

Let us decompose f ( y )  in (2. 16)

(2 . 2 0 )  f  (y ) =  f i(y )+  A (y ) , f i(y ) =  f ( y )  ,
1 0

f2(Y) = 0 ,

./. (Y)

where 99(y).„>, 0
elsewhere

where 99(y) 0
elsewhere.

(2. 21) 1 2 (x) (c(x)—c(y))Y y,(x— y)f 2(y)dy
8>Ix—yl>e



A n approach for hyperbolic mixed problems 449

is transformed by (2. 17) to

(2 .2 2 ) 12 (x) = (e(x')) — -e( JO) t,(x' — i/)f2(Y )TdY i

8>1 x—yl>e

where Jacobian J is close to 1, and x'= (0, 0, •-•, 0, a) = x . Y  (x ' —y')
satisfies from (2. 19)

(2.23) 2y, (x' — y')— Yy ,(x —y) x—y I .

Corresponding to (2. 15), we have

(2. 24) e(x')— e(y') =  { -e(x')— e(0)} + -e(0)—

=  {-e(x')— -en} + (x —y'.,)c„,(o)—yxx „(o)+ b(0, y')

where b(0, Y') Y/11+°' —Y' 1 + '̀

I c(x')— c(0) a

Substituting them into (2. 22), and considering (2. 19) we have

(2. 25) (x—Y)17y,(x'—i0f2(Y/)./dY'

y )  ,(x 5 — y i )Y y ,(x — f2(Y )dY  + b(x ' .f2lY)dy
8>lx—yi>e x n- 1

where b(x, y ) is a bounded function. The second term of (1. 25)
can be easily estimated and the first term is a well-known one.
Corresponding to Ji (x ) in Lemma 1 we have

Lx-y i>e

e 
Y  7  yi (x — Y)f2(.Y)clY

b(x, y ) x—yI ' f 2 (y) dy1

Here the second is an easy term and the first term is the same
one as in Lemma 1. For 72 (x ) the argument is the same as 71(x)
just like in the case of Lemma 1. q . e . d .

Rem ark. Even if the surface S  is replaced by many hypersurfaces
or piecewise smooth hypersurfaces. Lemma 2 is also true. In
fact, we may decompose f (y ), corresponding to (2. 20) or (2. 12),
into many factors.

(2. 26) I .A(x) = c

<c



450 S a d a o  Miyatake

f (Y ) =  f i (y )

Now we proceed to the proof of Theorem 1. For f ( x )  in /4(Rk),
using A = E R1   a we can write

i=i ax,

(A H — H A )f  = R  1 (E a„,,,(x)0,,T„,,,f) — E  a(x ) /3 „T C E  R  f  x i )
1=1 1

E  1 3 11R 1 (a n m (X ) ) x L m f + E 13 n(Reanm anmRi)(Tnmf)x 1 .1,n n,1

Here we have used that relation

T„„,R i f x , = R I T„,n f x , = R i (T n „,f ) x i .

(a„„,(x)), (am n (x)) x  a n d  their uniform local H iirder constants cn ,n
make absolutely convergent series with sufficient rapidity, by virtue
of the formula (2. 2). Now we apply (2. 9) to the second term and
use (2. 6), then we can see that HA —AH is  a  bounded operator.
By the definition of H  we have

(H* —  IP)A f  = E (— 1)"13 n(Tnmanin a nm
T

nm )(
R  f )x •

Again Lemma 2  shows th at (H* —  TP)A  is  a  bounded operator.
L et H, = E  b,(x )13„T „,„, H 2  =  ECnm  (x )0 „T „,,, Then from (2. 2)
and (2. 6), E  b„„,c.„0 „0 T „, n T , ,  is absolutely convergent in oper-
ator norm in L .  Therefore we can see

H1 .H 2 E n T,,„, T„

(H 1H 2 — HJ-12)A f  = E0„0,b„,,,,c„T„,n T „— E  „0b„,n T „,,,c„T „(R  f ) x ,

— E 13 nO n m (C U P
,
T tsm T nm C 1.4 )( T V P R /  f ) X i  •

Lemma 2  and (2. 2) complete th d  proof of Theorem 1.

Remark 2. If th e  symbol h(x , f l is  C -  w ith  respect to and
bounded measurable in x up to all derivatives. Then the singular
integral operator defined by (2. 7) i s  a  bounded operator in  LP
and satisfies (2. 8).

Remark 3. If h(x, involves a  param etert t  and is continuous
in t  in the following sense.

(2.27) E  a { h ( x , t)— h(x, t')}  <c t —  t'
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Then we have

(2. 28) 1111(t)—H(r)11 p _CM

§ 3. Statement o f some mixed problems

In this section we give the detailed statements of the mixed
problems introduced in  § 1. Consider the following regularly
hyperbolic equation of general order in (0, 00) x R , { x  ;  =

, x,,)=(x„ •••, x 5 _1 , x„), x n >01:

am-a(E) L p u +B u  = am  u +'"  b i (x ,t, D) atm _ +  B ( x ,  t ,  57, D )u
at"'

= f (x , t)

Inf 1X3(x, >8 > 0, where X; (x, are
xER1, iei =1 , j* k

characteristic roots of (E ) . B (x , t ,-Q , D )  is  a lower order oper-

ator. A n d  we impose the following assumption on every b

b i (x , t, D) = ,a (x, t)(aax Y  ax
a
x/Y

(H) ak (x ' , x „, t)  vanish on  x „=0 , if  k  is odd.

