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§ O . Introduction.

One-dimensional diffusion processes were studied by Feller, Itô,
McKean an d  D yn k in . O n  th e  other hand multi-dimensional diffusion
processes have been studied in  various points of view. Ventcel' [151
pointed out that under suitable regularity conditions, a diffusion process

o n  a  smooth m anifold D =D  u  OD of n  d im ensions w ith  a  smooth

boundary is determined by the following (A, L , p ). Suppose (0, U )  is

a  coordinate mapping with the following property,

0 1 (x )> 0 .(= > x E D n U ,

0 1 (x )—  <=> x E OD n U .

A  is an  elliptic differential operator of second order which is expressed

in the form,

A f ( x ) _ = E (x)D i f f  (x )d bt(x)D i  f  (x )+ c (x ) f  (x ),
, =1 i =1

where (a1
-i(x ))  is symmetric and positive semi-definite and  c ( x ) < 0 .  L

is  a n  operator which maps a  smooth function o n  D  to  a  function on
OD given in  the form,
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L g(x ) ,
 h t  2 a11(x )D 1f g(x )+t26(x )D ig(x )+A x )g(x )+6(x )D ig(x )

ig(Y ) —  g(x ) - -1-u (Y )i' (y i — x 1)D i g(x)11),(dy),
Dmx} i=2

where (au(x )) is symmetric and positive semi-definite, T (x ) O, 8(x )> 0
an d  vx (d y )  is  a  6-finite measure o n  D  { x }  satisfying a  usual con-

vergence condition. p  i s  a  non-negative function on D .  Ventcel'
showed that i f  13 is  th e  infinitesimal generator with domain .9(13 ) of
th e  semigroup of the d iffusion , then, fo r f  E2(q3)(1C 2( D ) ,O f =A f
and f  satisfies L f =p A f  on OD (Ventcel's boundary condition).

N o w  it  is  an im portant problem to find regularity conditions of
(A , L , p) under which the diffusion process corresponding to it exists.

Roughly speaking, there have been two ways of attacking this problem;

analytic way and  probabilistic w a y .  I n  analytic w a y , such a  problem

has been discussed by Sato-Ueno [7] an d  Bony-Courrège-Priouret [1].

I n  probabilistic w a y , using stochastic differential equations, Skorohod

[ 8 1 studied one-dimensional reflecting diffusion processes and Ikeda [2 ]

studied two-dimensional diffusion processes. S .  Watanabe [1 3 ] [1 4 ]
constructed, combining the methods of [8 ]  and [2 ] ,  the class of diffu-

sion processes on the upper half space of R " corresponding to (A , L, p)
in  case that c= r=  vx = 0 and d (x ) is positive. Stroock-Varadhan DO]

formulated this problem a s  a  submartingale problem an d  showed the
existence and uniqueness of solutions by using several results on differ-

ential equations. The aim  o f  this paper i s ,  following the formulation
of [131 D C , to  p ro ve  the existence of so lutions of stochastic differ-

ential equations with boundary conditions for continuous coefficients.
The uniqueness fails in  general and it is  important to obtain the condi-

tions of coefficients which guarantee th e  uniqueness of solutions. It

should be remarked that Stroock-Varadhan [101 proved the uniqueness

fo r a  general class of coefficients.

§1 is devoted to give th e  precise formulation of stochastic differ-

ential equations with boundary conditions, I n  §2  we shall prove the
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existence of solutions in case that each  coefficient is bounded and con-

tinuous and p  is identically zero (the non-sticky case ). In  § 3  we shall
prove the existence of solutions in case that p  is not identically zero

(the sticky case).

Finally the author wishes to express his hearty thanks to Profes-

sors M. N isio  and S. Watanabe for their valuable advices.

§ L  The form ulation  of stochastic differential equations with

boundary conditions.

Let D =Ix =(x l,• • • , x n )E R "; D ={ x E D ; x '>  O}

and OD -=•{x ED ; x 1 = 0 } .  For x -- r ( x l ,•••, x n )E D , w e define 3i = (0 ,

x 2 ,•••, xn) E D .  W e w ill b e  g iv en  the following quantities;

--(o l(t, x ))7 , 1 : [0, 00) x D
b -=(b i (t, x))7= 1 : [0 ,  0 0 ) x  D

x))7,1=2 [0, °O) X O D — R
n - l o R n - 1 ,

[3 , (3 1(t, x))7= 2  : [0 , 00 )x  O D -->R n  - 1
,

p = p(t, X ) :  [0 , 00 ) X  D — *[0 , 00 ),

where Rn R n (1" eSp R 1 ®R 1 )  i s  the class o f linear applications of

R n in to  R n (resp . R '  in to  R ' ) .  In  th is  paper, w e sh a ll assume

that each component is bounded and Borel measurable. If coefficients

are time independent, they are denoted by 6 (x ) ,  b (x ), r ( x ) ,  8 ( x )  and

p(x ).

I f  p -•. 0 ,  it is  ca lled  the non-sticky case and if p 0 , it is called
the sticky case. W e shall consider a  stochastic differential equation
with boundary conditions in the non-sticky case, in the following form;

dx 1=0 - 1 (t, x i )dB i +V (t, x i )dt+ clço s ,

dx 1=6 l (t, x i)d td-ri(t, 1-
1)d lli1 + R i (t, 1-

1)clyot

i = n.

