J. Math. Kyoto Univ. (JMKYAZ)
12-1 (1972) 17-31

Cluster sets at ideal boundary points
By

Tatsuo Fujr're

(Received May 15, 1971)

Introduction

The theory of cluster sets in plane regions has been studied in

greater detail. To extend that theory to the case of Riemann surfaces
it is natural to consider some kinds of compactifications of Riemann
surfaces and define, in analogy of plane case, several kinds of cluster
sets at ideal boundary points of the compactification. Then, one can
expect that recent systematic studies of compactifications will give effec-
tive tools for the study of cluster sets at ideal boundary points.
In this paper we study cluster sets of an analytic mapping at Martin
boundary points of a hyperbolic Riemann surface, where the cluster sets
are defined with respect to Martin topology and to the fine topology.
Especially in the case of a Fatou mapping, Wiener compactification, of
which Martin compactification is a quotient space, is used to represent
some of our cluster sets as sets of values of the mapping on certain
subsets of its boundary (§3).

For compactifications and related notions we refer to Constantinescu-
Cornea [4].

§1. Definitions.

We consider a non-constant analytic mapping f of a Riemann
surface R into R’. R is assumed hyperbolic in the sequel unless
otherwise stated. Let R* be Martin compactification of R and R'*

a metrizable and resolutive compactification of R’. We denote by 4
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Martin boundary of R and by 4, the set of minimal points in 4. To

each point p€ 4; we associate a family &, of open sets in R such

that for each G€®, R—G is thin at p. &, forms a filter base and

the family {G\U{p}} constitutes the fine neighborhood system of p.
Fine cluster set at p€ 4, is defined as

F(p= [\ F©,

where closure is taken in R*. When f"(p) is one point we denote it
by f(p). f'(p) is a function of p with values in R™* which is called
a fine boundary function. Its domain of definition is denoted by F(f).

For a point p of 4 we define the following three cluster sets and
range of values:

Jull cluster set
Cf, p= \FTAR),

where U, denotes the r-neighborhood of p,
cluster set modulo E of the fine boundary function f' of f for a
set E on 4

%(fa P)= r/;\ocf‘,f(fa P) :'&\o G\E/Brf/(q),

where B,=F(f)NU,—E—{p}, and
essential cluster set of the fine boundary function of f

Cx(f, p)=EQ] Ci(f, p)s

where J is the collection of all sets on 4 of harmonic measure O.
Closures in the first two cluster sets are taken in R’*.

Range of values

R(f, p)= ,/;\of(U’ﬂR)
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is the set of values which are assumed by f in any neighborhood of p.

In the case that R’ is Riemann sphere S we have the following.

Theorem 1. Let f be a meromorphic function on R and p be a
regular point of 4 with respect to Dirichlet problem. If 2=C(f, p)
—C*(f, p) is a non-empty open set, then each point of 2 is assumed
infinitely often by f in R except for points belonging to a set of inner
capacity 0.

Proof. It is sufficient to prove the theorem for each connected
component B of 2. Let a€ B, then, by regularity of p, there exists
a sequence {z,} tending to p for which f(z,) tends to a and harmonic
measure o (z,, ANU,, R) tends to 1 for all r-neighborhood U, ([4],
[5]). Denote by ns(w) the valence function of f and put n fzzlég n(w),
then the set D,={w€ B; nf(w)<n<ns} is a Borel set. And D, is
of inner capacity 0 ([5]).

Suppose nown\z D, is of positive inner capacity. Then, there ex-
ists an integer n ?01{ which D,_; is of inner capacity 0 and D, is of
inner capacity positive. Hence D,—D,_; is of inner capacity positive
and there exists a compact set K of positive capacity in D,—D,_;.
D,—D,_; does not contain inner points, because its inner points can
not be cluster values of f. Let a be a point of the kernel of K which
is not a branch point, that is, for any neighborhood V'="V(x) VK is
of positive capacity. By taking FV sufficiently small, we may assume
that f~'(V) consists of n disks and non-compact regions. Then,
f' (V' NK) is contained in the n disks but not in the non-compact re-
gions. We may further assume that V' is contained in C(f, p)—C% ,
(f, p) for sufficiently small r and a set E on 4 of harmonic measure
0.

