On the degree of singularity of onedimensional analytically unramified noetherian local rings

By
Tadayuki Matsuoka
(Communicated by Professor Nagata, June 16, 1971)

§1. The purpose of this paper is to generalize the result of our previous paper [2] to the analytically unramified local ring case. Let R be a one-dimensional analytically unramified noetherian local integral domain with maximal ideal \mathfrak{m}. Let K be the quotient field of R, \bar{R} the integral closure of R in K and c the conductor of R in \bar{R}. It is clear that the length $l(\bar{R} / R)$ of the R-module \bar{R} / R is finite since \bar{R} is a finitely generated R-module. The length $l(\bar{R} / R)$ is called the degree of singularity of R (cf. [3]). Since c is a non-zero ideal in R, the length $l(\bar{R} / \mathrm{c})$ of the R-module \bar{R} / c is finite, and similarly $l(R / \mathrm{c})$ is finite. Set $\delta=l(\bar{R} / R), c=l(\bar{R} / \mathrm{c})$ and $d=l(R / \mathrm{c})$. Since R is a onedimensional Macaulay local ring, the length $l\left(\operatorname{Ext}_{R}^{1}(R / \mathrm{m}, R)\right)$ of the R-module $\operatorname{Ext}_{R}^{1}(R / \mathrm{m}, R)$ is an invariant of R and is called the type of R (cf. [1]). Set $\mu=l\left(\operatorname{Ext}_{R}^{1}(R / \mathfrak{m}, R)\right)$.

We shall prove the following theorem which is a generalization of Theorem 2 in [2].

Theorem. The assumptions and notations being as above, suppose furthermore that $\bar{R} / \mathfrak{M}=R / \mathrm{m}$ for all maximal ideals \mathfrak{M} of \bar{R}. Then the following inequalities hold:

$$
(1+1 / \mu) \delta \leq c \leq 2 \delta-\mu+1
$$

Corollary. With the same assumptions as in the above theorem, R is a Gorenstein ring if and only if $c=2 \delta .{ }^{1)}$
§2. In this section we shall prove the Theorem and the Corollary in $\S 1$. We will use the same notation as in §1. Throughout this section R is a one-dimensional analytically unramified noetherian local integral domain such that $\bar{R} / \mathfrak{M}=R / \mathrm{m}$ for all maximal ideals \mathfrak{M} of \bar{R}. We say that an ideal in R is a contracted ideal if it is the contraction of an ideal of \bar{R}. We first show the following:

Lemma 1. There exists a strictly descending chain of contracted ideals in R :

$$
R=a_{0} \supset a_{1} \supset \cdots \supset a_{d-1} \supset a_{d}=c
$$

where $d=l(R / c)$.

Proof. Let c^{\prime} be the length of the \bar{R}-module \bar{R} / c. Then there is a strictly descending chain of ideals in \bar{R} :

$$
\bar{R}=\mathfrak{B}_{0} \supset \mathfrak{B}_{1} \supset \cdots \supset \mathfrak{B}_{c^{\prime}-1} \supset \mathfrak{B}_{c^{\prime}}=\mathrm{c} .
$$

Since $\mathfrak{B}_{i-1} / \mathfrak{B}_{i}$ is a simple \bar{R}-module, $\mathfrak{B}_{i-1} / \mathfrak{B}_{i} \simeq \bar{R} / \mathfrak{M}$ for some maximal ideal \mathfrak{M} of \bar{R}. Hence, by our assumption, $\mathfrak{B}_{i-1} / \mathfrak{B}_{i} \simeq R / \mathrm{nt}$. This shows that $\mathfrak{B}_{i-1} / \mathfrak{B}_{i}$ is a simple R-module, i.e., $l\left(\mathfrak{B}_{i-1} / \mathfrak{B}_{i}\right)=1^{2)}$ and that $c^{\prime}=$ $c(=l(\bar{R} / \mathrm{c}))$. Hence the R-module $\mathfrak{B}_{i}+R \cap \mathfrak{B}_{i-1}$ coincides with \mathfrak{B}_{i} or \mathfrak{B}_{i-1}. Consider the chain of R-modules

$$
\begin{equation*}
R=R \cap \mathfrak{B}_{0} \supset R \cap \mathfrak{B}_{1} \supset \cdots \supset R \cap \mathfrak{B}_{c-1} \supset R \cap \mathfrak{B}_{c}=\mathrm{c} . \tag{*}
\end{equation*}
$$

