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1. Introduction. Recently the boundary value problems for
degenerate elliptic equations have been studied by many authors.
In treating these problems, at first we encounter the difficulty to
give a  unified formulation as compared with the regular (non-
degenerate) cases, For example, consider th e  following two
equations in 14:

(1.1) _ p ( x ) d 2  -Fu = j
dx 2

(1.2) _  d  p   du" + 1 4

d x \  d x

where p(x) is a non-negative bounded function vanishing only at
x = 0 .  I f  we give f (x ) in L2(14.) to both equations, we shall have
to seek a solution in different function spaces when we want to
seek it in a subspace o f 1,2(R 1

+ ). In fact, when we seek the varia-
tional solution of (1 . 2), it is natural to seek a solution u(x) such

that u  and \ 
—

p

 d u
-  belong to 1,2(14), and moreover (as a result)

dx
_  d p du) E L ,( R ) (for (1. 1), see [5 ]) .

d x  d x /
Now let p(x )=\ , x—  and u(x) be a function to be equal to v  —x  near

x =0 and of bounded support, then u, v p

—  

—
d u  

and —  d 
 ( p  

 d u
  )  all

dx dx d x

belong to 1,2(1?), but — p—
d ' u

,  which behaves like near x = 0,
dx 2

is not in L2(R',). This suggests that it is not suitable to treat
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(1. 1) and (1. 2) in  the same function space. Thus it will be
necessary to introduce some special function spaces attached to
the concerning equations in which the arguments can be developed.

M. S. Baouendi [1], in his thèse, treated an operator such that

A (x, D) = A*A±g)(x)P B(x, D)99(x) 5( p :  positive integer)

where A is a transversal differential operator o f first order, q(x) is
a  smooth function vanishing on  the boundary (chp*0 on the
boundary) and B(x. D) is an elliptic operator of second order. His
operator degenerates only for the tangential direction. M. K. V.
Murthy-G. Stampucchia [3] considered an operator of the forma auA (x, D)u= —  E  — (a. k(x) - r d i (x )u)+ b (x) —

au 
+ c(x)uJ.k=i ax ax k a X1

such that ai k (x) 6 , › l i i (X )1  1 2 for YEE R ", where m (x) a non-

negative function with tn(x) - ' 11(1-1) and they obtain the varia-
tional solution in some special function (weighted Sobolev) space.
And N. Shimakura [7] has given a non-variational formulation of
the boundary value problems for some degenerate elliptic equations
in a half-space. In his localized problem the degenerate weight
functions are restricted to the polynomial in the normal variable
and his method is related with the theory o f analytic functions.

In  this paper we shall mainly concern with the following
operator A (x, D) o f order 2 in a smooth domain SI in R ", which
can be expressed in each sufficiently small boundary patch as

(1.3)A ( x , D ) = — Jk(x)a,ak+ first order operator, with
j.fr=.0

aJk( x )  C (c '>0 - —  n  here ao = p(r)- a
_ "

)
 and ai —  a  

j — Irk /
1.5=0 =0 au

a -( s )  —  and 
a
-

8
— (I-1 , •••, n-1) a re  defined a s  fo llow s: take a  p o in t x0 E r,av

and introduce a  cur
r i

vilinear coordinate system a(T )  on l"  w ith  its origin x0. Since
is smooth, if  w e take a  sufficiently small neighbourhood V (x 0 )  o f  x0 we can find

fo r an y  x E V (x 0 )  one and on ly one point y e r  such that the vector 7x coincides
with the normal at y. Next let us denote T', —{ xeV(x0 ) ;  dis (x, r) along the normal
< r ) .  We understand that on  I '  there is defined the curvilinear coordinate system
a( induced by that on T (= T 0 ) for each r>0, and we define the local coordinate
(v, r 1r .  - 1 )  o f xEV(x0)(11- ,.(r _ 0 ) by (Continue to p. 377.)
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(j=1, • • • ,  n - 1 ) ,  which we say the weighted normal differentiation
and the tangential differentiations respectively, r(x ) denotes the
distance from x e n  to r, the boundary o f n, along the normal,
and 0 <  < 1  and p ( r )  will be given in section 2.

Thus our operator degenerates only for the normal direction.
Our main aim is to determine the admissible lower order

terms for Dirichlet problems and to establish the existence theorem
of the solution in some weighted Sobolev space which will be
defined in section 3, (i. e) we don't use the usual /AM as a basic
space, but we use a kind o f weighted PO-space with its norm

ib 1 14 12  dx (1.6)
I e

which is stronger than the usual one.
Section 2  is devoted to the study of the weighted Sobolev

spaces in a half-space, which is the preparation to section 3.
In section 4 we shall obtain a weak solution using the Q rding

inequality in the weighted Sobolev space and using the Lax-Milgram
lemma, and we shall show in section 5 its differentiability. In the
final section we shall slightly make mention of the Dirichlet
problems for higher order cases.

The author should like to express his sincere thanks to Pro-
fessor S . M izohata fo r  th e  many valuable comments, for the

( \
v=-.1;;

1. 4
;

r i - t h e  j - t h  coordinate of x through a (F ,).

Thus we define
aa x f r  a

—  —a, .71  ap ax.
(1 .5) a azk  a 

Or1 k. Z 1 . O r 1  ark •

W e can see that the condition

x -1 x-1
F

1.1=0 j =0

is in v a r i a n t  t o  th e  choice
(Ox,a x „ _ ( ax,

e° 417 ' '  7317 P e 1 -

••., n - 1 ), and the Jacobian  J  (

o f  lo c a l  coordinates cf(r). Moreover, denoting

we see that l i c l= 1 ,  and (4 , -6 ) - 0 ( j= 1 ,
a r ;

= d e t(e 0 , el , • - ,  e,, 1 ) )  is  a  function o f (rip



is  f in ite , w h e re  D , m e a n s  - ip(x ) a and 1) = ( - 0 11,1 ( - L ) k 1 ...
ay.Ox
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constructive critis ism  o f  t h e  m an u sc rip t and the constant
encouragement.

