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§ 1. Introduction.

In  this paper we consider a  mathematical model which represents

the competition order o f  two antibodies to one antigen in  asthmatics.

Our problems in  th e  mathematical form are  derived by H. Mikawa and
M. Mimura and others through their piled discussions and through their

medical and numerical experiments [C.

They are  formulated a s  follows : Suppose two antibodies Ci. and C2

react with one antigen C 4  to form  the  products C 5  and  C 3  respectively

(1 .1 ) CH - C4 — >C5

(1.2) C2 + C4 —>. C3

and  C 3  reacts with C I  to  fo rm  C 2  and Cs)

(1.3) C3 + Ci —> C2 + Cs.

Here it is assumed that C 1 a n d  C 2  are diffusible and C 3, C 4 and C5

are non-diffusible and the all reactions (1.1), (1.2) and (1 .3) are all of
second order.

We denote by it i (x , t )  the concentrations of C;  a t  the place x =
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( X 1 ,  X 2 , x n )  and at time t  for j = 1 ,  2, •••, 5. Then these processes
can be expressed in  the following degenerate diffusion system;

(1.4) U 1=D 04U +D iF (U )

where

U = t ( U i ,  U 2 ,  U 3 ,  U 4 ,  U 5 )

1 o o o o \ — — d2 0
0 1 0 0 0 0 c/2 —c13

D 0 = 0 0 0 0 0 D1= 0 d3
0 0 0 0 0 —d 1 0 —d 3

0 0 0 0 0 d l d2 0

and

F (U ) = 1(u i  u4 ,  721113 ,  u2 u 4)

and  a ll the coefficients d 1 , d 2 a n d  d3 are positive constan ts and  d
means the Laplace operator.

It is known that our system represents a n  idealized model of the
fibre-regent system when d2=d3=0  [1 ].

Here we deal with our system as an in itial value problem. Since
the behavior of u3 (x , t )  is completely determined by those o f uf (x , t)
for j =  1, 2, •••, 4, it is sufficient to consider the following system;

(1.5) U1=-D04U+DIF(U) in  Sl „= Rn x  (0 ,  0 0 )

(1.6) U (x , 0 )=0 (x )

where

U=t(Ui, U2, U3, U4)

1 0 0  0 —d1 —d2 0

D0 = 0 1 0 0
0 0 0 0

=
0 c/2 — d3
0 —d2 d3

0 0 0 0N —d1 0 —d3
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F ( U )

=
 i ( 11 1

14 4 ,  1.1111, 35 U 2U 4 )

and

( x ) (0 i (x ), 2  ( x ) , 9 , 04(x)).

From the point of view o f chemistry, we shall treat the case of

non-negative initial data throughout this paper.

Our paper consists of two sections. In the first section we discuss

the relations between the initial data and the asymptotic behavior of

the solution of the problem (1 .5 ) and (1 .6 ) .  (See THEOREM 2.1.)

Another section is devoted to study the semilinear elliptic equation

(1.7) 4 u = a (x ) ( 1 — e -u )— f (x )

derived from our problem (1.5) and (1.6). There we discuss the exi-

stence, uniqueness and the non-existence of the solution of (1.7). (See

THEOREM 3.2, 3.3 and 3.4.)

As for the Cauchy problem (1 .5 ) and (1 .6), for any non-negative
a  a  a l  a l

i n i t i a l  d a t a  (
6,-1, 6,25 0 3) 65,  E  2

4)
2 xx , we can find a unique

non-negative, global solution (u i(x , t ) ,  u2(x, t ) ,  u3(x, t), u4(x, t)) such

that

(u i (x ,  t ) ,  u2(x, t), u3(x, t), u4(x, t ) ) E e f

p(a2 x  a 2  x  a l  x  a1 )

n e v a o a o
x

 .40).

(See M im ura [31.) Here a m  is the topological vector space o f uniform-

ly continuous and bounded functions in  R " together with their deriva-

tives of order up to m.

§  2  Asymptotic behavior.

We will derive some sufficient conditions to be imposed on the

initial data under which whether or not u3(x , t )  and u4(x, t )  will tend

to zero as t--).00.