We take the non-compact component C of f~'(¥) which contains

zy, and estimate the harmonic measure

o(w, VNK, V)=o(f(z), VNK, V).
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=0 on 0C
Since o(f(z), VNK, V):
<1 in C

o(f(z), VNK, V)<Icl in C,
where Ic denotes the inextremization to C. And
o(z, 4,(C)y R)y=Eclc1>1Icl
>o(f(z), VNK, V) in C,
where Ec denotes the extremization ([3] Satz 15’). Hence we have
¢H) o(f(z), VNK, V)<w(z, 4:(C), R) in C.

Next, let Eo=U,N\d—F(f), then E; is of harmonic measure 0 be-
cause restriction of f on each component of U,N\R is a Fatou mapping
(cf. Theorem 5). For a point g€ U,Nd4,—Ey\JE (E and r are chosen
as above), there exists an open set G€®, such that GNC=¢ because
(@=f(@eC%,.(f, p). Hence q& 4,(C) and 4,(C)NU, is of har-

monic measure 0. Therefore,
(2) o(z, 4:(C), R)=w(z, 4,(C)—U,, R)
<w(z, 4—U,, R)=1—w(z, ANU,, R).
By (1) and (2) we have
o(f(z), VNK, V)<1—w(z, ANU,, R) in C.

Especially,

o(f(zn), VNK, V)<1—w(zy, ANU,, R)

for all z, of the sequence {z,}. Let z, tend to p, then 1—w(z, 4N
U,, R) tends to 0, and we have

3 o(f(zn), VNK, V)0 for z,—0.
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On the other hand, f(z,) tends to & when z, tends to p. So, we

have
4) o(f(z2), VNK, V)>0>0

for sufficiently large n.

(3) contradicts (4). Therefore, D, is of inner capacity 0 for all
n<ng. Each point of C(f, p)—C*(f, p) is assumed by f by the same
number of times (n; times) except for points belonging to the set

\J D, of inner capacity 0. But if ns is finite, \/ D, is relatively
nlng nln

closed in the open set 2=C(f, p)—C*(f, p), and, to each point we& 2

— \J D,, there exists a neighborhood ¥ contained in &— \/ D,, for
n<ln g nln g,

which f~'(¥) consists of n, disks. And so, w can not be a cluster
value of f at p, which is contradiction. Consequently, n, is infinite
and each point of — \/ D, is assumed by f infinitely often. This

nloo
completes the proof.

In the case that R is parabolic, we compactify R in the way of
Alexandroff. Let f be a meromorphic function in a neighborhood G of
oo, We state the following theorem without proof, which is a gener-
alization of Nakai’s theorem (cf. [9]).

Theorem 2. C(f, o) is of capacity 0, or f assumes every value
on f(G) infinitely often except for points belonging to a set of inner
capacity 0.

To begin our study of cluster sets, we state the following impor-
tant theorem of Plessner type which was proved by Constantinescu-
Cornea ([4]) and Doob ([5]).

Theorem 3. (Constantinescu-Cornea and Doob). Let f be an an-
alytic mapping of R into R’ and R'* a metrizable and resolutive com-
pactification of R’. Then, for almost every (with respect to harmonic

measure) point p of 41, fine cluster set f~(p) is one point or R'*.
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By this theorem we classify points, p of 4, as follows: p€4; is called

F-point if f"(p) is one point, and we denote by F(f) the set of
F-points, and

I-point if f~(p) is R™ (we say f"(p) total), and we denote by
I(f) the set of I-points. A point p€ 4 is called

H-point if R'—R(f, p) is a polar set and denote by H(f) the set
of H-points.?

The following theorems for an analytic mapping f are also impor-

tant for our study.

Theorem 4. (Constantinescu-Cornea [47]). I(f) is of harmonic
measure O if and only if f is a Fatou mapping.

Theorem 5. (Constantinescu-Cornea [4]). For a hyperbolic R, if
S(R) is contained in a hyperbolic R’ fis a Fatou mapping.

We study the cluster sets of f separately according as I(f) is of

harmonic measure positive or zero.

§2. The case that I(f) is of harmonic measure positive.

In this case f is not a Fatou a mpping by Theorem 4. And we
may assume R’ parabolic because, otherwise f will be a Fatou mapping
and I(f) will be of harmonic measure 0 by Theorem 4 and 5. We
consider Alexandroff compactification R’* which is metrizalbe and re-

solutive.

