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Introduction

The notion of normal operators acting into harmonic functions on
a boundary neighborhood of an open Riemann surface was introduced by
L. Sario, in order to construct harmonic functions with a finite number
of given singularities and prescribed modes of behavior near the ideal
boundary. Among those functions, especially as for the principal func-
tions constructed by the principal operators, many interesting properties
were proved.

On a compact bordered surface, for a finite number of given singu-
larities s with vanishing flux, L,-principal function is characterized as
the uniquely determined function with the s whose normal derivative
along the border vanishes identically, and (P)L,-principal function with
the s, denoting by P a regular partition of the boundary, is characteriz-
ed as the uniquely determined function which is constant on each part
of the P and whose flux over each part of the P vanishes. The prob-
lems characterizing principal functions on arbitrary Riemann surfaces by
these boundary behaviors under compactifications have been investigated
by several authors, and cited in Sario-Oikawa [9] as open problems.
In the present paper we use the notion of generalized normal deriva-
tives to study the boundary properties of principal functions under com-
pactifications.
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A generalized normal derivative was first defined by Doob [3]
on the Martin compactification, for a function which is identical, except
for some compact set, with sum of a BLD harmonic function and a
potential, as a function of class L*(4y) which contains all square inte-
grable functions with respect to the harmonic measure on the Martin
boundary 4. Constantinescu-Cornea [ 2] defined a generalized normal
derivative as a signed measure on the Kuramochi boundary. Maeda
[[5] defined it for functions harmonic and Dirichlet integrable in bound-
ary neighborhoods on resolutive compactifications. We use here the
definitions given by Constantinescu-Cornea [ 2] and Maeda [5].

In §1, we consider HM-functions which form an important subspace
of the space of HD-functions. It has been known that the set of
HD-functions which have generalized normal derivatives is dense in the
HD by Dirichlet norms, identifying functions whose differences are con-
stant. We shall show that the set of HM-functions which have gene-
ralized normal derivatives is also dense in the subspace HM (Theorem
1). In §2 we generalize the definition of generalized normal deriva-
tives given by Constantinescu-Cornea [2]] to functions harmonic and
Dirichlet integrable in some boundary neighborhood. @ We shall study
about (P)L,-principal functions only for restricted case, using the results
obtained in §1. In §3 we shall concern Lg-principal functions. We
characterize there Ly-principal functions in terms of generalized normal
derivatives and obtain some related results including another formulation
of the operator Ly (Theorem 6).

The author expreses her hearty thanks to Professors Y. Kusunoki

and K. Oikawa for their kind remarks in this research.

§1 Generalized normal derivatives of HM-functions

1. Throughout the present paper, we assume that a Riemann sur-
face R is hyperbolic, because all results are trivial in the case of para-
bolic Riemann surface, and a compactification R* is the Kuramochi
compactification of R. We denote by 4 the Kuramochi boundary
R*—R. Let us denote by D(R) the class of Dirichlet functions on R,



Generalized normal derivatives of principal functions 35

by HD(R) the class of harmonic functions in D(R), and by KD(R) the
subclass of HD(R) consisting of functions whose conjugates are semi-
exact on R. We identify the functions in D(R) whose differences are
quasi-everywhere constant on R. Then D(R) is a Hilbert space with
inner products given by Dirichlet integrals. We have an orthogonal

decomposition
Y] D(R)=HD(R)®CTF(R),

where C5(R) denotes a class of infinitely differentiable functions with
compact supports in R, and C3(R) is the closure of C35(R). We denote
by HM(R) the orthogonal complement of KD(R) in HD(R), that is

HD(R)=KD(R)®D HM(R).

Using the notations in Ahlfors-Sario [17] for classes of differentials, a
function u is of class HM(R) if and only if it is real and du belongs
to I'pm, and u is of class KD(R) if and only if it is real and du be-
longs to Iy NI},

According to Constantinescu-Cornea [ 2], we say that a function
u € HD(R) has a generalized normal derivative p on 4 if there is a
signed measure # on 4 satisfying the following condition; for any func-
tion h € D(R) we have

(2) <du, dh>R=SSRdu/\*dh:g4hdﬂ,

denoting by the same h the quasi-continuous extension of A to R*.
Let 9t be the class of functions of HD(R) which have generalized nor-
mal derivatives on 4. Then N is dense in HD(R) ([2]), but we don’t
know whether NKD(R) is dense in KD(R).