Since $\left(R \cap \mathfrak{B}_{i-1}\right) /\left(R \cap \mathfrak{B}_{i}\right) \simeq\left(\mathfrak{B}_{i}+R \cap \mathfrak{B}_{i-1}\right) / \mathfrak{B}_{i}$, we have either $R \cap$ $\mathfrak{B}_{i-1}=R \cap \mathfrak{B}_{i}$ or $l\left(\left(R \cap \mathfrak{B}_{i-1}\right) /\left(R \cap \mathfrak{B}_{i}\right)\right)=1$. Therefore we have the

1) In case when R is a locality over an algebraically closed field Serre has proved this fact by using differentials (cf. [4]).
2) We denote by $l(M)$ the length of an R-module M.
required chain by deleting the superfluous terms of the chain (*).
q.e.d.

Let \mathfrak{a} be an ideal in R. We denote by \mathfrak{a}^{-1} the fractional ideal of R consisting of the elements x in K such that $x \mathfrak{a} \subset R$.

Lemma 2. $\mathrm{c}^{-1}=\bar{R}$.

Proof. ${ }^{3)}$ Since \bar{R} is a semi-local Dedekind domain, \bar{R} is a principal ideal domain (cf. [5]). Let $\mathrm{c}=a \bar{R}$ and let x be an element in c^{-1}. Then we have $x a \in \mathfrak{c}=a \bar{R}$ and whence $x \in \bar{R}$. This shows that $\mathfrak{c}^{-1} \subset \bar{R}$. The opposite inclusion is obvious.
q.e.d.

Consider a strictly descending chain of contracted ideals in R :

$$
R=\mathfrak{a}_{0} \supset \mathfrak{a}_{1} \supset \cdots \supset \mathfrak{a}_{d-1} \supset \mathfrak{a}_{d}=c
$$

where $d=l(R / c)$. Then $l\left(\mathfrak{a}_{i-1} / \mathfrak{a}_{i}\right)=1$ for $i=1, \cdots, d$, and we have the following chain of (fractional) ideals of R :

$$
\bar{R}=\mathfrak{a}_{d}^{-1} \supset \mathfrak{a}_{d-1}^{-1} \supset \cdots \supset \mathfrak{a}_{1}^{-1} \supset R \supset \mathfrak{a}_{1} \supset \cdots \supset \mathfrak{a}_{d-1} \supset \mathfrak{a}_{d}=\mathrm{c}
$$

Set $\delta_{i}=l\left(\mathfrak{a}_{i}^{-1} / \mathfrak{a}_{i-1}^{-1}\right)$. We have the equalities:

$$
\begin{equation*}
c=d+\delta \quad \text { and } \quad \delta=\sum_{i=1}^{d} \delta_{i} \tag{1}
\end{equation*}
$$

where $c=l(\bar{R} / \mathrm{c})$ and $\delta=l(\bar{R} / R)$.
Let us now prove the following inequalities:

$$
\begin{equation*}
1 \leq \delta_{i} \leq \mu \quad \text { for } \quad i=1, \ldots, d \tag{2}
\end{equation*}
$$

where μ is the type of R, i.e., $\mu=l\left(\operatorname{Ext}_{R}^{1}(R / m, R)\right)$.
The first inequality $1 \leq \delta_{i}$ is the direct consequence of the follow-

[^0]ing two lemmas.

