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1. Introduction. Recently the boundary value problems for
degenerate elliptic equations have been studied by many authors.
In treating these problems, at first we encounter the difficulty to
give a unified formulation as compared with the regular (non-
degenerate) cases, For example, consider the following two
equations in R}:

(1. 1) —p<x)fl—2;+u —f

w0 - dlote)en=s

where p(x) is a non-negative bounded function vanishing only at
x=0. If we give f(x)in L(R}) to both equations, we shall have
to seek a solution in different function spaces when we want to
seek it in a subspace of L*(R!). In fact, when we seek the varia-
tional solution of (1.2), it is natural to seek a solution #(x) such

that # and FZ—IQ belong to L*R)), and moreover (as a result)
x

-4 (p%)eLARY)  (for (1.1), see [5)).

Now let p(x)=+/x and «(x) be a function to be equal to \/x near

x=0 and of bounded support, then #, \/‘;ﬂ and _i(pﬂ_u_) all
dx dx\' dx
d’u

belong to LK), but — pF, which behaves like x™' near x=0,
x

is not in L*(R}). This suggests that it is not suitable to treat
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(1.1) and (1.2) in the same function space. Thus it will be
necessary to introduce some special function spaces attached to
the concerning equations in which the arguments can be developed.

M. S. Baouendi [1], in his thése, treated an operator such that

A(x, D) = A*A+@(x)* B(x, D)p(x)” (p: positive integer)

where A is a transversal differential operator of first order, @(x) is

a smooth function vanishing on the boundary (dep=+0 on the

boundary) and B(x, D) is an elliptic operator of second order. His

operator degenerates only for the tangential direction. M. K. V.

Murthy-G. Stampucchia [3] considered an operator of the form
ou

"9 | N
Ax, Dyu=— 3 a_%(a,.,(x)a_% +d(x)u)+ ) b,(x)aTuj-Fc(x)u

such that“i ap(x)E; Ex=>m(x) 1% for YEER", where m(x) a non-

negative function with m(x)'eL(Q) and they obtain the varia-
tional solution in some special function (weighted Sobolev) space.
And N. Shimakura [7] has given a non-variational formulation of
the boundary value problems for some degenerate elliptic equations
in a half-space. In his localized problem the degenerate weight
functions are restricted to the polynomial in the normal variable
and his method is related with the theory of analytic functions.
In this paper we shall mainly concern with the following
operator A(x, D) of order 2 in a smooth domain Q in R", which
can be expressed in each sufficiently small boundary patch as

(1.3) A(x, D)= — .Z:od,,,(x)aja,,+ﬁrst order operator, with
ok

n-1 n-1 — 2)
S a 02 T E (60, a,0=4,,). where 8,=p(r) > and 8,=-2.
1irmo = ov 0

T

(2) 73; and (,T(z—(jzl,---,n—l) are defined as follows: take a point o€l

and introduce a curvilinear coordinate system o(I"')on I with its origin x,. Since
I' is smooth, if we take a sufficiently small neighbourhood V(=x,) of 1, we can find

for any x&V(x,) one and only one point y&TI' such that the vector }tx coincides
with the normal at y. Next let us denote I', ={x&=V(x,); dis (x, I') along the normal
<r}. We understand that on I" there is defined the curvilinear coordinate system
o(I",) induced by that on I'(=TI,) for each >0, and we define the local coordinate
(Vo 1y o+, 14-y) of 2&V(2,)NT,(r20) by (Continue to p. 377.)
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(j=1, ., n—1), which we say the weighted normal differentiation
and the tangential differentiations respectively, r(x) denotes the
distance from x=Q to I', the boundary of Q, along the normal,
and 0<a<1 ard p(r) will be given in section 2.

Thus our operator degenerates only for the normal direction.

Our main aim is to determine the admissible lower order
terms for Dirichlet problems and to establish the existence theorem
of the solution in some weighted Sobolev space which will be
defined in section 3, (i.e) we don’t use the usual L¥Q) as a basic
space, but we use a kind of weighted L¥Q)-space with its norm
(1.6 Julse = | quir %

o r
which is stronger than the usual one.

Section 2 is devoted to the study of the weighted Sobolev
spaces in a half-space, which is the preparation to section 3.

In section 4 we shall obtain a weak solution using the Garding
inequality in the weighted Sobolev space and using the Lax-Milgram
lemma, and we shall show in section 5 its differentiability. In the
final section we shall slightly make mention of the Dirichlet
problems for higher order cases.

The author should like to express his sincere thanks to Pro-
fessor S. Mizohata for the many valuable comments, for the

(1.4 { v=lyx!
: t;=the j-th coordinate of x through a(T,).

Thus we define
a S""' dxy 0

B o av O
(1.5) ] % 8z,

| -3;= §=18r; Ox,°

We can see that the condition

is invariant to the choice of local coorcinates o(I"). Moreover, denoting
ax 8x,\ » _{Ox dx, _— o aN oy
2o — (?5 v, ‘a;.), eii(ﬁr‘?' '6};)’ we see that |é41=1, and (&,, ¢;)-:0 (j=1,

-, n—1), and the Jacobian J (=det (eg, €,, -~ ¢, .,)) is a function of (ry, -, T,-1).
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constructive critisism of the manuscript and the constant
encouragement,

2. Sobolev spaces with weights in R%. In this section we
introduce the Sobolev spaces with weights in which we develop
our arguments. Let p(x) be a real valued function such that

i) px)eC=(RYHNCARY)
il) 0<p(x)<M and p(x) never vanishes except at x=0
i) ¢,x*°<p(x)<c,x® and |p™(x)] <c,x*™" (m=1,2, )
when 0<x<a (a: a positive number and 0<a<1).
iv) p(x)Zzv>0 and |p™(x)| <K, (m=12, -)
when x—oo,

We extend p(x) to R' by p(—x) for negative x and denote

the extended function by p(x) and introduce ¢(x) and $(x) by
setting

en =L

2.2)  Fx) = Sﬁ).

