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Introduction

The notion of normal operators acting into harmonic functions on
a boundary neighborhood of an open Riemann surface was introduced by
L . Sario, in order to construct harmonic functions with a  finite number
of given singularities and prescribed modes of behavior near the ideal
boundary. Among those functions, especially as for the principal func-
tions constructed by the principal operators, many interesting properties

were proved.

On a compact bordered surface, for a finite number of given singu-
larities s  w ith vanishing flux, L o -principal function is characterized as
the uniquely determ ined function with the s  whose normal derivative
along the border vanishes identically, and (P)L i -principal function with
the s ,  denoting by P  a regular partition of the boundary, is characteriz-
ed as the uniquely determined function which is constant on each part
of the P  and whose flux over each part of the P  v an ish es . The prob-
lems characterizing principal functions on arbitrary Riemann surfaces by
these boundary behaviors under compactifications have been investigated
by several authors, and c ited  in Sario-Oikawa [ 9 ]  as open problems.
In the present paper w e use the notion of generalized normal deriva-
tives to study the boundary properties of principal functions under corn -
pactifications.
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A  generalized normal derivative  w as first d efin ed  b y  Doob [3]
on the Martin compactification, for a function which is identical, except
fo r  some compact set, w ith sum  o f a  B L D  harmonic function and a

potential, as a function o f class L*(4m ) which contains all square inte-
grable functions with respect to  the harmonic measure on the Martin

boundary 4m• Constantinescu-Cornea [2] defined a  generalized normal

derivative a s  a  signed m easure on  the Kuramochi boundary. M a e d a

[ 51 defined it for functions harmonic and Dirichlet integrable in bound-
ary neighborhoods o n  resolutive compactifications. W e  use h ere  the

definitions given by Constantinescu-Cornea [2] and Maeda [51.
In  § 1, we consider HM-functions which form an important subspace

o f th e  space o f  HD-functions. I t  h a s  b e e n  k n o w n  th a t  the set of

HD-functions which have generalized normal derivatives is dense in the

H D b y  Dirichlet norms, identifying functions whose differences are con-
stant. W e  s h a l l  show th at the set of HM-functions which have gene-
ralized normal derivatives is a lso  dense in the subspace HM (Theorem
1). In  § 2 w e generalize the definition o f generalized normal deriva-
t iv e s  g iv e n  b y  Constantinescu-Cornea [2] to functions harm onic and

Dirichlet integrable in  some boundary neighborhood. W e  s h a l l  s tu d y
about (P )L i -principal functions only for restricted case, using the results
obtained in  § 1. In  § 3 w e shall concern L o -principal functions. W e
characterize there L o -principal functions in terms o f generalized normal

derivatives and obtain some related results including another formulation

of the operator L o (Theorem  6).

The author expreses her hearty thanks to  Professors Y . Kusunoki

and K. Oikawa for their kind rem arks in th is research.

§ 1  Generalized normal derivatives of HM-functions

1 .  Throughout the present paper, w e assume th at a Riemann sur-
face R  is hyperbolic, because all results are trivial in the case of para-
bo lic  Riemann surface, and a compactification R *  i s  th e Kuramochi
compactification o f  R. W e d en o te  b y  d  th e  Kuramochi boundary
R* — R .  Let us denote by D (R ) the class of Dirichlet functions on R,
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b y  H D (R) the class of harmonic functions in  D (R ), and b y  K D (R ) the

subclass o f  H D (R ) consisting of functions whose conjugates a r e  semi-

exact on R .  W e identify the functions in  D (R ) whose differences are

quasi-everywhere constant on R .  T hen  D (R )  i s  a  H ilbert space with

inner products g iven  by Dirichlet integrals. W e  have an orthogonal

decomposition

(1) D (R )=  H D (R )(1)C (R ),

where C ( R )  denotes a  c lass  o f infinitely differentiable functions with

compact supports in R , and  C  (R ) is  the closure of C7, ( R ) .  We denote

b y  H M (R ) the orthogonal complement of K D (R ) in  H D (R ), that is

HD(R)= KD(R) ED HM(R).

