
J . Math. Kyoto Univ.
10-3 (1970) 419-431

Rings with nonzero singular ideals

By

Edward T. WONG

(Communicated by Prof. N agata, A pril 7, 1970)

In  recent years, there have been many results about rings
and their various types of ring of quotients including the case of
classical quotient ring. However all significant results are so far
limited to the case where the singular ideal is identically zero.
The difficulty in the general case lies in the nonclosed property
of the singular ideal. In this paper we study some of the pro-
perties of the closure of the singular ideal of a ring R  and the
relations between the rings of quotients of R  and the rings of
quotients of factor rings of R.

Let R  be a ring with identity element 1. I f  S  is a subset
of R  and x E R , we denote x - 1 (S)= { rE R Ix rE S } . We also denote
the right and left annihilators of S  in R  by y (S ) and /(S) respec-
tively. The singular ideal (right singular ideal) J(R ) o f  R  is
defined as J(R )= f rER I7(r) is an essential right ideal of R I .  The
closure K (R ) o f J(R ) is defined as K(R)= IkERlk - 1 (J(R)) is an
essential right ideal o f R} . K (R )  is a  two sided ideal in R  and
is the unique maximal essential extension of J(R ) in R  as right
R-m odule. Let R=R/J(R). Since the inverse image of an essential
right ideal in R is essential in R .  K(R), the image of K(R) in
R, contains the singular ideal J(P)  o f R .  It is not true that
they are equal always. In the case where J(R ) is essential in R,
K (R )=R  whereas J(R )* R.

Lemma 1. 1. The fo l lo w in g  s ta tem en ts  are  equ iva len t
1. K(R)=J(R)
2. k„ k 2 E K (R ) t h e r e  e x i s t s  r E R  su ch  th a t  (k i k,)r E  AR),

krErJ(R ) if  k ,Erj(R ).
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3. k„ k2 EK(R), k efiR ), 4 1 (f i nc(k1k2) 1 (.1(R)) Properly.

Pro o f . Verifications follow the definitions directly.

Theorem 1. 2. I f  R  satisf ies any  one of  the  following con-
dition then K(R)=J(R).

1. J(R) is closed, i.e. K(R)=J(R).
2. T he cannonical m apping o f  R  onto R  preserves essential

right ideals.
3. K 2 (R)cJ(R).
4. J(R) is  prim e and is not essential in  R.
5. I f  A  is  an  essential right ideal containing J(R) in  R  then

its  im age in R is essential in  R.
P ro o f . 1., 2., and 5. are obvious. 3. follows 2. by lemma I. 1.

For 4., let A  be a nonzero right ideal of R such that A n AR) =O.
Then A n K(R) = 0 and AK(R)= 0. Hence K(R)= J (R). In  other
words in a prime ring either K(R )=0 or K(R)=R.

If K(R)=J(R) then consequently J(R) can not be essential in
R .  B ut it is still too difficult to study under the assumption
where J(R) is not essential only. In this paper we always assume
K(R)=J(R ) unless stated otherwise.

Lemma 1. 3. k E K (R ). I f  knErJ(R) f o r all natural num ber n,
then the following two sequences o f  right ideals o f  R are strictly
increasing.

1. k'(J(R ))c (k 2 ) - 1 (J(R))c •••
2. ry(k)c y(k2 ) c •-•

P ro o f . If kiErAR) then there exists rER such that (kki)rEJ(R)
and k irE J (R ). A t th e  same time there exists t E R  such that
ki+lrt= 0 and ki rt*O.

Theorem 1. 4. I f  R  satisf ies the  a.c.c. on annihilating right
ideals then K(R ) is  nil.

P ro o f . Since J(R) is nil if R satisfies the a.c.c. on annihilating
right ideals.

Consequently, if  R  is  a  right noetherian ring then K(R ) is
nilpotent.
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Lemma 1.5. a E R ,  i f  there ex ists a  natural num ber n such
that anEJ(R ) then

1. 7(1— a)= 0
2. y(a1)c(1— a)R f or all i, the inclusion is proper unless ai =O.