2. We shall now take up the space HM(R). Let {R,}, be a
canonical exhaustion of R (Ahlfors-Sario [1]), and {r;}. a basis to all
dividing cycles on R. For any fixed 7., we choose n so large that R,

contains 7;. Then R, is divided by 7, into two parts R’ and R,
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and the boundary OR, of R, is also divided into I'{’’=0RNOR, and
Ir'=0R»N0R,. We take a harmonic function u{® on R, which is
lon 'Y and 0 on I"{?. The limit function u; of {u{®} as n tends
to oo is an element of HD(R), and the HM(R) is generated by those
up(k=1, 2, ...) (Ahlfors-Sario [1] and Kusunoki [4]).

Theorem 1. The subset WMNHM(R) is dense in HM(R).

Proof. In order to prove this Theorem, it is sufficient to show
that each u, has a generalized normal derivative on 4.

We choose a canonical exhaustion {R,} so that each component of
OR,, and therefore each component of ') and I'\?, is piecewise
smooth. Hereafter we pick up one 7;, and denote it by 7y and the cor-
responding u; by u for simplicity. For y CR, we introduce measures

U, on R* as follows:

ou™
* 7 (n) _ _
3) AlUy= du on

0 on R*—9R,,

ds on OR,

where derivatives are construed as inner normal derivatives relative to

R,. Observing

0=<du®, d1>p = Srm*du(”)+g

* g..(n)
p du

we get that
— (m
(. tdml=2]  *au.
Therefore, by the facts that
[[du®™||} = <du®, du(”)>1en=gr$})*du(”)

and
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lim [|du®||%, =l|dull% <o,
N—oco

we obtain that the sequence of the total variations of signed measures
{#»} are uniformly bounded. Thus, there exists a subsequence {#,} of
{#,} which converges to a measure 4, and the support of yx is con-
tained in 4.

We show that the sequence {u,} converges to the 4. For any sub-
sequence of {x,}, there exists a convergent subsequence {4, }. Let the

limit of {/,t,,k} be /i, and consider the following class of functions on 4;

m={f on 4| SA fd,a=SAfd/Z}.

The 9t is a monotone class. For any function h € D(R)NC(R*), where
C(R*) denotes the class of functions which are continuous on R*, we

have

lim < du®, dh >an=1imSR 3 du,,,=$ b d
FRoN) & 4

j—vuc 00

and

lim < du ™), dh>R”=umSR.h dttn, = SAh da.
k—roo

k—oo

On the other hand, for any function A € D(R), we have

<du®, dh> g, =  h*du
and

lim <du™, dh>r, = <du, dh> k.

N—oo

Therefore it holds that
(4) g h d,u=S hdi
4 4

for h € D(R)NC(R*). We denote by Cp(d4) the class of restrictions of
functions € D(R)NC(R*) to 4. We obtain by (4) that the monotone
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hull of Cp(4) is contained in M. The Cp(d4) is dense in C(4) in the
uniform convergence topology, where C(4) denotes the class of continu-
ous functions on 4, and therefore C(4) is contained in the monotone
hull of Cp(4). Hence, any continuous function f on 4 belongs to I,
that is

roneS g

and we conclude that the sequence of measures {x,} converges to the
# which is a measure on 4.
In order to assert that this x# is a generalized normal derviative of
the u, we should show that (2) holds for any function of class D(R).
If h belongs to D(R)NC(R*), (2) is immediate, since
<du, dh>r=lim<du", dh>g,

l—oc0

N—oo

=limS h d,u,,ZS hdpu.
R* 4

Assume that A€ D(R)—D(R)NC(R*). Then, for any positive
number & we can choose an open set G with Kuramochi capacity less
than ¢ so that the restriciton of h to R*—G is continuous. The Kura-

