A remark on the group of orthogonal similitudes

By

Hiroaki HIJIKATA and Akiko YOSHIOKA

(Received April 9, 1970)

Let (V, Q) be a *quadratic space* over a field k, namely V is a finite dimensional vector space over k supplied with a quadratic form $Q: V \rightarrow k$. Let $\Phi(x, y) = Q(x+y) - Q(x) - Q(y)$ denote the associated bilinear form. For any subspace W of V, we set $W^{\perp} = \{x \in V; \Phi(x, w) = 0 \text{ for any } w \in W\}$. A vector x in V is called *singular* if Q(x) = 0, and the set of all the singular vectors in V^{\perp} make up a subspace V' called the *radical* of (V, Q). A quadratic space (V, Q) is called *non-degenerate* [resp. *strongly* nondegenerate] if V' [resp. V^{\perp}] consists of the single vector 0.

A linear automorphism $u \in GL(V)$ of V is called a (orthogonal) similitude of (V, Q), if there exists a scalar μ called the *multipli*cator of u, such that $Q(u(x)) = \mu Q(x)$ for any $x \in V$. Let GO(V, Q)denote the subgroup of GL(V) consisting of all the similitudes of (V, Q).

A similitude with the multiplicator 1 is called a *rotation* (some authors restrict the name rotation for the one with the determinant 1), and the rotations make up a subgroup O(V, Q) called the *orthorgonal group* of (V, Q).

If the multiplicator μ of u is a square $(=\nu^2)$ in k, then we can find a rotation σ such that σu is a homothecy h_{ν} , i.e. $h_{\nu}(x) = \nu x$ for any $x \in V$. If μ is not a square, u can not be a homothecy modulo O(V, Q). It is the purpose of this note to prove the following theorem which gives a normal form modulo O(V, Q) for a similitude with a non-square multiplicator.

Theorem. Let (V, Q) be a non-degenerate quadratic space over

k of dimension n. If a similitude $u \in GO(V, Q)$ has a non-square multiplicator μ , then n is even (=2m), and there exists a rotation σ and a base $\{e_1, \dots, e_m, e'_1, \dots, e'_m\}$ of V satisfying the following: $\sigma u(e_i) = e'_i$ and $\sigma u(e'_i) = \mu e_i$ for $i = 1, \dots, m$.

This result is obtained by the second named author of this note under the assumption that (V, Q) is strongly non-degenerate, and its special case when k is of characteristic two has been published in her previous paper, Structure du groupe des similitudes orthogonales, Nagoya Math. J. 1970. The generalization to the present form and a simplification of the proof due to the first named author.

The assumption of non-degeneracy of (V, Q) is nothing essential for this problem. Indeed, consider a (V, Q) with a non-trivial radical V', dim V' = r > 0. Let V_1 be an arbitrarily chosen complement of V', $V = V_1 + V'$, $V_1 \cap V' = \{0\}$, and $\pi_1 : V \to V_1$, $\pi' : V \to V'$ be the projections according to the decomposition.

If $u \in GO(V, Q)$, then $u(V') \subset V'$ hence

If w is a linear endomorphism of V such that $w(V) \subset V'$, then $1+w \in O(V, Q)$, in particular

By (1) and the identity $1 = \pi_1 + \pi'$, we have,

$$u = \pi_1 u \pi_1 + \pi' u \pi_1 + \pi' u \pi'$$

Set $u' = (1 - \pi' u \pi_1 u^{-1})u$, then $u' = \pi_1 u \pi_1 + \pi' u \pi'$ i.e. u' stabilizes both V_1 and V'. Since $GO(V', Q_{|V'}) = O(V', Q_{|V'}) = GL(V')$, we apply our theorem to $u'_{|V_1}$ and get the following.

Corollary. In the assumptions of the above theorem, drop the non-degeneracy of (V, Q). Let $\{e_1^{\circ}, \dots, e_r^{\circ}\}$ be an arbitrary base of the radical V', then it can be extended by $\{e_1, \dots, e_m, e_1', \dots, e_m'\}$ to a base of V which together with some $\sigma \in O(V, Q)$ satisfies the following:

$$\sigma u(e_i) = e'_i, \ \sigma u(e'_i) = \mu e_i \ i = 1, \dots, m, \ \sigma u(e^0_i) = e^0_i \ for \ i = 1, \dots, r.$$

Now we start to the proof of Theorem with a series of elementary lemmas, where the second one is quite obvious.

