# A remark on the group of orthogonal similitudes 

By<br>Hiroaki Hijıkata and Akiko Yoshioka

(Received April 9, 1970)

Let $(V, Q)$ be a quadratic space over a field $k$, namely $V$ is a finite dimensional vector space over $k$ supplied with a quadratic form $Q: V \rightarrow k$. Let $\Phi(x, y)=Q(x+y)-Q(x)-Q(y)$ denote the associated bilinear form. For any subspace $W$ of $V$, we set $W^{\perp}=\{x \in V ; \Phi(x, w)=0$ for any $w \in W\}$. A vector $x$ in $V$ is called singular if $Q(x)=0$, and the set of all the singular vectors in $V^{\perp}$ make up a subspace $V^{\prime}$ called the radical of $(V, Q)$. A quadratic space $(V, Q)$ is called non-degenerate [resp. strongly nondegenerate] if $V^{\prime}$ [resp. $V^{\perp}$ ] consists of the single vector 0.

A linear automorphism $u \in G L(V)$ of $V$ is called a (orthogonal) similitude of $(V, Q)$, if there exists a scalar $\mu$ called the multiplicator of $u$, such that $Q(u(x))=\mu Q(x)$ for any $x \in V$. Let $G O(V, Q)$ denote the subgroup of $G L(V)$ consisting of all the similitudes of ( $V, Q$ ).

A similitude with the multiplicator 1 is called a rotation (some authors restrict the name rotation for the one with the determinant 1 ), and the rotations make up a subgroup $O(V, Q)$ called the orthorgonal group of $(V, Q)$.

If the multiplicator $\mu$ of $u$ is a square $\left(=\nu^{2}\right)$ in $k$, then we can find a rotation $\sigma$ such that $\sigma u$ is a homothecy $h_{\nu}$, i.e. $h_{\nu}(x)=\nu x$ for any $x \in V$. If $\mu$ is not a square, $u$ can not be a homothecy modulo $O(V, Q)$. It is the purpose of this note to prove the following theorem which gives a normal form modulo $O(V, Q)$ for a similitude with a non-square multiplicator.

Theorem. Let $(V, Q)$ be a non-degenerate quadratic space over
$k$ of dimension $n$. If a similitude $u \in G O(V, Q)$ has a non-square multiplicator $\mu$, then $n$ is even $(=2 m)$, and there exists a rotation $\sigma$ and a base $\left\{e_{1}, \cdots, e_{m}, e_{1}^{\prime}, \cdots, e_{m}^{\prime}\right\}$ of $V$ satisfying the following: $\sigma u\left(e_{i}\right)=e_{i}^{\prime}$ and $\sigma u\left(e_{i}^{\prime}\right)=\mu e_{i}$ for $i=1, \cdots, m$.

This result is obtained by the second named author of this note under the assumption that $(V, Q)$ is strongly non-degenerate, and its special case when $k$ is of characteristic two has been published in her previous paper, Structure du groupe des similitudes orthogonales, Nagoya Math. J. 1970. The generalization to the present form and a simplification of the proof due to the first named author.

The assumption of non-degeneracy of $(V, Q)$ is nothing essential for this problem. Indeed, consider a $(V, Q)$ with a non-trivial radical $V^{\prime}, \operatorname{dim} V^{\prime}=r>0$. Let $V_{1}$ be an arbitrarily chosen complement of $V^{\prime}, V=V_{1}+V^{\prime}, V_{1} \cap V^{\prime}=\{0\}$, and $\pi_{1}: V \rightarrow V_{1}, \pi^{\prime}: V \rightarrow V^{\prime}$ be the projections according to the decomposition.