Lemma 3. Let \mathfrak{a} be an ideal in R and \mathfrak{b} a contracted ideal in R. If \mathfrak{b} is properly contained in \mathfrak{a}, then the extended ideal $\mathfrak{b} \bar{R}$ is also properly contained in $a \bar{R}$.

Proof. Suppose that $\mathfrak{a} \bar{R}=\mathfrak{b} \bar{R}$. Then $\mathfrak{a} \subset \mathfrak{a} \bar{R} \cap R=\mathfrak{b} \bar{R} \cap R=\mathfrak{b}$, and this is a contradiction. q.e.d.

Lemma 4. Let \mathfrak{a} and \mathfrak{b} be ideals in R such that $\mathfrak{c} \subset \mathfrak{b} \subset a$. If $\mathfrak{a} \bar{R} \neq \mathfrak{b} \bar{R}$, then $l\left(\mathfrak{b}^{-1} / \mathfrak{a}^{-1}\right) \geq 1$.

Proof. Let $\mathfrak{M}_{1}, \ldots, \mathfrak{M}_{s}$ be the maximal ideals of the semi-local Dedekind domain \bar{R}. Let $\mathfrak{c}=\mathfrak{M}_{1}^{c_{1}} \ldots \mathfrak{M}_{s}^{c_{s}}, \mathfrak{b} \bar{R}=\mathfrak{M}_{1}^{n_{1}} \ldots \mathfrak{M}_{s}^{n_{s}}$ and $\mathfrak{a} \bar{R}=\mathfrak{M}_{1}^{m_{1}} \ldots$ $\mathfrak{M}_{s}^{m_{s}}$. Since $\mathfrak{c} \subset \mathfrak{b} \bar{R} \subset \mathfrak{a} \bar{R}, c_{i} \geq n_{i} \geq m_{i}$ for all i. Since $\mathfrak{b} \bar{R}$ is properly contained in $\mathfrak{a} \bar{R}$, we may assume that $n_{1}>m_{1}$. Let \mathfrak{A} be the ideal $\mathfrak{M}_{1}^{c_{1}-1-m_{1}} \mathfrak{M}_{2}^{c_{2}} \ldots \mathfrak{M}_{s}^{c_{s}}$ in \bar{R}. We first show that $\mathfrak{A} \subset \mathfrak{b}^{-1}$. Since the product $\mathfrak{A l b} \bar{R}$ is $\mathfrak{M}_{1}^{c_{1}^{1-1-m_{1}+n_{1}} \mathfrak{M}_{2}^{c_{2}+n_{2}} \ldots \mathfrak{M}_{s}^{c_{s}+n_{s}}}$ and since $c_{1}-1-m_{1}+n_{1} \geq c_{1}$, $\mathfrak{N b} \bar{R} \subset$ c. Hence $\mathfrak{A b b} \subset R$ and this shows that $\mathfrak{A} \subset \mathfrak{b}^{-1}$. Next we must show that $\mathfrak{N} \not \subset \mathfrak{a}^{-1}$. Suppose that $\mathfrak{M} \subset \mathfrak{a}^{-1}$. Since $\mathfrak{H a}(=\mathfrak{H a} \bar{R})$ is an ideal in R and is also an ideal in \bar{R} and since the conductor c is the largest ideal in R which is also an ideal in \bar{R}, we have $\mathfrak{A l a} \subset$ c. On the other hand, $\mathfrak{N a}=\mathfrak{A} a \bar{R}=\mathfrak{M}_{1}^{c_{1}-1} \mathfrak{M}_{2}^{c_{2}+m_{2}} \ldots \mathfrak{M}_{s}^{c_{s}+m_{s}}$. Hence we have $c_{1}-1 \geq c_{1}$, and this is a contradiction. Thus we have $\mathfrak{N} \not \subset \mathfrak{a}^{-1}$. Therefore \mathfrak{a}^{-1} is properly contained in \mathfrak{b}^{-1} and hence $l\left(\mathfrak{b}^{-1} / \mathfrak{a}^{-1}\right) \geq 1$. q.e.d.