In  order to state our results, we prepare two lemmas which are

so-called "comparison theorem".
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Lemma 2 .1  Consider th e  follow ing three Cauchy  problem s (P1),
(P 2 )  and  (P 3 )  in  2 :

(P1) Ut =  Do U +  D i F( U ) U(x, 0) =  0(x)

(P2) VI -= Do 4 V+ D 2 F( V) V (x , 0) =  0 (x )

(P3) W t=D04 W H-D 3 F( W) IY (x , 0 ) = 0 (x ),

where

—d — d 0 —D —D 0

0 d —d 0 D —D
D 2 = D 3 =

0 — D D 0 — d d

—D 0 —D j — d 0 — d

an d  d-=min(di, d2, d 3 ) and  D=max(di, (12, d3). T hen it follow s that

f o r non-negative 0 (x ),

i) v i (x , ui(x , t).>_w i (x , t)>_ 0

ii) v i (x, v2(x, u i(x , u2(x , w2(x,

iii) w3 (x, t)-Fw 4(x , t) u3 (x, t)d-u 4 (x, t ) _ v 3 (x , t)d -v 4 (x , t) 0

iv) w4 (x, u4(x , t) v4(x, O.

P ro o f .  We can prove Lemma 2.1 by using th e  following simple

difference scheme Sch(D i ),

ur+1
-

1
—  u n p l _  1 • •

7  E clzur+1'14-1)
tr.  i=1

m +1,J —  mU2 U2' 1 n

E  T i Ti um. 1 —(c13 4 + 1 -1—  d  m + 1 -  m  .121/ 11 U 3' )
h 2 - +  2

.„m +1 ,/ m ,J
U 3 — u , (d 3 u7i i+1 •1 u'2n j  —  d2U 7 + 1 '1  it r ' j )

m +1,1 m ,IU4 u 4  — ( c l  ur d 3 u 7 +1 -14 - 1 )
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and the initial data

U ° - -=0 (.1 - h ) =- (01(jih, j2h, • • •, jnh), 04(jih, j2h, • • •, j11)),

1 
w ith  k  an d  h  satisfying h2 .< 2 n  . Here unP i = ui (jih, j2h, • • •, ink)

( i=  1, 2, 3, 4) fo r n-tuple of integers /2, ..., I n )  and  fo r a  non-nega-

tive integer m, h  and k  a re  th e  mesh sizes in  x  an d  t  directions re-

spectively an d  n is an  operator replacing J i  b y  J±  1, that is,

T ium ' j = u ( j ih ,  •  • , (j1 -±-1)h, ji+111, • • •, j n h, mk) —  um -  .

Considering th e  problems (P2 ) an d  (P 3 ) b y  t h e  difference schemes

Sch(D2 )  and Sch(D3), we find for any J and m

0  I l i  >ur- __>_w mc  0

' v"Pi > w'2n-/ > 0

iii) 4 ' 7 + w,T I >  u7-7 + uT-T v 7 ' ./>  0

iv) un4ii v " P 0 .

From these inequalities, Lemma 2.1 can be proved. (See Mimura [31)

Lemma 2 .2  C on sid er  the f o l l o w in g  Cauchy prob lem

ti t = duw

W i= —  d ' uw

in 2 n  w i t h  the initial data

u(x, 0) = uo(x)

w(x, 0)= w o (x ).

I f  u 0 (x )  u o (x ) 0  and wo(x) filo(x) t h e n  î ( x ,  t ) u (x, t)_ 0

and w(x, w h e r e  d and d' are positive constants and
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171(x, t) and ft",(x ,  t )  are the solutions w ith  the initial data and il o (x )

ao(x ).

P ro o f . The proof of this lemma is easy and hence is omitted.
Now consider the following equations obtained from (P 3 ),

w  D  (2.1)( 1 _ w 4))t=

(2.2) (w3+ w4)t--= — d(w3+ w4)wi.

Integrating (2.1) and (2.2) from 0 to  t  with respect to  t ,  w e have

(2.3) w i(x, t) — D
d  (w 3(x , w4(x, t)) - 01(x)d- D

d  04(x )

=
o
ivs (x , r)dr

(2.4) wa(x, 04-w 4(x , t)=-04(x)exp(—c/S
o

w l(x , r )d r ).

Eliminating w3 (x , t )  and w4(x, t )  from (2.3) and (2.4), we obtain

D D(2.5) w i(x , t) — d  0 4 (x )ex p ( — d wi (x ,  r )d r )  0 1(x )+  d   04 (x )

r)dr.
o

Lemma 2 . 3  S upposing that the initial data 04, 02 and 04  of (P3)
D are a l l  constant. I f 04 0  (0 4  0 ) ,  then for the  corresponding—  d

solution w 1 ,  it holds that

Yo w i (x , t)d t= + 0 0 .