mochi capacity of an open set G is the number
(5) C(G)=supC(K)
KCG

where K are compact sets contained in G, and the Kuramochi capacity

of a compact set K is the number

(6) C(K)=sup »(K)

where v are the canonical measures such that 5'<(l1. (Constantinescu-

Cornea [27]). Here p* denotes the potential

ﬁ“(a)=S§a dv
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using the function g, defined in p. 159 of [2]. We fix a point a €
R,—G, then the harmonic measure w®» of R, with respect to a as well
as the harmonic measure w® 2 =@, on 4 is canonical (cf. [2]). We

denote by gZ» the Green function of R, with a pole at a, and let
sy =max(0, #,), #;=max(0, — u,).

Then, we have

Rn

Ea__ s =2ndwk»

0
) du,< 5
n

because 0< u< g®» in some neighborhood of I"{? in R,, and
ofr o

On the other hand, it holds that
0= gdot

=(8)r-7.(2)=(§)r %, (0).

As for notations @&, (g;)z-%, and the last equation, refer to pages
158, 164 and 166 of [2]. Therefore, if we put

An=sup (gs)r-%,(a), and A=sup d,,
beEK n

the number A is finite, and we have
(® BB B L1,
Hence, by (5), (6) and (8) we get
wE(K)<1e(K)< e
and by (7) we get

9) 1,(6) < 21 ke
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for any natural number n. For ux; we get the same inequality
9" 4 (G)< 2mhe

because 0<{1—u™<g¥&" in a neighbouhood of I'{’ in R,. By (9)
and (9’), we readily obtain

<du, dh>g=lim <du("), dh>R"

N—roo

=1im§ hd,a,,:S hdp.
R* R*

N—oo

(For details of the proof, see the note at the end of the paper).

3. Let P be a regular partition of the ideal boundary. We denote
by I and Q the identity partition and the canonical partition respective-
ly. We denote by HMp(R) the class of functions which is spanned by
the functions up, corresponding to P-dividing cycles yp,. The fact that
up, has a generalized normal derivative on 4 is proved quite analogous-

ly as for u;. Therefore we get

Corollary Y. If the number of parts of partition P is finite, any
Sunction of HMp(R) has a generalized normal derivative on 4. In par-
ticular, if the number of boundary components of R is finite, any func-

tion of HM(R) has a generalized normal derivative on Ad.

4. Maeda [5] introduced the notions of D-normal compactifications
and regular compactifications. We say that a resolutive compactification
is D-normal if all restrictions to the boundary of the extensions of
functions € HD(R) are resolutive, and regular if the Cp(d4’) is dense
in the C(4’) in the uniform convergence topology, where 4’ denote the
boundary on the compactification. Many familiar compactifications in-
cluding those of Kuramochi, Martin, Royden and Wiener are D-normal,

and those of Kuramochi and Royden are regular ([5]). We denote by
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R¥ a D-normal compactification and by 4p the boundary on R}. Maeda
[5] defined a generalized normal derivative on any resolutive compactifi-
cation for a function f which is harmonic and Dirichlet integrable in
R—K, where K is a compact set with smooth boundary. We say that
a function ¢ on dp is a generalized normal derivative of f in the sense
of Maeda [5], if for a restriction ¢ to the boundary 4p on a D-normal
compactification of any function € HD(R), we have

(10) <df, dv¢,K>R-K=—S¢¢’d(Da,

where vy x is the function which is identically 0 on K and harmonic
on R—K with boundary value ¢ on 4’ and 0 on 0K whenever ¢ is
resolutive, and @¢ is of class L'(w,).

In the proof of Theorem 1, we have the limit # of the sequence
{#,} on any regular compactification. By (7) and the same inequality
for positive part u; of u, for any n, we easily get that the x4 is ab-

solutely continuous with respect to the w,, and we have
du=—g¢do,

with |@|<(27. Hence, if the compactification is D-normal we have ¢¢ €
LY(w,) for any ¢ which is a restriction to 4p of a function € HD(R),
and it is readily verified that

<du, dv¢,K>R_K=—S¢¢dwa

holds for any ¢.