Now let us define our weighted Sobolev spaces by
Definition 2,1, A distribution u(x, y) on R%={(x, y); x>0,
yER™} is said to be in W™(R%,¢) if and only if

@3) s = 3 | 1DID;ul*dpdy

Jrlkigm

is finite, where D, means —ip(x)a_a_ and D;=(—i)'k'<_a_)k’---
X

9y,
GGo)
0y./

Definition 2,2. A distribution «(x, y) on R” is said to be in
W™(R", §) if and only if

Jd Nk, 12
2.4) iz _.?%‘S"SR”I DID}ui*dddy

is finite, where D; stand for —ip(x) 561« .
x
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Clearly W™(R%, ¢) and W™(R", ) (m=0,1, ---) make Hilbert
spaces by the norms (2.3) and (2.4) and we can regard
W™(R", §)c W™(R%, ¢) by the natural restriction.

Let us define the weighted Fourier transformation &; and the
tangential Fourier transformation &, by

(2.5) (F5 “)(f: ) = S -22i5cx - 2wiyen u(x, y)dxj?dy

€
R"

(2.6) (F.u)x,7m) = g e T u(x, Ndy

Rn—l
where y.7p= :Z:y,-‘fl,-.
Remark. We could understand W™(R%, ¢) (resp. W™(R", $))
in the following way : consider the correspondence between u(x, y)
and v(x, y) defined by f#=¢(x) (resp. H(x)) and (v(x, y)=u(¢(x), ¥).

£=a¢(x) defines a one-to-one correspondence between R} , (resp. R})
and R}, (resp. R}). Moreover we have

Bt y) = p(x)-2 olx, y)
ax ax
and we have
[ 1tk p12azdy = | | 1otx. 9)12dpdy .
Ry Ry

Thus we can say that, in order that «(x, y) belongs to W™(R}, ¢)
(resp. W™(R", §)), it is necessary and sufficient that «(%, y)e H™(R")
(resp. H™(R")), the usual Sobolev space, where v(x, y)=u(¢(x), y)
(resp. u(P(x), y)).

According to the above remark, the following two lemmas
will be seen easily.

Lemma 2.1. 5 is a unitary transformation from WYR", &)
onto LR™) and the inverse transformation F;' is given by

@7 (FoNx ) = | e nydgdy.

Lemma 2.2. Let u(x,y) be in W"(R", §), then we have
(2.8)  [FuD; DA)NE, 7) = Q&Y @ren)Fsu)E, n) if j+ |kl Sm.
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The following lemma guarantees that the element in W™(R%, ¢)
(mz=1) admits the trace to x=0.

Lemma 2.3. If wu(x,y) belongs to W' R, ¢), then the trace
u(0, y) (= lim u(x, y)) exists in HYY(R"™') and it holds

(2.9 [#(0, *)|5 < Eljael0+E71ulid s for ¥E>0
(2.10) (0, )3 < Cliuili
where ||, is the norm in H(R" ')

Proof. From the definition of W'(RY, ¢), it follows
u(x, N—u(x', y) = S‘/ggd& (x, ’>0) for (a.0) y,
z d

hence by Schwarz' inequality we have

@11) iz, 5)=ulx, DI* S 1 —¢@)] ||| Dyul*dg

thus we have the trace in L(R"™"). (2.8) and (2.9) are obtained
by the following relation

(2.12) 0, )|* = 2Im | Dyilx, v)-ilx, n)dg

where # denotes the tangential Fourier image of u. (Q. E.D.)

Corollary 2.1, If u(x, )& W™(R", ¢), then all the traces of
DiDu(j+ | k| <m—1) exist in H™ J~* V(R and it holds
(2.13) | DiDyu(0, )| S c(f, &, m)Ellulln.e+cEulE 4)

(s<m—j—|k|—1/2) for ¥E>O0
(2.14) | DID;u(0, ')lm-}—lkl—l/zscllu”;‘:u,-b
In the case of the weighted Sobolev spaces, we obtain also

the interpolation theorem similar to the case of the usual Sobolev
spaces.

Proposition 2.1. ([uterpolation theorem) 1) Let u(x,y) and
Dru(x, y) belong to WRY, ¢). then Dyues WYRY, ¢) (1Zk<m—1)
and we have

(2.15)  UIDaugllo s SClk, m)ENDTullo s+ CE)ilullos) Sfor YE>O.
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2) If Diu (|k|Sm) and D%u belong to WUR%, ¢), then
us W™(R%, ¢) and we obtain for V>0
(2.16) ,’;g(.”D?:Dz’;”"o_¢§6j§~[|l)g[):ullo,¢+C(‘S)”u”o.é

Proof. 1) It will be sufficient to prove in the case when
m=2 and k=1. First we note

D,ulx, 3) = (D)0, )+ | Diue, y)d(e),

thus we can see D,u is square integrable in d¢dy on (0, 1) X R""".
Now A(x) be an infinitely differentiable function on R' which
vanishes identically for x <0 and identically equals to one for x>1,
then Di(Bx) and Bu belong to W%R”", $) and consequently

(1+ &+ |7|?)F3(Bu) does to L(R"). Hence we can see that D3(Bu)
is in WR”, ¢) and therefore D,u in WR%Y, ¢). (2.15) is shown
as follows: at first by the integration by parts, we have

(2.17) [R,. I D,z¢l2drl>dy=gk,‘ u-Diuddpdy— SR,,_,u(O. ) D,u(0, y)dy,

then by Lemma 2.3 we can obtain (2. 15) easily.