The proof of the second inequality $\delta_{i} \leq \mu$ in (2) is entirely the same as that of Proposition 3 in [2] and we omit it.

Notice that $\mu=\delta_{1}$ since $\mathfrak{m}=\mathfrak{a}_{1}$ (cf. [2]). The Theorem in $\S 1$ follows directly from (1) and (2) (see Remark 3 below).

Remark 1. In Lemma 1 the ideals a_{i} are divisorial, i.e., $a_{i}=$ $\left(\mathfrak{a}_{i}^{-1}\right)^{-1}$. In fact, since $\mathfrak{a}_{1}=\mathfrak{m}$, we see easily that \mathfrak{a}_{1} is divisorial. Hence, for $i>1$ it is sufficient to see that if a_{i-1} is divisorial, then so
is \mathfrak{a}_{i}. Since $a_{i} \subset \mathfrak{a}_{i-1}$, we have $a_{i} \subset\left(\mathfrak{a}_{i}^{-1}\right)^{-1} \subset\left(a_{i-1}^{-1}\right)^{-1}=a_{i-1}$. Suppose that $\left(a_{i}^{-1}\right)^{-1}=\left(a_{i-1}^{-1}\right)^{-1}$. Then $\mathfrak{a}_{i}^{-1}=\left(\left(\mathfrak{a}_{i}^{-1}\right)^{-1}\right)^{-1}=\left(\left(a_{i-1}^{-1}\right)^{-1}\right)^{-1}=a_{i-1}^{-1}$. This contradicts $l\left(\mathfrak{a}_{i}^{-1} / a_{i-1}^{-1}\right) \geq 1$. Hence $\left(a_{i}^{-1}\right)^{-1}$ is properly contained in \mathfrak{a}_{i-1}. Since $l\left(\mathfrak{a}_{i-1} / \mathfrak{a}_{i}\right)=1$, we have $\mathfrak{a}_{i}=\left(\mathfrak{a}_{i}^{-1}\right)^{-1}$.

Remark 2. Since $\mu=\delta_{1} \leq \delta$, we have $\delta+1 \leq(1+1 / \mu) \delta$. Hence the inequalities in the Theorem in $\S 1$ are better than the inequalities $\delta+1 \leq c \leq 2 \delta$ in [4], and the lower bound $(1+1 / \mu)$ for the ratio c / δ is obviously the best possible. It may happen that $(1+1 / \mu) \delta=c<2 \delta$ (see Examples 1 and 2 in [2]).

Remark 3. ${ }^{4)}$ Since $\delta-\mu=\sum_{i=2}^{d} \delta_{i} \geq d-1$ by (2), we have the inequality $\mu \leq 2 \delta-c+1$ (cf. Bemerkung b) in $\S 2$, [6]).

Ehime University

References

[1] T. Matsuoka, Some remarks on a certain transformation of Macaulay rings, J. Math. Kyoto Univ. 11 (1971), 301-309.
[2] , On the degree of singularity of one-dimensional analytically irreducible noetherian local rings, J. Math. Kyoto Univ. 11 (1971), 485-494.
[3] M. Rosenlicht, Equivalence relations on algebraic curves, Ann. Math. 56 (1952), 169-191.
[4] J.-P. Serre, Groupes algébriques et corps de classes, Hermann, Paris 1959.
[5] O. Zariski and P. Samuel, Commutative algebra I, Van Nostrand, Princeton 1958.
[6] J. Herzog und E. Kunz, Die Wertehalbgruppe eines lokalen Rings der Dimension 1, S.-B. Heidelberger Akad. Wiss. Math. -naturw. 1971, 2. Abh..

[^1]
[^0]: 3) The author's original proof is not simpler than the present one which is due to the referee.
[^1]: 4) This remark was added on September, 1971 and the second inequality in the Theorem in $\S 1$ was amended to the present form.