All the coefficients are in piecewise c i c  relative to some smooth
hyperplanes in Rn+1 — t  space). Let us takes account of the
boundary conditions :

(B1)
(  a ) 2k
 u  x n ,  0 ,a.x„

(  a y k ,
u ,ax„/

k =0,1, • • • ,r m - 1 1  .L  2

k =0,1, • • • ,rm  — 2 1 .L  2

Corresponding to (B 1)  or (B,), w e assume th at the second
member f (x , t) is  in EX .012(/?/))') or in E(L7(1?7.0).
Now we state our theorem in  a  half space.

Theorem 2. For any  in it ial d ata ( -n i  u(0)ELl_ i (R) (j =0,1, ••• ,at I
1 )  f  ( t ) E  m i l )  means that f ( t )  is p times continuously differentiable in t with

v a lu es  in  H , (p =o,1, 2, ...).



(B,), n(x, t, s  = 0 ,

(B2)g n ( x ,  t ,  D ) 2 k±1u  s = 0 ,

k = 0, 1„ F m  1 1L  2  -I

k =0,1, • • • m - 2
[  2  1
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m -1 )  satisf y ing the boundary conditions (B 1)  and for the second
member f(x , t) as above, there exists a unique solution of (E ) under
the assumption (H ) satisfying (13 1) (i= 1, 2). The energy inequality

(3. 1)E
, -0 (

u
Y (t)

\8t 

 

c 1"- 1

j \at / u(o) MOWS}
m - i

    

hold. H H m _j  m e a n s
 H H L i J .  M oreov er the solution h as a finite

speed o f  Propagation just lik e in the case of Cauchy problem.
Now let us state  the problems in a general domain. Let f2 be
the interior or exterior of a smooth and compact hypersurface S
in R n . In SI x (0, co) we consider a regularly hyperbolic equation
(E ) , of type ( E ) .  Corresponding to (H ), we impose on (E) g  the
assumption (H ) ,  below . Our boundary conditions on S x (0, 00)
are denoted simply by

where n(x, t, D)= 1 m .(x, t)  a  . Smooth vector m(x, t)=(m,(x , t),
ax

m2(x, t), m n (x , t) )  is transversal on S  f o r  e v e ry  t , i.e .
t) cos (7,, x ; )* 0  o n  S . (v : outer normal of S).

Let us note that w e can  alw ays rewrite an arbitrary j-th
order operator as follows (By virtue o f Lemma 7. 3 in § 7).

(2. 2) b i (x , t, D ) = kt  c  _ k (x, t, D)n(x  , t, D),

where (j— k)-th order operator ci _k (x , t, D ) is  a finite sum of the
product of j — k first order tangential operators, (later in § 7 we
give a definition of tangential operator along S ) .  Now we assume
that

A ll the coefficients of the principal p art  o f  c t, D)
are vanished on s , i f  k  is odd.

Theorem 3. F or any  initial data (--) u(0)EL l_ i (SI) (j =0,1,a
at

( I n g
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m - 1 )  satisfy ing the boundary condition (13,),, o r (B 2 )g  a n d  fo r any
second member f ( x ,  t )  being in  61(.01 ,2(1-2)) o r  in  e(1,1(1-2)), there
ex ists a unique solution of the equation (E) g  satisfy ing (.131 ) or (B2)
under the assum ption (H) g . The energy  inequality  (3. 1) holds.
The solution also has a f inite speed of propagation. ( i= 1, 2).

,§ 4. Reflection principle and energy inequality

In this section we show how to apply the reflection principle
to  the equation (E ), using Theorem 1. A t  first we reduce the
mixed problems described in the previous section to  the evolu-
tion equation in certain Hilbert spaces. Then in  those spaces
Friedrichs' mollfier will be used in  order to show the energy
inequality. S. Mizohata's method in treatment of Cauchy problem
is useful also in these cases. Especially we can use the inequality
for the singular integral operator with positive definite symbol,
an extended form of Grtirding's inequality.

1. Reduction to the system
Consider the principal part of (E)

m(E 1) L  =  am  u + b t, D) a

-i

u — f (x , t)arn

Assume that u ( t ) E 6 ( L _  j (R)) (j =0, 1, • • • , m) and satisfy theati
boundary condition (B O or (B O . Let us extend the coefficients
of (E 1 )  and u  by the following rule :

(R1) a k —  x „ ,  t )  — a k (x ', xn, t) i f  k  is odd.

(R2) a k ,(x' , — x ,  t) a k ,.(x ' x 7 t  f  
t

)  f i f  k  is even.

(R1) u(x/ , — x k , t) = —  u(xi , t) in case (BO
(R2) u(x' , — x n , t) = u(x% x„, t) in case (BO

Denote by a  and rt, the extentions of u corresponding to (B ,) and
(B 2 )  respectively.

The extended coefficients are piecewise in C 1 +' relative to
hyperplane x„=0 and other hypersurfaces in Rn+1 by virtue o f (H).
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Lemma 4. 1 I f  u belongs to L ( R )  and satisfies (BO or (B ), then
the extention u  o r ri respectively belongs to

Pro o f . For cp E  2(R")

(4. 1) u, (99 >  — dx aP  dxaa  
" axna x n axn R `L  a xn

from the definition of the derivative of distribution. Assume that
u in L ( R )  satisfies (131), then we can see that

( q, au pdxJ ax„ JR74. a X n

(4. 2)

a

aP dx au  pdx = pdx
R "  axn R "  x „ ax

hold by the limit process. Therefore from (4. 1) and (4. 2) we have

(4. 3) au  pdx— 25-11
R  x pdx

(4. 3) means not only that  a u  b e lon gs  to  L 2 (R " ) but also
axn

au- (x ' au, — x n ) — (x' n ), X  n > O. Similarly for u in L ( R )  satis-
8 xna  x n

fying (B,),

99 d x — f  au pdx
JR7f a x n J R t a x „

holds, because two boundary integrals cancell each other. Therefore
a belongs to O R " )  andaxn

a a—xn ) = — u(x , xn ), xn >o
axn a x n

Putting au —  v, we can repeat the above argument for v. T h ena x„
a a – and V belong to L 2 (R n ), corresponding that u satisfies (BOax,, ax,,

and (BO respectively. Step by step we can show Lemma 3. 1.
q.e.d.