2) It will suffice to show in the case when m=2 and k=1
also.

Note at first

w(x, 7) = (0, 77)+1'S:D,12d¢

hence multiplying |7| on both sides and using the Schwartz’
inequality we obtain

@15 [ it nirandg=266)1u0, 12
*"’(3)25,& | D,y *ddn .

On the other hand for fixed §>0, it is well-known that

@19) (] nifladndpse| 1D, n1dgdn+CE)

[ L tizaedy
R4
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is valid. Thus taking §>0 suitably and applying Lemma 2.3,
we can get (2.16). (Q.E.D)

We state here a proposition which will be needed to deal
with first order terms.

Lemma 2.4. If ue W¥R%, ¢) with a<% then gﬁ belong to

WR, ¢) and moreover it holds for ¥€>0

Bu |

(2. 20) SE|lully 0+ CElullo,s

0,6

Proof. Since p(x) vanishes only at x=0, by the well-known
estimate in the case of the usual Sobolev space we have for any
ue WAR?, ¢)

)

(2. 21) g;SR i% !dMyssS | D2u| d¢dy+C(8)S (u|*dpdy

where R is a positive number and § is an arbitrary positive
number.
Now for Yue W*R". ¢) we have

(2.22)  |D,u(x, »)I* = 1 D,uu(0, 3)|*+2Re | Diu-Dyuds

hence

ou |?

QP < L1051+ 1

- 2() p(x
1 2
o), 1Dl®ds),

(2. 23)

S, 1Diede

thus if a<—é« we obtain

laul
nlla

e, |D§u|2d¢>+er'§° | Dyuldg)

(2. 24) m d¢dy§§ e )(j _1D,u(0, y)|*dy

Together with (2.21), (2.24) Corollary 2.1 and Proposition 2.1,
we obtain (2. 20). Q.E.D)
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Remark. If «21/3, we can find a function in W*R%, ¢) such
that dx/8x does not belong to WOR%, ¢). For example, take the
function which is equal to ¢(x)g(y) near x=0, where g(y)e L¥(R"™").

Let us remark here that D, is formally self-adjoint with
respect to the inner product of WYKR', ¢), whereas the formal

adjoint of _1,_61 in WYR", $) is given by
1 X

wLlde 1

1 a\* 1 0
225 (L 2)-22
( ) i 0x i 9x idx »p

and the second term of the right hand of (2.25) will behave like
x7!' near x=0.

Definition 2.3, We denote by W5(R%, ¢) the completion of
C5(R%) in W™(RY, ).

Using Corollary 2.1, we have immediately

Proposition 2.2. Suppose u(x, )& W§(R%, ¢). The traces of
DiDiu (j+ |kl £m—1) are all equal to zero.

Remark. We have the following algebraic and topological
inclusion relations between our weighted Sobolev spaces and the
usual ones:

W™(RY, o)< H™(RY)

(2.26) { C3(RY)C WE(R®, ¢)C Do(R") .

To deal with %ﬂl we prepare the following
x p

Lemma 2.5. Let u be in WR%, )N Wo(R%, ¢), then x'u
belongs to WARY, ¢) if a<1/3, and it holds
2.27)  xullo s S5 ull, 0+ CE)llullo 4

for Y€>0. Moreover, if >a1/3 we can find u in W¥R?, ¢)
N WYRY, &) such that x'u does not belong to WARY, ¢).

Proof. By considering the remark of page 379, we have the
following Taylor expansion of u(x, y);
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2.28) (x = (p-2L)0. »0(0) +{ (0 -4x))

(p) . ) daix).
By the assumptions on p(x) we see near x=0

(2. 29) <C(x '“'( Qu. )o. y)l

p(x) B

+x7 (| Diulvdg)

u(x, y)i°
x

hence we have for an arbitrary >0

8 2
@30 | [ | dbdy<Clax® "1 Du0, )3

+52""SN|D§u[2d¢).
On the other hand it holds

(2.31) m

1“| d¢dy<8 S \u|2dpdy

Thus togethdr with (2.30) and (2.21), and using Corollary
2.1., we can show (2.21). For the last part, see the remark at
page 383. Q.E.D)

Lemma 2.6. If u(x, y) W¥R%, ¢)N WRY, ¢), then x'ﬁa—u

Y
(j=1, -, n—1) belong to WXAR}, ¢) when B<l—a«a, and it holds

for V>0

(2.32) \

22 <gjlully 4+ CEliullo o
¢ ko

Proof. By the Taylor expansion we obtain

.3 % 2= (o ai <g;) b,

hence near x=0

u )?

(2.34) «x %
dy;

1 —og-zal "1y OU F
‘——écxl 2820 D hdadl
p(x) Sﬂ ’

d¢1
dy;
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and since S<1—a, we can show (2. 32) by the similar manner to
that of the proof of Lemma 2.5. Q. E.D.)