2. S ob o lev  spaces with weights in R . .  In th is  section we
introduce the Sobolev spaces w ith  w eigh ts in which we develop
our arguments. Let p(x ) be a real valued function such that

i) p(x)E c-(vE ) n cve,)
ii) osp(x)_m and p(x) never vanishes except at x=0

iii) ci x ' p(x ),c,..ra' and I p(m)(x)1 c,„x'm (m =1, 2, •••)
when 0 < x < a  (a; a positive num ber and 0<a<1).

iv) p(x) ,y >0 an d  p̀ m)(x)I _ K,„ (m =1, 2,
w h e n  x-.co.

W e extend p(x) to  R ' by p (-  x )  for negative x  and denote
the extended function by p(x ) and introduce 0(x) and t ( x )  by
setting

(2. 1)

(2. 2)

N ow  let us define our weighted Sobolev spaces by

Definition 2. 1. A distribution u(x, y ) o n  RI.= {(x, y) ; x >0,
y e R n 1  is said to be in W m (R 95) if and only if

(2.3)I u t E u  2 dopdy
picsm R1

(  

 8   r-'
-

Definition 2. 2. A distribution u(x, y) on R " is  sa id  to  b e  in
Wm(R", if and only  if

(2. 4) Hull!.
*

 =  E I Di D;u1 2 4 d y
ilkil e

ais finite , w here 1:),;- stand for - i p ( x ) - - .
Ox
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Clearly W 'n(R :, 0) and W 'n(Rn ch) (m=0,1, make Hilbert

spaces by th e  norms (2. 3) an d  (2. 4) an d  w e  c a n  regard
W'n(R", (h) c 0 )  by the natural restriction.

Let us define the weighted Fourier transformation 9;3 and the
tangential Fourier transformation 9", by

(2. 5) (9:;,- u)(, n) = u(x, y)dchdy
R "

(2. 6) (g ,u )(x , n ) = 
R n -

u(x, y)dy

where y•77-= y i n i .

Remark. We could understand W '" (R", ck) (resp. W , (hp
in the following way : consider the correspondence between u(i, y)
and v(x, y) defined by x= 4)(x) (resp. (T)(x)) and (v(x, y)=u(4)(x), y).
1=0(x) defines a one-to-one correspondence between R!,..x  (resp. R z

i )
and RI..x  (resp. R ) .  Moreover we have

aau(x, y ) = p(x) v(x, y)
8x

I u(i-, y ) 2 d.idy  =

and we have

R f l ( d4)c ) .
dy

Thus we can say that, in order that u(x, y ) belongs to W 'n(R,
(resp. Wm(R", Y6)), it is necessary and sufficient that u(i, y )EHm (R )
(resp. lini(R")), the usual Sobolev space, where v(x, u(4)(x), y)
(resp. u(i(x), y)).

According to the above remark, the following two lemmas
will be seen easily.

Lemma 2. 1. 9  is  a  unitary  transformation from  W V ?",
onto LA R") and the inverse transform ation gF,-1 is giv en by

(2. 7) (g i l v)(x, y) = v ( , 77) 4  dn
R "

Lemma 2. 2. L et u(x , y ) be in W m(R", (h), then we have

(2.8)[ 9 . -p-U4; IX O](, = (27r)i(27-07)k(g -o ) ( ,  77) i f  j +
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The following lemma guarantees that the element in W'"(R', 4))
(,), 1) admits the trace to x=0.

Lemma 2. 3. I f  u(x, y) belongs to 14P(12'.'„ 0), then the trace
u(0, y) ( = lim u(x, y )) ex ists in  Hy 2(R" - ' )  and it holds.40
(2. 9) I un •)I4 Eliu111,4,+6- 1 1hullg,4, for V 6>0

(2.10) I u(0, •)I7/2

w here I • I s i s  the norm in  Hs(R" - ').

Pro o f . From the definition o f  liP(R, 0), it follows

u(x, y)— u(x', y) = - 1±(4 (x, x' > 0 )  f o r  (a. e) y ,

hence by Schwarz' inequality we have

(2. 11) I u(x, y)— /4(x% Y)1 2 5_145 (x) - 0(x')15. I D o I =d4)

thus we have the trace in a R ' ' ) .  (2 .8 ) and (2. 9) are obtained
by the following relation

(2. 12) I fi(0, 72) I 22 1mDpii(x , 17)- ii(x , 77) 4 )
0

where z denotes the tangential Fourier image of u. (Q. E. D.)

Corollary 2. 1. I f  u(x, y)eWm(RI, 4)), then all the traces of
DitI4u(j- Ikl flz — 1) ex ist in  W s -  - lki - '1 2 (R" - ' )  and it holds

(2. 13) I DI, D:u(0, •)I s c(j , k, ni)(414111.4.+
(s<m —j—Ikl— 112) f o r  vE> 0

(2. 14) I D P:u (0 ,

In the case of the weighted Sobolev spaces, we obtain also
the interpolation theorem similar to the case of the usual Sobolev
spaces.

Proposition 2. 1. (Interpolation theorem ) 1 ) L e t u(x, y) and
u(x, y ) belong to W°(1?1, 4)), then M u e l r )(121, (1 k

and we have

(2. 15) I I Dp14110,+ m)(611D7/1110.4.± C(6)11u110,-h) for E >0 .
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2 )  I f  D :u  ( Ik I  5 .m )  an d  In u  belong to W A R , 4 3 ) , then
4)) and we obtain f or v 6>0

(2. 16) E E  IlDW:u110.*+C(E)Ilullo,4

Proo f . 1 )  It will be sufficient to prove in the case when
m =2 and k = 1 .  First we note

Dpu(x, y ) = (Dpu)(0, y )+:1);u(E, y )4)() ,

thus we can see D o  is square integrable in cichdy on (0, 1) xR " - '.
N ow  /3(x ) be an  infinitely differentiable function on  R ' which
vanishes identically for x O and identically equals to one for
then  Li-M u )  and  R u  b e lon g  to  t r( R " ,  ( )  and consequently
(1 + 2 +  1)712 )9-(R u) does to L 2 ( 1 r) .  Hence we can see that D ( 13u)
is in  W V ", 4)) and therefore D o  in W )̀(R „ 4 )) . (2. 15) is shown
as follows : at first by the integration by parts, we have