We shall consider a  stochastic differential equation with boundary
conditions in the sticky case, in the following form;
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dx 1=61(t, x t)ID (x t)dB i+b i (t, x t)ID(x t)dt + ciçot,

d4 =0 - i (t, x t)ID (x t)dB i+b i ( t , x t) Ip (x t)d t-k r i (t, 36)dM1
(1.2)

8z(t, i = 2,• • •, n,

l a D (x t ) d t=p ( t ,

Now we shall discuss the meaning of the equation (1 .1 ) and (1.2).

In  this paper, we shall understand that a  quadruplet written by (2 ,

P; { ,t} tE[to, - ) )  satisfies the following conditions;

(i) (2 , P )  is a standard probability space (c f. Itô  [31 ),

(ii) to is non-negative and {.97
t } t E E t0 ,,, ) i s  a  right continuous and

increasing system o f sub-a-fields of IA  is  an indicator function of

a set A .  The following definitions are due to  S. Watanabe [131 [141.
Let z t be a  probability law on D.

D e f in it io n  1 .1 . By a  solution o f (1 .1 ) with initial distribution

at time t o 0 ,  we mean a  stochastic process I x t=( .4 •  • •, x 7), B t=
(B i,..., B 7 ), M t=( -1Ig  •  M 7 ), Ç ailte c t o , ) ,  defined on a quadruplet (2 ,

P ; 1 t}tEct o,- ) ) ,  satisfying the following conditions (i)----(iv);

(i) with probability one, x t , B t, M t and çot are continuous in  t E

Do, 0 0 )  such that B10 =(05.• • ID
) ,  

M
10 =  ( ° , •  •  •  1 5 ) , =  0  and P(x t o  E dx )

(ii) with probability one, x t E D  for all t E [t o, 00) and çot is non-

decreasing; furthermore,

ia D Xs  dços = sot
tt 

t t

(iii) x t and çot a re  adapted to {.F t }  and (B 1, M t )  is  a  system of

{..F 1}-martingales such that

<B 1,  B i >1=-6ii(t — t 0) i
) 1 3  •  .5  n,

<B 1,  M i> 1 =0 i = 1,—, n, n, t

<M 15 M i > t = Ouçot j = 2,• • n , t to,
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where <  ,  > t is  the usual notation ([41 pp. 211),

(iv) x.= {x t , B t, M t, Çot} satisfies

n
-= 0 +  E xs )dBj

t o

b l (s, x s )ds+ço t ,s
j=1

(1.3)

n st
E  o l(s , x s )d g -1 -is
i=1 to

(s, x s )ds

n  5 t
+ E I's)dMis+1 (3i (s, '&9)ciços

:1=2 to to

i =2,..., n,

where th e  integrals by d B  and d M  are understood in  th e  sense of

stochastic integrals, c f. EC.

Definition 1.2. By a solution of (1.2) with initial distribution

at time t o >  0, we mean a  stochastic process X= { x t= (x l , •  • , x7 ), B t=
(B1, — , B7), M1 ,-- ( 114 ..., M 7 ), 4 9 1}tc[t o ,...), defined o n  a  quadruplet (S2,

P ;  { . F t } t e [ t o , . . ) ) ,  satisfying the following conditions (i)---(iv);
(i), (ii) and (iii) are same as  (i), (ii) and (iii) o f Definition 1.1,
(iv) x= {xt, B t, M t, çor} s a t i s f i e s

n f t f t
x l=  x1 0 + o l(s , x s )h (x s )d B is + b l (s, xs)-1 -D(xs)ds+

.J=1 to
to

nf t f t

4 =- ,cfp+ E 0S(s, xs).[D(xo)dB is + bi(s, x s ) / D (x s )ds
J =1 tot o

(1.4)
n

+ E 81(s, .1" s)clSos
j= 2 tot o

s)ds= P(s,
o iaD(x

to

i = 2 ,..., n ,

where the integrals by d B  and d M  are  understood in the sense of

stochastic integrals.
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When 6, b, r ,  8 and p are time independent, the solutions of (1.1)
and (1 .2 )  are defined in  a  similar w a y . In  th is  case w e m ay take
always t  = O.

When p  is identically zero, a solution of (1 .2 )  i s  a solution of

(1 .1 ), but the converse is not always true.

§ 2. The existence of solutions in the non - sticky case.

In th is  section we shall prove the existence of solutions of (1.1)
for bounded and continuous coefficients. T h e  following theorem is due

to S. Watanabe [131.

Theorem 2 . 1 .  Suppose 6 ,  b, r and a r e  all tim e independent and
bounded Lipschitz functions. Further, suppose a constant c> 0  exists such
that

16 1 ( X ) I  =(En  6 1.(x) 2 ) 1 1 2 > c  f o r a l l  x.
:1=1

T hen, f or any  probability  law  II o n  D, there ex ists a so lu tio n  o f  (1.1)

w ith initial distribution ,a and the  uniqueness holds in  th e  sense o f  pro-

bability  law.

In order to obtain a solution of (1 .1 ) under the weaker conditions,

nam ely, all coefficients are bounded and continuous, we shall prepare
several fundamental lemmas. We set

110- (x)11=( Ê 0 1 (x )2 Y 1 2 ,,,,=i

r ( x ) 2 )h12 ,
i,j=2

Ilb(x)II =( Ê bi(x) 2 ) 1 1 2 ,
1=1

II8(X)11 = ( 8i(X)2)112.i=2

W e shall assume that 6 ,  b, r  and d  satisfy the conditions of Theorem
2.1 and that

116( 41 c i , II b(x)I I C25 11r(X)11_. C3) II/9(X)11 C4.
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Let K= {x t , B t , A, çot }  be a solution of (1.1) for coefficients 6 , b, r and

tg stating from x 0 E D  defined on (D, P; { .Ft)). Following Lemma

2.1-2.5 are concerned with this process K.