Using the notations in Ahlfors-Sario [1 ]  fo r c lasses o f differentials, a

function u  is  of c la ss  H M (R ) if  an d  only i f  it  is  re a l an d  d u  belongs

to  T h i n , an d  u  is  of c la ss  K D (R ) if and  o n ly  i f  it  is  r e a l and  du be-

longs to The nil e•
A ccording to  C onstantinescu-C ornea D i, w e say that a  function

u E H D (R ) h as  a  generalized norm al deriv ativ e  a on 4  i f  th e re  is  a

signed measure i t  on d  satisfying the following condition ; for any func-

tion h E D (R ) w e have

(2) < d u ,  dh> R-1  du A * dh=-

deno ting  by th e  sam e h  th e  quasi-continuous extension of h  to  R*.
Let be the class of functions of H D (R ) which have generalized nor-
mal derivatives on d .  Then 91 is  dense in H D (R ) O D , but we don't
know whether T r1 K D (R ) is  dense in KD (R).

2 .  W e sh a ll n o w  tak e  u p  th e  space H M ( R ) . L e t  {R n } n b e  a
canonical exhaustion o f  R  (Ahlfors-Sario [11), and { y } , a  basis to all
dividing cycles on R .  For any fixed rk , we choose n so large that Rn
contains r k . Then 1??,  is  d iv id ed  b y  r k  in to  tw o  parts R nm  and
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and the boundary 8R„ of R n is also divided into F„( 1 ) =-8/? 1 ) 8R„ and
En(2) =aRn(2)n o R n .  W e take a  harmonic function uln) o n  R n which is
1 o n  'f lu)  an d  0 on TW ) . The limit function uk of { 4 } a s  n tends

to  00 is  an  element of H D (R ), and the H M (R ) is generated by those
uk (k=1, 2, (A h lfo rs -S a r io  E l] and Kusunoki EC).

Theorem  1 .  The subset WnHM(R) is dense in HM(R).

Proof. In order to prove this Theorem , it is sufficient to show
that each u k  has a  generalized normal derivative on 4.

We choose a  canonical exhaustion {Rn }  so that each component of
OR, a n d  therefore each component o f  I V  and  F„( 2 ) , i s  piecewise

smooth. Hereafter we pick up one rk , and denote it by r and the cor-
responding u k  b y  u for simplicity. For rcR„ we introduce measures

dun  o n  R * as follows:

(3) d p n . =  *du(n) — 
— a u (n )

d s o n  OR„
On

0 o n  R * — ORn,

where derivatives are construed a s  inner normal derivatives relative to
R .  Observing

0 =  < du", d1> R = *
dtz + 5 )

* du

we get that

I -= 21r .  * du(n) .
JR

Therefore, by the facts that

IlduN111.= <du (n) , du (") > R *du(n)r;,"

and
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urn d  ( " ) 1121?” II du lll<
n-■

we obtain that the sequence of the total variations of signed measures

{,a} are uniformly bounded. Thus, there exists a subsequence 0 „ / }. of

{/1„} which converges to  a  measure i t ,  and the support of a is con-

tained in d.
We show that the sequence tu„)- converges to the a .  For any sub-

sequence of tu n l ,  there exists a convergent subsequence Lan .  Let the

limit o f {fi nk } b e  f l ,
 and consider the following class of functions on d;

V =  I f  o n  d  114  f drit.

The T i is a monotone class. For any function hE D (R )nC (R *), where

C(R*) denotes the class o f functions which are continuous on R*, we

have

lim  <du», dh> R„ j = l i m  h dli n d = j h
R.

and

lirn < d u ,  dh>R„,.=lim h dun k =R*

On the other hand, for any function hED (R ), we have

<du ( " ) , dh> R h*du(")aR„
and

lim <du ( , dh> R .= < du, dh> 12.

Therefore itit holds that

(4) h =  h  d fi
4 4

for hE D (R )r1C (R *). We denote by CD(4) the class of restrictions of

functions E D(R)(1C(R * )  to d. We obtain by (4 )  that the monotone
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hull o f CD(4) is contained in 9J1. The CD(4) is  dense in C (d) in the
uniform convergence topology, where C(4) denotes the class o f continu-
ous functions on  d ,  and therefore C (d ) is contained in the monotone

hull o f CD( 4). Hence, any continuous function f  on 4  belongs to Wrt,
that is

dft,

and we conclude that the sequence o f measures ta n }  converges to  the

,c1 which is a measure on 4.
In  order to assert that this i t  is a  generalized normal derviative of

the u , we should show that (2 ) holds fo r  any function o f  class D(R).
I f  h belongs to D (R )r1C (R *), (2 ) is immediate, since