P ro o f . The solution fr7 of (P 3 )  is  unique and hence it is indepen-
dent of x .  Thus (2 .5) implies
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D D(2.6) wi(t)— d  04 exp ( — d  wi(r)dr)— 0 1 +  d   q54  0 .
0

Now assume

50- wi ( t ) d t< + 00 •

dwi
Then by wi (t)__ 0 a n d  d t l__M (-=const.), we can see that wi ( t ) - 0  at

as t—>o .  L e tt in g  t —oo in  (2.6), we obtain

D
d   4 {1— exp(— d Vo w i ( t )d t )}

DThis contradicts to 01 _ -0 4  0 unless wi  =0.
—  d

Lemma 2 .4  Supposing that th e  in itia l d a ta  01, 0 2  and 934
dof (P2 ) are a ll constant. I f 04 > 01 0 ,  then for the corresponding
D

solution v i ,  it holds that

t )d t< + c o .

P roo f. Since th e  proof o f  th is lem m a is analogous to  that of

Lemma 2.3, it may be omitted.
Here we can refine Lemma 2.3 and Lemma 2.4 as follows.

Lemma 2 .3 ' Let 151(x), 02(x) and 0 4 (x ) be the initial data of
(P 3 )  with

Dd 5 tp954(x) 0 (01(x) \ 0 ),

then the corresponding solution wi (x ,  t )  satisfies

t ) d t  +  00 fo r  all X .
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Proof . Consider the following system obtained from (P 3 ),

(2.7) 8w1 — 4w1 — D(w3 + w Ow lat

0  (w3 + iv4)= — d(w3+ w4)wi.at

( D  Consider p a irs  o f  th e  in it ia l d a ta  (0 1 (x ), 0 4 ( x ) )  and
d  

sup04 (x ),
x

sup 954 ( x ) )  and denote th e  corresponding solutions by (w i (x , t ) ,  w3 (x , t )

+w4(x, t ) )  and b y  ( fy i(x ,  t), 11)3(x, t )+ 1 7 )4 (x , t )) respective ly . If

01(x)
D5 u p 0 4 ( x ) ,
d  x

then by Lem m a 2.2, we have

w i ( x ,  t )> o

and

k 3 (x ,  t )+ k 4 (x , w3(x, t) w4 (x , t)_>_ 0.

On the other hand, since (2.7) is independent o f q52 ( x ) ,  w e can apply
Lemma 2.3 and obtain that

50- t ) d t =  0 0 .

Hence we see that

Vo wi (x ,  t )d t=  0 0 .

L e m m a  2 .4 ' L et 01(x), 02 (x ) an d  $ 4 (x ) be th e  in it ial d ata o f
(P 2 )  with

d inf 04(x) > 01(x)>_ 0,D  ,
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then the corresponding solution v i( x ,  t )  satisfies

1-
0 1)1 (x , t) d t < .

P ro o f .  It is sufficient to consider tw o pairs of the initial data

(0 1 (x), 04(x)) and H
d

inf (x)—e, inf 04(x)), where s> 0 is sufficientlyD  x
d sm all so that  inf 04 (x)— s 0 1 (x ).
D  x

Together w ith these facts, we have the following proposition on

the asymptotic behavior of the solution of our problem (1.5) and (1.6).

Proposition 2 .1  L e t  U(x , t)=- t(u i(x , t) , u 2 (x , u 3 (x , t) , u 4 (x ,

t) )  be the solution in the Cauchy problem  (1.5) and (1.6).

i) i f  0 1 (x ) 1
(4 04 ( x ) _ 0 ,  then

lim u3 (x, t ) = 0 and lim u 4 ( x , t )= 0 fo r any  x ,
t— s o e

ii) if D
d   irlf  0 4 > q31 (x ) . 0 , then

lim  (u3(x , u 4(x , t)) * 0  fo r  any  x .
t - -

P ro o f .  According to Lem m a 2.3 ', w e  c a n  s e e  lim(w 3 (x, t)
w4(x, t))= 0 from  (2.4). Thus it fo llow s lim(u3(x, t) u4(x, t))=

t--
for any x  from iii) of Lemma 2.1 and hence

lim u3(x, t ) = 0 and lim u4(x, t ) = 0
t--

by the non-negativity o f  U .  ii) can be proved easily by Lem m a 2.4'
and by iii) of Lemma 2.1.

Next we investigate more precisely ii) of Proposition 2.1.

Lemma 2 .5  S upposing that the initial data 01, 0 2  and 0 4  o f  (P3)
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are all constant. If

d01+02 __1(__*; 04 04> 01 - 0,
D

then, for the corresponding solution w25

1: w3 (t)dt = +

holds.

