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Let (V, Q) be a quadratic space over a field k, namely V is
a finite dimensional vector space over k supplied with a quadratic
form Q: V—k. Let ®(x, y)=Q(x+y)—Q(x)—Q(y) denote the as-
sociated bilinear form. For any subspace W of V, we set
Wi={xeV; d(x, w)=0 for any wesW}. A vector x in V is
called singular if Q(x)=0, and the set of all the singular vectors
in V+ make up a subspace V’ called the radical of (V,Q). A
quadratic space (V, Q) is called non-degenerate [ resp. strongly non-
degenerate] if V' [resp. V1] consists of the single vector O.

A linear automorphism u=GL(V) of V is called a (orthogonal)
similitude of (V, Q), if there exists a scalar p called the multipli-
cator of u, such that Q(u(x))=pu@Q(x) for any xV. Let GO(V, Q)
denote the subgroup of GL(V) consisting of all the similitudes of
(V, Q).

A similitude with the multiplicator 1 is called a rotation (some
authors restrict the name rotation for the one with the determinant
1), and the rotations make up a subgroup O(V, @) called the
orthorgonal group of (V, Q).

If the multiplicator x of # is a square (=»°) in k, then we
can find a rotation o such that o is a homothecy #4,, i.e. A, (x)=vx
for any xeV. If u is not a square, # can not be a homothecy
modulo O(V, @). It is the purpose of this note to prove the
following theorem which gives a normal form modulo O(V, @) for
a similitude with a non-square multiplicator.

Theorem. Let (V, Q) be a non-degenerate quadratic space over
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k of dimension n. If a similitude usGO(V, Q) has a non-square
multiplicator u, then n is even (=2m), and there exists a rotation
o and a base {e, -, €,, ¢i, -+, en} of V satisfying the following :
oule;)=e, and ou(e))=pe; for i=1, -, m.

This result is obtained by the second named author of this
note under the assumption that (V, @) is strongly non-degenerate,
and its special case when k is of characteristic two has been
published in her previous paper, Structure du groupe des simili-
tudes orthogonales, Nagoya Math. J. 1970. The generalization to
the present form and a simplification of the proof due to the first
named author.

The assumption of non-degeneracy of (V, @) is nothing essen-
tial for this problem. Indeed, consider a (V, @) with a non-trivial
radical V', dimV'=r>0. Let V, be an arbitrarily chosen com-
plement of V/, V=V, +V, V.NV'={0}, and =,: V>V, »/: V=V’
be the projections according to the decomposition.

If ueGO(V, @), then #(V’)C V' hence

7z"u7z" =0 ............(1)

If w is a linear endomorphism of V such that w(V)c V’, then
1+weO(V, Q), in particular

1-7uru'eO(V,Q) ceinnn (2)
By (1) and the identity 1==,+#=’, we have,
u = mur,+7'ur,+ 7'ur’

Set w'=(1—7z'umu ")u, then ' =nur, +r'unr’ i.e. u' stabilizes
both V, and V’. Since GO(V, Qv)=0(V", Qv)=GL(V"), we apply
our theorem to #’\y, and get the following.

Corollary. In the assumptions of the above theovem, drop the
non-degenervacy of (V, Q). Let {e° -, ¢,°} be an arbitrary base
of the radical V', then it can be extended by {e,, -+, e,,, ¢/, -+, eh}
to a base of V which together with some o= O(V, Q) satisfies the
following :

oule)) = e/, oule/) = pe;, i =1, -, m, cu(e}) = ¢; for i=1, -, r.
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Now we start to the proof of Theorem with a series of
elementary lemmas, where the second one is quite obvious.

Lemma 1. If k has at least three elements, and if ® is not
identically zero on VX V, then we can find a pair of vectors x and
yin V, such that

Qx)Q(y)@(x, y) *0.

Proof. Since ® is not identically O, we can find x, ye V such
D(x, y)=a=+0. If Q(x)Q(y)=+0, we have nothing to prove. Suppose
Q(»)=0. Then, for any &, 7k, we have Q(x+E£y)=Q(x)+Ea,
Q(x+7y)=Q(x)+7a and D(x+Ey, x+7y)=2Q(x)+(E+n)a. Let
b=a"'Q(x), ¢ and d be three distinct elements of k. If c+d=+2b,
we choose £ and 7 as £=c, n=d. If c+d=2b, then 2d=(d+c)
—(c—d)=+2b and we choose as ¥=n=d. Then replace the pair
%,y by x+&y, x+7ny, and the latter has the required properties.

Lemma 2. Let (V, Q) be a quadratic space [non-degenerate
or not], and W be a subspace of V. If the restriction ®@ yxw Of
D on W is non-degenerate, i.e. (W, Q) is strongly non-degenerate,
then

V=W+W- and WnNW-={0}.