< d u ,  dh> R=lim<du ( " ) , dh> k„

= l im 1  h h

Assume th a t  h E  D (R )—  D (R )n C (R * ). Then , for a n y  positive

number r, we can choose an open set G  with Kuramochi capacity less
than a so that the restriciton of h to  R*— G is continuous. The Kura-

mochi capacity of an open set G is  the number

(5) C(G)= sup C (K)
KCG

where K  are compact sets contained in G, and the K uram ochi capacity

of a compact set K  is  the number

(6) C(K)=sup v(K)

where 1) are the canonical measures such that fi '< I .  (Constantinescu-
Cornea [2 1 ) .  Here /5" denotes the potential

P '(a )=
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using th e  function g a defined in  p .  1 5 9  o f  [ 2 ] .  W e fix a point a E
R 1 —G, then the harmonic measure waR . of R n w ith  respect to  a  a s  well
a s  th e  harmonic measure waR'R* -=wa o n  d  is canonical (cf. [2 1). We
denote by g aRn the Green function of R n w ith  a pole a t  a, and let

PZ=max(0, PO, --=max(0,

Then, w e have

(7 )
8 glP

cl,u; < ds= 27rdw
n

because 0 < u ( n ) ‹ g aRn in  some neighborhood of T ,(2) i n  R n ,  and

(O ebaRn.

On the other hand, it holds that

b̀741" (b )= -g b diblIn

(gb )R — R n ( a) —  ( ga ) RTI. ( b ) .

A s for notations ( Z I P ,a n d  t h e  last equation , refer to  pages
158, 164 a n d  1 6 6  o f  [2 ] .  Therefore, if  we put

An=suP ( 0h3"b ) R - R „ (a ), and 2= --suP An,
bEIC

the number A is finite, and w e have

(8) 1,4n1x <el'ix <1 .

Hence, by (5 ) , (6 )  an d  (8 ) we get

w iP(K )<  A e(K)<A s

and by (7 )  we get

(9) p,-,-(G) <27-r2e
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for any natural num ber n . For /i n
+ w e  g e t  the same inequality

(9 ' ) if,;(G)<27r2e

because 0 <1— u ( '') <  g / P  in  a  neighbouhood of I V  in R .  B Y  ( 9 )
and (9 ') , we readily obtain

< d u ,  dh> R =lim  <du ( " ) , dh> R„

h dit,i = h dp.
12. R.

(For details of the proof, see the note a t  the end of the paper).

3. Let P  be a  regular partition of the ideal boundary. We denote
b y  /  and Q the identity partition and the canonical partition respective-
ly. W e  d en o te  b y  H M p(R ) the class of functions which is spanned by
the functions U p k  corresponding to P-dividing cycles rp k . The fact that
upk h a s  a  generalized normal derivative on d is proved quite analogous-
ly  as for u k . Therefore we get

Corollary 1. I f  th e  num ber of  parts o f  partition  P  is f inite, any
function of  HMp(R) has a  generalized norm al derivative on 4. In par-
ticu lar, if  the  num ber o f  boundary components o f  R  is f inite, any  func-
tion of  H M (R ) has a  generalized norm al derivative on 4.

4. M aeda [5] introduced the notions of D-normal compactifications
and regular compactifications. W e say that a  resolutive compactification
i s  D -norm al if  a l l  restrictions t o  the boundary of the extensions of
functions E HD(R) a re  resolutive, and regu lar if  th e  CD(4') is  dense
in  the C (S ) in  the uniform convergence topology, where 4' denote the
boundary on the compactification. Many familiar compactifications in-
cluding those of Kuramochi, Martin, Royden and Wiener are D-normal,
and those of Kuramochi and Royden are regu lar ([5 ]).  W e  d en o te  b y
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R t  a D-normal compactification and b y  LID  the boundary on R .  Maeda

[5 ]  defined a  generalized normal derivative on any resolutive compactifi-

cation for a function f  which is harmonic and Dirichlet integrable in

R—K, where K  is  a compact set with smooth boundary. We say that
a  function ça on ZID is  a  generalized normal derivative of f  in  the sense

of Maeda [5 ], if for a restriction 0  to the boundary ZID on a D-normal
compactification of any function E HD(R), we have