(2.17) ID„u12 dqo dy u • D'i:,11 d4)dy- u(0
R " - 1

y )D p u (0 , y )d y
le41. 

then by Lemma 2. 3 we can obtain (2. 15) easily.
2 )  It w ill suffice to show in the case when m=2 and k=1

also.
Note at first

/i(x, 77) = û(O, 77 )+ i DpliCICP

hence multiplying I771 on  both sides and using the Schwartz'
inequality we obtain

(2. 15) R9_, i 2 I '77)12 Cb2d0 5, 20(8)1 u(0, )

4)(SY I 441 2 1, 712 dOdn.
R 4

On the other hand for fixed 6>0, it is well-known that

(2.19) 72i21(112d77d4) I Dpie 1 2 1771 2 dd:4 7 2+ C(6)

Le l l 41 2 d(I) d77
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is va lid . Thus taking 8 >O suitably and applying Lemma 2.3.,
we can get (2. 16). (Q. E. D.)

W e state here a proposition which will be needed to deal
with first order terms.

1 auLemma 2. 4. I f  /4 0) with a then --  belong to
ax

W°(1?, 0) an d  moreover it holds f o r vE>0

(2. 20) au
' ax 5- 6 1114 112A+ C(0114110,3

0,3

  

Proof . Since p(x) vanishes only at x=0, by the well-known
estimate in the case of the usual Sobolev space we have for any
UE W 20?"4  , ck)

(2. 21) 2 dy5dy
—

I Mu 12 clsbdy+ C( ) u 12 d4)dy
R R" - 1  ax I R +

where R  i s  a positive number and 5  i s  an arb itrary positive
number.

Now for vue147 2 (R':. 4)) we have

(2. 22)

hence

(2.23)

u(x, y)I 2 = 411(0, y)1 2 ±2Rer Mu • Dpudst)
. 0

au ' 21 y)!2+  1 (ET  IDu1=d4)
ax , p2(x) p2(x) o

+ I DpUr CIO ,
E,

 

thus i f  ce < -1 -  we obtain
3

(2. 24) fRd y c13 -,
x R"

+

Dpu(0, y)1 2 dy
0 - k -  •

j o  i N  En : x

p

i 11141 2 4 + 6 0 D  D p U 1 2 dCh)

Together with (2. 21), (2. 24) Corollary 2. 1 and Proposition 2. 1,
we obtain (2. 20). (Q. E. D.)
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Rem ark. If a  113, we can find a function in  WXR._'„ 4))  such
that au lax  does not belong to I r ( l ? „  0 ) .  For example, take the
function which is equal to 0 (x )g (y ) near x=0, where g(y)E L 2(R" - ').

Let us rem ark here that A, is fo rm ally self-adjoint with
respect to  the inner product o f  We(R1, 41), whereas the formal

adjoint of —

1  
—

a  
in co is given by

i  a x

(2.25) /k l  
a y a

i ax
d p  1

-x dx • 7)

and the second term of the right hand o f (2. 25) will behave like
near x=0.

Definition 2. 3. We denote by W'AR, 0 ) the completion of
C ;(/ ? ) in  W m(R , 0).

Using Corollary 2. 1, we have immediately

Proposition 2. 2. Suppose u (x , y )e l4 P A R , 0 ) . The traces of
14D:u  ( j+  Ikl — 1) are  all equal to zero.

R em ark. W e have the following algebraic and topological
inclusion relations between our weighted Sobolev spaces and the
usual ones :

{ Win(R!,, (I))c Hm(Rn+ )
(2.26)

CW(1??,)c W'on(R1 , c  ffr 22(Rn- t)  •

To deal with A-3 .1  we prepare the following
d x  p

Lemma 2 .5 . L e t  u  b e  i n  147 2 (R , ciS)n w4(R.., 0) ,

belongs to W*(R:, 41) i f  a <113, and it holds
then x 'u

(2.27)Ilx ulio.oSquI12,4+C(E)11u110,.5

f o r  v e > 0 .  M oreover, if  > a  1/3 w e can  f ind  u  i n  W2(R :,
n such that x - 1  u  does not belong to W°(1?1., 0).

Pro o f . By considering the remark of page 379, we have the
following Taylor expansion of u(x, y) ;
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(2. 28)

By the

(2. 29)

Akira Nakaoka

u(x, y) = (p Z)(0, y) 0(x) + S:((4)(x) — (13(x'))

(p L ) 2 u(x' , y)d4)(x').

assumptions on p(x) we see near x=0
2   1 au 5_ C(x -

3 '
ax

)(0, y)
p ( x )  

2

+ x I D=0 I 2 d43)
Jo

hence we have for an arbitrary S >0

(2.30)Ç ' 5 2 dyt. dy . C(a)(8 1 - 3 ' I Dpu(0, y)I
0 1 ? " X

+ 82 ' P  Dii 1 2 (156 )0

On the other hand it holds

(2. 31)
RN

u  2 1clybdy = l u r d 4 . ) d y

  

Thus togethdr with (2. 30) and (2. 21), and using Corollary
2. 1., we can show (2. 21). For the last part, see the remark at
page 383. (Q. E. D.)

Lemma 2. 6. If u(x, y)eW 2(1?, 40)n wt(Rl, 4)), then x-0 
au

ay;

(j=1, • , n-1) belong to IP(R„ 4)) when 13 <1— a, and it holds
fo r  vE>0

(2.32)x - 0  Lu -11 SEIIu110 4H-CMI1u110,4
0;1 0,.t. •

P roo f. By the Taylor expansion we obtain

(2. 33) -92--4  (x, y) = (p ,
ay; 0 ax a y ,

hence near x=0

(2. 34) x - 2 0 1 au
ay;

=  1C x 1 2 5  D0  Ou 
p(x) — ay
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and since )8<1— a ,  we can show (2. 32) by the similar manner to
that of the proof of Lemma 2. 5. (Q. E. D.)