P ro o f . L et xE 7(1— a), x =an x . If x * 0  then xR ny(a")*O.
There exist r, r' E R ,  0 * r= x r' and a n r  O. But r = xr' —anxr' —
ant. = O. Contradiction. From 1— a  (1 —  a)(1 + a + ••• +
(1— a)R, 7 (ai ) c (1— ai)R c (1 — a)R and 7 (an) c (1 — an)R c (1— a)R . If
an =0 then (1— an)R = (1— a)R = R. If a" * 0 then (1— an)R n anR* O.
There exist r, r' i n  R  such that (1— an)r = r— a"(r+r')=0.
r' +r— a"(r+r')— (1—  an)(r+r')E(1— an)R . Thus ry (a) is con-
tained in  (1— an)R and hence in  (1— a)R properly. Now suppose
ai * O. If i <n , then y(ai) c ry(a") < (1 — an)Rc (1— a)R. If a" — 0 then
(1— a)R =R  and y ( a ) + R .  I f  a n * 0  then 7(a 1 )c7(a")<(1— a")R
c (1 — a )R . If i n then aiEJ(R ) and 7(ai)<(1— ai)Rc(1— a)R.

Corollary 1. 5. 1. If  k EK (R ) then
1. (1— k)'(J(R ))=J(R ),
2. K (R ) contains no nonzero idempotent,
3 .  f o r any i,(ki) - 1 ( J(R ))c(1— k )R +J(R ). If  k J(R ) for some

n then (1— k)R+ J(R)=R.

Proof. By our assumption K(R)— J(R), keK(R), (1— k)r EAR),
if  an d  only if  (1—k)77 = 0 .  B y the lemma rE J( R ) .  It is  a  well
known fact that J(R) contains no nonzero idempotent. If kEK(R)
and k2 = k . Then (1— k)k=0, k E J(R ) and k= O. 3 . follows from
2 . of the lemma.

Theorem 1. 6. I f  R  satisf ies the a.c.c. on annihilating right
ideals then kEK (R ):

1. 7(1—k)= 0,
2. (1— k)R—R.

P ro o f . Since k EK (R ), there exists n  such that k neJ(R ) and
k  is a  nilpotent. Therefore 7(1—k) = 0  and y(k)=R= (1—  k)R.

In  some sense an  element aE R , a"E J(R ) fo r some natural
number n  can be called a  generalized nilpotent element of R.
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Lemma 1. 7. I f  e R  i s  a m in im al rig h t id e al o f  R  where
e=e 2 , then K(R)c (1-e)R.

Proof . eR J(R )= O. Otherwise eR c J(R ) and (eR)2 = O. Th u s
J(R)c (1—  e)R. kE K(R), k =ek + (1—  e)k. kk"(J(R))=ekk - 1 (J(R))+
(1— e)kle - i(J(R )). ek k '(J(R ))c eR n (1— e)R =0. ek  E J(R) and hence
ek =0. k =(1— e)k E(1 -  e)R.

Lemma 1. 8. N  is any  maximal right ideal o f  R .  If  k N =0,
k EK (R ), then k  is nilpotent.

Pro o f . I f  le E  J(R ) then k - 1 (J(R)) <(1e) - V ( R ) ) .  But N  c
k "(J(R )) . This implies (le) - 1 (J(R ))= R . N ow  y=  J(R ) . If y is
not a nilpotent then y (y )<7(y 2 ). But then contradicts the maxi-
m ality of N .  Hence k  is nilpotent.

I f  M  is a  right unitary R-module and N  is a submodule of
M .  A. W. Goldie defined the closure cl(N ) of N  in M  as cl(N )=
Ix  EM I x i(N ) is an essential right ideal o f R I  M .  The singular
submodule J(M ) o f M  is defined to be the closure of the zero
subm odule. G oldie proves that fo r  any submodule N , ciclN =
cicicl(N) [ 1 ] .  Hence c/(J(M))=c/c/(0)----c/c/c/(0)=c/c/(J(M)). If we
let K (M )=cl(J(M )) then cl(K (M ))=K (M ). In the case where M =R
then K (R ) is closed. Consequently, J(R )=0  where ]=R /K (R ).

Lemma 2. 1. T  i s  a  righ t ideal of  R , T  crK (R ), then there
ex ists a  righ t ideal N , 0*N c T  such  that Nn K(R)=0.

P ro o f . L e t t E T , tE K (R )  then t '( K ( R ) )  is  not essential.
There exists a nonzero right ideal W of R such that wn ri(K(R))
= o . N =tW  will do.