(10) <  df, dv q„K> R -K = —
5 ç °0 d a

)
a,

where 7.4,K  i s  th e function which is identically 0 on K  and harmonic

on R—K with boundary value 0  o n  d ' and 0 on OK  whenever 0  is

resolutive, and ça0 is  of class L l (wa).
In the proof of Theorem 1 ,  w e have the lim it ,a of the sequence

{it„} on any regular compactification. B y (7 ) and the same inequality

for positive part ,an+ of p n fo r  any n , w e easily  get that th e  ,a  is ab-

solutely continuous with respect to the co„, and w e have

d i = — çodwa

with I çol < 2 7 r. Hence, if the compactification is D-normal we have ça0 E

L1 ( a )  for any 0  which is a restriction to  4 D  of a function E HD(R),

and it is readily verified that

< d u ,  dvq,,K>n-K= - 1SoOdwa

holds for any 0.
Thus, from the proof of Theorem 1 ,  we reach to

Corollary 2 .  O n  th e  regular and D-normal compactification, the

set of  functions of class H M (R) w hich have generalized normal deriva-

tives on zID  in  th e  sense o f  M aeda [ 5 ]  i s  dense in H M (R ).  If the

num ber of parts of regular partition P  is f inite, every  functions of class
H M (R ) have generalized norm al derivatives on  4D •
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§ 2  G e n e ra liz e d  norm al d e r iv a t iv e s  o f (P)L i -p r in c ip a l func tions

5 .  L et 2  b e  a  canonical region with smooth boundary on R , and
{R„} a  canonical exhaustion such that .S2 R 1. The normal operators
L o an d  (P)L i  on  R — i  a r e  defined a s  fo llow s. F o r a  given real func-
tion f  of class C 1 o n  82 we construct u(

on) = L of  as th e  harmonic func-
tion in  R n —  S w hich  has the boundary value f  on 02  a n d  whose nor-
mal derivative vanishes on OR„. W e construct uP ) = (P )L i f  as th e
harmonic function in R — S w hich  has th e  boundary value f  on OS2,
and is  constant on each part of P  and h as a  vanishing flux  over each

part of P  separately. H ere P  is  of course the partition of 8R n induced
b y  the original partition P  o f th e  ideal boundary o f R .  The sequences

of functions -(4 ) 1
J-n  an d  {uP ) } ,  converge in norm sense to the harmonic

functions u o a n d  u p  in R - .0 respectively. W e  d e f in e  th a t  uo=-Lof

an d  u p = (P )L if  in R - P .  T he operators L o a n d  ( P ) L i  are normal

operators with respect to  R —  P .  Let E be a  finite point set on 2  and

l e t  s  b e g iven  s in gu laritie s  a t th e  p o in ts  o f E  with vanishing flux.

T hen , th e re  ex is t unique functions f o a n d  f p  o n  R  w ith  the singu-
larities s which a re  constructed by the operators L o a n d  ( P ) L i  and are

called a s  an  L o -principal function an d  a  (P)L i -principal function respec-

tively (Ahlfors-Sario E l l .  On each R n ,  there are the L o -principal func-

tion r on) a n d  (P)L i -principal function fp) w ith the singularities s.

L e m m a  1 . (Rodin-Sario [7 1) Suitably normalized sequences ( f n „
an d  { Fi } n  converge to f o an d  fp  uniform ly  on any  com pact set on R.

L e m m a  2 . (W atan ab e  D O ]) T h e  f o a n d  fp  are  approximated in
norm  by  { f r } ,  an d  Ifp>1 7, respectively, that is , limild(f 0 — f Ôn ) )11 R °
and  limild(f p— f p))1iR ._=0.