Lemma 2.1.

(2.1) Et(x1)21 {(x 10)2 + (c i+ 2 c2)t} exp (2c2t) t 0,

(2.2) E [A ]< 4 [(x 1 0 )2  c T t  d t 2 { ( x ) 2 ( c i + 2c 2)4 exP ( 2 c zt)]

t >  O.

P r o o f .  Set for N> 0,

TN
=

{
infls; I xl I

+00

A s TN is an .(. }-stopping time, using the generalized Itô's formula on

stochastic integral [4 1  we have

n 1tATN 1tA TN
( x li.A T N )2 = ( x 10.)2 + 2  E xls61(x s )dB ..1, + 2

i=1Jo 0
x1b 1 (x Ods

51AT N In r T
+2N xlcko s + E 01-(x ds

J=1 o

n 1t
( 4 ) 2 +  2 E  xlcili-(x f r  N >sldB is+ 2 

o

x 's- b i (x  {T N > s}ds
p=1 JO

n
+2\ x i

s i g N >sydSos+ 0)(x s ) 2 10,
 N > s } ds.

i=1 o

K is  a so lu tion  of (1.1). Hence the condition ( i i )  o f  Definition 1.1

implies that

J o  
I{T N >s} d 9s

= 0 t > O.

Since Ê  xl61(x s )/{2-,>,}  dBis i s  a m artingale with mean 0, we find
i=i o
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that

E i ( X
li A T N )21 . =  ( x 01)2+ E [ 2  x1b 1 (x s ) I  N > s ) ds+ E  cx x s )

2

 I { T N > s ) ds]
j=1 Jo

< (4)2 + a. t  2c2
 o

E[xli A TN 1ds

<  (4 ) 2 + Cj. t 2c2 I EUX1AT )2 ds
0

< ( 4 ) 2 +  c ? t  2c2 Ç1 - i - E i ( x l A T N ) 2 1 }  ds.

This functional inequality provides us with the  estimate

EaxIAT N ) 2 1 1(x 10)2 + (c?+ 2c2)t} exp (2c2t).

Letting N —  00, we obtain (2.1).
It follows from (1.3) that

y4<4{ t(x1) 2 +  (4 ) 2 + o-li(xs)dBis)2
2

+ (1 '  b l (x s ) d s )  .
j=1 0

Taking the expectation with respect to P, w e have

E [y o E  4{Er(x1) 2 1+ (x 1
0 ) 2 + JA . E N 0 6;(x s ) 2E n b l ( X . O d S ) 2 1 }

Vax1) 2 1+ (x 1 ) + cit+ c2t 2 }.

Hence (2.2) follows from (2.1). Q.E.D.

Let

K i ( 4 ) ,  t )=  { (x ) 2 ( c ? + 2 c 2 )t} exP (2 c2t),

K2 (4, 0=4/1(4 ) 2 + qt-F- ct 2 H-Ki(x 16, t)}.

Recalling the condition (iii) of Definition 1.1, we get
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(2.3) EL (M )2i= Eiçot] K 2(x10-, 0' 12i = 2 , . . . ,  n, t >  O.

Lem m a 2.2.

(2.4) Er < 6K 2(4, 0 3 1 4 i = n ,  t >  O.

P r o o f .  Set, for N >0 ,

inf ; N}
TN=

+ C.° if { } = (b.

The formula on stochastic integral states that

AT N tAT N
I MAT N13

o
g ( M - 1 1 1i

s ) d ! +  35
o

I M i
s dSos

= 3
 0  g (M is)/g,v >s}dM +  3  1 M i1  {r N >s)dç s,

{ x

2
fo r x > 0

where g(x ) -=
—  x 

2
fo r x <O.

Now
o

g (M i
s )I{ T N > s } dMis i s  a  m artin ga le  with m ean O . Therefore,

taking the expectation, we have

EE M ATN I 31—  3-EL ro IM  I { T N >s} Clçasi

< 3 E [
o
 M  I clços ] .

S in ce  Mf I  is  a  non-negative continuous submartingale, we can apply a
Doob's inequality (c f. [ 6 ]  pp. 94) to I -3111 and get

EL sup A l21112 <2E11-MI191'2
o s t

Because of this, we have
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IM is  d ç o suP Sc't] E [  su p  I M  I 2i
1 / 2 E [ 4 1 1 / 2

Cl5 s t

< 2 E [ I MI I 2 11 1 2 EE9ii 1 1 2 _<_ 2 EE9E3 1 4 .

Thus we see from (2.2) that

E i I -M A T ,  131 6K2(xi, t) 3 1 4 .

Letting N—>+ 00, we obtain the inequality (2.4). Q. E. D.

Lemma 2.3. T here ex ist positive constants K3, K4, K5, h i an d  h2
depending only  on c l  an d  c 2 such that

(2.5) EI(X1— X is. ) 4 1 K3 I t 2 f o r all  t , s > 0  such that

(2.6) E Mot —  s ) 4 ] K4 I t — s I 2
It —sih 1 ,

f o r a l l  t, s > 0  such that

It — si

(2.7) EE I — M is  I 5 ] K 5  t — s1 5 1 4 f o r a l l  t , s > 0  such that

it —  i = 2 ,  n .