Lemma (Doob [5]). If I(f) is of harmonic measure positive,
then R™*— f(R) is polar.

Proof. If Fy=R™* — f(R) is non polar, f(R) is contained in the
hyperbolic Riemann surface R'—F,. And f is a Fatou mapping. This

1) F, I and H-points play the roles of Fatou, Plessner and Frostman points,
respectively, at Martin boundary points. The former concepts, except H-
points, do not reduce to the latter, however, in the case of the unit disk.
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contradicts the hypothesis.

Theorem 6. If I(f) is of harmonic measure positive, then I(f)

—H(f) is of harmonic measure 0.

Proof. Let p be a point of I(f) outside a set of harmonic mea-
sure 0. For every neighborhood U of p UN R contains a component
U; such that the restriction of f in U; is not a Fatou mapping [4].
Hence R™*— f(U;) is polar by the lemma, so that R™*— f(UNR) is
polar. For the r-neighborhood U, of p we put F,=R*— f(U,NR).
Then F, is polar, and R'—R(f, p)=R/—[n\f(U,"/‘\ R)=\§/F,n is polar.
This shows that p is an H-point.

If the set f'(F(f)) of fine limits of f is polar, we conclude directly
by the above theorem and by the theorem of Lusin-Privalov type [4]
that almost every point of 4; is an H-point. But the following theorem

states sharper things.

Theorem 7. If the set f'(F(f)) of fine limits of f is polar, every
regular point of 4, is an H-point.

Proof. Let p be a point of 4; and U be a neighborhood of p.
Let UNR= QU; with connected components U;, then DAI(U,-)D
4,NU. Since; _}17 is regular by assumption 4, N\ U is of positi\’r:harmonic
measure, and so, there exists a component U; such that 4,(U;) is of
harmonic measure positive.

Suppose f'(F(f)) is polar, then, by the theorem of Lusin-Privalov
type, F(f) is of harmonic measure 0. And, the full cluster set C(f, p)
must be total. Because, otherwise the restriction of f on any com-
ponent U; is a Fatou mapping and 4,(U;) CF(f) except a set of har-
monic measure 0, which contradicts that there is at least one 4,(U;)
of positive harmonic measure.

Now, since f(R)DR’ and F(f) is of harmonic measure 0, f is of
type Bl in R’ by Doob’s theorem ([5] p.541 cf. also [3]). Hence,
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nf(w)———nf:skqp ng(w) in R’ except a set of capacity 0. If ny is
finite the set E;={w€R’'; nf(w)<ns;} is a closed set of capacity 0.
And, for a point w€& R’'—E;, there exists a neighborhood ¥V =V (w)
CR'—E; such that f~'(V) consists of ns connected components which
are relatively compact in R. This shows that w is not a cluster value
of f at p which contradicts that C(f, p) is total. ~Therefore, ny is in-
finite and Ey is polar, that is, p is an H-point.

In the case that R=(|z|<1), every point on |z|=1 is regular
and minimal, and so, an H-point. And the above theorem corresponds
to that of Collingwood and Lohwater ([1]).

Remark. We pay our attention to the case that Martin boundary
4 of R contains a singular point p, that is, a point of positive harmo-
nic measure, and R’ is parabolic. If p is an F-point f must be a con-
stant by the theorem of Lusin-Privalov type, because f’(p) is a point
of harmonic measure 0 of R*. If p is an I-point p is an H-point by
Theorem 7. In the next section, we consider a Fatou mapping f of R
into Riemann sphere, and we assume 4 does not contain a singular

point unless f is not a constant.

§3. The case that I(f) is of harmonic measure O.

In this section we consider an analytic mapping f of hyperbolic R
into Riemann sphere S. Since Theorem 3 and 4 are still valid in the
case that R'=S, f is a Fatou mapping. Let R}, be Wiener compacti-
fication, then f is extended to a continuous mapping f* of R} into
S. There exists a continuous mapping 7 of R} into Martin compac-
tification R* such that the restriction of # on R is identity ([6], [4]).
For a point p of 4, we put Wy=n"'(p), I'py=W,NI and 4,=W,
—I'y=ANW, for harmonic boundary I’ and non-harmonic boundary A
of Wiener boundary 4w. Then [, is a compact set. In the sequel
we suppose /', is not empty. This is true, for instance, when p is a
regular point. Let U, be the 1/n-neighborhood of p in R* and V,=
n~Y(U,). Since n~'(U,.1) is a closed set contained in 7~!(U,) we have
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N Tre)= e (T,
where closure is taken in R*. And,
NFa= VP
where closure is taken in Rj. We show
W'p=7r“1(p)=/;\V,,.