If $u \in G O(V, Q)$, then $u\left(V^{\prime}\right) \subset V^{\prime}$ hence

$$
\begin{equation*}
\pi_{1} u \pi^{\prime}=0 \tag{1}
\end{equation*}
$$

If $w$ is a linear endomorphism of $V$ such that $w(V) \subset V^{\prime}$, then $1+w \in O(V, Q)$, in particular

$$
1-\pi^{\prime} u \pi_{1} u^{-1} \in \mathrm{O}(V, Q)
$$

By (1) and the identity $1=\pi_{1}+\pi^{\prime}$, we have,

$$
u=\pi_{1} u \pi_{1}+\pi^{\prime} u \pi_{1}+\pi^{\prime} u \pi^{\prime}
$$

Set $u^{\prime}=\left(1-\pi^{\prime} u \pi_{1} u^{-1}\right) u$, then $u^{\prime}=\pi_{1} u \pi_{1}+\pi^{\prime} u \pi^{\prime}$ i.e. $u^{\prime}$ stabilizes both $V_{1}$ and $V^{\prime}$. Since $G O\left(V^{\prime}, Q_{\mid \mathrm{v}^{\prime}}\right)=O\left(V^{\prime}, Q_{\mid \mathrm{v}^{\prime}}\right)=G L\left(V^{\prime}\right)$, we apply our theorem to $u_{{ }^{\prime} \mathrm{v}_{1}}$ and get the following.

Corollary. In the assumptions of the above theorem, drop the non-degeneracy of $(V, Q)$. Let $\left\{e_{1}^{0}, \cdots, e_{r}{ }^{0}\right\}$ be an arbitrary base of the radical $V^{\prime}$, then it can be extended by $\left\{e_{1}, \cdots, e_{m}, e_{1}^{\prime}, \cdots, e_{m}^{\prime}\right\}$ to a base of $V$ which together with some $\sigma \in O(V, Q)$ satisfies the following :
$\sigma u\left(e_{i}\right)=e_{i}^{\prime}, \quad \sigma u\left(e_{i}^{\prime}\right)=\mu e_{i} i=1, \cdots, m, \sigma u\left(e_{i}^{0}\right)=e_{i}^{0}$ for $i=1, \cdots, r$.

Now we start to the proof of Theorem with a series of elementary lemmas, where the second one is quite obvious.

Lemma 1. If $k$ has at least three elements, and if $\Phi$ is not identically zero on $V \times V$, then we can find a pair of vectors $x$ and $y$ in $V$, such that

$$
Q(x) Q(y) \Phi(x, y) \neq 0
$$

Proof. Since $\Phi$ is not identically $O$, we can find $x, y \in V$ such $\Phi(x, y)=a \neq 0$. If $Q(x) Q(y) \neq 0$, we have nothing to prove. Suppose $Q(y)=0$. Then, for any $\xi, \eta \in k$, we have $Q(x+\xi y)=Q(x)+\xi a$, $Q(x+\eta y)=Q(x)+\eta a$ and $\Phi(x+\xi y, x+\eta y)=2 Q(x)+(\xi+\eta) a$. Let $b=a^{-1} Q(x), c$ and $d$ be three distinct elements of $k$. If $c+d \neq 2 b$, we choose $\xi$ and $\eta$ as $\xi=c, \eta=d$. If $c+d=2 b$, then $2 d=(d+c)$ $-(c-d) \neq 2 b$ and we choose as $\xi=\eta=d$. Then replace the pair $x, y$ by $x+\xi y, x+\eta y$, and the latter has the required properties.

Lemma 2. Let $(V, Q)$ be a quadratic space [non-degenerate or not], and $W$ be a subspace of $V$. If the restriction $\Phi_{\mid W \times W}$ of $\Phi$ on $W$ is non-degenerate, i.e. $\left(W, Q_{\mid W}\right)$ is strongly non-degenerate, then

$$
V=W+W^{\perp} \quad \text { and } \quad W \cap W^{\perp}=\{0\}
$$

Lemma 3. Suppose $\Phi$ is not identically 0 on $V \times V$, and there exists a similitude $u \in G O(V, Q)$ with a non-square multiplicator $\mu$, then we can find a vector $e$ of $V$ and a symmetry $\sigma$ such that $\Phi(e, \sigma u(e)) \neq 0$.

Furthermore let $W$ be a subspace of $V$ spanned by thus chosen $e$ and $\sigma u(e)$, then $\left(W, Q_{\mid W}\right)$ is storongly non-degenerate.