Lemma 1. If k has at least three elements, and if Φ is not identically zero on $V \times V$, then we can find a pair of vectors x and y in V, such that

$$Q(x)Q(y)\Phi(x, y) \neq 0$$
.

Proof. Since Φ is not identically *O*, we can find $x, y \in V$ such $\Phi(x, y) = a \neq 0$. If $Q(x)Q(y) \neq 0$, we have nothing to prove. Suppose Q(y)=0. Then, for any $\xi, \eta \in k$, we have $Q(x+\xi y)=Q(x)+\xi a$, $Q(x+\eta y)=Q(x)+\eta a$ and $\Phi(x+\xi y, x+\eta y)=2Q(x)+(\xi+\eta)a$. Let $b=a^{-1}Q(x)$, *c* and *d* be three distinct elements of *k*. If $c+d \neq 2b$, we choose ξ and η as $\xi=c, \eta=d$. If c+d=2b, then 2d=(d+c) $-(c-d) \neq 2b$ and we choose as $\xi=\eta=d$. Then replace the pair *x*, *y* by $x+\xi y, x+\eta y$, and the latter has the required properties.

Lemma 2. Let (V, Q) be a quadratic space [non-degenerate or not], and W be a subspace of V. If the restriction $\Phi_{|W \times W}$ of Φ on W is non-degenerate, i.e. $(W, Q_{|W})$ is strongly non-degenerate, then

$$V = W + W^{\perp}$$
 and $W \cap W^{\perp} = \{0\}$.

Lemma 3. Suppose Φ is not identically 0 on $V \times V$, and there exists a similitude $u \in GO(V, Q)$ with a non-square multiplicator μ , then we can find a vector e of V and a symmetry σ such that $\Phi(e, \sigma u(e)) \neq 0$.

Furthermore let W be a subspace of V spanned by thus chosen e and $\sigma u(e)$, then $(W, Q_{|W})$ is storongly non-degenerate.

Proof. Suppose our first statement is false, i.e. $\Phi(x, \sigma u(x))=0$ for any $x \in V$ and any symmetry σ . Then for any $x, y \in V$, $0 = \Phi(\sigma u(x) + y, \sigma u(\sigma u(x) + y)) = \Phi(\sigma u(x), \sigma u(y)) + \Phi(y, (\sigma u)^2 x)$ $= \Phi(y, \mu x + (\sigma u)^2 x)$, i.e. $\mu x + (\sigma u)^2 x \in V^{\perp}$. In other words, denoting by h_{μ} the homothecy, Image $(h_{\mu} + (\sigma u)^2) \subset V^{\perp}$. In particular, Image $(h_{\mu} + u^2) \subset V^{\perp}$. Hence, Image $((\sigma u)^2 - u^2) \subset V^{\perp}$, or equivalently,

Image
$$(\sigma u - u\sigma^{-1}) \subset V^{\perp}$$
(1)

Since the existence of non-square μ eliminates the possibility that

k has only two elements, we can take x and y as in Lemma 1. By the definition, the symmetry σ_y with respect to y is given by $\sigma_y(z) = z - Q(y)^{-1} \Phi(z, y) y$ for any $z \in V$. Hence we have $(\sigma_y u - u\sigma_y) x$ $= Q(y)^{-1} \Phi(x, y) (u(y) - \Phi(x, y)^{-1} \Phi(u(x), y) y)$. Putting $c = \Phi(x, y)^{-1} \times \Phi(u(x), y)$, the above (1) implies

$$u(y) - cy \in V^{\perp}, \qquad (2)$$

Now, $\mu\Phi(x, y) = \Phi(u(x), u(y))$ is equal to $\Phi(u(x), cy)$ by (2), we get $\mu\Phi(x, y) = c\Phi(u(x), y) = c^2\Phi(x, y)$ i.e. $\mu = c^2$, a contradiction.

To prove the second statement, the matrix of Φ with respect to the base $\{e, \sigma u(e)\}$ should be computed, and it is equal to $(2Q(e))^2 \mu - (\Phi(e, \sigma u(e))^2)$ which never vanish since μ is not a square.