At the end of this section we introduce some families of
functions.

Definition 2.4. We say that a function a(x, y) on R’ belong
to B"(R", p) if and only if D{D}a (j+ |k} <m) are continuous and
bounded.

It should be mentioned that $™(R%, p) has sufficiently many
elements. In fact, if a(x, y)e B7(R%,) then a(x, y)= a{¢(x), y) belong
to B™R%Y, p) and ¢(x, y)+const. (peCs(R})) also belong to
B™(RY, p)

3. Sobolev spaces with weights in general domain (. Let
QcR” be a domain whose boundary is a smooth compact hyper
surface T. In this section we introduce the Sobolev spaces with
weights in Q, which are closely related to W™(R", ¢), in which
we treat our problems, and study their basic properties.

We start with the following

Definition 3.1. Let o be a sufficiently small closed neighbour-
hood of some boundary point where we are allowed to consider 9.
14

and 6% A function a(x) on  is said to be in B™(w, p) if and

. 0 Vs 0 \* . .
only if <P(r)“67) (87) a(x) (F+ |kl =m) and continuous and
bounded.

Remark. a(x)e $™ (o, p) can be constructed, for example, as
follows: let a(v, 7) be in B™(R%, p) with small support, then
a(x)= a0 (v, 7)€ B™(w, p), where 0" is the inverse transformation
of 0: x—(v, 7) defined by (1.4).

Now take a finite covering {»,} of Q such that;

1) if we denote w¥ the covering neighbourhood which con-
tact with T, then Uw¥D20, with small €>0,

2) for the all inner coverings, we denote them by {&.}, all
the supports of them lie in QF,
where Q,={xe}; dis(x, T)<%}, and then take a partion of unity
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{#¥} U {p.} on & such that;

1) supp. p¥Cowf (wi"s are sufficiently small where we can

consider 8 and —ag) and supp. P.C @&,
ov or

2) T or+S@i=1, and e B (o*, p) and B Ci(5,).
Let us define our weighted Soboldv spaces.
Definition 3.2. A distribution #(x) on Q is said to be in
W™, p) (m: non-negative integer) if and only if
@1 ke =, 32 5] (e ) () ot 22
o ov

IOrTLy or ()
0\, *dx
(50) @) 3,
is finite.

The norm given by (3.1) depends on & and the choice of
partition of unity, but we shall continue our arguments with fixed &
sufficiently small for which we can consider 8/d» and 8/d7 in Q,,
and since the passage to another choice of {w}} and {&.}, con-
sequently {@¥} and {@.}, gives an equivalent norm, we shall always
mean by |l#||,,,o an arbitrary but fixed norm defining the
W™(Q, p) topology in what follows.

We denote by Wg§(Q, p) the completion of C5(Q2) in W™(Q, p).
Clearly W™(Q, p) and Wg(Q, p) (m=0, 1, ---) make Hilbert spaces
by the norm |(|u|l,, .o

Let us remark here that by the transformation (1.4), each
small boundary patch is mapped into R% and 8/6» and 8/87 are
transformed to the normal and the tangential differentiations in
R% respectively, thus W™(w, p) is transformed into W™(R%, ¢) with
equivalent norms, where » denotes a sufficiently small boundary

patch.
Hence taking account of Corollary 2.1, Lemma 2.4, Lemma

2.5. and Lemma 2. 6., we have

Proposition 3. 1. Any u(x)e W™(Q, p) admits the trace yDPu
in H™ WYY and it holds

3.2) [YDPu| v SE[UIm oo+ CENUb o0 (s<m—|Bi—1/2)
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(3.3) [YDPu| 1112 e ECilttl o0

for Y>>0, where D5=(p(r)—a%-)ﬂ'(%)ﬂz (IBl =8B+ 1B.I<m) and

|- |..r denotes the norm in H*(I").

Lemma 3.1. Let u(x) be in W3Q, p) and a<%. then %:u_
i

(j=1, -+, n) are all in WAQ, p), and it holds for V€>0

Ou |
3.4 =
(3.4) [ Ju

T <&ty o0+ CENullo,p.a
A

0,0,Q

Lemma 2.2. If u(x)e W¥Q, p)N Wi, p) with a<—%- then
ulre WQ, p) and we have with Y€>0
B.5)  u/rllop.0=<Ellull;p.0+ CE)ullop.0-
and finally

Lemma 3.3. Let u(x) be in W3Q, p)N WHQ, p), then for each
¥ we have with B<1—a

-8 8u dx L2 <eflul3 o0+ CENu)E 0.

plr)

The proof of above proposition and lemma will be carried
out by the localization by the partition of unity of class B~(w, p)

(3. 6) Sm*nﬁ r

A

near the boundary and by the local transformation (1. 4).

4. Dirichlet problems for second order equations. In this
section we shall treat the Dirichlet problems with homogeneous
boundary condition :

0* )
J Au= — z )5 Eb,(r) u
X ;0% J
l = flx)e WiQ, P)
ulp =20

+e(x)u
4.1

where we assume (1.3) for A, more presicely A can be written
in each of in the following form
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4.2) Au= - "5_‘_,1 d,-,,(x)a 0+ 'fjl b0, + zyx) Ea—
+ Z ci(x)r 9, +d,,(x) +d(x)

With 33,8, E,2¢ 30 £7 (2,4 =d4;) and B>1— @, where a;,€ BXw¥, p)
bix) (j=0,1,+,n—1) and &) (j=0, -, n—1)E B (o}, p) and
dy(x), d(x)e B}, p).