By virtue o f  Lemma 4. 1, the extention u  of the solution u

(4. 4) a  P
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of (E1)  satisfying the boundary condition (131)  is  the solution of
the equation ;

atm a
atm + 1 (x , t, D)( = f (x , t) ,at

where / (x , t )  is  the extended one by the rule (R1). Hereafter for
simplicity we denote u and n by u , and the extended coefficients,
by ak x ,  so w e consider (E1)  as the equation in Rn x (0, oc).

Now let us introduce the following closed subspaces of L 2(Rn):

L2 [B 1] = 1 u ; u E L 2(R"), u(x', — x ) —u(x', x„)}
L 2 [B 2 ] = 1u ; uE  1.2 (R n ), te(X ' n )  =  U(X '  1 ) }  •

Immediately we have the following Lemma that is the converse
o f Lemma 1.

Lemma 4. 2. Assume that u belongs to Li n L 2 [B 1  (i= 1, 2). Then
we have

( a
a
x ) l k  ul x „, —  o , k =0 , 1, 2, •••, FM  1 1  in Case 1=1,

L  2
( a \ 2k,

, ui = O, k =0,1, ••• ,E m  2
]  i n  Case i= 2,x„/ 2

where ul x „_0 =0 m eans that the trace of u  to hyPerPlane x n = 0  is
equal to zero.
Now we remember Friedrichs' mollifier (p,*) given by the smooth
function p,(x)---- ( -1 ) n p(—x ) ,  where

E

(4. 5) P(x) = f exp (  —  1
  )

1— 1 X 2 ( I x I <1)

( I x

Th e following lemma plays the important ro le for us to  show
the energy inequality.

Lemma 4. 3. For u  in L T B J, u ,(x ) defined by

(4. 6) u 0 (x) = pem = pX x— y)f(y )dy
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belongs to n L2[B,](c c- n L 1B ,i).

Pro o f . It suffices to say that  u ( x )  i s  in  L T B J, (i = 1, 2). For
uE L 2 [B1] ,  we have from (4. 5)

ue (x ', — x.) = Pa(x' — Y, .Y.)dYdY.

= p,(x' —y', — x+y„)u(y/ , y „)dy 'dy ,,

xn —  YOu(Y / Y ) d l d y .  — ue(x / x . )

In the same way u,(x ', — x ) = x„) holds for u in L T B J.  q.e.d.

Lem m a 4.4 .  Fourier im age of  1 , 2 [13,] is also L 2 [131] ( i =1, 2).

P ro o f . By virtue of Lemma 3. 3 we can see that 2(Rn)C1 L2 [13,]
i s  dense set in  LTB J .  L et u s prove Lemma 4. 4 for 97(x) in
g(Rn)n L2[B1]

g"[A (V , • , x „)dx ' dx .

= — xn )dx' dx.

=

•

 ,  x n )dx'clx„ = —9"[T ] ( '

Sim ilarly fo r  w (x ) in  g ( R " )  LTB 2] ,  w e have g iq W , —
=  [T ]( ', W. q.e.d.

By Lemma 4. 4 (A+ 1) is  a  bounded operator from the space
• n LTA ] equipped with the canonical norm 11.11fr.L2 one to one
• n L 2 [/3,], (i= 1, 2).

Reduce (E ,) to  the system by putting

(4.7)v ;  = {i(A+ 1)}m - j - 1  (L -) j u (j=0, 1, •••, m -1),

where v ;  belong to Li n L 2 [B 1]. I n  what follows, denote Li n L2[131]
by s 1 l  ( i=1 ,  2). From (4.7) we get

(4.8) --a v ;  =  i(A +1 )v  „ (j =0,1, ... , m - 2).at
Then (E1)  becomes
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(4.9) -v„, = ;(t)Av ; +E  B ; (t)v ; + f ,
Ot

where B ; (t) are bounded operators in LAR") o r  L (R " ).  L e t  now
S be the class of singular integral operators mapping L 2 [B i ] into
L2 [B ]  with symbols being piecewise in  C7+ ,,, relative to some
given smooth hypersurfaces. By (R 1 )  and (R2 )  and Lemma 4. 4,
H ; (j =1, •••, m ) in (4. 9) belong to S . M oreover H i o lik  also
belong to S . Put

(4.10) U  = t(v„ v„ • • F—(0, • •• , 0, f)

Then (4. 8) and (4. 9) is written as

(E2) —
d

U(t) = iH(t)A U(t)+ B (t)U+ F(t) A ( t ) U + F
dt

B (t) is a bounded operator in S t  (i = 0 or 2).

