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Introduction

The theory of cluster sets in plane regions has been studied in
greater detail. T o  extend  that theory to  the case of Riemann surfaces

it is natural to consider som e kinds of compactifications of Riemann

surfaces and define, in  analogy of plane case, several kinds of cluster

sets at ideal boundary points of the compactification. Then , one can
expect that recent systematic studies of compactifications will give effec-
tive tools for the study of cluster sets at ideal boundary points.

In this paper we study cluster sets of an analytic m apping at Martin

boundary points of a hyperbolic Riemann surface, where the cluster sets

are defined with respect to  Martin topology and to  the fine topology.
Especially in the case of a Fatou mapping, Wiener compactification, of

which Martin compactification is  a quotient space, is used to represent
some o f our cluster sets as sets of values of the mapping on certain
subsets of its boundary (§ 3).

For compactifications and related notions we refer to Constantinescu-

Cornea [4 ].

§ 1 .  Definitions.

W e consider a non-constant analytic mapping f  of a Riemann

surface R  into R'. R  is assumed hyperbolic in  th e  sequel unless
otherwise stated. Let R *  b e  Martin compactification of R  and R 1 *
a metrizable and resolutive compactification of  R '.  W e  d e n o te  b y  4
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Martin boundary o f R  and b y  4  the set of minimal points in 4. To

each point p E d i  we associate a  fam ily 5p of open sets in  R  such

that for each G E 03/,  R — G  is thin at p. 03p  form s a  filter base and

the family {G U  {p }} constitutes the fine neighborhood system of p.
Fine cluster set at pE A  is defined as

f ^ (p)- f (G)
GEN p

where closure is taken in R t *. When f " ( p )  is one point we denote it

by f ( p ) .  f ( p )  is a  function o f p  with values in RI* which is called

a f ine boundary  function. Its domain o f definition is denoted by F(f ) .
For a point p  of 4 we define the following three cluster sets and

range of values :
full cluster set

C(f, p)= rQ f ( UrnR ),

where Ur denotes the r-neighborhood of p,
cluster set m odulo E  o f  th e  f ine boundary  function f  o f f  for a

set E  on

C1( f, p)= [->\C 1.̀ , r( f , p) = 1;\ f (q),

where B r =F(f )  n  -  E— { p} , and

essential cluster set of  the f ine boundary  function of f

C* (f , P)= EC),CP(f, P),

where J  is  the collection of a ll sets on d  o f harmonic measure O.

Closures in the first two cluster sets are taken in  IV*.
Range of  values

R (f ,p )-.= f ( I T  R)
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is  the set of values which are assumed by f  in any neighborhood of p.
In the case th at R ' is  Riemann sphere S  w e have the following.

Theorem 1. Let f  be a  meromorphic function on R  and p  be  a

regular point of d  w ith  respect t o  Dirichlet problem. I f  . S 2 = C(f, p)
—C* ( f ,  p )  i s  a  non-em pty  open set, then each point of S2 is assum ed
inf initely  of ten by  f  in  R  except for points belonging to a set of inner
capacity  O.

P ro o f. It  is sufficient to  prove the theorem fo r  each connected
component B of Q . L e t  aE B, then , by regu larity o f p ,  there exists
a sequence { z)- tend ing to  p  for which f ( z )  tends to  a and harmonic
measure co (z „, 4r1 Urr , R )  tends to  1  fo r  a l l  r-neighborhood U r  ( [ 4 1
[5 1). Denote by nf(w) the valence function of f  and put n 1 .=  sup n f (w),

weB
then the set Dn = {w E B; n f(w) < n < nf} i s  a Borel set. A n d  Do i s
o f inner capacity 0  ([5 ]) .

Suppose now VJ D„ is  of positive inner capacity. Then, there ex-
11<71 f

ists an in teger n  for which Dn _i  i s  o f  inner capacity 0  and D„ is  of

inner capacity positive. Hence .13„— D„_ 1 i s  o f inner capacity positive

and th ere  ex ists  a compact set K  of positive capacity in D,, — D,,_1 .
D,, — D,,_1 does no t con ta in  inner points, because its inner points can
not be cluster values of f .  Let a be a point of the kernel of K which
is no t a branch point, th at is, for any neighborhood V = V (a) V  nIC  is
of positive capacity. B y  t a k i n g  V  sufficiently sm all, w e m ay assume

th a t f - 1 ( V )  co n sists  o f  n  d isk s  and non-compact regions. Then,

f - 1 (V  r1 K )  is contained in the n  disks but not in the non-compact re-
g io n s . W e m ay  fu rth er assume th a t  V  is contained in  C (f , p) —

( f ,  p )  fo r  sufficiently small r  and a set E on 4  o f harmonic measure
0.