6 .  N akai-Sario [61 proved that an ( I ) L i -principal function can be
extended finitely continuously to th e  Royden compactification so that
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the extension is almost everywhere constant, and this property and the

vanishing o f flu x  over the ideal boundary characterize  ( I )L 1 -principal

functions. M ore generally, combining parts  o f Theorems 1 and 2  in
Watanabe 1101 we get

Lemma 3 .  I f  th e  num ber o f  parts o f  regular partition  P is f inite,
(P)L i -principal functions, w hich are  harmonic except f o r a f inite number
o f  singularities w ith v anishing f lux , are  characteriz ed by  th e  following

conditions:
i) they  are Dirichlet integrable in  boundary neighborhoods and have

vanishing f luxes over every  P-div iding cycles, and
ii) they  can be ex tended alm ost ev ery w here (or quasi-everywhere)

continuously  to the compactif ications s o  th at  the ex tensions are a.e. (or
q. e.) constant on each p art  o f  th e  P .  Here the compactifications may be
those of  K uram ochi, M artin, R oyden, W iener or Z -com pactif ications de-
noting by any  sublattice o f  H P w hich contains constant.

Suppose th a t  a t  a  finite number of points a;  E R  w ith  local para-
meters CJ ,  there are given singularities s  of the form

R e E bVcin+ c i  log I Ci ,
n= 1

where th e  c ( i )  a r e  rea l and subject to the condition E c ( l ) = O. Then,

there exists a unique ( I )L i -principal function f  w ith  the s. We sepa-
rate  the s  into two parts : 1 )  the s1 consisting o f all term s of the form
Re bLi ) Clin, and 2 ) the s2 consisting of all logarithm ic term s of the s.
Then, it is readily seen by Lem m a 3  the following

Lemma 4. T h e  (I)L i -principal function  f i  w i th  the  singularities
s  is  the sum

fr-=f1,1+fr, 2+ constant,

w here  f r,k  denote the  (I)L i -principal f unc tions w ith  t h e  singularities
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sk(k =-1, 2). A nd the f1, 2 is  the  sum

f1,2= Ec(!)g i + constant,

w here g i  denote the Green functions on  R  w ith poles at cti .

7 .  N o w  w e  g e n e ra liz e  th e  defin ition o f  generalized  normal

derivatives on the Kuramochi boundary given by Constantinescu-Cornea
[ 2 ]  for functions o f c lass  H D (R), to any function which is harmonic
and Dirichlet integrable in  a  boundary neighborhood. For a boundary
neighborhood U, we denote by H D (U ) the class of functions which are

harmonic and Dirichlet integrable on U.

Definition. For a function f  o f H D (U ), w e  s a y  th a t  f  h as a
generalized norm al derivative ,a  on d ,  i f  there exists a signed measure
a satisfying

(11) <df, dh>u= 4h dit+ a u h*df

for an y h of D(R).

It is readily seen that this definition is independent of the choice

o f U, and for any function of class H D(R), coincides with the original

definition.

Lem ma 5. The Green function gi  h as  a generalized norm al deriva-

tiv e  —27rcoa  j o n  4.

This Lemma was established as Proposition 1  in Maeda [5 1  accord-
ing to  h is defin ition o f  generalized normal derivatives. W e  g iv e  h e r e
another proof which is analogous to that of Theorem 1.

P ro o f . The Green function  g i i s  a  lim it  o f sequence of Green

functions Ig (t ) } ,,, w here g (i n) d en o te  the Green functions on R „ with

poles at ai . The {6 '}  n converges uniformly on an y compact set and
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Emil c1( —  g (in) )11 R O. W e  d e fin e  non-positive measures ilL n=  — 2 7 r co aR
as follows:

f 6  e in )

* d e ' = —  o n  d s o n  ORncltei,n=

Because of
8 g (f)

( • ds= dsJaRn an aa an

and uniform convergence of {8-T ) } „ o n  OS2, we get that the measures

are uniformly bounded, and therefore there is a  measure p i .= — 27roa i

on d which is a  lim it of the sequence taLnIn. Further, fo r any h E
D (R ), we can easily show that

<dgi, dh> dh> R„-Ta

=lim0h* d g(; ) +1 a *  d  g (; ) )aR

h dca„i +Sa a h*dg(? ) .
d

This implies that th e  —27rw a i  i s  a  generalized normal derivative on d
of the gi.

8 .  For a generalized normal derivative a of a function of HD(R),
we have always ,a(4 )=0 , because

< d u ,  dl> R=1 dp=0.

It should be remarked that fo r  a  generalized normal derivative a of a
function f  E H D (U ), we do not necessarily have p ( 4 ) = 0 ,  but we mere-
ly assert that ,u(4)= *df.

au
Combining Lemmas 4  and 5 ,  we obtain

O o n  R *  R n .