0-(H (t)) =  / 0 1
0 1

0
0 1

 b I

H(t) maps II L2 [B 1 ] into H 1.2 [ B ] .  Let us simply denote H L 2 [B ]

by L 2 [B 1 ]  and fLgt,. b y  S t, (i = 1, 2). We can recognize (E 2 ) as
an evolution equation in I1 . C onverse ly  if the solution U(t)
= (vo (t), •, v„,_,(/)) o f  (E 2 )  belongs to E V ; n E (‘gii), then
u = + 1){ - m+l v0 b e lon gs  to  e(a_i n L2 u3,11) n EVZ n  [ B i ] )
and satisfies

ai u
at { i(A +1)}-(m-i-"v ;

ai and (E 1 ). u  i s  in e ( L 5 , n P [B ])  n n L 2 [B 1]) ,  ( jati
= 0, 1, m -

2. Energy  inequality
In  order to show the energy inequality, we use a singular

integral operator N (t) whose symbol is a diagonalizer of 0-(H(t)):

bk  =  bh (x , /, 27r'), —  •
I 1
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[o- (N(t))cr(H(1))= cr(2(t))o-(N(t)), where o-(g)(t))=2n- X i (x , t, n  0

0 . . ■,„,(x, t, ')
0-(N (t)) satisfies

1) Idet o- (N(t))I (x, t)ERnx (0, oc), ER".
2) NE S
3 )  0-(N)(x, t, is continuous in t  in the sense o f Remark 3

in § 2 . Let us remember S. Mizohata's inequality

Lemma 4.5. L e t  H  be a  m x  m  m atrix  whose elem ents H i , k  are
singular integral operators o f  ty pe  C I ( 0 > 0 ) .  A nd assume

(4. 11) c (H ) (x ,  n o a l .  8 8 > 0 ,  a  = t (ai, ••., a .)

being any complex v ec tor. Then the following inequality  holds

(4.12) IIHAU112.5/11AUI 2 - 711U112 , 8 '> 0 , 'y >O

Now we proceed to

Proposition 4. 1. The solution U(t) o f  (E2 )  belonging to EXL2

n 61(1t i )  satisfies

(4.13) 11U(t)111 C(11U(0)111+Ç0 1IF (s)Ilids) , 0 <t <T ,

where F (t)  is  in  ett ) (S i ).
Let us prove Proposition 4.1 in three steps.

First step. Taking account o f th e  properties o f  a (N (t) )  and
Lemma 4. 5, we can introduce a new norms in L 2 [ B ]  ( i =1, 2) :

(4. 14) IIUII12(B,,(,) = (N(t)U, N(t)U)+ RI (A+ 1 ) - 1 U112

;  large positive.

Then there exists a positive number c, and c2 such that

(4.15) cill Uil_<11U11/2(13,)(,)_ c2111/11.

(4.16) c-1---11U112(B)co = (N(t)(AU + F), NU)+ (NU , N(AU + F))
d t

+2 Re (N'(t)U , N(t)U)+ 2 Re ,8((A+ 1) - 1 (AU + F),
(A + U),
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where cr(NV))=--f
a

 t c(N(1)).

Corresponding the first and second term, let us consider

(4. 17) i{(N(t)H(t)AU, N(t)U)— (N(t)U, H(t)H(t)AU)} .

By virtue o f Theorem 1 we know the facts

(4. 18) N(t)H(t).A.,=_ (N(t).N(t))A = (t)0N(t))A
( modulo bounded operator in 1.2)

Remark that = g  follows from hyperbolicity and use (4. 18),
then we obtain

(4. 19) {(N(t)H(t)AU, N(t)U)—(N(t)U, N(t)H(t)AU)} 1[11 2

Since the other term can be easily estimated, we have

d(4. 20) U(t)112(B,)(0_<Cdt ILIIIL2Bi)(t)(11U11L2(130(t)+1iF IL 2 ( 1 3 i ) ( 0 )  •

Integrating (4. 20) and using (4. 15), consequently we obtain

(4.21) 11U11L2 C { 1(1.4 2 + IF( 01 L 2dt} .

Second step. N o w  assume that the solution of (E2 )  is  in 6'X/A (1
L2 [B ,]) e  'AA )  and th a t  F ( t )  i s  in n SO . W e operate

ax ;

a on (E2). Consider

(4.22) d   ( a  U )  ( iH A ) (  
 a

  u )+B ( a  u )+P(t) ,
dl a x ax

where -fi-1 (t)=iH (t)U +B U + ax
a .F(t),

0- (H ,'„„(t)) —  a
a
x . c(H(t)) .

I f  U is in e t̀
r(LA n L2 [Bi]) n aX, 911), then U  belongs to mg-(2 ) nax n

E(L 2[B 2]). P(t) i s  in  6";(i-(2), b y  v ir tu e  o f th e  property of
o-(11;„(t)) and B,',„ and the assumption that F (t) is  in ect)(L n s i i ) .
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Therefore we can apply the result of the first step on  a U anda x . 

(t), to obtain

(4. 23) a 
L 2

a  U(0)
x (A+1)U(s)11L 2 +11F(Oli)ds}

( j= 1 ,

     

because the same method is valid for  a U (1* n) and for the case
ax .

i= 2. Summation o f (4. 23) and (4. 21) jgives (4. 13).

Third step. Now we can prove Proposition 1 .  Operate p,* on (E,),
then we have

(4.24) ' am-,
u ,+ E  b  . ( x ,  t  u,
dtm atm-1

a  

) 
m -j+E [b =i (x, t, D), Joe* _ u f „

] (at

where [1, 1 (x , t, D), p,*]{ i(A +1)} - (i - "  is a bounded operator in Si,.
U,(t)= p,*U(t) satisfies the assumptions in the second step. and

d(4.25)U , ( t )  =  iH(t)A U,(t)+B (t)U,(t)+C,U(t)+ F,(t)
dt

By the result of the second step, follows

(4. 26) 114(t)H1 cIllu,(0) FE(t)11,)dt} .

Remark that 11C,U I and th a t Ce U(t)1 tends to zero if E
goes to z e ro  Tending E to zero we can apply Lebesque's theorem
to obtain (4. 13). q . e . d .