Evidently W,C [”\Vn. Suppose g’é[”\V,,— W, and denote g=m(q").
Let N, be a neighborhood of g which does not contain p, then M,=
7~'(N,) is an open set containing ¢’. So, V,N\M,=¢, for all m. But,
since ¢==p there exists a number n such that N,NU,=¢, which is a

contradiction.

Theorem 8. For the full cluster set, we have

C(f, pP=f*(W)).

Proof. Since V,=V,NR we have f*( V)=f*(VuNR). By continui-
ty of f*,

fXVuNR)=f*(V,NR)= f(V.NR).
Therefore we have
f*V)=f(V.NR).

And, for the full cluster set, we have

We prove the last equality. Evidently,
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NI AT
It w§ AN\
LN =N\ N T)=4,

and, since {f *=1(w)N\V,} is a decreasing sequence of closed sets, there

exists a number n such that
[ wNTV,=4,
that is, w& f*(V,). This shows
NPT\,

and completes the proof.

Now, we are going to characterize the essential cluster set of the
fine boundary function of f by f*(/'p). For a point p€ 4, we define
the set

L(U> & ’M))={P’E UmF(f)n f/(P’) GNg(lU)},

where U is a neighborhood of p and Ng(w) is the e-neighborhood of w
(cf. [10])).
Lemma.
PR = w€ S; L(U, e, w) is of positive harmonic
i measure for all €>0 and all U

Proof. Let g be a point of /', and w=f*(q). By continuity of f*
there exists, for an arbitrary neighborhood N, of w, a neighborhood 1
of g such that f*(1)CN.. And, since g€ll, there is a connected
component G of RN which is not of the class SOxg ([7], [4]. So,
41(G) is of harmonic measure positive ([37]), and the Fatou mapping f
has fine limits almost everywhere on 4,(G). Let p’ € /,(G)NF(f),
then
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F1#)= [\ @) C T C K.

This means that in an arbitrary neighborhood N, of w= f*(q) there
exists a fine limit f'(p’) of f. And p’ runs over the set 4;(G)NF(f)
of harmonic measure positive which may be assumed to be contained
in an arbitrarily given neighborhood U of p by taking 1 small. There-
fore, for w=f*(q) g€, L(U, &, w) is of positive harmonic measure
for all €>0 and all U.

On the other hand, let L(U, ¢, w) be of harmonic measure positive
for all ¢>0 and all neighborhoods U of p. Put G=jf"'(N;) for the
e-neighborhood N, of w. Then we have

4,(G)D L(U, &, w),

because, for p’'€ L(U, &, w) f'(p') €N, so that G= f~'(IN,) €S, and
p €4:(G). And, since 44(U)DUN4;DL(U, ¢, w) we have

4:(GNU)DL(U, &, w),

and so, 4;,(GNU) is of harmonic measure positive. This leads to ex-
istence of a component D of UNR, for which 4;(D) is of harmonic

measure positive. Hence D is not of the class SOgp, and we have
(D—(R—D)NI'+#4,

where closures are taken in R¥%. Here, we put I'y=I"Nn"YU), then

it is a non-empty closed set containing DN\I". Since

XTI ND)C f*(D)Cf(D)C Nae

there exists a point ¢ in /'y such that f*(q) € Nze. Now, let g, be a
point of I’y such that w,= f*(q.) € Ne,. By making ¢, tend to 0 and
V,=n"YU, to W, we have a sequence {g,f. Since I'y, is closed,
{g} CT'y, and wef*(I'y,) for all n. Therefore, we N f*(['y,)=
FHOTw)=*T), '
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Theorem 9.