Theorem 2 .  A n (M I -principal function f i  w ith only  logarithm ic
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singu laritie s  has a  generaliz ed norm al deriv ativ e ,a1 o n  d  such that
111(4 ) = 0 .

P ro o f . T he ,a/  is given a s  a  sum —27tEc ( i ) o)„i  a n d  also a s  a
lim it o f  E c ( l ) ,ai,„ a s  n-->00, using the notations in above Lemmas.

The f i  is  a  lim it of { f in )
}
n , where f i n ) a re  th e  ( I ) L i -principal func-

tions on R n w ith  th e  same singularities as the  f z ,
 an d  th e  measures

E c " ) ,cti ,n  a r e  equal to the measures pr, n  defined as

{

* df on OR,,

0 on R*

W e have

fi r n ( R * ) = 1  * df r ) = 0
aR„

by definition, and therefore

,e1r (4)= ,It r (R *)= d i t  = 11111 d f l jn
R.

=limpL,i (R * )= 0 .

9 .  By Lemmas 1, 2 in Watanabe [101 and the definition of (P)T h „„
we can easily verify

Lemma 6 .  F o r any  regular partition P  o f  th e  ideal boundary , f

is  a (P)L i -principal function if  an d  only  i f  it is represented as

f  = f i+ up,

w here  f r  i s  a n  ( I ) L i -principal f unction a n d  d u p  i s  a n  elem ent of
(P)F h . such  that

*d f r=—  * d u
7P 7p
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f o r any  P-dividing cycle y p.

T heorem  3 .  Suppose th at  a  regular partition  P  consists o f  only

a f inite num ber of  parts. T h e n ,  a  (P)L i -principal function f p  with only

logarithm ic singularities has a  generalized norm al derivative / i p  o n  4,

and ,up(A )=O  f o r any  p art  zl( " )  o f  the partition P.

P ro o f . The first assertion of the Theorem is gained by Theorem

2, Lemma 6 and Corollary 1. In  order to show th a t pp(4 ( " ) ) = 0 ,  we

take the partition Pn o f  each ORn w h ich  is  in d u ced  b y  the original P.
Observing the proofs o f Corollary 1 and Theorem 2, and using Lemmas

1, 2 and 6, we readily know that the p p  is  a lim it of measures Ipp, n } n ,

where
*df  (IV  o n  ORn

ditp, n =
0 o n  R*—OR n .

Of course f  ' J P  denotes th e  (M I -principal function on  R „  w ith  the

same singularities as the f p .  We consider the restriction of p p  to zl( " )

and denote it by it( . We denote by r ǹ
a ) the part of P„ which bounds

the set Gn
( a ) ( R — R ,  carry in g  4( a)  a s  a  p a rt o f ideal boundary. Let

p (p",)
n  b e  the restriction of f l p o i  to  r n

( " ) . I f  n is  so  large that R n contains
a  basis o f a ll  P-dividing cycles in R, w e have

16",VR * ) =11
)

LW a ) )n = PP,n(rL a ) )

= ) * d f  ) = 0.
7 .

The i i (p ci) is  clearly a  lim it of Ip cp",)
n }„ ,  and therefore we get

pp(4 ( 6 ) ) - - , - - 4 " ) (R *) =I im p (pa,L(R* ) = 0.

1 0 .  It is evident that Theorem s 2 and 3 are valid for generalized
normal derivatives in  th e  sen se  o f  M aeda [ 5 ]  o n  th e  regu lar and
D-normal compactification, because o f  Corollary 2  and the fact th at
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Lemma 5 holds in  the sense of Maeda [51

§ 3  L o - principal functions

11 . In  this section we shall study about L a-principal functions.
The following Theorem was essentially established in  Sario-Oikawa [91
without using the words of generalized normal derivatives. We state it
here in  terms of generalized normal derivatives.

Theorem 4 .  A  function f  w hich is harm onic except f o r  a  finite
num ber of  singularities and Dirichlet integrable in  a  boundary neighbor-
hood is an  L o -principal f unction if  and  only  if  f  has a  generalized nor-
m al derivative o n  GI which vanishes identically.