Proo f. We begin by proving th e  estimate (2.5). According to
the formula on stochastic integral, for t > s > 0, satisfies the equation

n
(xl — x1) 4  = 4 E  ( x ul- — x1,-)36 (x u )dN+ (x l— x 1 ) 3 b 1 (x u )duss

+ 45  (xi— xi) 3 d9u+ 6 r (xi — X1)
2
a i

1
(X u )

2

du.•=1 s

From the same argument given in  Lemma 2.1, we see

ELnE S (XL — x1)36.
1i(X 0dB it,1= O.

j=1 s

Since is a solution of (1.1), we have by the condition (ii) of Definition

= 1 s
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1.1 that

•t ft

L( 4 -  x .1 ) 3 d9u= (x1)3 c1( 0 u

Taking the expectation, we have

EI(x l — x iS)4 15_441 s (x i — x1) 3 b1 (xu)dul

+ 6 tÊi E t (x,14 — x1)2 6}(x u ) 2 dul

< 4c2 E ax —  xul 1)413 /4 du 6c2 Er( xs)
ss

This functional inequality provides us with the estimate (2.5).
Next we shall prove (2.6). It holds from (1.3) that

,  f t t 4
(q't —  95) 4 =  {XI —  x l+  E  01(x u) dBf:+ 3b 1 (x )d u }

i=i s s

<(n +2) 3 {(xl— x1) 4 + :± O t 6} ( x  )  dB-0 4  +  ( Çs b i (X u )d U  ) 4 } .
J= 1  • s

Taking the expectation, we have

EE(91 — So5)4 ]  (n + 2) 3 {E1(xl — x1) 41 + A E [0 :0 1 (x .)d B 0 4

+E [(Ç b 1 (x u )du ) 4 11

- ( n  2 ) 3  1E E( —  x1) 4 1 + 36;t1E [6 s 6)(x ur d u) 2

c 1(t s) 4 }

- (n  2 ) 3 {EE(x — x1)4 ]+ 36cf(t s) 2 + cgt

Combining this inequality with (2.5), we obtain the estimate (2.6).
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Finally we shall prove the estimate (2.7). It follows by using the
formula on stochastic integral that

= (ML — M ) ' dML+ 81 (M,i, - -71C 2 dVu.

Çs (./l/L—Mis ) 3 dM:: is  a martingale with mean O. Hence, taking the ex-

pectation, we have

EI(Mi —Mis ) 4 1 = 6E[ s (/14'L — M) 2 dçou l

< 6E[ sup I -Mtit 2(Vt q's)]s t

< 12Eami —mis) 4 1" 2 EMot— (00 4 1".

Using the formula on stochastic integral and taking the expectation, we
see

E ll  — MisI 5 ]= 10 E[1 Mis 1 3 4 . ]

<40E[(1111-111 1)4 1 3 1 4 Eaç2 r — ços )4 1 1 1 4

<40.12 3 1 2 E a v 1 — (0 0 4 1 ".

Hence we obtain (2.7) from (2.6). Q.E.D.

Let

t v t , r(t)= =inf{s: A s >

Obviously y (t) is  an { . }-stopping time.

Lemma 2 .4 . There exist positive constants K 6  and h 3 depending

only on c i , e 2 , c 3 and  e 4 such that

(2.8) E [(4 (,) 12

f o r a ll t, s >  0  such that It — sih 3 , i = 2,— , 71,
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P ro o f. The formula on stochastic integral states that, fo r t > s>  0,

n y(t)
(X iy ( t ) —  X4(,)) 4 = 4  E (xL—x.;,,,,) 3 o- ii ( xu)dB4

7(s)

7(t)
+4 (xL—x4 ( , ) ) 3 b1(x iOdu

7(s)
n 57 (t)

+4 E (xL -4 . ( ,) ) 3 r if ( a)dM4
j= 2  7(s)

7 (t)
+4 (xL—x4( s )) 3 8 i (TiOciço i,

7(s)

5•7(t)
+6E (.4—x ) ) 2 0 ii (x 2) 2 du

J=1 7(s)

ny(t)
+6 E (x4—x4(s)) 2 r ii ( " . ) 2 4 . .

:7=2 7(s)

By an argument similar to Lemma 2.1, we see

n r ( t)
E[ E  

( x L — x ( q4( ,) ) 3 x.)dBfd
i =i 7(s)

n  S y ( t )
=El  E (xL— 4. ( , ) ) 3u ) d M i i d =  0.

f=2 7(s)

Taking the expectation, we have

7(t)
x ( , ) ) 4 1 4c 2 EL 4,(s)I3 clul

y (s)

7(0
+ 4 c 4 E L I —

7(s)
x4( 8)13 c1(0.1

7(t)
± 6 c f.E [ xf,—

7 (s)
x.;,( s ) I 'd u ]

7 (t)
+ 6 ciEL I x  —

7 ( s )

7(t)
. 4(c 2 + c 4)E11 I

7(s)

X7( s ) 1 2 d(Ou l

X''7(s) 1 3 dAul
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y(s)
+ 6(c1+ ci)EL

7 ( s )  
1 xL- 4(s)12 c1, 1.1

4(c2+ c4)1 Er(400 — x
4 ( s ) ) 4 1 3 /  4  d u

+ 6 (c + E[(x.f(i.)—  x
( s ) ) 4 1 1 / 2  d u .