Lemma 4. Snppose (V, Q) be non-degenerate, and Φ be identically zero i.e. $V = V^{\perp}$. Let u be a similitude with a non-square multiplicator μ , then $u^2(x) = \mu x$ for any $x \in V$. Furthermore V admits a base S of the form $S = \{e_1, u(e_1), \dots, e_m, u(e_m)\}$, thus dim V = 2m.

Proof. Our assumptions on (V, Q) implies that the characteristic of k is two and V has no singular vector other than 0. Since $Q(u^2(x) - \mu(x) = Q(u^2(x)) - \mu^2 Q(x) = 0)$, we get $u^2(x) = \mu x$ for any $x \in V$.

Let $S = \{e_1, u(e_1), \dots, e_m, u(e_m)\}$ be a set of vectors with the following two properties. (i) S is linearly independent. (ii) S is maximal among such sets, namely $\{x, u(x)\} \cap S$ is not linearly independent for any $x \in V$. Such a set S certainly exists, and what we need to prove is that S spans V.

For any $x \in V$, we have a non-trivial relation $\xi x + \eta u(x) = \sum_{i=1}^{m} \langle \xi_i e_i + \eta_i u(e_i) \rangle$ with ξ or η to be non-zero. Setting $\zeta = \xi + \eta \sqrt{\mu}$, $\zeta_i = \xi_i + \eta_i \sqrt{\mu}$ for $i = 1, \dots, m$ and applying Q to the both sides of the above equation, we get $\zeta^2 Q(e) = \sum_{i=1}^{m} \zeta_i^2 Q(e_i)$, hence $Q(e) = \sum_{i=1}^{m} (\zeta^{-1} \zeta_i)^2 \times Q(e_i)$. Set $\zeta^{-1} \zeta_i = \xi'_i + \eta'_i \sqrt{\mu}$, then $Q(e) = \sum_{i=1}^{m} (Q(\xi'_i e_i) + Q(\eta'_i u(e_i)))$, hence $e = \sum_{i=1}^{m} (\xi'_i e_i + \eta'_i u(e_i))$.

Proof of Theorem. We proceed by the induction on d(V)

 $= \dim V - \dim V^{\perp}$. When d(V) = 0, the situation is that of Lemma 4, we can take $\sigma = 1$ and $u(e_i)$ of lemma as e'_i of the theorem for $i = 1, \dots, m$.

Suppose d(V) > 0, i.e. Φ is not identically zero, and let e, σ and W be that we have got in Lemma 3. By Lemma 2, we have $V = W + W^{\perp}, W \cap W^{\perp} = \{0\}$. Let u_1 denote the composite σu , it is a similitude with the same multiplicator μ as u. Let $\sigma: u_1(W) \to W$ be a linear isomorphism defined by $\sigma: u_1^2(e) \mapsto \mu e, u_1(e) \mapsto u_1(e)$. Since $Q(u_1^2(e)) = Q(\mu e), \quad \Phi(u_1^2(e), u_1(e)) = \Phi(\mu e, u_1(e))$ and since $u_1(W) \cap V^{\perp} = u_1(W \cap V^{\perp}) = \{0\}$, by Witt theorem σ can be extended to a rotation $\sigma_1 \in O(V, Q)$.

Since $\sigma_1 u_1(e) = u_1(e)$, $\sigma_1 u_1(u_1(e)) = \mu e$, $\sigma_1 u_1$ stabilizes W hence W^{\perp} . If $\dim W^{\perp} > 0$, the restriction $\sigma_1 u_{1|W^{\perp}}$ of $\sigma_1 u_1$ to W^{\perp} is a similitude of the quadratic space (W^{\perp}) , $Q_{|W^{\perp}}$ with the same multiplicator μ . Hence, by the induction assumption, $\dim W^{\perp}$ is even (=2(m-1)) and W^{\perp} admits a base $\{e_2, \dots, e_m, e'_2, \dots, e'_m\}$ such that $\sigma_1 u_1(e_i) = e'_i$, $\sigma_1 u_1(e'_i) = \mu e_i$ for $i=2, \dots, m$. By putting $e_1 = e$ and $e'_1 = \sigma_1 u_1(e)$, we have completed the proof.

> Kyoto University University of Osaka Prefecture