P ro o f . L e t f o b e  an L a-principal function on R  with singularities
s. We take a  canonical region 2 carrying all the s, and a canonical
exhaustion {R n }  with smooth boundaries. Then, there are L o-principal
functions PP on R n w ith  the singularities s. For any h E D(R), we
have

< df r , dh>R h* d t o n )h *  d  f  ô n )
aRnJ a sa

= h* dfaa

because * d f (
a

n ) = 0 along 3Rn by definition. Further we have

lim < df r ,  dh> = < dfo, dh > R-L
n—PeCI

by Lemma 2, and

h* df Wz)
a p

h* d f  0aa

by Lemma 1. Therefore we get

(12) < d f o , dh> R  = j a a h* dfo.
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This im plies that f o h a s  a  generalized normal derivative o n  d  which

vanishes identically.
Conversely, suppose th a t a  harmonic function f  except fo r a  finite

number of s in gu larities is  Dirichlet integrable in  a  boundary neighor-

hood and has a  generalized normal derivative ,u  on 4  su ch  th a t  u O .

We construct an L o -principal function f o w ith  the same singularities as
f .  T h e  fo h a s  a  generalized normal derivative g o O . C o n s id e r  the
function f  —fo,  w hich  is of class H D ( R ) . The f —fo h a s  a  generalized

normal derivative ,a — ,u0 which vanishes identically. For an y hED (R),
w e have

<d( f — fo), dh> R=
 j h  d(11 —  PO= 0,

and if w e take the f —fo a s  h

d(f —  fo)11R=0

which means f — f o = constant on R ,  or the f  is  an L 0-principal func-

tion.

Corollary 3. I f  a  function u E H D (R ) has a  generalized normal

derivative du  o n  d , there ex ists a  harm onic function f  w hose generalized
norm al derivative is the sam e g  and w hich has a f inite num ber of  given
singularities w ith vanishing f lux  and  is  Dirichlet integrable in  a  bounda-
ry  neiborhood. Conversely , if  a  function f  harm onic ex cept f o r a  finite

num ber o f  singularities w ith v anishing f lux  and D irichlet integrable in

a  boundary  neighborhood has a  generalized norm al derivative ,ct on d,

there ex ists a function u E H D (R ) w ith the generalized norm al derivative
i t  on 4. Moreover, th e  u  i s  o f  c lass K D (R ) if  and  only  i f  a  f lux  of
f  ov er any  div iding cycle vanishes.

P ro o f . Let s  be given singularities with vanishing flux and fo the
Lo-principal function w ith th e  s. T hen , the  following function

f o + u = f
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h as  th e same generalized normal derivative a s  th e  u  by Theorem  4.
T he rem aining parts o f the Corollary follows also immediately from
Theorem 4.

12. B y the same reasoning of this Corollary, we get the structure
of L o-principal functions from Theorem 2.

Theorem  5 .  A  f unction f  w hich is harm onic ex cept f o r a finite
num ber o f  logarithm ic singularities w ith v anishing f lux  and Dirichlet
integrable in  a  boundary neighborhood is an L o -principal function, if  and
only  i f  it is represented as

f = f l - k u ,

where f i  denotes the  (I)L i -principal function w ith the  sam e singularities
as  th e  f ,  an d  u  is  a f unction E HD(R ) with generalized norm al deriva-
tive —  j. Here we denote by ,u 1 the generalized norm al derivative of the f r.

13. The function v K in the equation (10) is  a Dirichlet function,

and the equation (12) shows that

(13) < d f o , dvo,K>R-Ta = 0 ,

that is, the Lo-principal function f o h a s  a  generalized normal derivative
ço = 0  on zID in  the sense of Maeda [5 1 .  Conversely, from the equation
(13) we obtain (1 2 ).  Indeed, any h E D (R ) has a  decomposition

h=Uh+ph,

where uh E HD(R ) and p h E C ( R )  b y  (1), and

u h = v 4„ .5 +v h o n  R—

where 0  is  a restriction of uh to JD and vh denotes a  harmonic function
on R - 2  w ith boundary value uh on 132 an d  0 on J D .  Then we have

< d f o , dh> R-Ta

= <dfo, dV,p,:rj> R-D+ <dfo, dVh> R-b+ < dfo, dph> R-11
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= v h *d fo —  ph *  dfo= h*dfo.
ap

Therefore Theorem 4, 5 and Corollary 3  a re  va lid  fo r generalized nor-

mal derivatives on zip in  the sense of Maeda [5].