§ 5. Extence of the solution

1. A t  f irst w e consider the case w here the coefficients are inde-
pendent o f t. In this case the corresponding evolution equation is

d(E,), U(t) = A U(t)+F(t) = iHA U(t)+B U(t)+F(t)
dt

in q i ,  (i = 1, 2)

Take the definition domain o f A  as
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2(A) i  =  {U : U 9 l , .

§D(A) i  i s  dense in because nnL 2[13 e]  contained in  D(A), is
dense in L 2 [B ]  by Lemma 4. 3. Now introduce in each St i  the
following new norm

(U, U)m, = (NAU, NAU)+ 13(U, U), (i=1, 2) .

Then considering (4. 18) we get (5. 1) in the same way as (4. 16)

(5.1)(A U ,U ) +(1 1 , A U )A .,1 C1111 11k

From (5. 1) immediately follows

Proposition 5. 1. For every U in .D (A ), a Priori estimate

(5. 2) I(XI— A)UI —0)11Ulls., f or X >13, : real,
13 is  a positive number.

Proposition 5. 2. (XI —  A) maps D(A) i  in a one to one way onto Sti .
(i = 1, 2)

Pro o f . From proposition 5. 1. (XI— A)g(A) i  is  a closed subspace
of A i . Let us prove that (XI— A)g(A ), is  dense in A i . I f  there
exist sb in S t, such that

(5.3) ((A + 1)(X/ — A)U, (A + 1)0) 0 for every U in .D(A) 1 ,

then we can show in the following way that çb =O. Remark that
the following relation hold.

(5.4) ( A +  1)(x/ A)U —(X/ — iH A + B,— B)(A + 1)U,

where B,— li(HA— AH)+(BA—AB)(A+1) - 1 1 is a bounded operator
in L2 . In fact

(A+ 1)(xI—iHA—B)U (XI—iHA—B)(A+1)U+i(HA—AH)AU
+(BA—AB)U (XI—iHA—B+B 1 )(A+1)U.

From (5. 4) the left-hand side o f (5. 3) equals to

((X1—iHA—B+B1)(A+1)U,(A+1)0)
((A± 1)U, (xi+ iAH* — B* + Bt)(A+1)0)

= ((A+ 1)U, (XII- iH°A — B2 )( A + 1 ) ) .
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Here B , is  a  bounded operator in L T B ,].  Since (A + 1)g(A), is
dense in L T B J, it follows that

(xI+ i1PA—A)(A+ 1),,b = O.
And as in (5. 4)

(x/— il-PA — AXA + 1) (A+ 1)2(x/ + iH°A — AXA + 1) - 1 0 = O.

S im ilarly to  the proof of proposition 4. 1 , w e can  show that
(A + 1) - 1 0= 0, therefore 0=0. q . e . d .
B y  v ir tu e  of Proposition 5 . 1  and 5. 2 , w e  can  ap p ly  Hille-
Yosida's theorem on ( E ,) , .  For given initial data U , in  g(A ),
and second member F ( t )  in 6";(cgli )  such that A F(t)  is  a lso  in

(gl,), there exist a unique solution of (E)0

(5.5)U ( t )  = S ,U 0 + (s)ds

satisfying the energy inequality

(5.6)U ( t ) 1 1 9 - ,  et't U , C IF(s)11s /is for t ;  0 <t<T .

For initial data U , in and for F(t)  in 0,)(St i ), we can show
the existence of the solution U (t ).  Remark p0 *(10 -- U0 (0 )  and
p ,*F (t) F 0 ( t )  satisfy  the above condition. Therefore we can
apply (5. 4) for the initial data U,(0)— U0

, (0) and second member
F,(t)—  F,i(t), to obtain

(5. 7) max 1110 (t)— U, , (t) Lg e i <et U0(0) —  U6 , (0)

+ C 11F2(s)— FE/(s)11 d s0

Hence {U,(t)} is  a Cauchy sequence in 64,10, as 6 tend to zero.
Passing to the lim it of

U0 (t) U ,(0)+ (A U,(s)+ F,(s))ds0
we can see that

(5.8)U ( t )  = U(0) + of  (AU (s)+ F (s))ds ,

where the integral is the one in LIB i].
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The solution U(t) satisfies of course (5. 6), and

—
d  

U(t) = A U(t)+F(t) i n  L2 [f3,]
dt
U(0) = U1,

2. The case where the coefficients depend on t.
Now we show the existence of the solution of (E), using Cauchy's
broken-line method. S .  Mizohata treated  Cauchy problem for
regularly hyperbolic equation, combining that method and energy
inequality. Here we can follow his argument in our space or
L2 [B i ]. Consider

d(5.9)U ( t )  = A n (t)U (t)+F(t), 0.<t in L 2 [131],dt
U ( 0 )  = o S t ,

Ân(t) A (_k ) in  < t < k +1 k =0 ,••• ,n -1 ,
n n n

The following lemma is the most important part of our argument.

Lemma 5. 1. The solution Un(t) o f (5. 9) has the estimate.

(5. 10) I I Un(t)11,A ( t )  M .  M  is independed o f t  and n,
0 <t<1 , n=1, 2, •••

where
= (N(t)A U, N(t)A U)+ ,8(U, U)

Pro o f . B y (5. 6) we can see

(5. 11)
9C1(0)

1/n
ewn I I Uol ( 0 )  + c IF(t) Lici(o)dt} .