W e take  the non-compact component C  o f f - 1 ( V ) which contains
z,,, and estimate the harmonic measure

w (w , V (K , V )—  w (f (z ) , V  K , V).
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= 0  
o n  OC

Since co(f(z), VnK, V ): 1
<1 i n

co(f(z ), V  r1K , V )< Icl in C,

where /c denotes the inextremization to  C. And

£ù(z, 4 1 (C ), R )=EcIc1>Icl

> co (f(z ), V  K , V )  in C,

where Ec denotes the extremization ([31 Satz 15 '). H ence w e have

(1) co(f(z), V nK, V)<0.)(z, 4 1 (C), R) in C.

Next, let E0-= Urnzi -  R f ) ,  then E0 i s  of harmonic measure 0 be-
cause restriction of f  on each component o f Ur n R  is  a Fatou mapping
(cf. T heorem  5). For a point q E  Ur n4i - E0VE (E  and r  are chosen
as above), there exists an open set G E O , such that Gr1C -=.0 because
f"(q )=  f(q )E C t, r ( f ,  p ) .  Hence q■ d i (C ) and zl i (C )n  Ur  i s  of har-
monic measure 0. Therefore,

(2) o)(z, 41 (C), R)=o)(z, 4 1 (C) -  (Jr , R)

<w(z, d - Ur , R)=1- to(z, z nU„ R).

B y (1 ) and (2 ) w e have

to(f(z), VnK, V)<1- w(z, 4r\U, R)  i n  C.

Especially,

to(f(z,), V nK, V) <1 -  w(zn , R)

for a ll z,, of the sequence Iz n I. Let z„ tend to p, then 1 --co(z n , 4 r
Ur , R ) tends to  0 , and we have

( 3 ) 0)(f(zn), V nK, V)-0) for oz,,-0 .
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On the other hand, f ( z )  tends to a  when z „ tends to p .  So, we

w(f(z), V n K, V)>6 >0

for sufficiently large n.

(3) contradicts (4). Therefore, D„ is  o f  inner capacity 0 for all

n < n i . Each point of C(f , p) —  C*(f, p) is assumed by f  by the same

number o f  times (n i- times) except for points belonging to the set

Dn o f  inner capacity O. B u t if n i is finite, \ I  D,, is relatively
n<n f n < n  f

closed in the open set S2, --C (f,p) — C *(f,p ), and, to each point w E S2

— D , there exists a  neighborhood V  contained in D— Dn ,  for
n<n f n < n  f

which I- 1 (V) consists of n 1  disks. And so, w can not be a cluster

value of f  at p , which is contradiction. Consequently, n 1  is infinite

and each point of 2— Dn is assumed by f  infinitely often. This
n<«.

completes the proof.

In the case that R  is parabolic, we compactify R  in the way of

Alexandroff. L e t  f  be a meromorphic function in a neighborhood G of

oo. We state the following theorem without proof, which is a gener-

alization of Nakai's theorem (cf. [91).

Theorem 2. C (f, 0 0 )  is o f capacity 0, or f  assumes every value

on f (G )  infinitely often except for points belonging to a  se t o f inner

capacity O.

To begin our study of cluster sets, we state the following impor-

tant theorem of Plessner type which was proved by Constantinescu-

Cornea ([4]) and Doob ([5]).

Theorem 3 .  (Constantinescu-Cornea and Doob). Let f  be an an-

alytic mapping o f  R  into R ' and R '* a  metrizable and resolutive com-
pactif ication o f  R'. Then, for almost every (with respect to harmonic
measure) point p  of 41 , fine cluster set f " (p )  is one point or RI*.

have

(4)
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By this theorem we classify points, p  o f d i  a s  follows : p E 4 is called

F-point i f  f ( p )  is  one point, and we denote by F ( f )  the set of

F-points, and

I-point i f  f ( p )  is  R '*  (we say f - ( p )  total), and we denote by
1 (f )  the set of /-points. A point p E 4 is called

H-point i f  R' — R( f , p) is a polar set and denote by H ( f )  the set

o f H-points. 1 )

The following theorems for an analytic mapping f  are also impor-

tant for our study.