The following lemma is needed to show the Garding in-
equality.

Lemma 4.1. Let u(x) be in Wq(Q, p) with a<é~, then we have

ws) | 1o i’(i)senun ot CONMl o (=1, )
(4. 4) S |“| SE JUTE
. Zellullf o0+ CENl3 .0
o 7 ( r)
and for each w¥
@5 {0 | B el 0+ COlE e (B<1=a0)
’ QN p(r)= Leo .00
Sor ¥e>0.

The above lemma is the consequence of the following lemma,

Lemma 4,2, Let u(x, y) be in WYR", ¢) with a<1/2, then
we obtain

(4. 6) SR —u\dr,bdy<£l|ul|1 o+ CEulida

+

4.7 SR"%dqbdygsuuumC(s)nuné,¢

+

and

48 | aol%y (B<1-a)
Rv}

for Y>>0,

Proof. First we remark that it holds for we WX}(R%, ¢)
* 9
u(x, y)=§0 u dgb (a.e) y.
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hence
4.9 |uxy)*s¢w| Douitds

thus we havd near x=0

4.10) 2 <q(x)p(xy- S |D,u|=d¢gc:c*-"r1D,,u|2d¢.
o(xy o

Since a<1/2, from (4.10) we obtain for any small §>0
8 lu|® 2-aal” 2

(4.11) —dp=Cla)d | Dyul*de
o p*(x) 0

thus we have

(4.12) 5 -lf‘—fd:ﬁdySC(a)Sz“"S | D, u|*dédy
#1 p%(x) “

T K, a)SR" lu)*dgdy.

On the other hand it holds for v¢,>0
: 1 |u|?
“ulagdy<e,{ D dd+--g dpdy .
[0 3 uldpayse,( 1Dl dpay e Lo dbay
Since we can take § and ¢, arbitrarily small, we obtain (4. 6).
Next from (4.9) we get near x=0

(4.13) % <2) S‘" | Du|?dg ng-"S" | D, u|?de
xp(x)  xp(x)Jo 0

hence

(4.14) ga.l_"_l_zd(pécat—z»smll)pulzd(b
0 X [
thus we obtain

@15 | “Lapaysce=| puirdp+L{ 1uidpdy
R x R S JrY

+

and this shows that (4.7) is valid. Finally we show (4.8). By
Schwarz’ inequality we have for an arbitrarily small §>0

(4. 16) g fx s O u!d<;b</\/

8
-28 2
o y,‘ Sox lee|*dep ,

and taking account of (4.9) we obtain
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T PlulPsx 2%(1’)5 1Dyu|*d¢p<Cx™* ””S | D,uf|?dg

thus by (4.16) we get

Bu
xﬁ

(4.17) S |Dz¢|2d¢JS 122 gy

hence using Schwarz’ inequality again we obtain

8
w18 ], x| 5udp<Cla 5 rn 2] Dy
oJr 3y, |3y,
=C(a, B)& |l 4
On the other hand it holds
- du ou
(4. 19) SE Sm-lx 5" d¢dySK(8)S J ou|dpdy
< KO)(&llalt o+ 1 )

1

for Ve, >0.

Thus taking & and &, sunitably, we can get (4.8). (Q.E.D.)
In treating the Dirichlet problems our main tool will be the
Garding in equality which we state

Proposition 4. 1. Assume that the coefficients of the principal
part of A are all in C'(Q) and others in CYQ), and moreover near
the boundary a,(x)e B}, p). and b x) (j=0, - n—1), ¢;(x)
(7=0, -, n=1) d(x) and d(x) are all in B(w}, p) for each of,
then there exisi positive constants C and K such that

(4' 20) Re(Au, a>p,ogC”um.p,a_K”qu.p,Q

Jor all u(xye WuQ, p) with a<1/2, where , >, o denotes the sesqui-
linear form on WyQ, pY x Wa(Q, p) induced by the inner product of
WQ, p). And the condition on a can not be weakened and W ¥Q, pY
denotes the dual space (which is a distributions space) of WiQ, p).

Proof. Since C7(Q)) is dense in WYQ, p), it will suffices to
show (4.28) for u(x)eCy(Q2). First we note
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<A, @0 = 33 @t Ausgta 2t 53 | pudu-pui O
) plry °F

plr)

We write P Au= A(P.u)+[ Py, Alu.

Consider 37 S(P,,Au-q*),. i dx
" p(r)

Since [@., A] is of first order operator and [@,, [¢s, A1) is of
order zero, and since

. & 7 dx y & - dx  (r |ui?
[oe A pafE =170 ANPud1-LE [P0 [P ATV S,

we have

@2 |5 fip Alepat <5 (17
= ]

~ ((Pﬂ )
P

ax;

+C(n) S I";l— dx

where 7 is an arbitrary positive number. Thus applying the result

of regular case to 3 SA(?’,J()-(])“I? ‘ix), we obtain
o plr

(4. 22) ZReSq)“Au-¢“ﬁ,(£t_gclEH__((ij“u) dx KS Lu_|2dx.
B ] 5|9 p

n—1
Next consider gq:i‘Au-gvi‘ 7 % . We write Au= — igoaj(ajkak 1)

n—1
+ Bu + Eo(x)ﬂ+ dyx ) + X cx)r P9;u. Since B is a first order
=1

operator with respect to (9, ---,9,_,), we have
l * 5 - dx ‘ " % - dx
(4. 23) ZA:‘ PX Bu pf "7 §¥) B(@¥ u)- p¥ “_"

3| (Lot Blupta st sus2{ 5
P
Sl . dx

|2 8X

p
On the other hand,

0, (%u)I &4 C)

ften 2 gt 2 (o2 ptu-ka
P P

Jetoft 2 Tt
ov P
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and ’[%’}‘, ai]u <
| v

4.1, it holds.