Proo f . Consider the following equations obtained from (P 3 ):

(2.8) 0 ( D  
W2 W 3 )d 4 W 2at 

(2.9) w4= — d(wi +w2)w4.at

Integrating (2 .8 ) and (2 .9 ) from 0  to  t  with respect to  t , w e have

I)  P t

(2.10) wz(x, t) — 02+ w3 (x,
o
4w2 (x , r)dr

d

(2.11) w4(x, 0=04 exp(—  d1 (w i(x, r) w 2 (x , r ))) d r0

from (2 .8 ) and (2.9). Eliminating from (2 .10) by (2 .4 ) and (2 .11), we
obtain

, D  (2.12) w2(x, t) — (p2- 1- d (p4 exp (— d1
o
wi(x, r ) )d r  x

x {1— exp(— d1
o
w2(x, r))}dr =O.

Now suppose that

w2(x, t)dt< + 00,
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then, as is  the case of w i (x , t ) ,  we can see w2 (x, t)—>0 as t—>00, and

letting t—>c>0 in (2.12), we obtain

,  ,  D  ,(2.13) --(P21- —
d

9)4 exp (— d
.

o
w i(x , t)d t)  x

-
x(1— exp(— d

o
w 2 (x , t )d t ) -= O.

o.,
W e rem ark here that 

o  

w id t  exists by Lemma 2.4. Thus from (2.6)'

and (2.13), we have

—02 + (
D
d   0 4 - 0 1 )11— exp(— dV w 2 (x, t) dt)} -= 0

o

D 
and this contradicts to 02+01 ._ d  0 4 0 .

Lemma 2 .6  S upposing that the in itial data Ot, 932 and  04 o f (P2)
are  all constan t. If

d  04>01+02 0,D

then it holds f o r th e  corresponding solution y 2

Ç' y 2 ( t)d t  < + co.o

The proof of this lemma is sim ilar to that of Lemma 2.5.

Refine Lemma 2.5 and Lemma 2.6 as follows:

Lemma 2.5' L et 01(x), 02(x) and  0 4 ( x )  be the  in itial data o f  (P 3 )
with

01(x)+952(x) D
d stp5b4(x) D

d irzlf 04(x) >01(x)> 0,
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then the corresponding solution w2 ( x )  satisfies

,3711,2(x, t)dt= co fo r  all X .

P ro o f .  Consider the following system obtained from (P3),

0 (2.14)
a t  

(w i+w 2 )=  Awl+ w2) — D(wi+ w2)w4

(2.15) a _
at W4

— d(w1+ wz)w 4

and pairs of the in itia l data (01(x)-1-02(x), 04(x)) and (

sup 04 ( x ) )  and denote the corresponding solutions by (w i (x ,

w4(x, t ) )  and by (g i (x , t)+71,2(x, 0,714(x, t ) )  respectively.

D 
d slx1P 954(x),

t)d- w2(x, t),

If

Sbi(x)+02(x) l
c
)
/ s111) 04(x),

then by Lemma 2.2, w e have

w i(x , t)-kw2(x , t)-Fg2(x, t)

and

11)4(x, t) _w4(x ,  t).

By Lemma 2.3, we obtain

Vo a 2 ( x ,  t ) d t =  co,

and hence

, t) - a 2(x , t)} dt = c x )

On the other hand, we know already
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wi (x, t)dt <+ 00

by Lemma 2.4' and therefore

w2 (x, t)dt= + 00.

Lemma 2 .6 ' L e t 01 (x ), 02 (x ) an d  04 ( x )  b e  t h e  in it ial data o f

(P 2 )  with

d inf 04(x) > qii(x)-F 02(x) 0,D  x

then the corresponding solution v2 (x , t ) satisfies

v2(x, t)dt<+ 00

f o r a l l  x.

P ro o f .  It suffices to consider pairs of the initial data (0 1 (x) d- 02 (x ),

04 ( x ) )  and
 ( - -

954(x) -  e, inf 04(x)) where c>0 is sufficiently smallD  x

d
so that — D —inx f0 4 (x )— s_0 1(x)-1-02(x).

Summing up all the results obtained above, we attain the following

theorem:

Theorem 2 .1  L e t  U (x , t)= t (u i(x, t), uz(x, t), u3(x, t), u4(x t))
be the solution in the Cauchy  problem (1.5) an d  (1.6).