Thus, from the proof of Theorem 1, we reach to

Corollary 2. On the regular and D-normal compactification, the
set of functions of class HM(R) which have generalized normal deriva-
tives on dp in the semse of Maeda [5] is dense in HM(R). If the
number of parts of regular partition P is finite, every functions of class

HMp(R) have generalized normal derivatives on dp.
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§2 Generalized normal derivatives of (P)L;-principal functions

S. Let £ be a canonical region with smooth boundary on R, and
{R,} a canonical exhaustion such that 2 CR;. The normal operators
L, and (P)L; on R,— 2 are defined as follows. For a given real func-
tion f of class C' on 92 we construct u{” =L,f as the harmonic func-
tion in R,— 2 which has the boundary value f on 90£ and whose nor-
mal derivative vanishes on OR,. We construct u@ =(P)L,f as the
harmonic function in R,— 2 which has the boundary value f on 02,
and is constant on each part of P and has a vanishing flux over each
part of P separately. Here P is of course the partition of R, induced
by the original partition P of the ideal boundary of R. The sequences
of functions {u{"}, and {u{¥}, converge in norm sense to the harmonic
functions uo and up in R— 2 respectively. We define that uo=Lof
and up=(P)L;f in R—%. The operators L, and (P)L; are normal
operators with respect to R—2. Let E be a finite point set on £ and
let s be given singularities at the points of E with vanishing flux.
Then, there exist unique functions f, and fp on R with the singu-
larities s which are constructed by the operators L, and (P)L; and are
called as an Lg-principal function and a (P)L,-principal function respec-
tively (Ahlfors-Sario [1]). On each R,, there are the Lg-principal func-

tion f{ and (P)L;-principal function ¥ with the singularities s.

Lemma 1. (Rodin-Sario [7]) Suitably normalized sequences {f ("},

and {f@}, converge to fo and fp uniformly on any compact set on R.

Lemma 2. (Watanabe [10]) The fo and fp are approximated in
norm by {f"}n and {f§'}n respectively, that is, lim||d( fo—fi)||z,=0
N—oo
and lim||d( fr—f £)]l2,=0.

6. Nakai-Sario [ 6] proved that an (I)L;-principal function can be

extended finitely continuously to the Royden compactification so that
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the extension is almost everywhere constant, and this property and the
vanishing of flux over the ideal boundary characterize (I)L;-principal
functions. More generally, combining parts of Theorems 1 and 2 in
Watanabe [ 107] we get

Lemma 3. If the number of parts of regular partition P is finite,
(P)Ly-principal functions, which are harmonic except for a finite number
of singularities with vanishing flux, are characterized by the following
conditions:

i) they ave Dirichlet integrable in boundary neighborhoods and have
vanishing fluxes over every P-dividing cycles, and

ii) they can be extended almost everywhere (or quasi-everywhere)
continuously to the compactifications so that the extensions are a.e. (or
g.e.) constant on each part of the P. Here the compactifications may be
those of Kuramochi, Martin, Royden, Wiener or -compactifications de-

noting by Q any sublattice of HP which contains constant.

Suppose that at a finite number of points a; € R with local para-

meters {;, there are given singularities s of the form
Re X b'¢;*+c’ log|l,
orm

where the ¢ are real and subject to the condition >.¢P?=0. Then,

there exists a unique (I)L;-principal function f; with ;he s. We sepa-
rate the s into two parts: 1) the s; consisting of all terms of the form
Re} 15’7, and 2) the s, consisting of all logarithmic terms of the s.
Then, it is readily seen by Lemma 3 the following

Lemma 4. The (I)Li-principal function fr with the singularities
$ 1S the sum

fi=f11+ fr2+constant,

where fr denote the (I)Li-principal functions with the singularities
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s(k=1,2). And the fi is the sum
fr2=2c"" g;+ constant,
Jj

where g; denote the Green functions on R with poles at a;.

7. Now we generalize the definition of generalized normal
derivatives on the Kuramochi boundary given by Constantinescu-Cornea
[2] for functions of class HD(R), to any function which is harmonic
and Dirichlet integrable in a boundary neighborhood. For a boundary
neighborhood U, we denote by HD(U) the class of functions which are

harmonic and Dirichlet integrable on U.