Lemma 2. 2. If  J(R ) is  semi-prime then K (R ) is semi-prime.

P ro o f . Suppose A 2 cK (R ) and A K ( R )  where A  is a  right
ideal o f  R .  B y the above lemma there exists a  nonzero right
ideal N  in  A  such that Nn K ( R ) =0 . N 2 cA 2 c K(R) n N =0 .
N  c J(R )c K (R ). Contradiction.

Corollary 2. 2. 1. If  R  is semi-prime then K (R ) is semi-prime.

P ro o f . As above N 2 =0 implies N=0.
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T heo rem  2. 3. I f  K(R) is semi-Prime then K (R )=y (W ) where
W is  a  right ideal o f  R.

P ro o f . L et W= E N i  where N i  n K(R)= O. S in ce  N i K(R)=0
for each N„ WK(R)= O. Suppose there exists yER such that Wy= 0
and y  K (R ) .  There exists a  right ideal N, N  c  y R  and
Nn K (R )= 0 . N c W , N 2 c W N c W y R = 0 . N E K (R ). Contradic-
tion. Thus y(W )=K(R).

C o ro lla ry  2. 3. 1. I f  K (R ) i s  sem i-prim e and R satisf ies the
m axim al condition on annihilating right ideals then R=RI K(R) is
semi-prime w ith m axim al condition on annihilating right ideals.

P ro o f . Since K (R ) is itself an  annihilating right ideal and
the inverse image of an annihilating right ideal of f? in  R is an
annihilating right ideal in  R.

A  right ideal A  in  R  is said to be uniform if  every nonzero
right ideal in  A  is essential in A.

L em m a 2. 4. I f  N  i s  a  uniform  right ideal in  R  then N  is
uniform  in  P where N  is  the cannonical im age o f  N  in  P.

P ro o f . L e t  T „  T ,  be nonzero righ t idea ls i n  N  and
T1 =  { x E  .tE  i } ,  T 2 = {xEN1 -tE  T 2 } . There exist nonzero right
ideals T such that T l c  T  T  T  and T nK(R)=0, i =1, 2.
Since N  is  uniform, TÇ n 7. * 0 .  This implies T i n T2 * 0  and N
is uniform.

C o ro lla ry  2. 4. 1. I f  R  h as  a  un if orm  righ t ideal N  and
NcrK(R), then i  h a s  a  nonzero uniform  right ideal.

L em m a 2. 5. A  i s  a  rig h t  id e al R . A is essential in  P , i f
and  only  i f ,  there ex ists a  righ t ideal N c A , Nn K(R)=o, and
N +K (R ) is essential in  R.

P ro o f . I f  there exists N c A  such that N n K (R )= 0  and
N + K (R ) is essential in  R .  x ,EK(R), there exists a right ideal T,
xT *0 and xT n K(R)=0. xT n (N + K(R))*O. xt = n+k,  n E  N ,
kEK(R). = r i * O .  N  is essential in  R .  A  is essential in  R
follows from N cA .
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Conversely, i f  A is essential in R .  Let N be a maximal right
ideal contained in A such that N nK(R)= 0. A +K (R ) is essential
in R since it is the inverse image of A . I f  N + K (R ) is not es-
sential in R, then there exists a nonzero right ideal T cA + K (R )
such that Tn (N -FK (R ))-- O. F irs t w e c la im  T  fi A * 0 .  Since
Oz4z tE  t=  a+ k, aE A , k E K (R ). There exists dEk - 1 (J(R)) such
that tdEEK(R). td=ad+kd. There exists d'Ey(kd) such that
tdd'E K(R). tclef=add'*0, T n A tO . Let W = Tn A .  Then WC1
(N + K(R))= O. But N c W + N c A  and ( W + N )n K (R )= 0 . This
contradicts the maximality of N .  Hence N + K(R) is essential in R.

Corollary 2. 5. 1. I f  A  i s  an  essential right ideal in  R  then
A is essential in  R.

P ro o f . Since there exists N c  A such that N + K(R) is essential
and NnK(R)= O.

Lemma 2.6. a c  R, i f  7(a)=0 then y(a)=0.

Pro o f . I f  arEK (R ) and rE rK (R ). Let dE(ar) - 1 (J (R )) such
that rdEEK(R). Now ardEJ(R), ardD=0 for some essential right
ideal D  of R .  Since 7(a)=0, rdEJ(R)c K (R ). Contradiction.