Di) I f  01 (x)__ .s u p  
4=(x )>  0

x then f o r any  x,

lim u 3 (x, 0 = 0 a n d  lirn u4(x, t )=  O.
t-.00

dii) If 01(x) +$2(X) D
d sip  04(x) 04(x)>01(x)_0,
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th e n  lim  u3(x, t)*0 and urn u4(x, t)= 0.
t— t—

iii) Dd 04(x)> 01(4+ S62(x )> 0a n d  02(x) \0 ,

th e n  lirn u3(x, t ) 0a n d lim u 4 ( x , t ) *  O.

P ro o f .  i )  is nothing but i )  of Proposition 2.1. ii) is proved as

follows: first note that (P 2 )  indicates

v3 (x , t )+ v 4 (x )=  04(x)exp (—D1
o
v i (x , z)dr).

Since v i (x , r)d r <+ C X D  by Lemma 2.4', w e have

lim (v 3 (x, t )+ v 4 (x , t ) )= 4 (x) exp (—D1 - v i (x , r )d r )*O .

On thethe other hand, since

iv4(x, t)=04(x)exp (— {wi(x, w2(x, r)Idr),

w e see lim w4(x, t)=0 by virtue o f Lemma 2.5. With the aid o f iii)

and iv)iv ) o f Lemma 2.1, we get

lirn u3(x, t)*0 and lim u4(x, t)= O.
t—

Next byby Lemma 2.4' and Lemma 2.6', w e have

t ) d t<+ co and Vv2(x, t ) d t<  +00.

Hence, with the aid o f i )  and ii) o f Lemma 2.1, we can see

t ) d t<  + oo and 1:u 2 (x, t)dt<-1- co.
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On the other hand, it follows from (P1)  that

u4 (x, t)=0 4 (x )e x p (— c ii1
o
u i(x , t)dt —  d3 50 u2(x , t)dt) 5

and this shows that lirn u4 (x , t)  exists for all x  and it does not vanish.
t - -

Next note the following relation which can be derived from (P1),

(113 ) t =  d2U 1U 3 +  d3 U3U 4,

then we have

u3 (x, t)--=exp (— d4 o u i(x , r )d r)x

x it13 1
o

u2(x, r)u 4 (x , r)exp(d21
o
ui(x , 6)do")}dr,

and we see that lim u 3(x , t)  exists and does not vanish.

Rem ark. There will arise naturally the question whether or not

the following occurs:

lirn u 3(x , t)= 0 and lim u4(x, t) *  0.
t--

As for this question one can say that if

d  
 -inf 04(x)>01(x)>0 and2 ( x ) 0,D  x

then the situation above is true and that i f  02(x)  \   0 , then it never

occurs.

§ 3 .  On some semilinear elliptic equation.

In  this section w e assume the diffusible matters 01 (x ) and 02(x)
are of class L1 and the non-diffusible matter 04(x )  is of class a '.  It
will be natural from the chemical meaning.

Remember (2.5) and a similar relation for vi(x, t):
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Pt

(x,v 1 ( x ,
 t ) —

04(x)exp (—D
o
v i(x , r)dr)-931(x)+D

dt
+ 04(x) -=

o
ztvi (x , r )d r.D

I f  we assume

j
-

o vi(x , t)d tdx < -F  C O

we obtain

D (3.1) zlw— d  04(x){1 — exP( —  dw)} — 01(x)

d(3.2) tiv— 934(x){1 —  exP( —  Dv)} — 01(x)D

in the sense of distribution,
where

-

w (x )= o wi (x , t)d t

and

-

v (x )= S o v i (x , t)d t.

Thus, observing Lemma 2.1, it will be interesting to investigate
whether or not (3.1) or (3.2) has a solution for given 01 ( x )  and 04 (x).

We study the following semilinear elliptic equation,

(3.3) du =a(x)(1— e - u) —  f ( x ) ,

which is of same type as (3.1) and (3.2), with a(x) E g l , a 2 . a(x)___ 0
and f  (x )( >_ 0) E L l (Rn).

We call that is u (x )  a solution of (3.3) if and only i f  u (x )  is of
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class L l (R n )  with u ( x ) .  0  and satisfies (3.3) in  th e  sense of distribu-

tion.

Rem ark. If f ( x ) O, then it can be proved that (3.3) has only

trivial solution. Therefore we assumed that f ( x )  \ 0  in  what follows.

We consider the sequence of functions u , (x ) }  defined by the fol-

lowing equations :

(3.4) du,—  a 2 u „=a(x)(1— e - u0- 0—ceu„_ 1 — f(x) (fi= 1 , 2, • • •)

uo(x )=  O.