I gC—I%I, hence by virtue of Lemma.

D

(4. 24) 2( eo(x)—qw‘i: zgzla(%u)v‘i—%av)

1x
Sluv%

and similarly

(4. 25) ZH do(x) %udrl
A P

<33 gla,.@:uw_x +Cnflurrx,
Xy P P
* -8 xodx ) o S %,y 2 dx
4.26) 3|[presnrroupta s > [ 16,6201 =

+C(n)5|u12d_" (1<k<n)
p

n-1
Finally we note S¢t(—j§oa,(a,,aku))¢tz7i‘;'_”

n:;‘la(~ 6( * *'dx * “-la 0 *-dx
- ,%-;o A0 plu)) ok IIT-I- [o¥, —j;;o Aau0:)]u-pf uT

and we can see easily using the same technique as was applied

0 S[‘Pu, A]u-fﬁm%.

n-1 ~ _ dx
w.zn (Lot - S @uonleota st

<v 53 {18,6pt )1 Lor-Con 1 S

By integration by parts after the local transformation (1.4), we

get
-1

@.28) ~ 5 (o, @andiotwpota ®t

fo k=0
n—1
;czng|8,-<q»:‘u)|“i—"—&§|u|*-"£,

frh= P

and taking »>0 sufficiently small, we obtain (4. 20). For the last
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part, for example, consider u(x)=v08"', where ¢ denotes the local
transformation (1.4) and u(y, 7)=log (1+¢(p))w(r) (w(7)e LX)
near »=0 and of bounded support. It is easily seen o(v, T)

e WR", 4) but S _giv-v.‘?ﬂ-‘?l diverges. (Q.E.D)

t]

R, Ov p
It is to be noted that the formal adjoint of 8/dx; with re-
spect to the inner product of W%Q, p) becomes

9 \* a op”!
4.29 ‘> - -0 _,%
( ) (6x,- 0x; P 0x;

and p%”—“ behaves of most like ™' near T.
Xy
Definition 4.1. u(x)e Wi, p) (@ <1/2) is called to be a weak
solution of (4.1), if w(x) satisfies for all v(x)e Wi(Q, p)

(4.30) <u, A*ud, g = (f, Do
The following lemma is easy.

Lemma 4.3. If a;(x)e B(Q3), b(x)E B(Q;) and c(x)E B(Q;)
with each §>0, and &€ B(o¥, p), b(x) and ¢ (x) B (o}, p) and
dy(x), d(x)€ BY¥. p) for each of in (4.2), then the coefficients of
A* satisfy the assumptions in Proposition 4. 1.

Now we are in a position to solve (4. 1), that is, using the
Garding inequality for A* and applying the Lax-Milgram lemma
we obtain

Theorem 4.1. If the coefficient of A satisfy the assumptions
in Lemma 4.3, and \>0 is sufficiently large, then there exists a
unique weak solution u(x)e WyQ, p) of

Au+ru = f
Ul =0
for any f(x)e W¥Q, pY.

5. Differentiability theorem and alternative theorem of
Fredholm. One of the main subjects in this section is to show
that any weak solution of Dirichlet problem belongs to W*Q, p)
if flxye WYQ, p) and a<1/3. Since our question is local, we
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shall transfer it to that in K" by the local transformation
8; x—(v, 7) defined by (1. 4).
We start with the following

Lemma 5.1. (Poincaré). Let u(x,y) be in o(RY, ¢) with
bounded and fixed[support, then we have

6.1 | lux irdpaysc| 1Duldpdy

where D denotes D, or D, and C is a positive constant depending
only on the diameter of the support of u(x, y) and becomes small,
when the diameter of supp. u is small.

Let us denote the transformed operater by A also;

- il ( 3
- a; ’ T~ s
2 a;(x, 9) 5y, 0m o(x, )P ax)

-+ :Zjb,(x, y)a—i:-l— :i:lx’”c,(x)%—t-co(x, y)a—ax—
+dy(x, »)+x7'd(x,3) (near x=0) (B<1—a)
where a;(x, ) B(R}, ¢), by(x), c(x)eB' (R}, ¢) and 4dyx, y),
d(x, y)e B(R", ¢).
We denotes by 3, the hemi-sphere of radius §;
%= {(x, ) 2+ |y°<8, x>0} .

To accomplish our aim, the following proposition is important.