Corollary 2. 6. 1. kEK(R), l(k) 0 and y(k) O.

P ro o f . 7 (k )*0  follows the lemma and K (R )*R . l (k )4 O
follows K(R )*R .

Lemma 2. 7. A  right ideal C containing K(R ) in  R is closed
in  R, i f  an d  only  i f ,  C is closed in  R.

Pro o f . I f  C  is  a  closed right ideal in R, then C is clearly
closed in R . I f  C  is closed in R  and xL cC , xE R  and L  is an
essential right ideal o f R .  Since L  is essential in R and C con-
tains K (R ). xE C  and C is closed.

Since J ( k ) = 0 ,  either chain condition imposed on the set of
closed right ideals o f  R  implies the other [ 2 ] .  B y the above
lemma this property also holds in R .  In [ 2 ]  we proved that if
the a.c.c. holds for the set of closed right ideals in R, then aR
is an essential right ideal o f R i f  7 ( 0 ) = 0 .  In this case a has an
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inverse in the maximal ring of right quotients of k. T h u s w e
have the following theorem.

Theorem 2. 8. If  th e  se t o f  closed right ideals o f  R  satisfies
the m axim al condition then:

1. aER , if ry(a)— 0 then ãk is essential in _R. Or equivalently,
f o r any  bEK (R ) there ex ist r,r'ER  such that ar— br'EK (R ) and
br' K (R ).

2. aE R , if  y (a)=0  then ax EK (R ), y aEK (R ), if  and  only if ,
x EK (R ) and y EK (R ).

I f  A  is  a right ideal o f k  and fE H o m i(A , k ) . Let W=f(A)
and W  b e  the inverse image of 'W in  R .  Choose N  to  b e  a
maximal r igh t id ea l in  W  such  that N n K (R )= 0  and A' =
{a A J ( c )E N } . For each a' E A' , the inverse image of A ' in R,
a' d ' E A '  Ad') =  E R .  Since N n K(R)= O there exists a unique
n E N  whose canonical image in k  is  n. Let f  be the composite
mapping from A ' to  N  defined by :

f ( a ')  =  n  w h ere  0 = J (a') or
f (a') = f  (a') , a' E  A ' .

It is  routine to verify fEH om ,(A ', R).

Lemma 2. 9. A ' is  an  essential right ideal o f  R , if  an d  only
if , A  is  an  essential right ideal o f  R.

Proof. Suppose A  is essential. CtE A, and -a t ° .  If f (d) =0,
then dE A ' and dR n A ' *O. If f (d ) —  b* O. Suppose b=b+ K(R), then
bE W  and b E K (R ). L e t  T  be a  nonzero right ideal in R  such
th a t T nb - '(K(R))= O. I f  b T n N * 0  then there exists t E T  and
n E N  such that b t=n . f (d I )= f (a) t  = f i * O .  0 * C itE  A ' and
hence aR n ,2-17 * 0 .  I f  bT n N = 0 .  First we claim that (bT +N )n
K (R )=0 . Since if there exist xEbT , nE N , and kE K(R) such that
x +n =k * 0  (x*0  and n * 0 ) .  Let dEk - 1 (J(R)) such that x dElf (R ).
x d +n d =k d . Let g E y (k d ) such that x dgE K (R ). x dg+ndg=0.
This shows bT n N  * O. Contradiction. Therefore, (bT  + N )n
K (R )=0 . But bT  + N c W and bT + N contains N  properly. This
contradicts the m axim ality o f N .  Hence bT n N * 0 .  Thus we
have proved that for each  O = ã E A , aRnAt*O. Since A  is
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essential it is sufficient to conclude A ' is also essential.

Theorem 2. 10. I f  IE H o m i? (A ,  k )  w here A  i s  an  essential
right ideal i f  k, then there ex ists a n  essential right ideal A ' in
R  containing K (R ) an d  f e H o m R (A ',R )  such that f (a')=7 (a')  f or
all a'E  A '.