As for the above sequence { u , (x )} ,  we have

Proposition 3 . 1  Each u„(x ) is non-negative and of  class L l (Rn),
and moreover u „(x ) is  monotone increasing in  it.

In order to prove Proposition 3.1, we prepare some lemmas :

1 
Lemma 3 . 1  Pu t k (x )= '.f"- 1. [  

a
2+4 7r 2 ie l2 ] ,  w h e re  $12=$I.+

$i+ • • • - F Vi an d  ..F - 1  denotes the inverse Fourier transformation, then it
follows

i) k (x ) depends on only -='■ I 4+ 4+ • • - and k (x )> O

ii) k(x)E L l (R n )

110 I kl L I( R „) —

i v )  d k  < O.d ix i

We denote by K  the convolution operator with its kernel k (x ),

(Kço)(x) -=  i z n k(x — y)ço(y)d y.
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Lemma 3 .2  Let 9 (x ) be of class L l (R "), then w e have

i) cit2 411L 1(R. )

especially fo r  non-negative ço,

111 ( 9141(R) — i
c

-
r 2 1191ILAR.)

1 11) liK(13 011LARn). a 2 IIPIIL- (R")1191IL, (R.)

fo r  any  49(x) in  L - (R").

Now we are in  a position to prove Proposition 3.1.
Proof of Proposition 3.1. I f  u,_1(x) is  o f class L l (R " )  and  non-

negative, then we see that a(x)(1—e - u g- 0—a 2 u„_i is also of class L 1 (Rn)
and non-negative. We have u,(x )= (K f)(x )— K (a (1— e - u 9- 0—a 2 u,_ 1 ) (x )
and it is  of class L l (R " ) and non-negative. On the other hand, we can

easily see that u i ( x )= (K f ) ( x )  is  o f  class L ( R )  and non-negative.

This shows that each u ( x )  is of class L ( R )  and  non-negative.

Next, from (3.4) we have for ,u=1, 2, ...,

4 (u p + i — u p ) — a 2( u „ i — u p )= a (x ) ( e - u. - i — e - mi, ) — a 2(u p — u p - i ),

hence

4 (u p + i — u„) — a 2 ( u „ i — u„)=- (u„ — u„_ 1 ) ( a (x ) e -
u, A-

o ( up - u, _0 _ a 2)

for some 0 satisfying 0<0 <1. T h u s  if we see u,— then we can

obtain On the other hand, al— uo = O. This com-

pletes the proof.

I n  treating our equation, it is sufficient to consider th e  scheme

(3.4). In  fact we have

Theorem 3 .1  A  necessary  and sufficient condition in order that
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(3 .3 )  has a solution is that

w here lit i s  o f  constructed in  (3 .4 )  and  M  i s  a constan t independent

of

P ro o f . Necessity: Let u (x ) be an arb itra ly  solution o f (3 .3 ), then

we have

4vp— a2vp=— vp_i(a2— a(x)e-"+ "'u.))

for 11= 1 , 2 , .•• , where vp =  u— up  and 0 satisfies 0 < 0 < 1 .  This shows

vp > .0 , since v o =u—  u 0 0 .  Thus

for ,a= 1 , 2, •••.

Sufficiency: Assume that

then since u , (x )  is  monotone increasing in  te, we see that lirn up (x )

= u (x )  is  o f class L l (R n )  in  virtue o f Beppo Levi's theorem. I t  i s

easy to see that u (x )  satisfies (3 .3 ) as a distribution.

We give a sufficient condition for the existence of solution of (3.3),

which can be stated as

Theorem 3 .2  For some positive Q(<a 2 ), mEZ -= m{x ; a (x ) Q} <

+ 00, then there ex ists a solution u (x )  o f  (3.3).

For the proof if this theorem, we shall have to prepare some lem-
mas.

Lemma 3 .3  For any  f ixed positive num ber r,
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O m =  sup k (x )dx  <  1

tn.6 7  B a2

where the suprem um  is  tak e n  f o r  all m easurable s e ts  in  R n w ith its
m easure m B <r.

For the proof of this lemma, it will be sufficient to note Lemma 3.1.

Lemma 3 . 4  Suppose 0 ( x )  be  a  m easurable function in  R " such
that

i) O Ø(x ) a
2

ii) mEt2_ 5 =m{x; Ø(x)_>:_a 2 — S } <+ oc

f o r som e S  w ith 0 < S  <a 2 . T hen w e have

sup k (x —  y )Ø (y )d  y  <1 .Rn

P ro o f . W e note first

(K 0 )(x )-=  4 u 2 _ ,s k (x œ  y )Ø (y )dy + k(x )0 ( y ) d y .