Proposition 5.1. Let u(x,y) be in W' RS, ¢) and Puc
Wo(3s, @) with aa<1/3 for any B(x, y)ECF(By) (real valued) such

that (P%)kﬁ’(x, y) (=0, 1, ) are continuous and bounded, where

By denotes the ball of radius & wilh its centre at origin, and u(x, y)
satisfies

(6.3)  Au = flx,3), (flx, )€ WARY, ¢)),

then if 8>0 is sufficiently small, u(x, y) belongs to Wi (3 ., ¢)
with €<8.
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Proof. Since u(x, yye W'(R%, ¢), we have by (5. 3)

(5.4)  —awulx, y)(f)—8~> U— 25 a (%, y)(P 667)<aiy,,) u

=2 a;lx, 2) +23 10 P cy(x, y) y “ 4+ elx, y)—;

66,,

+xd( )u = fx, ) ~bp 0 - b

—due WURSL, $),

Jayl

and we may assume that a,(x, y)=1. Multiplying 8(x, y) to both
sides of (5.4) and noting [ﬁ (pi)] [B a, k(pi)<9—)]u,

ox ox /\ox,
[,8, ajy i ]u, [ﬁ, x“’c,,a—]u, and [B, Co— ]ue WS, ¢), we
av;yﬁ ay.f
obtain

o) e anle )00 150

rarec, A8, coia‘jc%x-'d(x, ¥) Bu=g(x, e WA, ¢).

j

Now with the aid of the Garding inequality and Lemma 5. 1.,
we have

Re {Ap, przcllpll,s (€ Wo(2ls §))
hence
(5.5) cllellsZllApll s

here ||Apl|l_, s stands for the norm of Aw in W3, ¢), the dual
space of W43 s, ¢). Thus by taking the difference quatient of

tangential direction for @=pRBu, we can see (Bu) and

a..

Y ;05

p—a:—(ﬁll) belong to WXR?, ¢), hence we have
dx0dy;

—(pae) B+ ()= 2 (1) + S x 7
N

-3 x“*’g;—".wu)uﬂd(x, INBu) = hlx, y)e W (3. ¢).
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Since a<1/3, A<1l—a and fac" <Kx® near x=0, we see

ac° (,Bu) and 3 x7# gt‘, (Bu)ye W37, ¢), here we used the fact
y

7

(5.6) (Y| =x"™¢(y), p(NEL(R™) (W EWRT, ¢)).

Next consider Safaa;(c‘,ﬁu)fyi and Ssi(%’l—)(ﬁu)d%. Using
x p x

6.7 [ o0 25 inesura| 4

v X

5. 8) g |d(" Y) gl 2%

Lspo[ 188 yerw)
xp
and by virtue of a<1/3, we see the left hands of (5.7) and (5. 8)
are majorized by some ¢, (y)eL*R""'). This shows that p-aa—(ﬁu)
x

is also majorized by some Li(R""') function, therefore we have

(5.9)  1Bu| =x7(y), d3)ELAR™Y).
Thus we obtain

(5. 10) E%(Bu)i <x*¢(y)

(5. 11) l%‘f <z *d(y)

with ¢(y) and $(y)eL{R™"), and this shows 58-(,814) and
X

' Bucs WA, ¢) and finally we see (p{;)z(ﬂu)e WS, ).
This completes the proof. Q. E.D)

Remark. Q(x, y) used above is constructed as follows: let
g(¢) be a Cz(RL) function such that

i) O0=q()=1.

i) g)=1 if —-§<I<y (0<8<?)

i) ¢(¢)=0 if |t|=§,

then B(x, y)=q(<f>(x))"lixq( ¥;) is our demanded one.
i=1
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By the above proposition we can prove

Theorem 5.1. If f(x) is in WUQ, p), then the weak solution
of Dirichlet problem belongs to WX, p). Here we assume a<1/3
and this is the best possible condition on a.

‘ There will arise naturally the question whether f(x) is given
in W*(Q, p), then the solution u(x) belongs to W*'¥Q, p) or not.
The answer to this question is negative in general, but if the
term involving 9/0v does not occur, and ¢;=0 (j=1,2, ---, n—1)
and d,(x, y)=0, then the answer becomes positive.

Our next subject in this section is to establish the alternative
theorem of Fredholm for our problem.

Lemma 5.2. Let us denote by Ky, ¢)
{u(x, y)e WuRL, ¢); llull, <1, and Supp uc 34},
then K33, @) is compact in WURL, §).

Proof. Let us denote by a(x, y) the extention of «(x, y) to
R" by setting #(x, y)=0 for x<O0.
First note that for Yue W}RY, ¢)

(5.12) p(x)—g% = P

and set
¢(E: 7]) _ SR,,u(x’ y)eozzie&’)-:rimyd&dy
for u(x, y)e Ko(3Y%, ¢). Then since #=« when x>0, we have

(5.13)  u(x,y) = S DY (£ Y dE diy

firiniSR

- SiSE—InlaReyie’;:)‘_w”.’¢(gr 7’) df d’?
= ufx, y)+ulx, y).

Thus by Plancherel’'s theorem, it holds
e 1 P 2 2 const.
6.1) lluslo3 S5 5 | (L+47E+ 171 (g, m)|dg dy < ES%

and we see that {u,; ueKj>%, ¢)} makes an equi-continuous
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and uniformly bounded set in ). Hence by Ascoli-Arzela’s
theorem, we can find a sequence in {u,; u€ K4, )} which
converges uniformly in 37, and since p~' is integrable in (0, 8),
we see this sequence converges in W°>;, ¢). Now according
to K=1, 2, ---, using the diagonal method we can select a sequence
{«;} in K5 ¢) which converges in WX, ¢).

For the general bounded domain, by taking a finite partition
of unity of class $=(Q, p) and using the local transformation
defined by (1.4), we can state

Proposition 5.2. Let Q be a bounded domain, then the bounded
set of WX, p) is precompact in WQ, p).