    

From the continuity of 0-(N)(x, with respect to t  and Remark
3 in §2, we can see

(5. 12) II U Ilm (t ) - 11U IJC(r) <  t — t' for U 1 (0) = 1

      

(5. 1) and (5. 12) give

un  
)

i / n
< I I Uol Is( (tin) + C IF(t)I
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Step by step considering (5.6) and (5. 12) we can find M  such
that (5. 10) holds for every n  and t, 0 t 1. q . e . d .
Now introduce the following closed subspace o f L7(Rn x (0, 1))

[ 0 , 1)] = I U(x, t) : U(x, Li(Rn x (0, 1)), U(x, L IB
for all most every t}

Un (t) are uniformely bounded in S1i [(0 1)], from (5. 10) and (5. 9).
A  weak limit in 4 ti [(0, 1)] belongs to 6 (L IB  i ] )  and satisfies

d(5. 13) U = A(t)U + F(t)
dt

in the sense of distribution in Rn x (0, 1),

(5. 14) trace U(t) = U 0 .
1÷ 0

Let us operate p ,*  on (5. 15), then we have

(5. 15) —

d  
U(t) A(t)U E(t)+ F8 (t)+ C,(t)U(t) .

dt

Where Cs (t)U(t) converge boundedly to zero in A i . S ince  U 1 (t)
is in ert (St i ) n E(E[13 0 ]), we can apply the energy inequality (4. 13)
to  U,(t)— U,i(t)

(5. 16) m ax U(t)— U(t)11,gf i _<C11 U1(0)— s ci

+  I IFE(t) —F,i(t)I ldt +  (CE (t) — C (t))U(Oldt} .

U0 (t) converge uniformly in t  to  U(t), so that U(t) is in ec(< g i ).
A s U(t) satisfy

U(t)— U, = (A(S)U(s)+ F (s))ds

U (t )  is i n  EXLIB,]) .

Form the argument in § 3, (E1 )  has the solution satisfying the
boundary conditions. Using the energy inequality we can show the
existence the solution of (E) by successive approximation method.

§ 6. Finiteness o f  p r o p a g a t io n  speed

In this section we show that the solution given in § 5 has a
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finite speed of propagation. This m eans essentially that the
solution has a finite speed along the boundary x,,= O.
If the solution has th is property, the g ro b a l solution can be
constructed by lacal o n es . This fact is shown in the last section.
Consider the following Holmgren transformation a t the boundary
x„ =

(6. 1)

,
t +E (x,-.4)2+x,2,

y 1 = x ; ( j = 1 ,  •••,n) .

By (6. 1) the boundary x n = 0 is transformed also to  y =  O ,  and
the boundary conditions (B,) and (B2)  is  invariant in the following
sense.

Lemma 6. 1. By (6. 1) (a Y k  or (  a  ) 2 k 4 1  is transform ed to theax„ 8 x n

operator whose coefficients of (. ) 1' (± ) 2 1  1  o r  ( ) c6 (  a  ) 2 ' vanishay' ayna y ' ayn

respectively on y n =0. (1<k , 101+21-1<2k ), l a  +  21-1  <2k).

Pro o f . Assume that (  a  y is  transformed toaxn

a ._./ a v - it  a v - i(6.2)
) (ax ar ayn

constants.
J -1,•••,/

This is true for 1 =1 . Then

(  a t a + y n  \ (  a \ i

ax)a r l a x n )
.(a )(1,1)_, \

=

/ a
E ar \ay)

Y- .1(  a y +1_,

at'/ ay „)
+ E  ( l— j— i)c i iyW - D- j - i ( —

a ) " (a Y - i

at' y„

E d i o ,,y +1)_,_,( a (1-, i)- ./ ( a
(ay )\ay.) , d.1 constants.

Hence (6. 2) is true for a ll 1. Remark now that
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1) I f  1 is odd and j— i is even, then l— j— i is odd.
2) I f  1 is even and j— i is odd, l— j— i is also odd.
When l — j — i is odd

 y i
 vanishes on y„=0. This complete the

proof o f Lemma 6. 1. q . e . d .
Denote the interior of the backward cone with vertex (x„ to )  by

(6. 3) Cx(x0t0) {(x, t) ; (t —t o ) >X1x— , t >0} , X> 0.

The following geometrical lemma is used in the proof o f finiteness
of propagation speed.

Lemma 6.2. L e t  a = (a„ • • • , an), Ê  = 1 ,  r ° a)'12
j = 1

a, (a,,• an_,, 0) •

Then every Point on Cx (a, X) (1 ft>01 fl { x„= 0} is contained in the
interior o f Cx (ao , r°X )n { t>o} n fx„—ol.

The proof o f this lemma will be given la ter. Form (6. 1)

(6.4)a   =   a +2(y•—x3) a, ,j  * n .
ax ; a y ; a t
a aa a a= +2y„— , —  =

ax„ ay„ at' at'a t

Therefore the transformed equation o f  ( E )  also satisfy (H).
Now our discussion is divided into three parts.
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First step . (local uniqueness near the boundary)
Assume that initial data equal zero in Ix :  x — c41 <61 n R .  By
(6. 1) DE,= {(x, x  [0 , 1 ) ;  x—a0 12 +t <6, t 0} is mapped to

= {(y, x  [0 , 1): (y 1 --a 1 )2 +y _ t'<e}  .

We extend the solution u to {0 <t' <6} n {outside o f D J by zero.
n —1

This is  possible because u  equals zero on t' (y; — ai )2 .
The extended u satisfied the extended equation o f (E) by keeping
the coefficients constant along y n axis outside o f D,.
Let us apply the energy inequality, then we can see that u must
be zero in D,.

Second step. Assume that initial data is zero in

(6.5)C x o (ao , r't 0)n  {xEir:} n = 0}

We consider F. John's sweeping-out method attached to parabolic
surfaces

„ -
(6.6) t  = (xi—a5)2+ + a , where parameter a

J -1

moves in 0 <a <r°t, and /3>0.
Step by step using the result o f first step, we can show that the
solution equals zero in

(6. 7) C,o (ao ,r't o ) n { x ER }  .