Definition. For a function f of HD(U), we say that f has a
generalized normal derivative p on 4, if there exists a signed measure

4 satisfying
(1) <df, dh>u=| } dn+( wrar

for any h of D(R).

It is readily seen that this definition is independent of the choice
of U, and for any function of class HD(R), coincides with the original

definition.

Lemma 5. The Green function g; has a generalized normal deriva-

tive —2mw,, on 4.

This Lemma was established as Proposition 1 in Maeda [5] accord-
ing to his definition of generalized normal derivatives. We give here

another proof which is analogous to that of Theorem 1.

Proof. The Green function g; is a limit of sequence of Green
functions {g‘”},, where g/ denote the Green functions on R, with

poles at a;. The {g}, converges uniformly on any compact set and
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lim||d(g;— g")|lr,=0. We define non-positive measures x;,,= — 270X
gs follows:
og
* (n)
dptjn= d g} o ds on OR,
0 on R*—0R,.

Because of

) m
S 0 ds=S 08 ds

arR, On 22 0On

and uniform convergence of {gi"}, on 02, we get that the measures
Y;,» are uniformly bounded, and therefore there is a measure g;=—2rw, ’
on 4 which is a limit of the sequence {#j.},. Further, for any A€
D(R), we can easily show that

<dg; dh>p_g=lim<dg®, dh>pr 3

=lim * (n) % ()
qum(gazenh dg; Saah dg; )
— * (n)
= 271'S4h dwa’+Saah dg?.

This implies that the —27mw,, is a generalized normal derivative on 4

of the gj.

8. For a generalized normal derivative # of a function of HD(R),

we have always #(d4)=0, because
<du, d1>R=de,a=0.

It should be remarked that for a generalized normal derivative # of a
function f€ HD(U), we do not necessarily have u#(4)=0, but we mere-
ly assert that ,a(A)=—SaU*df.

Combining Lemmas 4 and 5, we obtain

Theorem 2. An (I)L;-principal function fr with only logarithmic
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singularities has a generalized normal derivative pr on 4 such that
ur(4)=0.

Proof. The u; is given as a sum —ZﬂZC(j)waj and also as a
limit of Zc(j)ﬂj'n as n—oo, using the notatijons in above Lemmas.
The f; is ; limit of {f{"},, where f§ are the (I)L;-principal func-
tions on R, with the same singularities as the f; and the measures

Zc“’,a,-,,, are equal to the measures 4, defined as
j

*dfy on OR,
dﬂ],nz

on R*—0R,.

We have
*) — *df™ =0
A RO=  sdf;

by definition, and therefore
/ll(A):ﬂl(R*):S dﬂ1=limg At
R* N—oo ) R*
=lim,a1,,,(R*)=0.
N—o0

9. By Lemmas 1, 2 in Watanabe [[10] and the definition of (P)I jy,

we can easily verify

Lemma 6. For any regular partition P of the ideal boundary, f

is a (P)Li-principal function if and only if it is represented as

f=frtup,

where fr is an (I)Li-principal function and dup is an element of
(P)I 4 such that

S *df1=—S *dup
P P
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for any P-dividing cycle 7p.

Theorem 3. Suppose that a regular partition P consists of only
a finite number of parts. Then, a (P)Li-principal function fp with only
logarithmic singularities has a generalized normal derivative pup on 4,
and pp(4Y=0 for any part 4'“ of the partition P.

Proof. The first assertion of the Theorem is gained by Theorem
2, Lemma 6 and Corollary 1. In order to show that up(4) =0, we
take the partition P, of each 0R, which is induced by the original P.
Observing the proofs of Corollary 1 and Theorem 2, and using Lemmas
1, 2 and 6, we readily know that the yp is a limit of measures {#pn}n,
where

*dfg? on OR,
dﬂP,n -

on R*—0R,.