A t the end  o f this section we introduce some families of
functions.

Definition 2. 4. We say that a  function a(x, y) on RI belong
to 2m(R"„ p) if and only if D4D:a (j+ I k 1 .m )  are continuous and
bounded.

It should be mentioned that gm(1?'.'„ p) has sufficiently many
elements. In fact, if a(x, y)E .0"(12'.'„) then a(x ,y )=a(4)(x ),y ) belong
t o  .1 r(R 1 , p ) an d  so(x, y)+const. (TŒ C(RI)) also belong to
g"(1?, p).

3. S ob o lev  spaces with weights in genera l dom ain  a  Let
ncR" be a  domain whose boundary is a  smooth compact hyper
surface F .  In this section we introduce the Sobolev spaces with
weights in 11, which are  closely related to Wm(R".„ 0), in which
we treat our problems, and study their basic properties.

We start with the following

Definition 3. 1. Let co be a sufficiently small closed neighbour-

hood of some boundary point where we are allowed to consider —
av

aand . A function a(x ) on co is said to be in  g "(co, p ) if anda T
o n ly  if (p(r) a-L j i ( a_aT y a( x  ) (j 1 k 1  S in )  and  continuous and

bounded.

Rem ark. a(x )E2m (a), p) can be constructed, fo r example, as
follows : le t  a(v, T ) be in  gm(R".,, p ) with small support, then
a(x)= cro0'(v , T)Egm(co, p), where O is the inverse transformation
of O: x , (v , r) defined by (1. 4).

Now take a  finite covering {wo}  of n such that ;
1) if we denote at the covering neighbourhood which con-

tact with r, then u(o',,K D11, with small 6>0,
2) for the all inner coverings, we denote them by {6 } ,  all

the supports of them lie  in  i2,c2

where f2,.= {xen ; dis (x, r)<7}, and then take a partion of unity
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{ u {(PL}
 on ,n such that

1) supp. rptccor (cot's are sufficiently small where we can

aconsider —  and –a– )  and supp. ep,c (7),av aT
2) E ept2 + E  =  ,  and 99r E_B- (co*, p) and 0„eC;(63,).
Let us define our weighted Soboldv spaces.
Definition 3. 2. A distribution u (x ) on SI is sa id  to  be in

Wm(fi, p) (m: non-negative integer) if and only if

(3.1) iuu .0 = (p(r a  ) 1( r _a 
) k

(spr u ) 2 dx
p(r)

± E E f  (  a dx
itiv ,J o  \ ax ) p(r)

is finite.
The norm  given by (3.1) depends on 6  and the choice of

partition of unity, but we shall continue our arguments with fixed 6
sufficiently small for which we can consider 3/8o and alai- in 1-12

and since the passage to another choice o f  {co} and {o„), , con-
sequently {99;11 and IN , g ives an equivalent norm, we shall always
mean by  I I d I m , p , û a n  arb itrary but fixed norm  defining the
Wm(n, p) topology in what follows.

We denote by W7(f2, p) the completion of C ( f i )  in Wm(SZ, p).
Clearly 147 '(f l, p ) and ir(S2, p) (m=0,1, •-.) make Hilbert spaces
by the norm Iluilm,p.(2-

Let us rem ark here that by the transformation (1. 4), each
small boundary patch is mapped into Rr_', and 8/0v and alai- are
transformed to the normal and the tangential differentiations in
R7, respectively, thus Wm(co, p) is transformed into Wm(R, 4)) with
equivalent norms, where co denotes a sufficiently small boundary
patch.

Hence taking account o f Corollary 2.1, Lemma 2. 4, Lemma
2. 5. and Lemma 2. 6., we have

Proposition 3 .  1 .  A ny u(x) E Wm(f1, p) adm its the trace 7D 8 14
in  Hm - 1 0 1 - v2(1') a n d  it holds

(3.2) I7DR uls,r-S.Eliuilm,p,u±C(6)Iluiln,p,u (s<m – – 1 / 2 )
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(3.3)1 7 D 13 /4 1m-101-1/2,r

f o r v E>0, where D = -(p (r ) 
 a
a  y3.(_ r 01=0,H /321<m ) and, a,

I • I 3., denotes the norm  in  Him.
auLemma 3. 1. L e t u (x ) b e  in  W2( , p ) and a <—  • then

3 ax;
(j=1, •••, n) are  all in  W*(11, p), and it holds f o r ve> 0

EI lul 2,P.Q C(E)1114110.p.0
o

Lemma 2. 2 . I f  u (x )eW 2(f1, p)fliVA(O, p) w ith  a < 1  th e n
3

ulreW°(S2,, p) and we have w ith vE>0

(3.5) Ilu I r110,p,Q_Ellu112,p,s2+ C(E)1114 110,p AI •

and finally

Lemma 3. 3. Let u(x) be in  uR(n, p)n Tv(n, p), then f o r each
cor we have w ith /3 <1—a

(3. 4) au

(3. 6) r
_ p au

a,
dx
p ( r ) '

P C(0111111g,P,U •

   

The' proof o f  above proposition and lemma will be carried
out by the localization by the partition of unity o f class _B- (6), p)
near the boundary and b y  the local transformation (1. 4).

4 .  Dirichlet problems for second order equations. In this
section w e shall treat the Dirichlet problems with homogeneous
boundary condition :

a2 auA u =  —  a ( x )  c(x)
1. ax j ax, ax .

+ i(x) — -t- 

I = f(x)eTP(E1, p)
u l, =  0

(4. 1)

where we assume (1. 3) for A , more presicely A  can be written
in each  or in the following form
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11 - r i  - 1 a (4.2)A u  = — ik(x)a j a,+ E b  . e o (x)
j .11 0 j øa V

-+ E ei (x)r - oa, +(Mx) —+d(x)

with 1-1 E  (à =
 j ) and 13> 1— a, where 23(6)r, P)

b1(x ) (j=0, 1, •.., n -1 ) a n d  e 1 (x) =o, • , n — 1)E g'(cot, p) and
ä(x), ii(x)Egr(cor, p).