Thus by Riesz-Schauder’s theory, we have

Theorem 5.2. Let us consider the following equations in a
bouneed domain

(5.15) (A+Nu=f uir=0
(5.16) (A*+Nv =g vlp=0,

then

1) the eigenvalues of — A in (5. 15) make a sequence accumulat-
ing at most at infinity and the eigenvalues of — A* are given by
the complex conjugates of them.

2) let A, be an eigenvalue of — A, then the eigen space cor-
respoding to \, is of finite dimensions and its dimension coincides
with that of the eigenspace of — A* corresponding to X,,

3) when ne& {\.}, (5.15) has a unigues solution u(x)e W §Q, p)

with a<é— (resp. u(x)e WHQ, p)N WiQ, p) with a>1/3 for any

fe WXQ, p) and the mapping: f—u is bounded in W(Q, p). And
for (5.16) we have the same result.

4) if A=\, a necessary and sufficient condition in order that
(5. 15) has a solution is that f(x) is orthogonal to the ecigenspace
corresponding to X, the eigenvalue of — A* in (5.18).

6. Dirichlet problems for higher order equations. For the
Dirichlet problems for the higher order equations, we can have
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the analogous results to the second order cases.
Consider a differential operator of order 2m in Q which can
be written near as

(6.1)  A(x, D) = 3 au(x)3"+lower order operator, where
|l zm

_ 8 o @ I
a9 = ((P(’)Ef’ o ’67,,_) and it is assumed that

A(x, D) is normalized by the requirement

(6. 2) (-n- ReIME:]ma‘,.(x)a}“gclg |* (c is independent of x).

Our equation is

Au = fEe WAQ, p)
9 V!
(P02 Y

Definition 6.1. u(x)e W§(Q, p) is said to be a weak solution
of (6.3), if u(x) satisfies for any ov(x)e W§(Q, p)

(6- 4) <u, m>p,0 = (f) v)P,Q .

Corresponding to Lemma 4. 1., the following lemma holds.

(6.3)

=0 (7=0, -, m—1).

r

Lemma 6.1. Let B(x, D) be a differential operator which can
be written near 1" as

(6.5)  B(x, D) =;‘mz_]sz_ﬂb,._<,,)(x)(p(r) _:: ):( 537_ )k

+d(x) B<1l—a)

where 51’(k)(x)6$3m-j_lkl-l(w) P), ci.j,(k),l(x)eQm-"—j-!kl-l(ws P) and
d(x)e Cw) with |d(x)| <Kr ™' for each boundary patch w, then
we have for any u(x)e W5(Q, p)

_dx 2 ; 2
(6. 6) SQ |Bl¢'u|—;— Zé€llulln oo+ CENIG 0.0

o dx
[ 184181 2 Sl .0 CEN M .0

if a<1/2m, here B* denotes the formal adjoint of B in WQ, p).
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Finally as for the coefficients of B, we assume that they are all
in C"(Q).

Remark. The condition on « is the best possible one unless
Coom—1 (0 0(x) is identically zero and |d(x)| <Kr # with p<2m—1.

By virtue of Lemma 6. 1., we have the Garding inequality for
higher order case.

Proposition 6.1. Suppose a.(x) in (6.1) are all in B (w, p),
coefficients of A(x, D) are all in C*™(Q), and the lower order term
which appears in (6.1) is of same type as B(x, D) in Lemma 6. 1.,
then we have positive constantis C and K such that

(6.7 Relu, A*u), o 2Cllulla p.0— Kllull} 5.0
for all wW(x)e W§(Q, p) with a<1{2m.

Proof. Taking account of Lemm 6. 1. if suffices to show (6. 7)
when A*= 37 a¥(x)8* with a*(x)€ B™(w, p). Further using the

pui=zm

transformation (1.4), we can reduce our problem to the case in

a half-space, that is A*=‘“§z.a,‘(x, y)o* with a.e B™(R%, p) where
a 0 ]

9=(p0) 3 )

Now let u(x,y) be in C7(3};). We regard u(x,y) as an
element of C7(R") by extending it identically zero for x<0. First
we assume all a. to be constant, then using the weighted Fourier
transformation (2.5) and Lemma 2. 2., we have

Re {a, A*u), = Re(TFzu, 3] aut* Fzu)=cllulls o

if 8>0 is sufficiently small, thus since by the continuity of
a.(x, y) and by the integration by parts, we have

68 [ adr )= as, o, @ % se@lul o+ COMuE
1
where §=(8, ---, §), we can prove (6. 7). Q.E.D)

Using above proposition and applying the Lax-Milgram
lemma, we obtain
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Theorem 6.1, Under the same assumptions on A(x.D) as in
Proposition 6. 1., there exists a unique solution of (A+Nu=f for
any fe WpQ, pY, if »>0 is large enough.

If we expect the weak solution be in W?**({}, p), we must
impose more restrictions on the lower order operator and on a.
In fact we obtain

Theorem 6.2. Let B(x, D) be the lower order operator which
can be expressed near T as

69 BwD= 3 k@) ()

i RiSem - B

Y RY —m—p(i ko
(5,) 755 )
with |d(x)| Kr ™, then the weak solution of (6.3) belongs to

W, p), if f(x)e W(Q, p) and a<1/2m+1, and the condition
on a is the best possible one.

+ p smf;,j,(k),/(x)(P ‘l)

RN v /

Finally in Q is a bounded domain, we can also apply the
alternative theorem of Fredholm.
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