Lemma 3. Suppose @ is not identically 0 on VXV, and there
exists a similitude ue GO(V, Q) with a non-square multiplicator p,
then we can find a vector e of V and a symmetry o such that
D(e, cule))=+0.

Furthermore let W be a subspace of V spanned by thus chosen
e and ou(e), then (W, Q) is storongly non-degenerate.

Proof. Suppose our first statement is false, i.e. ®(x, ou(x))=0
for any x€V and any symmetry ¢. Then for any x,ysV,
0= ®(cu(x)+y, culcu(x)+y)) = ®(culx), cu(y))+ ®(y, (cu)x)
=P(y, px+ (ou)’x), i.e. ux+(ou)’xe V> In other words, denoting
by 4. the homothecy, Image (4. + (cu)?)c V*. In particular, Image
(h.+u’)c VL. Hence, Image ((cu)’—u*)C VL, or equivalently,

Image (cu—uc™)C VL oo (1)

Since the existence of non-square p eliminates the possibility that
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k has only two elements, we can take x and y as in Lemma 1.
By the definition, the symmetry o, with respect to y is given by
o(2)=2—Q(y) '®(z, y)y for any z& V. Hence we have (o,u—uc,)x
=Q(y)'@(x, y) (u(y) —D(x, ) 'O(u(x), y)y). Putting c¢=(x, )"
X ®(u(x), ¥), the above (1) implies

u(y)—cye V=+, (2)

Now, pd(x, y)=®(u(x), u(y)) is equal to ®(u(x), ¢y) by (2), we get
u®(x, y)=c®(u(x), y)=c*®(x, y) i.e. p=c? a contradiction.

To prove the second statement, the matrix of ® with respect
to the base {e, ocu(e)} should be computed, and it is equal to
2Q(e)Y’n— (®(e, cule))® which never vanish since p is not a square.

Lemma 4. Snppose (V, Q) be non-degenerate, and ® be iden-
tically zero ie. V=V Let u be a similitude with a non-square
multiplicator w, then u(x)=px for any x=V. Furthermore V
admits a base S of the form S={e,ue), -, e,, ule,,)}, thus
dim V=2m.

Proof. Our assumptions on (V, @) implies that the charac-
teristic of £ is two and V has no singular vector other than O.
Since Q@ (x)— u(x)=Q*(x)) — n*Q(x) =0, we get u’(x)=px for any
xe V.

Let S={e,, u(e,), -+, e,., ule,,)} be a set of vectors with the
following two properties. (i) S is linearly independent. (ii) S is
maximal among such sets, namely {x,u(x)}NS is not linearly
independent for any x=V. Such a set S certainly exists, and
what we need to prove is that S spans V.

For any x= V, we have a non-trivial relation £x-+7u(x)=3
i=1

X (€6, +n,u(e;)) with £ or n to be non-zero. Setting {=E+7v pu,
t,=E. 47~/ p for i=1,---,m and applying @ to the both sides of

the above equation, we get CZQ(6)=Z;C ?Q(e;), hence Q(8)=Eml &'ty
X Qe,). Set ¢7t,=E!+n\/u, then Q(e)=Zij (Q(E7e,) +Q(niule)),
hence e=2‘.l (Ele; +miule))).

Proof of Theorem, We proceed by the induction on d(V)
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=dimV—dimV'. When d(V)=0, the situation is that of Lemma
4, we can take o=1 and u(e;,) of lemma as ¢, of the theorem for
i=1, -, m.

Suppose d(V)>0, i.e. ® is not identically zero, and let ¢, o
and W be that we have got in Lemma 3. By Lemma 2, we have
V=W+ W', Wn W+={0}. Let u, denote the composite o, it is a
similitude with the same multiplicator x as u. Let &:u (W)W
be a linear isomorphism defined by &: u’(e)— e, u,(e)—ule).
Since Qu(e)) = Q(ue), D(u’(e), u,(e)) = P(ue, #,(¢)) and since
u(W)N Vi=u,(Wn V4H={0}, by Witt theorem & can be extended
to a rotation o,e0(V, Q).

Since o,u,(e) =u,(e), o,u,(u,(e)) = pne, ou, stabilizes W hence W-+.
If dimW+>0, the restriction o,u, L. of o,u, to Wt is a similitude
of the quadratic space (W+1), @, L) with the same multiplicator p.
Hence, by the induction assumption, dim W+ is even (=2(m—1))

and W+ admits a base {e,, -, e,,, €}, ---, e,,} such that o,u,(e;)=¢},
ou,(e))=pe, for i=2,---,m. By putting ¢,=¢ and e]=o,u,(e), we
have completed the proof.

KyoTo UNIVERSITY
UNIVERSITY OF OSAKA PREFECTURE