Th e following lemma is needed to show the GArding in-
equality.

1Lemma 4. 1. Let u(x) be in  W(Ç, p) with a <--, then we have
2

(4.3)

(4. 4)

and for

au dx— u
u ax p ( r ) —

lul 2 dx
r  p ( r )

—
'

p •Q +C (6 )1 1 1 ilig .p ja

each cot

(j= 1, n)

(4 .  5 )
1_).n 6)* r - 8

 

ate
ar

dx
p

•
0±C(E)Ilullukp.0 3<1— a)

        

for 'E>0.

The above lemma is the consequence of the following lemma,

Lemma 4.2. L e t  u(x, y )  be i n  IVRI??„ 0) with a<1/2, then
we obtain

(4. 6) au uld4)dy—Elluili.4+C(E)Hul1(1.4.
a x  I

(4. 7) I u12 46dy -- Elluii
2
,4+C(E)Hu112 6lej, X

and
_p au(4. 8) x --u d4)dy<EllulliA+C(E)11u1141, ,b (13<1— a)

ay
f o r V  E>0.

P ro o f. F irs t w e  rem ark  th a t it  h o ld s  fo r  /4 E  WAR!:

u(x, p a"  do (a. e.) y.
ax
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hence

(4.9) I u(x, y)I Sck(x) Dpu 1 2 dq5

thus we havd near x=0

(4.10)I
 u I 2  (11(x)P(x) - 3 r  I Dpul 2 d0 Cx1 - 4 1 -  Dpur .
p(x)3 —

Since c<1/2, from (4. 10) we obtain for any small 6>0

(4. 11) 58
p 2 ( x )

 c14)..5C(a)8 2 - "V  I Dpul 2 d4)

thus we have

(4.12)J d4dy
, IDuI2d4dy4,?7, p2(x)

+ K(8, cr) ,I drAdy
le;

On the other hand it holds for vEt > 0
1   dy

.u R9+1 D o  dOdy+ E, JR",p2(x)

Since we can take 8 and E, arbitrarily small, we obtain (4. 6).
Next from (4. 9) we get near x=0

(4.13)/ u 1 2  5_ 9 9 (x ) f -  Dpul 2 d0-5Cx - 2 1  I Dpul 2 dc¢
xp(x) xp(x)

hence

(4. 14) -111-1-! I u 24 )

43 X 0

thus we obtain
1(4. 15) ---114-12d4dy5 C S ! ' 14 0 2 4  + IuI 2 d4ody

4 _  X6  u7,

and this shows th a t (4. 7) is  v a lid . Finally we show (4. 8). By
Schwarz' inequality we have for an arbitrarily small 8>0

aux - uay , o a y 1
 H4,,d:  x - 2 13 I u I (140 ,

 

and taking account of (4. 9) we obtain
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x -
2 0 1u12 5x - 2 0 4)(x)L I D„u I 2 4 5 C x- '1  I Do 12 4

0

thus by (4. 16) we get

 

- g OU
X

 

8

(14:6A/ Dpul'eld.1 7  X1 - 2 ° - 2 1 3  dx,0
(4.17) Ou

ay/

    

hence using Schwarz' inequality again we obtain

8(4.18)l oX

  

a
U

p  aayUiU  CIO < COX )8) 52
 2  - - -

aYj

 

On the other hand it holds

(4.19) f 'f
8 R " - '

x _13 a U u cly5cly K(S) i
R':

au u dOdyaY i 4 1

6. K(8)(E1lilill?,4±--litilig,4)

for vE,> O.

Thus taking 8 and E, suitably, we can get (4. 8). (Q. E. D.)
In treating the Dirichlet problems our main tool will be the

GArding in equality which we state

Proposition 4. 1. A ssume that the coefficients of  the Principal
Part of  A  are all in C 1(f1) and others in CV 2), and moreover near
the  boundary  (-2 i k (x )E 2 1(a,,k , p), and b 1 (x ) (j =0, ••, n-1), e i (x)

•••, n-1) d o (x )  and cl(x ) are a l l  in gr(cor, p) f or each (0'1',
then there ex ist positive constants C and K  such that

(4. 20) Re<Au,

f or all u(x) 1V 4(n, p) with a< 1/2, where < ,>p, a  denotes the sesqui-
linear form  on W (S1, p)' x n n ,  p )  induced by the inner product of
W °(f1, p). A nd the condition on a can not be weakened and W (1, p)'
denotes the dual space (which is a distributions space) o f  W (c , p ).

P ro o f . Since cw(n) is  dense in tv(n, p ), it will suffices to
show (4.28) fo r u(x)ECW(SZ). First we note
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<Au, 17>p.0 E + 93,Au•o, a dx
p(r) p(r)

dxConsider N- 1  q5„Au • (p,, fi . We write cp„Au = A ]u.
p(r)

Since [(p„, A ] i s  o f  first order operator and [(P g , [0,,, A ]]  is  of
order zero, and since

dx f[ a ,  A] /4-15 , ti -  Jr [op., m(00.0,7 
p ( r )

± [ 7 ,  ['p,, A ]] 1u1 ' dx,
p(r)

we have

 

[(P'', 
A ] u d x _ I  <

P

+C(71)1 1T r±dx

a 12 dx
ax1 p

(4. 21)

 

where 77 is an arbitrary positive number. Thus applying the result

o f  regular case  to E ÇA(00)• 9, , a —
d x  

we obtain
p(r)'

dx a ( 0 . 0  d x  _ l u r  d x(4. 22) E Recp„Au • fp„ fi ax P

Next consider S99 Au-991̀  fi —
d x

. We write A u= -  E ai (a j k -k u )
h k..0

au -+B u +e o(x) — + d (x )= + c  , ( x ) r - sa j u. Since B  is a  first order
av ° r ;7 1 '

operator with respect to (a o , •••,a ) ,  we have

(4. 23) * _ d x  - r dxyorBti•cp 04 — 21)B(991It u). -pr fix

E  I Tr, in u  P r  —d x

lui

O n th e  other hand,

n - 1

E
j=0

a1(904,;14) dx— +C (n)

   

dx „ @ t (  *  d x  _ (p tU ) •  q)11Tteolx) —

D
T.

v
A —

Dv

e_0(x)rw t a L .  p ,,t a  dx
L ay J
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and , —a
y  ua

4. 1, it holds.