Proof. Suppose our first statement is false, i.e. $\Phi(x, \sigma u(x))=0$ for any $x \in V$ and any symmetry $\sigma$. Then for any $x, y \in V$, $0=\Phi(\sigma u(x)+y, \quad \sigma u(\sigma u(x)+y))=\Phi(\sigma u(x), \sigma u(y))+\Phi\left(y,(\sigma u)^{2} x\right)$ $=\Phi\left(y, \mu x+(\sigma u)^{2} x\right)$, i.e. $\mu x+(\sigma u)^{2} x \in V^{\perp}$. In other words, denoting by $h_{\mu}$ the homothecy, Image $\left(h_{\mu}+(\sigma u)^{2}\right) \subset V^{\perp}$. In particular, Image $\left(h_{\mu}+u^{2}\right) \subset V^{\perp}$. Hence, Image $\left((\sigma u)^{2}-u^{2}\right) \subset V^{\perp}$, or equivalently,

$$
\begin{equation*}
\text { Image }\left(\sigma u-u \sigma^{-1}\right) \subset V^{\perp} \tag{1}
\end{equation*}
$$

Since the existence of non-square $\mu$ eliminates the possibility that
$k$ has only two elements, we can take $x$ and $y$ as in Lemma 1. By the definition, the symmetry $\sigma_{y}$ with respect to $y$ is given by $\sigma_{y}(z)=z-Q(y)^{-1} \Phi(z, y) y$ for any $z \in V$. Hence we have $\left(\sigma_{y} u-u \sigma_{y}\right) x$ $=Q(y)^{-1} \Phi(x, y)\left(u(y)-\Phi(x, y)^{-1} \Phi(u(x), y) y\right)$. Putting $c=\Phi(x, y)^{-1}$ $\times \Phi(u(x), y)$, the above (1) implies

$$
\begin{equation*}
u(y)-c y \in V^{\perp} \tag{2}
\end{equation*}
$$

Now, $\mu \Phi(x, y)=\Phi(u(x), u(y))$ is equal to $\Phi(u(x), c y)$ by (2), we get $\mu \Phi(x, y)=c \Phi(u(x), y)=c^{2} \Phi(x, y)$ i.e. $\mu=c^{2}$, a contradiction.

To prove the second statement, the matrix of $\Phi$ with respect to the base $\{e, \sigma u(e)\}$ should be computed, and it is equal to $(2 Q(e))^{2} \mu-\left(\Phi(e, \sigma u(e))^{2}\right.$ which never vanish since $\mu$ is not a square.

Lemma 4. Snppose $(V, Q)$ be non-degenerate, and $\Phi$ be identically zero i.e. $V=V^{\perp}$. Let $u$ be a similitude with a non-square multiplicator $\mu$, then $u^{2}(x)=\mu x$ for any $x \in V$. Furthermore $V$ admits a base $S$ of the form $S=\left\{e_{1}, u\left(e_{1}\right), \cdots, e_{m}, u\left(e_{m}\right)\right\}$, thus $\operatorname{dim} V=2 m$.

Proof. Our assumptions on ( $V, Q$ ) implies that the characteristic of $k$ is two and $V$ has no singular vector other than 0. Since $Q\left(u^{2}(x)-\mu(x)=Q\left(u^{2}(x)\right)-\mu^{2} Q(x)=0\right.$, we get $u^{2}(x)=\mu x$ for any $x \in V$.

Let $S=\left\{e_{1}, u\left(e_{1}\right), \cdots, e_{m}, u\left(e_{m}\right)\right\}$ be a set of vectors with the following two properties. (i) $S$ is linearly independent. (ii) $S$ is maximal among such sets, namely $\{x, u(x)\} \cap S$ is not linearly independent for any $x \in V$. Such a set $S$ certainly exists, and what we need to prove is that $S$ spans $V$.