Of course f§’ denotes the (P)L;-principal function on R, with the

same singularities as the fp. We consider the restriction of xp to 4®

and denote it by u%’. We denote by 7 the part of P, which bounds

the set G\ CR—R, carrying 4 as a part of ideal boundary. Let
(a) (a)

Up., be the restriction of up, to 7,”’. If n is so large that R, contains

a basis of all P-dividing cycles in R, we have
HERS) = U=

={ wrarp=o.

The u§"” is clearly a limit of {u§',},, and therefore we get

1p(49) = p(R¥)=lim g, (R¥) =O.

10. It is evident that Theorems 2 and 3 are valid for generalized
normal derivatives in the sense of Maeda [5] on the regular and

D-normal compactification, because of Corollary 2 and the fact that
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Lemma 5 holds in the sense of Maeda [5].

§3 Lo-principal functions

11. In this section we shall study about Lg-principal functions.
The following Theorem was essentially established in Sario-Oikawa [9]
without using the words of generalized normal derivatives. We state it

here in terms of generalized normal derivatives.

Theorem 4. A function f which is harmonic except for a finite
number of singularities and Dirichlet integrable in a boundary neighbor-
hood is an Lo-principal function if and only if f has a generalized nor-
mal derivative on 4 which vanishes identically.

Proof. Let f, be an Lg-principal function on R with singularities
s. We take a canonical region £ carrying all the s, and a canonical
exhaustion {R,} with smooth boundaries. Then, there are L,-principal
functions f§” on R, with the singularities s. For any h€ D(R), we

have

<dfy, dh>Rn‘§:§aR”h*df8m_Sagh*dfgm

because *df{"=0 along R, by definition. Further we have

lim < dff,”), dh>R"_§= <df0, dh>r_3

N—oo

by Lemma 2, and

3 £ 3 (”)___. %
thagh dfe Sagh dfo

N—>o0

by Lemma 1. Therefore we get

(12) <dfe, db>ng=={ W*dfe.
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This implies that f, has a generalized normal derivative on 4 which
vanishes identically.

Conversely, suppose that a harmonic function f except for a finite
number of singularities is Dirichlet integrable in a boundary neighor-
hood and has a generalized normal derivative # on 4 such that x=0.
We construct an Lo-principal function f, with the same singularities as
f- The fo, has a generalized normal derivative #,=0. Consider the
function f— fo, which is of class HD(R). The f—f; has a generalized
normal derivative u#— #, which vanishes identically. For any A€ D(R),

we have

<d(f—fo), dh>R:SAh d(pt— 110) =0,
and if we take the f—f, as h
ld(f— follr=0

which means f— f,=constant on R, or the f is an L,-principal func-

tion.

Corollary 3. If a function u€ HD(R) has a generalized normal
derivative u on 4, there exists a harmonic function f whose generalized
normal derivative is the same p and which has a finite number of given
singularities with vanishing flux and is Dirichlet integrable in a bounda-
ry neiborhood. Conversely, if a function [ harmonic except for a finite
number of singularities with vanishing flux and Dirichlet integrable in
a boundary mneighborhood has a generalized normal derivative y on 4,
there exists a function u € HD(R) with the generalized normal derivative
s on 4. Moreover, the u is of class KD(R) if and only if a flux of

f over any dividing cycle vanishes.

Proof. Let s be given singularities with vanishing flux and f; the

Loy-principal function with the s. Then, the following function f

fotu=f
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has the same generalized normal derivative as the u by Theorem 4.
The remaining parts of the Corollary follows also immediately from

Theorem 4.

12, By the same reasoning of this Corollary, we get the structure

of L,-principal functions from Theorem 2.

Theorem 5. A function f which is harmonic except for a finite
number of logarithmic singularities with vanishing flux and Dirichlet
integrable in a boundary neighborhood is an Lo-principal function, if and

only if it is represented as

f=f1+ua

where fr denotes the (I)L,-principal function with the same singularities
as the f, and u is a function € HD(R) with generalized normal deriva-

tive — 5. Here we denote by y; the generalized normal derivative of the fi.