Cp - I(r) I u I C J " ,, hence by virtue of Lemma.

 

p r e o ix , au a dx(4.24) ■  a v - - p —

dx

Ç '
i—

5. E  E  I ai (9,1 z i) I
2

—
d x

+ C(72)
A  J 1 0

 

and similarly

(4. 25)

(4.26)

99 r
P I

la 6 , 01 2  d x  + c (,74 10 2  dx
J-.0

d prek(x) a k t  p r f i  X  177 E J(cP t 14 )I —
d x

J - 0

dxC(77) I u I — (1 k n)

F ina lly  w e no te  4/91:(— 1,1 a_Adi k ak u)) 447 —

d x

*  dx *
n – 1 dx

o l l tak (iptu),97, /, i/ — — E i k ao] u • p x

*

- 0 p j .  k = 0

and we can see easily using the sam e technique as was applied

t o  [0 ,, A] u • 0..4
_
4 

d x  
 .

(4. 27) Ept, — E ai cd ,ka/Au.pr d d x
k = 0

dx dxai ((pr u)i 2 —+ C (v )  u .
▪ j O

 

B y integration by parts after the local transformation (1. 4), we
get

r
(4. 28) — E  a.0 'ha k(99 1: U)) (Pr -d x--

j,k=0 j j

11- 1
2  dxja; (99ru)1 K4Iu12-

d

œ

x

• j, k=o

and taking 77> 0 sufficiently small, we obtain (4. 20). For the last
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part, for example, consider u(x)=1 , 00- 1 , where 0  denotes the local
transformation ( 1 .4 )  a n d  v(v, 7)= log (1  0 (v )* (7 ) (u )(7)EL(r))
n ear v =0 and  o f bounded support. I t is  e a s ily  se en  v(v,

dv dTE but — n  • v- -  diverges. (Q. E. D.)

It is to  be noted  that the formal adjoint of Wax ;  with re-
spect to the inner product o f W°(c, p ) becomes

aa p - i

(4.29)
 (a a x

a n d  p  
a p"' behaves o f most like near F.
a x

Definition 4. 1. u(x)e W4(1/, p) (a<1/ 2) is called to be a weak
solution of (4. 1), i f  u(x) satisfies for a ll v(x)e WAD., p)

(4. 30) <u, A*u>p,„ = (f, .

The following lemma is easy.

Lemma 4. 3. If d i k (x )E  g 3 (ng), b i (x)E g i (n.g) and c (x )e . ° (n )
with each 8> 0, and cli k ele(cor, p), b i (x ) and e j (x)e  ( c o ,  p ) and
(70(x), cl(x)egr(cit. p) for each cor in  (4. 2), then the coefficients of
A * satisfy the assumptions in Proposition 4. 1.

Now we are in a position to solve (4. 1), that is, using the
GArding inequality for A * and applying the Lax-Milgram lemma
we obtain

Theorem 4. 1. I f  the coefficient o f A  satisfy the assumptions
in  Lemma 4. 3, and x,> 0  is sufficiently large, then there exists a
unique weak solution u(x)EW(SI, p) of

Au + Xu = f

u lr =
f o r any f(x)e M (S -1,

5. Differentiability theorem and  alternative theorem of
Fredholm. One of the main subjects in this section is to show
that any weak solution of Dirichlet problem belongs to W2(f2, p)
i f  f (x )E  W°(n, p ) and a <1/3. Since our question i s  local, we
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shall transfer it to that in R  b y  the  local transform ation
0; x--.(v, T) defined by (1. 4).

We start with the following

Lemma 5. 1. (Poincaré). L e t  u(x, y )  b e  i n  W(R!,, 4)) with
bounded and fixedd: support, then we have

(5.1) I u(x, y)I 2 clOdy5CL . 1 Dui' dOdy
12T.

where D denotes D, o r Dy  an d  C is  a  positive constant depending
only on the diameter o f  the  support of  u(x, y ) and  becomes small,
when the diam eter of  su  p .  u  is small.

L e t u s  denote th e  transformed operater by A  also ;

(5. 2) A  = — ano(x, Y)(P O
a
x ) 2 N a o ,k (x ,  Y)(P O

a
x ) ( 0

a
y . )

af k(x, y)— 0 2 +bo(x, Y)(PVay ;  ay ,
a n - 1 a a+ E bi (x, y) — +  E x - Pc,(x) — ± c o(x,

i t 0y1 j i 0 y 1 Ox
+d,(x, y)+ x'd(x, y) (near x=0) (0 < 1— a)

where ai k (x, y)E bi(x), c j (x )E g '(R , (I)) a n d  rio(x, y),
d (x, y ) .°(R ", 0).

We denotes by Ea t h e  hemi-sphere o f  r a d iu s  ;

E 8  =  {(x, y) ; x 2 + y x>0} .

To accomplish our aim, the following proposition is important.