This functional inequality provides u s with th e  estimate (2.8).
Q.E.D.

Remark 2 .1 . Lemma 2.3 and Lemma 2.4 hold for a  solution of

(1.1) with any initial distribution.

Lemma 2 .5 . L et N  an d  T  be arbitrary  positive num bers. T hen
w e have

(2.9) PI max I yot I >NI <  K 2 (4 , T )  
INT2

(2.10) P {  max x I  >  3 N }  < I { lx,i+c,T>u)+ 
 K 2 (4 - ,  T ) -F c iT  

ogaT N2

(2.11) PI max IM
W S T

I > } <   K 2( X10., T)112
—  N 2

i = 2,—, n,

(2.12) ) {0
11-ta2  14 1, > 4N 1 . I.041A-c2 7->N1

c2
4 K2 (4 , T)+ c? T+ ci1C2 (4 ,  T) 1 I2  

N 2

i-=2,•.•, n.

P ro o f. B y (2.2) a n d  ê'ebygev's inequality, we obtain th e  estimate
(2.9).

T h e  estimate (2.11) i s  an
and the m artingale inequality.

immediate consequence o f  (2.2), (2.3)
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Now we shall prove (2 .1 0 ) .  W e have

n
max l x i i < 1 4 1  m a x  E  6}(xs )dBis l
O T fl tST J-1 0

+ maxl b l (ocs )ds1+ÇOT
O T 0

n  f t

5_.1 +  max 01. (x)dB' i + c2 T+ 0 7*.
05t-NT j=1 0

n
Since E  o-Xx s )dB sj  is  a martingale, an application of the martingale

j=1 0
inequality gives

n n

Pi m a x  E  6 ) (x $ —)dMI>N1< 1E  6)(x OdB-02 1
0 i6T j=1 0 —  N 2j = 1  0

2
= -1 iE [1  6 1(x.,) 2 dsl_<  c T'N2

Hence (2 .10) follows from (2.9).
Finally we shall prove (2 .1 2 ) . In the same way as (2 .10), namely,

noting that the following inequality, we obtain (2.12),

Pi  m a x  E
n  rt 

r
1 1n  rT

OgtT j=2 0 1./Y N2EL( jE=2 r " s ) d i l l is) 2 1

— 1E [  1 T r s)2 el( 0 sl
N 2 j=2

G - E1407].N 2

Q.E.D.

Now we shall prove the following theorem by appealing the above
lemmas.

Theorem 2 .2 . Suppose 6, b, r  an d  8  a re  all tim e independent,
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bounded an d  continuous. T hen , f or any probability law on  D , there
exists a solution of  (1.1) for coefficients 6 , b , r and 8  with initial distri-
bution

P r o o f .  Our method is similar to Skorohod [9] (cf. [1 1 ] ) .  First

we shall prove the existence of a solution starting from x 0 E D .  We
can take an approximate sequence (6 ( m) , b ( m) ,  r ( m) , f3( m) )  such that

(i) (6 ( m ) ,  b( m ) , r ( m ) , 8 ( m) )m -1,2 ,... satisfy the conditions of Theorem
2.1,

(ii) (6( "1) , b( m ) , r ( n i ) ,  i3( m ) ).-1,2,... converges uniformly on every com-
pact set to (6, b, r, 8).

Let K( m) = lx (
f m) , B r ) , , gor }  be a solution of (1.1) for coeffici-

ents 6 ( m ) , b ( m ) ,  r ( m ) a n d  ig( m) starting from  x o defined on (S2 ( m ) , .5.4"( m) ,

P ( m ) ;  {. - (tm ) }).
Let

A r)  t  g o » , 74 ' ) (t) -=inf >  .

Lemma 2.5 implies that

lim  sup P ( '' ) { max I çor ) 1 > =0 T > 0,
2n 3 . O g t g r

lim  sup P ( m) { max Ix r ) 1 >N} =0 T > 0,
O g ig T

lim  sup P ( m) {  m ax Mr ) I >N } =0 T > 0.
111 1. O s tg T

Lemma 2 .3  implies that, for a n y  >0,

lim sup P (7n) {  m ax lx ( m) l — x( m) 11 > el =0 T > 0,
h O m_?.1 It — sl

O g t ,s

lim sup P ( 7 0 1  m a x  49 r )  — çor ) I > 6 1 = 0 T > 0,
1; 10 m a i I  t—sl

O N t . s T

lim sup P ( m) {  m a x  mr_mr ,  >  = 0 T > O.
hi 0  7,2 1. I t — sl gh

O g t .s g T
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It follows from (2.9) that, for any e'> 0, a constant T' > 0 exists such

that

sup p ( - ) { (m ) (  T')< T} < 2 *mal

From (2.6), an application of Kolmogorov's theorem (cf. [121 pp. 32)

assures us the existence of a constant K  such that

sup P ( m) 1121r) — Ar ) < K i t — s r °

for all 0 < t, s_< T' such that I t —s I 1} 1 .

Since r(m) is the inverse function of A ( m ) , we see

sup P ( m ) r ( m ) (t) —  r ( m ) (s) I I 
t  s  

 )
8

for all 0 t, s T ' such that 2 •

Therefore

sup P ( m ) 1 max I x ( m ) f — x(m)is I > }
m,1 sl

<sup P ( n) {r ( m) ( T ')>  T  and  max I x ( m) f -  x( n I >el
mal It —$1 gh

(:) t , s g T

+sup P ( m) {r ( m) ( T')< T1

<sup P ( m )  {r(m)( T')>  T and
mal

(In) imax X  7  (m )(1 ) - -  X  7  ( m ) ( , ) -1 -  a'
I t —  sIgK
O t . s g r .