Hence

(KO) (x )  a 2 k  (x  —  y )dy + (a 2
 —  S) k(x—  y)dy

E D -s En -Eœz_s

= (a 2
 —  S)/ a 2k ( x —  y ) d y

(a 2
 —  S)/a2 + k(y)d y.

x-E'az-s

Thus by virtue of Lemma 3.3, we have

sup(K0)(x)=---  (a2 — S )/ S sup k (y )d y  < 1 .
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Lemma 3 .5  Put w„-=1.1„— u„_i f or ,a=1 ,  2, • • then w , are bound-

ed, i f I-

-  
n

'  1 + 1
 2

P ro o f .  Remember z i,=- K f + K ( a 2 u ,_ i) — k a ( x ) ( 1 — e  u "- 0 ) ,  then

we have that,

w1. -=a 2 K w 1-1-K (a(x )(e - u , '- ' —e - "A-2)),

hence we have

0 <iv 1.< a 2 Kw1._ i

and that 0 < w „ < a 2 ( " - 1 ) Kly. Since F o u rie r im age  o f a 2 ( 1 - 1 ) K7 f  is

1 oz-)integrable when /1 > [   n  + 1 3  ce i K  is bounded and so are  w„.
—  2

Lemma 3 .6  Under th e  assum ption o n  a ( x )  i n  Theorem  3.2, pu t

sup w ( x ) =A „ f o r ,Ii. .L n
2 1 + 1 ,  th en  ,1, + i _c21  w here c  is  a  con-

stant w ith  0 < c < 1 .

P ro o f .  Since wp =1((a 2 w ,_ i+a(x )(e - u , --1 — Cu. - 0), we obtain

w„,____K ((a 2 — a(x)e - uP- 1 )w,_ 1 ).

Thus, when zt__4   42   1+1  w e have

<A „K (a z  — a(x)e - uA) A ,K (a 2 — a(x )e - u),

where u=lim  u „. O n  the other hand, from

(3.5) a(x)(1— cui ) dx
R

f (x )d x ,
R . .

it fo llow s that a(x )(1— e - u ) is  o f  class L l (R n )  by virtue o f  Beppo

Levi's lemma.
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Now consider the following two sets Pk= Ix ; u 0 }  and

E r r . ' =  x ; a (x )e '  T ,  < T<a 2 1. We have

(1— e - N )1 „ a(x )dx  < +
E N

by (3.5). Since a(x )  is not integrable in any measurable set of infinite
measure from the assumption o f Theorem 3 .2 , we see mEk < + co for
v N > 0 . I f  x  belongs to CE"k n.E7,e , then T  a ( x ) e _  (x)e - N

Thus choosing T  and N  such as eN  T  <Q, we may assume

in(CE7, nE (
7i.e- ') <  + 00

by the assumption on a(x ) and then we see

m E r' <m E ik + nCET,)< +00

from E (
2!' " =(EI,e - u  (14 ) U ( E ;, ' n C E .

1
1,4r ). Therefore, if we replace 0(x )

and S  in Lemma 3.4 by a 2
 —  a(x )e  ' and T  respectively, we have, for

wi„. 1 < cA , (0 < c < 1)

and hence c
As an immediate consequence of Lemma 3.6, we obtain,

Proposition 3 .2  The sequence It c„}  defined by (3.3) satisfies

C31
up (x). < A +  E KSf

s=1

for p=.1, 2, •••, where A  is a positive constant.

Now we can prove Theorem 3.2 as follows;
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Proof o f  Theorem 3 .2 . Consider the set E = {x ;
s =1

B }  with an  arbitrary positive constant B. Since g ( x )  belongs to

L i (R " ) ,  it follows

m CEI .3 +  0 0 .

I f  y  belongs to Et (10EZ, then u , (y )< A + B  and a (x ) Q .  Hence, if

y  belongs to E tn C E Z , it follows

(3.6) a2 u,(y)+ a(x)(e - "P- 1) up (y )+Q (e - u. - 0

<   1   { a 2( A +  B ) + Q ( e - A - B  1)), u , ( y ) .
A + B

Remember again,

(3.7) u p (x )= K f  K(a z up _ i  a(x) (e - u #- 1 —  1))

< K f +  K (a 2 u ,+  a (x )(e - u. —  1)).