Proposition 5.1. L e t  u(x, y )  b e  in TV'(RI, 0) a n d  R U E

WP(Ea, 0) w ith a < 1/3 f o r any  (3(x, y)ECT,(Ba )  (real valued) such

that (p —a  ) k R(x, y ) (k=0,1, are continuous and bounded, where
ax

B8 denotes the ball of  radius S with its centre at origin, and u(x, y)
satisfies

(5. 3) A u = f(x, y), (f (x , _V) WIR"4, 43)),

then i f  8 >O is suf f iciently  sm all, u(x, y) belongs to 147 2 (E 6 _9,
w ith E< 8.
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P roo f. Since u(x, y)e Wi(R'.1,, 0), we have by (5. 3)

(5.4)– a 00(x, y)(p ao,b(x, Y)(P-O
a
x  )(-4—k)u

Wu_ t o au
a1  k ( - ,  z )   x  c ; (x, y) —

a u
+co (x, y)

axayiayk ay,
au+ x'd(x, y ) u  f(x, y)– bop

a
u  –E b ; —

Ox ay;

– dou E  IV °(1?, 4)),

and we may assume that aoo(x, y). 1. Multiplying 19(x, y )  to both

sides o f  (5. 4) a n d  noting ( p  a   nu,[0,a,,,k(p a ) (

a  )]u,
t ax a x  a x k

[ 1 61, a ,-k  P ,  x - f3c  a lu, and [13, co –a
œ lu E  W°(128 , (h), we

Ox- ay i yk ay,
obtain

a a(gu)a u u )  
(P -L -) 2 ( i s u ) - E  a " ( Pa y k ) –  ( I A  -67  jaYk

x -B . 0(I3 u)a ( 1 3 ") r - t d(x y) Ou = g(x, y) E  W °
Œ 8 , •+ CoJ ay i

Now with the aid of the Girding inequality and Lemma 5. 1.,
we have

Re <Acp, (T).> ci 1,1, 11,6 (TE W4(11..a, 4)))

hence

(5.5) c1199111,4.11A9511-1.+

here 11119911_1„t, stands for the norm of A u  in  W4(E8, cl)Y the dual
space o f  WRE 8 , 0). Thus by taking the difference quatient of

a2
tangential d irection for tp=  gu, w e  c a n  s e e  (16fru) and

aY iayk

p —
a
— oeu) belong to Ir ( R ,  0 ) ,  hence we have

ax ay ;

a ac
- (p - - ) 2 (Su)+ (co/3u)- ---' (Ru) -i- E  

x . _ , ,  —
a

(cJisu)
Ox ax ax ay,

ac.—E  x - ft . ,  WO+ x - 'd(x, y)([3u) = h(x, y) W ° ( ,  0).
ay,
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(5. 10)

(5.11)

sb,(y)
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acSince a<113, 13< 1- a  and Kx-c° near x =0, we see
Ox

ac and E x- o_
ac

i(,eu)e W°(\- - 8̀, 41), here we used the fact
Ox ay;

(5. 6) 14, 1 5x 1 - 4 / 2 01(Y), 01(Y)EL2(R" - I ) (v V rE  A R, (0) •
s a

Next consider - - ( c ogu)-d- L  a n d  (
8   d(x, y ) ceo dx Using

x  axp , x

(5.7)6 . - - ( c 0 f 3 u )  dx De(c00 0 12do r  dx
.x ax P ° P3

(5.8)d ( x x ,  y )  o u l dpx dxxp 0 .2 (y )E L 2 (R „, )

and by virtue of a <1/3, we see the left hands of (5. 7) and (5. 8)

are majorized by some ,p3(y)e L2(R " ' ) .  This shows that p—
a

03u)
Ox

is also majorized by some 1,2 (1?"- ')  function, therefore we have

(5. 9) I Ru I 5 x1 b3(Y), 03(.1')EL2(R n - ').

with 0 ,(y )  an d  tp(y)e.LAR" a-1), a n d  this shows ( f lu )  and
ax

X - I flUE W(Ea, 43) an d  finally we see (p -aa ) 2 (flu)e W°(Es, 0).

This completes the proof.

(Q.

 E.

Remark. 0(x, y )  used above is constructed as follows: let
q(1) be a  CZ(R 1

4 )  function such that

i)
ii) q(t)=-- 1  if - 8 '  I< ' ( 0 < ' < )
iii) 0 ifI I

then 13(x, y)=q(4(x))11 i  q(yi )  is our demanded one.
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By the above proposition we can prove

Theorem 5. 1. I f  f (x )  is  i n  TV(n, p), then the weak solution
of Dirichlet problem belongs to Tr(n., p). Here w e assum e a < 1/3
and this is the best possible condition on a.

There will arise naturally the question whether f (x ) is given
in Ws(11, p), then the solution u(x) belongs to W 5 -2(n, p) or not.
The answer to this question is negative in  general, but if the
term involving Nay does not occur, and c .= 0 (j = 1, 2, •••, n -1 )
and do (x, y)= 0, then the answer becomes positive.

Our next subject in this section is to establish the alternative
theorem of Fredholm for our problem.

Lemma 5. 2. L et us denote by K (E8, .0)

fu(x, y)e 147 4(Rn+ , ck) Iu J 1 , 4 1, an d  SuPP uC 8

then K t1(>28, 0) is  com pact in W (3(1?':., 0).

Pro o f . Let us denote by ti(x, y) the extention of u(x, y )  to
R " by setting û(x, y )= 0  for x<0.

First note that for V U E  WI(/?, (/))
• •• • •

(5. 12) p (x )--"La  =  p(x)
ax

and set

<PM  n) = u(x, d(r)dy
R"

for u(x, y )E la n ,  c p ).  Then since ù= u when x>0 , we have

(5. 13) u(x, y) = e r i q ) ( dn
SR

u,(x, y)+ u,,(x, y) .

Thus by Plancherel's theorem, it holds

(5. 14) 1111,110.7,S 1
( 1 + 4 r 2 ( 2 +

 1 712))1ço(, 72)124c1775_-  
c o n s t .

271.R

and w e see  th a t lu 1 ; uEKA(Ll s, (i))1 makes an equi-continuous
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and uniformly bounded set in  E 8 .  H ence by Ascoli-Arzela's
theorem, we can find a  sequence in tu, ; uelf4(>2 8, 4))), which
converges uniformly in E 8, and since 19 '  is integrable in (0, 5),
we see this sequence converges in  i r (E s , 4)). Now according
to R =1, 2, •••, using the diagonal method we can select a sequence
fu j I  in K4(E s , 41) which converges in W1E8, 0).

For the general bounded domain, by taking a finite partition
o f unity o f c lass .43- (1Tl, p )  and using the local transformation
defined by (1. 4), we can state

Proposition 5 .2 .  Let n be a bounded domain, then the bounded
set of W (Ç1, p) is preccnitpact in  W V -2, p).