Theorem  4. (Constantinescu-Cornea D D .  I ( f )  i s  o f  harmonic
m easure 0  i f  and  only  if  f  is  a  Fatou mapping.

Theorem  5 .  (Constantinescu-Cornea [41. F o r a  hyperbolic R , if
f ( R )  is contained in  a  hyperbolic R ' f  is  a  Fatou mapping.

We study the cluster sets of f  separately according as  I ( f )  is  of

harmonic measure positive or zero.

§ 2 .  The case t h a t  / ( f )  is  o f  harmonic measure positive.

In  this case f  is not a  Fatou a  mpping by Theorem 4. And we

may assume R ' parabolic because, otherwise f  will be a  Fatou mapping

and I ( f )  w ill be  o f  harmonic measure 0  by Theorem 4  and 5. We

consider Alexandroff compactification R '*  which is metrizalbe and re-

solutive.

Lemma (Doob [51). I f  I ( f )  i s  o f  harm onic m easure positive,
then Ri* —  f (R) is  polar.

P r o o f .  I f  F o = R r * — f (R )  is  non polar, f ( R )  is contained in the

hyperbolic Riemann surface R' — F 0 . A n d  f  is a  Fatou mapping. This

1) F ,  I  and H-points p lay  th e  roles of Fatou, Plessner an d  Frostman points,
respectively, at M artin  boundary points. The former concepts, except H-
points, do not reduce to the latter, however, in  the case of the unit disk.
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contradicts the hypothesis.

Theorem 6 .  I f  1 ( f )  i s  o f  harm onic m easure positive, th en  1 (f)
— H (f ) is  o f  harm onic m easure O.

P ro o f. Let p  be a point of / ( f )  outside a set o f harmonic mea-
sure O . For every neighborhood U  o f p  U n R  contains a  component
U1 such  th at the restriction of f  in  Uri  is  n o t  a  Fatou mapping [4].

Hence R'*— f(U i )  i s  polar b y  the lem m a, so that R 1 * —  f(U nR ) is
polar. F o r  t h e  r-neighborhood Ur  o f  p  w e  put F r = R 1*— f (U r nR ).
Then F r  i s  polar, and R'— R(f,p ) =  —  f (U r „ n  R )= V F r  is  polar.

n
This shows that p  is  an H-point.

If the set f ' (F (D )  of fine limits of f  is  polar, we conclude directly
by the above theorem and b y  the theorem o f Lusin-Privalov type [4 ]

that almost every point of d i is  an H-point. But the following theorem
states sharper things.

Theorem 7 .  If  the set f ' ( F ( f ) )  of  f ine lim its of  f  is polar, every
regular point of  d i  i s  an  H-point.

P ro o f. Let p  b e a point of d i  and U  be a  neighborhood o f p.
-

L e t U n R = -V U 1 with connected components U1, then 41(U1))
j=1 i=1

z  n  U .  Since p  is regular by assumption 4 1n U is of positive harmonic
measure, and so, there exists a  component U1 su ch  th a t 4 1 (U1) i s  of

harmonic measure positive.

Suppose f ' ( F ( f ) )  is  polar, then, by the theorem o f Lusin-Privalov
type, F ( f )  is  o f  harmonic measure O. And, the full cluster set C (f,p )
must be total. Because, otherwise the restriction of f  on any com-
ponent Ui  i s  a  Fatou mapping and z l i (U i ) (F ( f )  except a  set o f har-
monic measure 0, w hich contradicts that there is at least one d i (  U1)
of positive harmonic measure.

Now, since f (R )D R ' and F ( f )  is  o f harmonic measure 0, f  is  of

type B i i n  R ' b y  Doob's theorem ([5 1 p. 541 cf. also [31). Hence,
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n1(w)=t1,1= sup n1(w ) in  R ' except a  se t o f capacity O. If n 1  is
finite the set Ef = -tw ER' ; nf (w )<n f l  i s  a  closed set of capacity O.
And, for a point w E R'—E1, th ere  ex ists a  neighborhood V  =V (w)
( R ' — E1 such that f  - 1 (V ) consists of n f connected components which
are relatively compact in R .  This shows that w is not a cluster value
of f  at p  which contradicts that C( f , p )  is  total. Therefore, nf is in-
finite and E f  is  polar, that is, p  is  an H-point.

In the case that R =  z l < 1 ) ,  every point on I z l  =1  is regular
and minimal, and so, an H-point. And the above theorem corresponds
to that of Collingwood and Lohwater ([1]).