For any $x \in V$, we have a non-trivial relation $\xi x+\eta u(x)=\sum_{i=1}^{m}$ $\times\left(\xi_{i} e_{i}+\eta_{i} u\left(e_{i}\right)\right)$ with $\xi$ or $\eta$ to be non-zero. Setting $\zeta=\xi+\eta \sqrt{\mu}$, $\zeta_{i}=\xi_{i}+\eta_{i} \sqrt{\mu}$ for $i=1, \cdots, m$ and applying $Q$ to the both sides of the above equation, we get $\zeta^{2} Q(e)=\sum_{i=1}^{m} \zeta_{i}^{2} Q\left(e_{i}\right)$, hence $Q(e)=\sum_{i=1}^{m}\left(\zeta^{-1} \zeta_{i}\right)^{2}$ $\times Q\left(e_{i}\right)$. Set $\zeta^{-1} \zeta_{i}=\xi_{i}^{\prime}+\eta_{i}^{\prime} \sqrt{\mu}$, then $Q(e)=\sum_{i=1}^{m}\left(Q\left(\xi_{i}^{\prime} e_{i}\right)+Q\left(\eta_{i}^{\prime} u\left(e_{i}\right)\right)\right)$, hence $e=\sum_{i=1}^{m}\left(\xi_{i}^{\prime} e_{i}+\eta_{i}^{\prime} u\left(e_{i}\right)\right)$.

Proof of Theorem, We proceed by the induction on $d(V)$
$=\operatorname{dim} V-\operatorname{dim} V^{\perp}$. When $d(V)=0$, the situation is that of Lemma 4, we can take $\sigma=1$ and $u\left(e_{i}\right)$ of lemma as $e_{i}^{\prime}$ of the theorem for $i=1, \cdots, m$.

Suppose $d(V)>0$, i.e. $\Phi$ is not identically zero, and let $e, \sigma$ and $W$ be that we have got in Lemma 3. By Lemma 2, we have $V=W+W^{\perp}, W \cap W^{\perp}=\{0\}$. Let $u_{1}$ denote the composite $\sigma u$, it is a similitude with the same multiplicator $\mu$ as $u$. Let $\tilde{\sigma}: u_{1}(W) \rightarrow W$ be a linear isomorphism defined by $\tilde{\sigma}: u_{1}^{2}(e) \mapsto \mu e, \quad u_{1}(e) \mapsto u_{1}(e)$. Since $Q\left(u_{1}^{2}(e)\right)=Q(\mu e), \quad \Phi\left(u_{1}^{2}(e), u_{1}(e)\right)=\Phi\left(\mu e, u_{1}(e)\right) \quad$ and $\quad$ since $u_{1}(W) \cap V^{\perp}=u_{1}\left(W \cap V^{\perp}\right)=\{0\}$, by Witt theorem $\tilde{\sigma}$ can be extended to a rotation $\sigma_{1} \in \mathrm{O}(V, Q)$.

Since $\sigma_{1} u_{1}(e)=u_{1}(e), \sigma_{1} u_{1}\left(u_{1}(e)\right)=\mu e, \sigma_{1} u_{1}$ stabilizes $W$ hence $W^{\perp}$. If $\operatorname{dim} W^{\perp}>0$, the restriction $\sigma_{1} u_{1 \mid W^{\perp}}$ of $\sigma_{1} u_{1}$ to $W^{\perp}$ is a similitude of the quadratic space $\left.\left(W^{\perp}\right), Q_{!W^{\perp}}\right)$ with the same multiplicator $\mu$. Hence, by the induction assumption, $\operatorname{dim} W^{\perp}$ is even $(=2(m-1))$ and $W^{\perp}$ admits a base $\left\{e_{2}, \cdots, e_{m}, e_{2}^{\prime}, \cdots, e_{m}^{\prime}\right\}$ such that $\sigma_{1} u_{1}\left(e_{i}\right)=e_{i}^{\prime}$, $\sigma_{1} u_{1}\left(e_{i}^{\prime}\right)=\mu e_{i}$ for $i=2, \cdots, m$. By putting $e_{1}=e$ and $e_{1}^{\prime}=\sigma_{1} u_{1}(e)$, we have completed the proof.

Kyoto University
University of Osaka Prefecture