T hird step. Now assume that initial data is zero in

(6. 8) C,o (a, to) n {xE12 } n { t = 0} .

By the second step, the solution is zero in (6. 7).
Considering Lemma 6. 2 we can again use sweeping-out method
associated with parabolic surfaces

n — 1

t = 3 { (x _ a i )2 +(x„— an )2 1  + , /3>0.

Consequently the solution is zero in

C,o (a, to) n txERnt }  .

Proof  o f  L emm a 6.2.
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Without loss of generality we can assume that
a = (0, 0, •••, an ) , a, = 0 = (0, •••, 0)
Cx (a, A,)n {t= 0} a n d  Cx (0, Xr0) n {t= 0} a r e  respectively
S =  { x :  x —a = 1 }
S0 =  {x : I x = r°}
So n {x„ = o} = sn {x„ = 0}

Now take a point x = (x, , • • • , x„_„ xn )  on S  such that x„ <  0. Let
/  b e  the lin e  in  x — t space passing through (x , 0 ) and (a, X).
The intersection of f  and hyperp lane {x„ 0 }  y ie ld s a point
(i)1, ••., 0 ,  t 1 ) ,  where

(6.9)p . = x 0 
 a

"

an — x„

(6.10) t ,  =  X
an — x„

Denote by p the point (P1, 0) is  x -p la n e . Let q=(qi, • ••
q„_,, 0 ) be the intersection of the line op and S°. T here ex ists
a number a  given by

(6. 11) aq i  = p„ q  = r°

a  = xn)21'12 .(  a „  (6. 12)
t 4 \an— x„/1— 

because of the following relations

P1 2  = a2 1 x 2 = a 2 (e) 2

1P1 2( nÉ l x7)( a " ) 2

3=1 an — x n

E  =  1 —  (an — x„)2

5=1

If the point ( p 1 ,  • • •  , 0, to) be on the line passing through (q, 0)
(0, r ox), t ,  must be

(6. 13) t, = eX(1— a) .

From (6. 10), (6. 12) and (6. 13) we can show

(6.14) t i < to .
This means Lema 6. 2.
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§ 7. Some Lemmas concerning local transformation

Let S  be a  smooth and compact hypersurface in R " (n>2) and
be the exterior o f interior o f 8 . We take a  suitable open finite
covering { ni,} of S, 11 i,  being open sets in R n . Then we fix the
following standart transformations. Denote by w the intersection
o f some neighborhood o f origin and R .  f l p n n  is mapped in a
one to one way into w  and S  to  {x „ - 0 } ,  and the outer normal
direction of S  to the outer normal direction of {x „= 0 },  (c.f. [9 ]
p. 289).
Now we consider a f irst order dif ferential operator def ined in  s-2:
(7. 1) m(x, D) Ê  m ( x )   a

, -1
where m(x)=(mi(x), • •• mn(x)) is sufficiently smooth and transversal
o n  S .  i.e. f or y  ou ter unit normal,

m i (x) cos (0 , x,)0 on S.

Here we give the definition of the first order tangential operator

Definition We say that a first order differential operator t(x , D)
is  tangential a t the boundary S , i f  t(x, D) =-Ê c i(x)  a  satisfies

,-1 - ax;

(t(x, D)u, y) (u, t*(x, D)v(x)) for all, I t ,  VE LI(S1).

Lemma 7. 1. W e can f ind other local transform ation such that
n(x, D) in û transform ed to  a 

 i n  ( 0 .ax,,

Pro o f . After a  standart transformation we can assume

(7.2)n ( x ,  D) = É m  i (x)  a  in w, where m„(x„ •••, x „ 0)*0 .
J=i ax;

Let us consider th e  following system o f  ordinary differential
equations with a variable y„

(7.3)d x k = xn) •dy n

with initial value

ci (x) cos (v, x i ) = 0 for all xE S.
i =i
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(7. 4)
x 1 ( 0 )  =  y  , (j = 1, 2, • • •, n -1 )

x,,(0) = 0

The solution of (7. 3) and (7. 4) is sufficiently smooth with respect
to y„  and the initial data y i , ( j= 1 ,n - 1 ) ,

(7.5)x k  = xk(Yi, y2, ...,y ,,),( k  = 1 , ,  n) ,

If y,, is  sm all, Ja c o b ia n  i( x
y )  o f (7. 5) is close to m„(x„ •••, x„_„ 0)

* 0 .  Therefore y k  can be represented by
(7.6)y k  =  Y k ( x ,  ,  • •  ,  x „) ( k = 1 ,  • •-, n)

By the transformation (7. 6), É‘ INA
a

)  
 a

  have the form . q .e .d .
ax,. ay„

Lemma 7. 1 means that the continuous vector field (mi(x), ••, mn(x))
in 11, n n can be transformed to (0, 0, •••, 0, 1) in w.

Corollary 5. 1. There exists a  fam ily  o f  smooth functions SI

(
„(x)}  such that E n 1 ( x ) = 1  on r i ,  n(x, D)n „(x)=0

7.7)
in  some neighbourhood of  S .

P ro o f . A t first let us take the partitions of unity o f S,

E 77k (s) 1 o n  S,

such that each 77k (s) has its support in one ri p  n S.

After transformation (7.6) we extend 77k (s) defined on (T)n {y„= 0}
to co, with constant value parallel to y,,-axis. Summation of the
extended form o f  n k  y ie lds the desired partition of unity on n.

q.e.d.
Now consider

(7. 8) n(x , t, D) = m i (x, t)  a  

where m(x, t)— (m i (x, t), ••• , m „(x , t)) is transversal o n  S  f o r every
tE [0, 8].