Hence it follows by Lemma 2.4 that, for any e >O,

lim sup P ( m) {  max I x ( m) i, — x ( m) ! I > i =2,• • • n, T> O.
h 1 0  m a l I t —sl

O g i.s g T
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Consequently we see that {en is conditionally compact in Prohorov
topology (cf. [ 9 1 .  Therefore, for a suitable subsequence { i n k } ,  we can

construct a  family of stochastic processes { e n k) 1 an d  a  stochastic pro-

cess on W iener space (S2, P) which satisfy th e  following pro-

perties;

(i) for k=1, 2,—, k ( mk) h a s  th e same finite dimensional distribu-

tion as enk) and  is continuous almost surely,

(ii) is continuous almost surely,

(iii) for any a> 0,

lim P{ max I Zm k ) — Xt > } = 0 T > O.
O t T

For simplicity we write {k } instead of Inzkl.
Let

g(k) =  ,t (11?), k i lt) , ja fi k) ,( t k)),

(i k )  = 0 { 0 )  ; s  <  t }

k) f\ (k)
t s> t

k =1 , X--= B1, M t, 4a:1,

k =1 , gt=6{ X s;

k =1 , 2,—, n g s ,

where 6 s <t} ( re s p .  61xs ; s.__t1) denotes the smallest 6-field rela-

tive to which too;  s t} (resp. 1g s ; s< t1) are all measurable. Then,
noting that . ( k )  has th e  same finite dimensional distribution as X( k ) ,  it

is simple to  check that k( k )  i s  a solution of (1.1) for coefficients 6( k ) ,
b( k ) , r ( k )  an d  8( k )  starting from x 0 defined on (b, 13 : { g (

t
h ) } ) .  Since

{(E ( k ) ) 2 1 is uniformly integrable, it is easily seen that B , is an
martingale suchsuch that

<B 1, B l> t =d i f t j=1 ,. . . ,  n .

(k)‘Lemma 2.1 and Lemma 2.2 imply that {(a( k ) }  and { ( k  )
2 }  a r e  uni-

formly integrable. Therefore we can easily verify that M t is  an {. }-
martingale and
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<13 1, M > =O i =1,..., n, j=2,••., n,

<M t , Mi>t=auSot n.

From a  result of Skorohod [91 (cf. [111), for i =1,..., n, t ci ( k )
.0 (

s
k ) )j=1 0

:
dÊ ( k ) i  (resp. b ( k ) i W s

k ) ) d s )  converges in probability to  i 5t 01(x3 )dB's
s o j = 1  0

t
(resp. S

o
bi (x s )ds).

Now we shall verify that

n 51 n  5t
(2.13) E  z..0 ) ( ( (sk) ) d m (k)isE  r i . c i o d m i s

t . -- 2  0 j 5 = 2  0  j

in probability n.

Let

yya) st r (k)(rk (skodia ( k ) js ,

0 j \

ai.: =T(k)ii(psk)) k=1, 2,—,

y t=
0 r s)dmis,

For any positive numbers 6, e' and any partition of [0, t ] ,  0=to

t i = t,

1
151 yAtk) y t  >  <  P { yik) n auo„(k),_si vc..ku s

tp+1
p=o

3

+13 {1 y:— 
p = o  P

 

}

+Pi
1 - 1

E a?„) (
p=o

= 1 1 + 12 + 13 .

1-1
(k)i E at MI) I >-_._-}tp+1

p = 0  P

We p u t  =max I tp ÷ i — tp  1 . An application of the martingale inequality

gives
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1-1 t p AEL Ea (sk) a v,p) 2 doy,)]
a P=0 ip

i

sup au(k) — ( 1 (2' )  12 0 (t4 ) 1t r  a

9  ^
EL (q) t

( k ) ) 2

_1
1 1 2

'Er sup'u- s i

I a L k ) — a ( s k ) 1 4 i 1 1 2

o u, s t

The equicontinuity and uniform boundedness o f {r ( k) } assure us the

estimate

lim  sup . t [  sup a? ) — a (sk) I 4 J —  O.
810 1?1.

From (2 .2 ), tr((o (
tk) ) 2 1 is bounded in k. Hence there exists a constant

s' 
à > 0 ,  which is independent of k , such that 3  for a l l  6_ 6 1 . By

a' the sam e argument, a constant 6 2 > 0  exists such that 12< for all
3

< 6 2 .  When we fix a partition satisfying d1A 62 , it  is  c lea r th a t a

positive integer k1 exists such that 1-3<  fo r  a l l  k k i .  H e n c e  i t
3

follows that

p { Iy k )_ y tl > 6 }  <e t k > k i

and (2 .1 3 ) is proved. In the sam e w ay as (2 .1 3 ) , we can verify that
r08(k)im k o v rtd sk) 81(-i-ociços

Therefore, with probability one,

in probability i = 2,•••, n.

n 1
.X1 = E  a ( x s )dB .i, +1

o
bi (x  )d s+ Vt3j=i 0

n  st n

.14 -= .4+ E  cli (x s) dB's + 1 b i (x Ns+
o

E  ril Ci s )dm is
3 =1 0 3=2 0

r t .
8'(3 -cs)cisas0

i --= 2,•• •, n.
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Since the convergence of 
{ 1 }

 and  { }
 is locally  un ifo rm  in  t ,  we

find that

Ia D (X s )d s

Hence is a  so lu tion  o f (1 .1 ) fo r coeffic ien ts 6 , b ,  r  and  13 starting

from x0.