Consider the second term in (3.6),

(3.8) K(a2u„-P a(x)(e - u,' —1))

g ak(x — y)Ect 2 u ,(y )+  a (y )(e - u .-1 )1 d y +

+5 

R .-  (E13 n C  
k(x— y)Ect 2 u ,(y )d -a (y )(e - u. —1)] d y

1 
 la

2

(A + B )+ Q (e ' k (x—  y )u ,(y )dy+
A + B EY,ncEZ

+ R4_(Ei3ncE) k(x — y)ra
2 u ,(y )+ (e- u fi — 1)1d y.

Observing (3 .7 ) and (3 .8 ), we have
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u „(x)d
Elnc E

x
;

<  1  
a

21   1.

f (x )dx +  
a

2
( A +  B )  

{(A+ B )+ Q(e -  A - 8  — 1)} 
E l i n C

 u ( x ) d x
R .

ug(x)dx
R "-(4 n C "

and hence we have

(39 ) Q(1— e - A - B ). 
a 2 ( A +  B )  ) 4 , - N c E au

'
( x ) d x   f ( x ) d x

R .

+1 -(E re ) u p(x)dx.

On the other hand, since

(3.10) tn{Rn - (E nCEZ)} m(C.EfNEZ)< +

it follows

R-(E3,--)cE() u„dx <Am(CELU EZ)+ g (x )d x
" 1 4 R .

from Proposition 3.2. Together w ith (3.9) and (3 .10), w e have

u , (x )d x  M  (A , B, Q, f ),
R .

where M  i s  a constant independent o f  p. Because o f Theorem 3.1,
Theorem 3.2 is proved.

As for the uniqueness of the solution, w e have

Theorem  3 .3  I f  t h e  problem  (3 .3 )  h a s  a so lu t io n , th e n  i t  is
determined uniquely.

P ro o f . Let v (x )  be an arbitrary solution of (3 .3 ) and u (x )  be the

solution obtained as a limit function o f u ,( x )  in our scheme (3.4), then
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we have first

(3.11) 0  w K (a 2 w)

with w =- v— u. In  fact, since we can easily v — u, 0 by the same

technique used in  th e  proof of Proposition 3.1, w e  have immediately

w > O. Next we note that w satisfies

(3.12) zlw —  a 2 w -= (a (x)e - "w  — a z )w

where 0 satisfies 0 < 0  < 1 .  Thus we have

(3.13) w= K ((a 2
—  a (x )e  '4 -

9 w )w )_K (a 2 w).

From (3.11) it follows that for any positive integer k,

(3.14) 0 < w  < a 2 k K k ( w ) .

if  we note

) k
a

2

Cud," I a 2 k K k ( w ) l -
(  

a2+47r216.12

then, for sufficiently large k, we have

(3.15) a2kKk(w)1R. I g t a 2 k K i9w)] i clE

<  r  a
2 i k

— R1_ a2 + 4 7 r2 Iel 2 -I de• x Hwhi.

Hence we obtain

2 1
(3.16) 0 <w_<. n [ aa 2± 47.4.21$12 j kR a  x  * h i

and letting k—  00, w e see  w  0  by  th e  well-known Lebegue theorem.

This shows that our problem (3.3) can not have any solution more
than one.

As for the non-existence of solution we have the following ;
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Theorem 3 .4  L et a (x ) (0 _ a (x )._ < a 2 )  be o f  class L 1( R )  and

then there exists no solution of  (3.3).

P roo f. Using

u ,= K f

we have by Lemma 3.2

(3.17) u ,(x )d x —
R. 

u
a 21 (x )d x —   1 ( f ( x ) — a ( x ) ) d x +

R .

1 
a 2  1R ,

Hence

(3.18) (u , (x )— u , - i (x ) )d x >   a
1

2a ( x ) e - al-ldx .Rn — R .

Suppose there exists a solution of (3.3), then it follows

R" 
(u ,(x )—  u ,_1 (x ))dx -0 as

because u (x )d x  has to converge as ,a--+00. Thus then it follows
R .

(3.19)
R  

a(x)e-udx
.

with u(x)=1im u,(x).

If m (supp . a (x ))<O , then  by (3 .18 ) u ( x ) =  0 0  on  supp. a(x)
except a  null set and this contradicts to that u (x )  is of class L i (Rn).
I f  m(supp. a(x))=0, by (3.17) we have

fi 
a2
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and then

1 I U p ' 1 L 1(R n ) —4  C ° as ,a—> 00

since 11f11 LI(R.) *  O. Thus accord ing to Theorem  3 .1 , there can not

exist any solution of (3.3).
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