The concept of dense right ideal in a ring R  was introduced
first by Y. Utumi [4] under a different name and was later modified
somewhat by J. Lambek [3]. In the case J(R )=0 , dense right
ideals and essential right ideals coincide. Utumi calls a ring S
a  rin g  o f right quotients of R  i f  R  is  a subring of S  and for
each q E S , q '(R )= { rE R Iq rE R }  is a dense right ideal of R  and
q(q 1(R ))* 0  i f  q *O . H e  also proved that fo r any ring R  with
identity element has a unique maximal ring of right quotients
Q  [ 4 ] .  Each q E Q , q  can be realized as a R-homomorphism of
a dense right ideal o f R  into R  [3 ] ,  [4 ] .  I f  J(R )=0  then Q  is
a self right injective regular r in g  [2 ]. It is easy to show that
aE R , a has an inverse in Q , if and only if, 'y (a)= O and aR  is a
dense right ideal o f R .  I f  M  is  a multiplicatively closed subset
o f  regular elements o f R  and satisfies the right Ore's condition
(aEM , bER , b - 1 (aR )rl M *0), then aR  is  dense, aE M , and Q M

{xa - 1 1 x c R , aE M }  c Q  is  the classical right quotient ring of R
relative to M .  For the sake o f completeness, we mention some
of the properties of dense right ideals here again.

Definition. A  right ideal D  o f R  is  dense in  R  i f  fo r  all
r„ r,  in R , r 1 *0 ,

Theorem 3. 1.
1. I f  D  is  a dense  righ t ideal o f  R  then D is essential and

l(D)= O.
2. I f  D  is  a dense right ideal o f  R  an d  S  is  a rin g  of  right

quotients of  R , then f o r  any  qE S , q - i(D ) is  a dense right
ideal o f  R.

3. In tersection  o f  any  f inite collection of  dense right ideals
o f  R  is  dense.

4. Considering R  a s  a  rig h t R -m odule, le t I be  its  injective
hull and H= Hom R ( I , I )  then a right ideal D  of  R  is dense,
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if  an d  only  if , h E H , h D =0  im plies hR=0.

P ro o f . Proofs can be found in  En

Lemma 3. 2. S  i s  a  rin g  o f  rig h t quotients of  R .  A  right
ideal C o f  S  is essential in  S , if  and only i f ,  C n R  is  an  essential
right ideal o f  R .  I f  A  i s  an  essential right ideal o f  R  then AS
is  an  essential right ideal in S .

Pro o f . If A  is an essential right ideal of R, then it is obvious
A S  is  a n  essential right ideal in  S. Suppose C  is an  essential
right ideal in  S . O t rE R , rS  n c * O. T h ere  ex is ts  qe S  such
that 0* rqE C .  0* rqq - 1 (R)c rR n (c n R ). C  n R is essential in  R.

Corollary 3. 2. 1. I f  S  is  a rin g  o f  right quotients of  R  and
C  is  a  right ideal o f  S , then the closure cl(C) o f  C  in  S  is { x ES I
x - 1 (C) is an  essential right ideal of R} .

Pro o f . Follows the lemma directly.

Corollary 3. 2. 2. I f  S  is  a rin g  o f  right quotients of  R , then
J(R )=J(S )nR  and K (R )=K (S ) n R.

Pro o f . Follows corollary 3. 2. 1 directly.

Corollary 3. 2. 3. S  is  a rin g  o f  rig h t quotients of  R .  If  C
is  a  closed right ideal in  S  then C n R  is  a  closed right ideal in
R .  I f  A  is  a  closed right ideal o f  R  then A * = { xESIx - i(A ) is
an  essential right ideal o f  R }  i s  a  closed right ideal in  S  an d
A *nR = A.

Proof . cl(C n R) c cl(C)=C, i f  C is a  closed right ideal in  S.
rE R n a ( c n R ) ,  rE R n C .  C n R  is closed in  R .  F or any right
ideal A  of R , A* n R=closure of A  in R .  Thus if  A  is closed in
R  then A* n R = A . If gE S n cl(A*) then q - 1 (R) n q - 1 (A *)=B  is an
essential right ideal of R .  Since qBc A * n R =A , qE A * and A* is
closed in  S .  A * is a  right ideal of S  follows from the fact that
S  is an  essential extension of R  a s  a  right R-module.

Notice that if  C  is a closed right ideal in  S  then C=(Cn R)*.
Thus we have a natural correspondence between the closed right
ideals of R  and S. I f  A  is a  closed right ideal of R  then :
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A  A *  A *  n R  = A .