T h e p ro o f in  th e  case  o f a  gen era l a  is  s im ila r to  ab o ve , if  w e

note that we have sim ilar estimates by Remark 2.1 and Lemma 2.5.
Q.E.D.

N ow  w e shall state the theorem  in  the case o f tim e dependent
coefficients corresponding to Theorem 2.2.

Theorem  2.3 . S u p p o se  6 , b , r an d  /3  are  all t im e  d e p e n d e n t,
bounded and continuous. T hen, for any  probability  law  ,a on D an d  any

t 0  ^  O, there ex ists a solution of  (1.1) for coefficients 6 , b, r and j9 w ith
initial distribution ,a at tim e t0.

Proof. By setting

j = 1 , . . . ,  n + 1 , 6 ^ i = O i = 1 , . . . ,  n,

b ' =1, r =Oj 2 , . . . ,  n + 1 , r + = O i = 2 , . . ,  n ,

=  o, x  z z ( 1 , . .  . x
°
),

0 ( x ) 6 ( x 1 ,x ) i ,  j 1,..., n + 1,

b1(x) b1( x ' ,  x 1 , • ,  x ') i =  1,..., n-f-1,

O, x 2 , • • ,  x ) j ,  j=2 ,. . . ,  n +1 ,

j91( ) = j9 1(x 1 , O, x 2 , • • • ,  f ) i = 2 , . . . ,  n+1,

the case of Theorem 2.3 is reduced to the case of Theorem 2.2.

Q. E. D.
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§ 3 . The existence of solutions in the sticky case.

In this section we shall discuss the existence of solution of (1.2).

Theorem 3.1. Suppose C ,  b, r  and 8  are all tim e independent,
bounded and continuous and x= Ixt , B t , M t ,(o i l  i s  a solution of (1.1)
for coefficients C , b, r and 8 defined on (S2, ,  P ;  { .F t} ) .  Further, sup-
pose IC1(x ) I  is  positive for all  x E D . Then

(3.1)
o
I a D(x s )ds =01 t

P ro o f. First we shall prove in  case  that a constant c> 0  exists
such that I 6 1 (x)I for all x E D .  From a  result o f S . Watanabe
1131, there exists a  continuous orthogonal matrix Q such that

6Q- 1

= (161(x)1, 0,..., 0

Let

6(1)= 6Q- 1, 0 .(2) _ 1 0.0.)
164 (x ) 1 '

1e(x)1 20 , )

bm—  1   b
164(x)1 "

b( 3 ) = 0 ) +o-
( 2 ) d.

( 1 , 0 ,— , 0

* *  )

L e t x(1) = r t x , m i n ,  0 . » r  b e  a  so lu tion  o f (1 .1 )  for coefficients
6 ( 2 ) , r a n d  8 defined o n  a  quadruplet (S2, P (1 ); IF (

t
1 ) 1 ), where

Since x (
t
1 )1  i s  a  one-dimensional reflecting Brownian motion, it is

well known that

(3.2) E(1)[Ç /a D(x ds1 -= 0 t O.

Then and b( 3 ) 1 =0.



—  E  di (x (
s

1) ) 2 ds
i =1 o
n 5t ii1/ 2 .
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Let P ( 2 )  b e  a probability measure on (2, ..F) such that, for B E.F (
r

1 ) ,

P ( 2 ) (B) --=5 exp[- di(x(s1))dB(s)-)(— 1 E di(X
s
(1))2 dS1CIP ( 1 )

j =1 o 2 i=i o  

and define
Et

B (1
2

)  ---= .13 1
) (

o 
di(x  u ) ds n,

x (t2) — x (t1.), M t2) Mil) ,  e t2) (t1),

By the Cameron-Martin's formula (cf. [51) ,  x (2) { x ?) ,  B ? ) ,( 0 ( 2 ) }

is a solution of (1.1) for coefficients 6( 2 ) , b ( 2 ) , r  and le defined on (2 ,

P (2 ) ;  { (2 ) } )  T h e n  w e  have

E(21.5 
o 
1-aD(X  (s2))C/S1=E(1)

o 
iaD(X  (sii)dS ) X

n  st
exp [ —  E  d ( x )  d B '' — 

1  n  1 t0 . )  2E  d (x s )
i=1 o 2 o

2 5t

: _ E (1 ) [ (5
o
.raD(X(.91)) d S ) E (1 ) [ e x p [ - 2 E  d i (x (sl i ) d iP s n i

i=1

The boundedness o f d (x )  assures us that
n n 5t

E ( 1 ) [e x p [ - 2 E  di (x (P)dks l ' i — E  di (x (
s

1) ) 2 dsli is finite for all t >
i=1 o 1=1 o

O. H en ce  (3 .2 ) shows that

(3.3) E(215
o
/aD(x(s2))d.51=-0 t

Define

1
,610-= 

3
r t

o  Ic o ) ( x V ) ) 1 2  
ds

'

A71.-=inf{s; A s > t} ,
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p(3) — 1)(2 ), g - (t3) =,F (
A

2
.) .9cP ) = X4

( 2 )

-1, MP ) =111 4
2. 1, ça r = (0(,0„

1
dB(B ( 3 ) =  1)