Maeda [5 ]  proved that the function

( a )  1  
27r 

/
V  = g a 0 )+  U a

w ith  a  fixed  a0 E R, h a s  a  generalized normal derivative ze ro  in  his
sense. Here ua denotes th e  reproducing function in  th e  HD(R), that
is

< du a ,  d u > =- u(a)— u(ao)

for an y  u E H D (R ). T herefore w e get that the v ( °)  i s  an L o-principal
1 1 1 function p i ) w i t h  th e  logarithmic poles log  a t  a  a n d  —

27r C 27r
1log a t  ao.
Co

Corollary 4 .  (M aeda [ 5 1 )  T h e  { f'0'1 '1 a E R} -compactification co-
incides w ith the  Kuramochi compactification.

1 4 .  Let h  be a  function of D (R ) and K  be a non-polar compact
set on R. Then, th e re  ex is ts  a  uniquely determined function h "  of
class D(R ) which is harmonic on R— K and is characterized as

(14) IldhK11= inf a t II I h' = h quasi-everywhere on K ) .

For any compact set K'D K w e have

(15) (hic
)
c,..._ xyc

(Constantinescu-Cornea [21).

Lemma 7 .  (Maeda [5 1) A  function f E HD(R— K0 )  where K o  i s
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a com pact set on R , h as  a  generalized norm al derivative z ero on z1D,
and  only  if  f  -= f K  f o r  som e non-polar compact set K  containing K o in
its interior.

L e t f o b e  a n  L o -principal function and  D  b e  a  canonical region
carrying all singularities of the fo . L e t  hf a,D b e  the Dirichlet function
which is equal to th e  fo o n  R - 2  and is harmonic on D with bounda-
ry  value fo o n  0 2 .  Then, w e get 11, ,,o =h f o,s2 fo r  any compact set K
containing S2 by Theorem 4 and Lemma 7 . Because the hlk 12 is harmo-
nic on R — S2=R —  2 , it is sufficient to assume that K  merely contains
P.

C o ro lla ry  5 .  A n y  L o -principal f unction can be continuously  ex -
tended to the  Kuramochi cornpactification.

1 5 . Let 2 be a  canonical region and f  a  real function of class
on Q .  The principal operator L o associates to f  a  harmonic function
L of  on R —  S2. We consider the function

Hy on 2
V f  =

{  

L of on R -2 .

Here H I denotes the Dirichlet solution in 2  to the boundary value f
on Q . W e  can  re ad ily  v e r ify  th a t th e  v f  h as a  generalized normal
derivative zero on zID, and therefore we have v il=  v f for any compact
set K  containing 12 by Lemma 7. Considering (14) and (15), we ob-
tain the following characterization of the operator L o.

T heorem  6 .  Fo r a giv en real function f  of  class C ' on 0 2 , the
function L of  on  R — S-j  is characteriz ed by  the follow ing property ; L of
is the function w hich m inim izes Dirichlet integral on R — S-2 among those
harmonic functions whose boundary value is  f  on 02.
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N o te . Consider the function

Itm = min(m, h+)—min(m, h- )

fo r any natu ra l num ber m. T h en  h„, a r e  a lso  D irichlet functions o n  R ,  and

dh„,I1 < . B y (9 ) and (9 ')  we obtain

< d u , dh,„> E =lim <du ( " ) , dh„,> R ,„

=5 h,„

= lim h„, d p„ + 5 h  d p)

d i

for any h„„. These convergences are uniform with respect to  m .  Indeed, we have

h„, dp (1/.1.1= I <d(u ( ' ) — u), dit,,,> RI

— u)II • dh„,,II

51Id(u ( n) — u)II • !IAA.

The h is  sum m able w ith respect to the i t  w hich is seen by (7 ), and therefore

5 h dp=lim5 h„, dp.
R . m --,co  R .

On the other hand, w e have

Thus we get

h„, dp„ =5 h dp„.
R .

< d u , dh> R = 1 im 5  h d p „ = 5  h dp.
.c.= R.

K Y O T O  U N IV E R SIT Y
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