If C  is a  closed right ideal in  S  then :

C  C  n R  (cnR)* = C .

Since r R n K (S ), if and only if, rE K ( R ) . We can consider
R =R /K (R ) as a subring of S= S /K (S ). O * 4 . E g ,  =q+ K (S ) with
q c K ( S ) .  Let D  be a dense right ideal of R  such that qD cR .
Since TEEK(S) there exists d D  such that qdE E K (S ). 0* -q d =
q d +K (S )E P. S "  is a ring of right quotients of R.

Let Q be the m axim al ring of right quotients of R  and W
be the maximal ring o f right quotients of R .  W e have shown
that W is a  r in g  of right quotients of Q =Q1 K (Q). It is inter-
esting to ask under what condition Q  =W ? Or equivalently, under
what condition every ring of right quotients of R  is an image of
a  subring o f Q?

D -co nd ition : A  right ideal D in R  is dense in R  if  it is an
inverse image of an essential right ideal in k where R I K(R).

Obviously D-condition is equivalent to that every essential
right ideal containing K (R ) in  R  is dense.

Lemma 3. 4. The follow ings are equivalent.
1. D-condition.
2. I f  A  is an essential right ideal containing K (R ) in  R , then

l(A )=0.

P ro o f . Trivial.

Theorem 3. 5. I f  R  satisf ies D-condition then 0 = -W.

P ro o f . Let W E  W then W E H O M (A , k) where A is an essential
right ideal in  R (A =r -v - '(R ) ) .  By theorem 2. 10 there exist an  es-
sential right ideal A ' containing K (R ) in  R  and f  R )
such that

f (a ')  = w ( d )  w a ' for all a ' in A '.

D-condition implies A ' is  dense. There exists q E Q  such that
q a' = f (a')  fo r a ll a'E  A '.  qa' =4 a' =Ted fo r  a ll a' E A'. S in ce
J(R )=0, — 17v  and Q =W .
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Theorem 3. 6. Assume the D-condition and the maximal con-
dition fo r th e  se t o f closed right ideals are satisf ied in  R .  I f
aER, 7(a)=0, and aRDK(R), then a has an inverse in Q.

Pro o f . I f  aER, 7(a)= 0, then by theorem 2. 8 aP  is essential
in P .  The inverse image of d k  is aR since a R D K (R ). By D -
condition aR is dense and hence a has an inverse in Q.

I f  R  is  a semi-prime ring then Q  is obviously semi-prime.
Suppose A is a right ideal in Q, A n K (Q )=0 , and fE Hom Q (A, Q).
Define .7: A - 4 )  b y  f (d )= f (a )  where d = a + K (Q ), a E A .  J E
Hom-o (A ,  0 ) .  Since W is self injective. So i f  Q= W there exists
4 E 0  such that J (a )= a for all (71E 1 1 .  I f  4= q  K (Q ) then f (a )=
qa-Eka where k a E K (Q ). f (a)K (Q)=PaK (Q))=qaK (Q)+kaK (Q).
Since aK(Q)OE A n K(Q)=O. kaK(Q)= O. Let T = IkEK(Q )1 there
exists a E A , f(a )— qa +1 4 . T  is  a  right ideal o f  Q  and is con-
tained in K (Q ).  H ence Pc TK(Q) = O . I f  R  is semi-prime then
T=0 and f(a )= qa for all aE A.

Theorem 3. 7. If R  is semi-prime and satisfies the D-condition,
then f o r  any  feH om o (A ,Q ), where A  i s  a  righ t ideal of Q and
A n K (Q )= 0 , there ex ists qE Q  such that f(a)—qa fo r  all aEA.

In order to obtain more properties about R  and Q from the
informations o f P, Q, and W, we must know more about K (Q ) in
related to K(R) and J( R ) .  For instance, under what situation K(Q)
will be nil ?

J-condition: D is a dense right ideal o f R, fEHomR(D, AR))
then the kernel of f  is an essential right ideal o f R.

It is clear that J-condition is equivalent to that qEQ, qRn
R c J(R ), if and only i f  qEJ(Q).

Theorem 4. 1. I f  every dense right ideal D  of R  contains an
element a such that 7(a )=0  and aR is  dense, then R  satisf ies the
J-condition.