13. The function v, g in the equation (10) is a Dirichlet function,
and the equation (12) shows that

(13) <dfo, dvg, x> r-3=0,

that is, the Lo-principal function f, has a generalized normal derivative
¢=0 on 4p in the sense of Maeda [5]. Conversely, from the equation
(13) we obtain (12). Indeed, any h € D(R) has a decomposition

h=u+ ps,
where u; € HD(R) and p,€CF(R) by (1), and
up=vg5+vs on R—£2,

where ¢ is a restriction of u, to 4p and v, denotes a harmonic function
on R— 2 with boundary value u, on 02 and 0 on dp. Then we have
<df0, dh>R—.§
= <dfo, dvy,g>r-a+ <dfo, dvp>r_ g+ <dfo, dpr>r-3
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- SB.Q Uh*dfo N Saﬂph*dfo - Sag h*dfo

Therefore Theorem 4, 5 and Corollary 3 are valid for generalized nor-
mal derivatives on 4p in the sense of Maeda [5].
Maeda [ 5] proved that the function

a 1
¢ )—_—W(ga— ga0)+ Ug

with a fixed a9 € R, has a generalized normal derivative zero in his
sense. Here u, denotes the reproducing function in the HD(R), that

is
<dugz du>=ul(a)—u(ay)

for any u € HD(R). Therefore we get that the »® is an Lg-principal

function f§* with the logarithmic poles —l—log— at a and _1

Iq 2r

log—— at a,.

ICol

Corollary 4. (Maeda [5]) The {f{”|a € R}-compactification co-
incides with the Kuramochi compactification.

14. Let A be a function of D(R) and K be a non-polar compact
set on R. Then, there exists a uniquely determined function A%¥ of

class D(R) which is harmonic on R—K and is characterized as

(14) ||dh¥||=inf {||dk’|| | A’ =h quasi-everywhere on K}.
For any compact set K’ DK we have
(15) h¥ =(R*)E = (R*")¥

(Constantinescu-Cornea [2]]).

Lemma 7. (Maeda [5]) A function f& HD(R—K,) where K, is
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a compact set on R, has a generalized normal derivative zero on dp, if
and only if f=Ff K for some non-polar compact set K containing K, in

its interior.

Let f, be an Lg-principal function and £ be a canonical region
carrying all singularities of the f;. Let hys, o be the Dirichlet function
which is equal to the f; on R—£ and is harmonic on &£ with bounda-
ry value f, on 02. Then, we get h¥ o=hs o for any compact set K
containing £ by Theorem 4 and Lemma 7. Because the hﬁ, @ 1s harmo-

nic on R—2=R— £, it is sufficient to assume that K merely contains

2.

Corollary 5. Any Lo-principal function can be continuously ex-

tended to the Kuramochi compactification.

15. Let £ be a canonical region and f a real function of class Ct
on 02. The principal operator L, associates to f a harmonic function
Lyf on R— 2. We consider the function

H? on @
vf= _
Lof on R—2.

Here H{ denotes the Dirichlet solution in £ to the boundary value f
on 08. We can readily verify that the vy has a generalized normal
derivative zero on 4p, and therefore we have vff =wvy for any compact
set K containing £ by Lemma 7. Considering (14) and (15), we ob-

tain the following characterization of the operator L.

Theorem 6. For a given real function f of class C' on 08, the
Sfunction Lof on R— 8 is characterized by the following property; Lof
is the function which minimizes Dirichlet integral on R— 2 among those

harmonic functions whose boundary value is f on 0%.
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Note. Consider the function
h,,=min(m, h*)—min(m, h")

for any natural number m. Then #h, are also Dirichlet functions on R, and
ldh,| <|dh|. By (9) and (9’) we obtain

<du, dh,>p=lim<du™, dh,>p,

= lim (Sm-ch"l dptn +SG b dﬂ")

=\ h

for any h,. These convergences are uniform with respect to m. Indeed, we have

— = (n) _
§,.tm dre =S B dpen | = 1 <A@ =), A > ]

Sld(u™ —u)| « |dhn|
<ld(u™ —u)| - |dh]|.

The h is summable with respect to the g which is seen by (7), and therefore

On the other hand, we have

lim SR* R dptn =SR* hdp,.

m oo

Thus we get

<du, dh>x=lim{ d,l,.=SR>_ hd.

R
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