Thus by Riesz-Schauder's theory, we have

Theorem 5. 2. Let us consider the follow ing equations in a
bounced domain

(5.15) ( A  + x) u = f u ir = 0

(5. 16) (A* + 1 ) v  g v i  r  = O,

then
1) the eigenvalues of — A in (5. 15) make a sequence accumulat-

ing at m ost at inf inity  and the eigenvalues o f  — A * are given by
the complex conjugates of them.

2) let X an eigenvalue o f  — A , then the eigen space cor-
resPoding to x„, is of f inite dimensions and its dimension coincides
w ith that of  the eigenspace o f  — A * corresponding to

3) w h e n  x  0...j, (5. 15) has a uniques solution u(x) E  14'(11, p)

w ith a<  1 (resp. u(x)EW 2(n., p)n w (n, p )  w ith  a>1 /3  f o r  any
2

f EW °(f l, p) and the mapping: f— .0 is bounded in p). And
fo r  (5. 16) we have the sanie result.

4) i f  x =x ,, a necessary and sufficient condition in order that
(5. 15) has a solution is that f (x ) is orthogonal to  the eigenspace
corresponding to X , the eigenvalue o f  — A * in  (5. 18).

6. D ir ich le t  problems for higher order equations. For the
Dirichlet problems for the higher order equations, we can have
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the analogous results to the second order cases.
Consider a differential operator o f order 2m in SI which can

be written near as

(6. 1) A (x, D )  = E ã(x )a"+ lower order operator, where
141

a ((P(r) a ' a  ' 'a a
a a 
v, ‘,7„_,

A (x, D ) is normalized by the

(6.2)(  —  1 ) " R e E (c
I/4 1= 2 .

Our equation is

A u = f E p)
(6. 3) (p(r) a i u = 0 (j =0, • • • , —1).r  

Definition 6. 1. u(x) e W 7,41, p) is said to be a weak solution
o f (6. 3), i f  u(x) satisfies for any v (x )e p)

(6. 4) <u, A* v>  = (f , v ) G .

Corresponding to Lemma 4. 1., the following lemma holds.

Lemma 6. 1. Let B (x , D) be a  differential operator which can
be w ritten near r  as

(6. 5) B(x, D )  =  E  h ,, (x )(p (r)--8  ) I ( —a

Ikl - 1 ap a,

E ,  •  ( ,)  i(x )(p (r ) _
a (  a y 1 - a  a  k

—- 1 j . a v O:, -(  a, )
+3(x) (g <1— a)

where b i ,( k ) (x)E_Bam- i - hi -1 (0), p), ciisio./(X)E k l - 1 ( C O ,  p) and
d(x)EC°(w) w ith Id(x )I<K r - ' "  f o r each boundary patch co, then
we hav e for any  u(x )E vr(n , p)

(6. 6) I B u  . a I dx -..Eiiiiii + 0011/4 11g,e,0u P
f  1 B * u •  a 1 dx lç.ElluIll,p,u+C(E)Ilullg,p..

P

i f  a <112m, here B* denotes the form al adjoint of B in W A S1, p).

and it is assum ed that

requirement

is independent of x).
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Finally  as for the coeff icients of  B , w e assum e that they  are  all
in  C3m- '(n).

R em ark . The condition on a is  the best possible one unless
e2,2„,_i,(0),0(x) is identically zero and I d(x)I K r -  P with p<2m-1.

By virtue of Lemma 6. 1., we have the GArding inequality for
higher order case.

Proposition 6.1. S uppose  ii„(x) in  (6. 1) are all in  g?'"(io, p),
coefficients of A(x, D) are  all in  Cm(f1), and the lower order terni
which appears in  (6. 1) is of  sam e ty pe as B(x, D) in Lemma 6.1.,
then we have Positive constants C and K  such that

(6. 7) Re <u, A*

f o r all u(x)E Tvg.(n, p) w ith a<1/2m.

P ro o f . Taking account of Lemm 6. 1. if suffices to show (6. 7)
when A*= e(x )a ''' with a*(x )egr(o ), p ). Further using the

transformation (1.4), we can reduce our problem to the case in
a half-space, th a t  is  A* =  E  ap.(x, y)a" with a„E gr(R1., p) where

= 2 .4

a  a aO=(p (x )
Ox ay , ' ay „_,

Now le t  u(x, y )  b e  in C7(E 8 ). W e regard u(x, y) as an
element of C (R )  by extending it identically zero fo r  x< 0 . First
we assume a ll a„ to be constant, then using the weighted Fourier
transformation (2. 5) and Lemma 2. 2., we have

R e <a, A* u> !, = Re (9- 0 , E a u) cliu111,6

if S > 0  is sufficiently sm all, thus since by the continuity of
a,(x, y) and by the integration by parts, we have

_ dxau.(x, y)— a , )),(8, »O u ,  u — —5_6(8)11u11..0+ C(8)111111 ô

n -1
where S  (S, 8), we can prove (6. 7). (Q. E. D.)

U sing above proposition and app ly ing the Lax-Milgram
lemma, we obtain

(6. 8)
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Theorem 6. 1. Under the same assumptions on A (x ,D) as in
Proposition 6. 1., there ex ists a unique solution of  (A +x)u --=f  for
an y  f 1 4 7 7,1(f l, p )', if  x>0  i s  large enough.

I f  we expect the weak solution be in  w—(11, p), we must
impose more restrictions on the lower order operator and on a.
In fact we obtain

Theorem 6. 2. L et B (x , D) be the lower order operator which
can be expressed near r  as

(6. 9) B(x, D )  =  E  b  , J ,(x)(P -)kay aT
a _ -

± " 0 0 . 1 ( x ) ( p  
a )   r (

a
— )

k
d(x)av au aT

with Icl(x)1 1{-r -- ", th e n  th e  w e ak  so lu tion  o f  (6.3) belongs to
IV2'"(12, p ) , if  f (x )e  p )  and a<1.12m + 1, and the condition
o n  a is  the best possible one.

Finally in SZ i s  a  bounded domain, we can also apply the
alternative theorem of Fredholm.
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