Pro o f . fEHom R (D, A R )) where D  is  a  dense right ideal of
R .  Let q E Q such the qd = f(d) for all dE D .  Let aE D such that
7 (a )=0  and aR is dense. qa= jE J (R ) .  a  has an inverse .2- 1  in
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Q . q =ja - lE J( Q ) .  ker(f)=7(q) n D is an essential right ideal of R.

Theorem 4. 2. I f  R  satisf ies the J-condition then:
1. I f  D  is  a dense right ideal o f  R  then the im age D of  D

in  R = RI J(R) is dense in R.
2. S= S /J(S ) is  a  rin g  o f  right quotients of  R  w here S  is a

ring  o f  righ t quotients of  R.
3. If  J(R ) is  c losed  in  R , i.e. J(R )=K (R ), then J(S )=K (S )

w here S  is any  ring  o f  right quotients of  R.

Pro o f . F or 1., let 2 * 0 , y E R. = x  J(R ) and y =y +J(R ).
y - '(D )= B  is  a dense right ideal o f  R . x B  c li J(R ). Otherwise
x EJ(R ) and 2 = 0 . There exists bEB  such that ybED and xbEJ(R).
D is dense in R . For 2., Since J(R )=J(S )nR , R =R /J(R ) can be
considered as a subring of S= S /J(S ). qc S, 4= q + J(Q). D=q - '(R)
is a dense ring ideal o f R  by 1. 4D=0, if and only if, qEJ(S).
Since 4DcR, :5 is a ring of right quotients of R . For 3., qEK(S),
q(q - '(R))E K(S) n R =K (R )=J(R ). q E AS).

Recall that at the begining, we assume J(R )=K (R ). From this
we can prove J(R ) is closed in R , i.e., K (R )=J(R ) . I f  R  satisfies
the J-condition and S  is  a  r in g  o f right quotients o f R , then
S =S /J(S ) is a  r in g  o f right quotients of R . I f  R  also satisfies
the J-condition, then of course JCS- ) would be closed in S. Con-
sequently, K (S )=JC5). qEK (S ), A =q - V (S )) is an essential right
ideal o f  R  and contains J( R ) .  I f  we assume the property 5. in
theorem 1. 2 holds in  R  then A  would be essential in  R  and
4EJ(.3). From now on we assume R has such property. That is,
i f  A  is  an essential right ideal containing J(R ) in  R  then Â is
essential in R.

Now suppose qE K(S), then A = q - 1 (J(i))  = 7 () is an essential
right ideal o f  P .  I f  q 'E f (S )  then q'DcrJ(R ) where D=q' - '(R).
Let dE D  such that 0* -4'd in R . Since A  is essential in R, there
exists t e R  such that 'd i l=0  and 14 14 'ili=0  in R . Since q'dtER ,
q 'd tE J(S ) . I f  we let r= d t  then q 'rE J(S ) and q q 'rE J(S ) . Con-
sequently, i f  qEK (S ) and e E J( S )  for all natural number n , then
the following sequence o f right ideals o f R  is strictly increasing

g-1(A S ))<(0-1(A S ))<...
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xeJ (S ), 7 (x )<7 (x 2 )  i f  x *O . Thus i f  x  is not a  nilpotent,
xEJ(S ), then 7(x)<7(x 2 ) <••• is a  strictly increasing sequence of
right ideals of R.

Theorem 4. 3. I f  R satisf ies the J-condition and the maximal
condition on right ideals, then J(S) and K(S) are  nil ideals w here S
is any  ring  o f  right quotients of  R.

Pro o f . qE K (S ), there exists n  such that q "E J (S ).  q  is a
nilpotent follows q" is a  nilpotent.

Theorem 4. 4. I f  R satisf ies the D-condition, the J-condition,
and the m ax im al condition on right ideals, then aER , a  has an
inv erse in Q  i f  7 (a )=0  w here Q  i s  the  m ax im al ring  o f  right
quotients of  R.

P ro o f . If aER, 7(a)=0, then 7(d)=0 and elP  is essential in
P=R/K(R) by theorem 2 .8 . Therefore a has an inverse in W,
the maximal ring of right quotients of P .  By D-condition there
exists q E Q  such that a q = l+ k  fo r some k E K (Q ).  Since k  is
nilpotent by the previous theorem, a  has an inverse in Q.
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