Lemma 7. 2. W e can f ind a  f am ily  o f  local transform ation of
the domain to w, depending smoothly on  t, such that n(x , t, D)
is transform ed to  a  in  w  f o r every t.

ay„
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Pro o f . A s above, we can assume th at n(x, t, D ) is given in CO.

Here we consider the system o f  ordinary differential equations
involving parameter t.

(7. 3)' dxk — m .(x„ x n , t)
dy,,

(7. 4)' x1(0) = y ;

x„(0) 0

The solution x k  is sufficienly smooth with respect to y i ( j= 1, • • n)
and parameter t.

(7. 5)' x k  = xk(Yi, t) ,( k = 1 ,  •  , n ) .

Since Jacobian o f (6. 5)' is not zero in place where y k  is small.

(7. 6)' y k  = y  k (x„ • • • , x„, t)

Now we consider the transformation

(7. 9) I Y k  = Y k (X i, • •• , x n ,  t )

=  t

B y (7. 9) n(x, t, D ) is transformed to  a .
ay.

L em m a 5 . 3 . Let b(x , t, D ) be a  k - th  order partial differential
operator in D containing param eter t. Then b(x , t, D ) is w ritten as

(7 .10) b ( x ,  t ,  D) = 1 ( x ,  t, D)nk -  j(x, t, D) ,

w here c(x , t, D) are the sum  of the product of j  f irst order tan-
gential operators.

Pro o f . Take a  partion of unity E n1 (x)= 1 on SI, such that the
support of 21 (x ) is  on r ip ,  i f  it intersect S.

(7. 11) b(x, t, D) = E n  i (x)b(x, t, D)

After a standart transformation and (7. 9), each 77 i (x)b(x, t, D ) is

(7. 1 2 )  n1 (y) E ei (y, t, D ) (
) k J  —  E J (y, t, D)77 i (  a  y

ay. ay.
awhere E1( y ,  t, D ) does not involve



k  = 0,1, • , FM  1 1
,

L  2

s =  o , k  0 ,1 , [ r n  
2

(132)g n ( x ,  t ,  D ) 2k-F1u

(B i )g n ( x ,  t ,  D ) 21 ul 0
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Here ci (y , t, D ) are the disired type of ci (x, t, D) in N.
Summation of (7. 12) means (7. 10).

Corollary. Let a be a uniform ly  elliptic operator of second order
with smooth coefficients involv ing param eter t in  a half  space.

a = E a, ; (x, t)  a  

a
 ,  ai i (x, t) ; >6 6>0

I i8 x i a x ;
ai ;  = a 5 1x E tE [0, 8]

Then a  is transformed to
32 a aa — + E bi .(x, t) + f irst order.

Ox,. ax iax ;

Pro o f . We may consider the transformation (7. 9)' generated by
the following ordinary differential equations.

(7.4)d x k  =  a fr „(x, t)
dy„

(7. 5)' f  xk(0) Yk
x„(0) 0. q.e.d.

§ 8. Problem in the general domain

Here we give the proof o f  Theorem 3. Consider in (2 x (0, 09)
the following regularly hyperbolic equation.

(E), fa
a

 t
t n

m + 5 (x, t, D) a
a tl _ i

 i+ B  (x , t, D)} u = f(x , t) ,

where each b i (x , t, D ) satisfies the aassumption (H ), described in
§ 3 .  Considering Lemma 7. 3 we can see that the assumption is an
intrinsic one. Let us show how to contruct the solution of the
equation (E) g  satisfying the boundary condition :

Assume that the initial data (—
a
 ) 1u(0)= wi(x) is in ',L . ;  and satisfyat

(B,) g  o r  (B2)g . i.e.
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n(x , 0, D)2 kwi s =  O,k =  0, 1, ••, rm j — 11 ,L 2
i = 0, 1, •••, m-1.

(8.1)n ( x ,  0, D)2 k±ico1
 s  = O,k = 0 ,  1 , •• • , [ m 212i

i =0, 1, •••, m-1.
Now take the partion of unity o f a

(8. 2) E  711 (x ) = E E ,(x )p (x )+ =  1 on 11,
P :  f in ite g  :  finite

where 72a (x )  has its support in ,f2 and 77 p (x ) has its support near
the boundary of np  such that

(8.3)n ( x ,  0, D)770 ( x )  0 in n p  fo r  every p.

By virtue o f Corollary 7. 1, (8. 3) is possible.
Let us decompose given initial data {w i(x)}i_10,1,•••,,,i •

(8.4) w ( X )  =  E  np w' nq  wi = w ',„+E /14

Because of (8. 2), w 2i, satisfy (8. 1) for every p.
By the local transformation (7. 9) after standart one, the equation
(E) g  is reduced to (E )  and the boundary condition (I 3 i ) g  to  (B1).
Let z ( t )  be the solution for the initial data i n  a
half space. By the finiteness of the propagation speed, Up (t)
still has its support in co for 0<t<8 1,  i f  we take 8, sufficiently
small. The inverse image u p (t) of u ( t )  is  the solution of (E),
satisfying (B i ) g  (i= 1, or 2) and initial data {wip }. F or {ze i} i _o ,...,„„„
we may consider Cauchy problem for the equation (E) g . The
solution of course has a  finite speed. Then for 0 <t <8 2 the do
not reach at the boundary.
The total sum u(t)= E  u p ( t)+E  u g (t)  is  the desired solution for
0 < t < 8, 5 =min (8„ 8 2). Step by step we can construct the solution
u(t) for 0<t<  u(t) has a  finite speed of propagation and is
the unique solution of (E) g  satisfying (B ,), and given initial data.
Energy inequality hold in P-sense.

KYOTO UNIVERSITY
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