Jo( 4 ) 1

B y  the theory of tim e change (Doob's optional sampling theorem), x( 3 ) =
{xP ) , BP ) , MP ) , çoP) }  i s  a  so lu tio n  o f (1.1) for coefficients 6( 1 ) , b,
a n d  3 defined on (S2, P ( 3 ) ; I.FP ( }). Therefore it follows that

E ( 3 ) Lt IaD(xP)) d s 1= E( 2)Lr  I aD(x (121) ds]

A-1

= E ( 2
) I aD(x(s2)) d Asi •

If c<16 1 (x)1 <c1, then w e have

E ( 2 ) [

A-1 c2r
laD(x (s2 ) )clA s l E ( 2 ) [1  la p (4 2 ) )  d : l •

Therefore we see from (3.3) that

(3.4) E (3 )[ i a D ( x ( 8 3 ) ) d s 1 = 0 t >  O.

Define

p (4 )_  D (3 )  ,— (4 )_  o z (3 ) (4) (3) M (4 ) ._ _ _ M (3 ) (4) (3)
I — =x t t t ÇC't "= - t

n
.13(

t
4 )1E i(xP))dB P)i i =1,..., n.

A s is well known, x (4) = { x (t4), / 3 4 ) , M (t4) ,  ç o (4)1r  is  a solution of (1.1) for
coefficients 6 , b, r  and 13 defined on (S2, P ( 4 ) ; Ig T ( } ) • H ence it fo l-
lows from (3.4) that

E( 4 ) [r I aD (4 4 ))ds 1=0 t >O.

Since any solution of (1.1) can be constructed in  th is  w ay , th e  asser-
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tion in this case is proved.

Now we shall prove (3.1) in the general case. There exists a  sequ-

ence s u c h  t h a t ,  for in =  1, 2,..., 0" )  satisfies the conditions

in the above case and m ) (x )= 6 (x )  for I x  _<,m . Set, for m=1,

inf {s; I
S .=

+ cc) f

Then the above result shows that

E [
tASm

o- T aD ( X s ) d ,S 1 = 0 M = 1 ,  2,...

Noting that we lim  S .=  + co, we obtain (3.1). Q.E.D.

Theorem  3 .2 . Suppose 6, b, r  and are  all tim e independent,

bounded and continuous an d  p  is tim e independent, bounded and B orel

m easurable . Further, suppose 161 (x )1  is  Positiv e for a l l  x E D .  Then,
f o r  any  probability  law  p  o n  D , there  ex ists a so lu tio n  o f  (1.2) f or

coefficients 6,b, r,  ,3  an d  p  w ith initial distribution p.

P roo f. B y  T h eo rem  2.2, there exists a solution -g o f (1.1) for

coefficients 0", b , r  and 8  and by Theorem 3.1, it satisfies (3 .1 ). In the

same way as D C , w e can  get a solution o f  (1.2) from -g .
Q. E. D.

Now we shall state the theorem in  th e  case  o f time dependent

coefficients corresponding to Theorem 3.2.

Theorem  3 .3 . Suppose 6 , b, r, 8  an d  p  are  all tim e dependent,
bounded and continuous an d  161- (t, x )1  i s  positiv e f or all  (t, x ) E  [0 , c o )

X D .  T hen, for any Probability law p on  D and any 0, there exists a
solution of  (1.2) for coefficients 6 , b, r, 8  and  p  w ith  initial distribution
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it a t tim e to .

Proof. By setting

6141=0 i =1,..., n, 67+ 1 =0 i =1,..., n+ 1,

r4+ 1 =0 i =2,..., n, r7+ 1 =0 i =2,..., n+1,

dr + 1 = 0 ,

the case of Theorem 3.3 is reduced to the case of Theorem 3.2.
Q.E.D.

In Theorem 3.3, we cannot remove the continuity of p. This situa-
tion is different from Theorem 3.2.

Example. Let n=2, xo=(0, 0), b =(0 , 1), r=0, 8=0, 6=
0 0

{  1  f o r  x 2 > t
and p (t , x )=

0  f o r  x 2 < t.
Then, by Theorem 2.2 and Theorem 3.1, there exists a solution of (1.1)

for coefficients 6, b, r  and i 9  starting from  x o and it satisfies the pro-

perty (3.1). But there exists no solution of (1.2) for coefficients 6, b,
r, 8  and p starting from xo at tim e t0 =0.

Proo f. Suppose that there exists a solution g= Ix t , B t , M t , ç9t 1  of

(1.2) starting from xo at tim e t0= 0  defined o n  (12, P;
Let

inf Is; xi <s}
T =

+00 if 1 1 = 0 .

Then T  is  an {F t} -stopping time and we put Di = Ito; T(co)> 01.
The condition (iv) of Definition 1.2 implies that
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— x i =  I D (x u ) du < t —s

Since 4 =  t  for t <  T , we have

0

laD(xs)ds= 0

Therefore

s
o
) c l g o s  = sot= 0

t 

0 (55

t >  s>  Q.

t <  T.

t <  T.

By the definition of stochastic integral, this implies that

o 
I D (x 3 )d.131= t <  T.

Therefore, 131 >  0  for t <  T. Hence P (Q 1) = O. B ecause of this, we

have

f t f t f t

o
ID(x s )ds=t—

o
IaD(x s )d s = t -

0

P(s, )cIS 0 s

and this is a contradiction. Q. E. D.
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