C*(f, p=f*Tp)-

Proof. First we recall that the boundary 4 does not contain a
singular point in the present case, especially, p is of harmonic measure
0. Now, let

Wef*(rp),

then L(U, ¢, w) is of harmonic measure positive for all e>0 and all U,
so that

we pééf (),

where B=UNF(f)—E—{p} with an arbitrary set E on 4 of harmo-

nic measure 0. Hence,
€ "(@)=C¥(f, p)-
we A\ f@)=CE/f, p)
Since E is arbitrary,

w EEQ; CE¥(f, P=C*(f, p)

On the contrary, if
w3 f*(Ip),

there exist ¢>0, U and E € J such that N:(w)N{\J f'(¢)} =¢. Hence,
[{F:]

TL70-N— C*
w Q l}EjBf (Q)— CE(f’ P)a
and consequently,

Thus we conclude that
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X =C*(f, p)

Theorem 8 and 9 suggest that properties of harmonic boundary will
serve for the study of cluster sets. We shall prove a few theorems in

the following as applications of the theorems.

Lemma. Let p be a regular minimal point of 4, and U be ils
neighborhood. Then, for F=R—U,

17(z)>0 when z—p,

where lp is the infimum of the class of superharmonic functions which

are not smaller than 1 quasi-everywhere on F.

Proof. Let f=xrp~s be the characteristic function of FN 4, where
closure is taken in R*. f is resolutive and, by regularity of p, Hi(z)
—0 when z—0. Let h;,= :gfg s, where & is the class of superharmonic
functions s such that s>>1p outside a compact set Ks. Then, since
b, <H; ([(4]), h1,(z2)>0 when z—0. But we have 0<{1p<hi,+eP
outside a compact set, with Green potential P and ¢>0 ([4]). And
the potential P tends to 0 at p, because the regular point p belongs to
the harmonic boundary of R*. Therefore 15 tends to 0 at p.

Lemma. Let u be a continuous subharmonic function bounded above

in a neighborhood of a regular minimal point p of 4, then

max u=max u.
Wp rp
Proof. Let U, be the 1/n-neighborhood of p, V,=n"'(U,) and
r,=I'"\V,. 1If u satisfies the condition of the lemma in U, it is ex-
tended continuously on ¥, for sufficiently large n>k. Because, for the
component C of UyNR belonging to &, pEC*———R*—(ﬁ) and u
is extended continuously on 7 (C*) (cf. [4] Satz 9.11). Let u<M

and put m=max u=lim max u, then there exists a number n, such
I"p B0 [y
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that, for n>no, max u<m+e<M, for a given e>0. By the preceding
T
lemma, 1p,—0 when z—p, where F,=R—U, for n>n, Put &=

u—2M1p, then & is a subharmonic function bounded above and

. m+e on [,
lim <
0 on 0V, .

Hence,
i<m+te

in ¥, ([4]). Since 1p,—0 for z—p, 1 <&’ in V,NR for sufficiently

small V,. Therefore,
u=u+2Me <m+e+2Me

in V,\R. Since u is continuous on W, and ¢ and ¢ are arbitrary,

we have
u<m on W,

and complete the proof.

Theorem 10. Let p be a regular minimal point of 4, then C(f, p)
—C*(f, p) is an open set.

Proof. If C(f, p) is total our assertion is evident. So, we assume
C(f, p) is not total. The proof is completed by showing that the
boundary 0C(f, p) of C(f, p) is contained in C*(f, p). We suppose
that wo €0C(f, p)—C*(f, p). We may assume wo=0 without loss of
generality. Put 2p the distance between w, and C*(f, p), and let w,;
be a point in the p-neighborhood of w, and outside C(f, p). Then,
1/|f(z)—w:| is subharmonic and bounded above in RNV, for a certain
Va And since f(z,) tends to wo=0 for a sequence {z,} tending to p,
Tyax(l/lf—wll)ZI/lel. Therefore, by the preceding lemma, we

D

have

1/ |w: | Sngvaxl/lf—ml Srr;axl/lf—wxl
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SmﬁX1/|(f| — |l ) <1/(20— |wa ).

Consequently, we have

|w1| 20)

which contradicts that w; belongs to the p-neighborhood of wo=0.
Theorem 1 and 10 lead to the following

Theorem 11. Let p be a regular minimal point of 4, then each
point of C(f, p)—C*(f, p) is assumed by f infinitely often in R except

for points belonging to a set of inner capacity 0.

We notice that the values assumed by f in any neighborhood of p
are those assumed by f* on 4,, that is, R(f, p) C f*(4,).

CoLLEGE OF GENERAL

EpucaTion, KvoTo UNIVERSITY
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