Rem ark. W e pay our attention to the case that Martin boundary
d  of R  contains a singular point p , that is, a point of positive harmo-
nic measure, and R ' is parabolic. If p  is  an F-point f  must be a con-
stant by the theorem of Lusin-Privalov type, because f i ( p )  is  a point
of harmonic measure 0 of R'* . If p  is  an /-point p  is  an H-point by
Theorem 7. In the next section, we consider a Fatou mapping f  of R
into Riemann sphere, and w e  assume d  does not contain a  singular
point unless f  is not a constant.

§ 3 .  The case that / ( f )  is o f harmonic measure O.

In this section we consider an analytic mapping f  o f hyperbolic R
into Riemann sphere S. Since Theorem 3 and 4 are still valid in the
case that R ' = S , f  is  a Fatou m apping. Let .14  be Wiener compacti-
fication, then f  is extended to a  continuous mapping f *  o f  Rtv into
S. There exists a  continuous mapping n  o f Rtv  in to  Martin compac-
tification R * such that the restriction of n  on R  is identity ([6 1, [41).
For a point p  o f 4 , w e  put Wp= r - 1 (p), T ,=  W p n r  and A p= Wp

- F p =A n W p  for harmonic boundary T  and non-harmonic boundary A
of Wiener boundary 414 7. Then r p  i s  a compact set. In the sequel
we suppose F p is  no t em pty . This is  true, for instance, when p  i s  a
regular point. L e t  U n b e  the 1/n -neighborhood o f p  in  R * and V„=
K -

1 (U „). Since 7T- 1 (C7n + i) is a closed set contained in n 1 (U ) we have
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n 7r - 1  (CI + 1) = [ 71. (U  n)

where closure is taken in R * . And,

rn\ Vn  = rn\ V„,

where closure is taken in R .  W e  show

fr/p=z - '(p )=  tr,\vn .

Evidently W p n v n .  Suppose q' E nv,z- Tvp and denote q= (q 1 ).
Let Arn  b e  a  neighborhood o f  q  which does not contain p, then Mn =
r - 1 (Nn )  is an open set containing q'. So, V,n r\Mn *O , for all m. But,

since q *p  there exists a number n  such that Nn nU,n =0, which is a

contradiction.

Theorem 8 .  For the full cluster set, w e have

G( f ; P) —f * (rvp).

P ro o f. Since Vn = Vn n R  we have f * ( Vn)=f * (V n r11?). By continui-

ty of f* ,

f*(17,nR)-- f*(V„nR)-- f(V n nR).

Therefore we have

f*(V„)= f(V„nR).

And, for the full cluster set, we have

C (f,p )=r,.\, f (U n r1R)=[:\ f(V„nR)=f;\ f*(V, i )

=  f* (fn\Vn ).

We prove the last equality. Evidently,
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(\ f* (V n )D f *u-n\ vo .

I f  w  f * ( rn\r/n )

f * - 1 (w)n( ,11v0=,(1 (f* - i(w)(\v.)=15,

and, since I f* - 1 (w)(117 „1 is a  decreasing sequence o f closed sets, there

exists a  number n  such that

f *'(w ) V =  ç ,

that is, w  f * ( Vn ) .  This shows

f\ f* (v )C  f* (fn\v-.),

and completes the proof.

Now, we are going to characterize the essential cluster set of the

fine boundary function o f  f  by f * ( T p ). For a point p E 4, we define

the set

L(U, e, w)= {p' EUnF(f); f i (p')EN6(w)},

where U is a  neighborhood o f p and NE (w ) is the s-neighborhood o f w

(c f. [101).

Lemma.

l
w E S; L(U, e, w) is  of  positive harmonic

P r o o f .  Let q be a point of F p  and w = f * ( q ) .  By continuity o f f *
there exists, for an arbitrary neighborhood N , of w , a  neighborhood II

o f  q  such that f*(11)C N E . And, since q E 11, there is  a  connected

component G  o f R r111 which is not of the class SOHB ( [ 7 1 ,  [ 4 1 ) .  So,

41 (G) is o f harmonic measure positive (D I ,  and the Fatou mapping f
has fine limits almost everywhere o n  41 (G). Let p' E 41 (G)r\
then

f*(T p)= measure f o r all  e> 0  and  a l l  U
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f ( p ')=f 1 ,f (V )C  f(G )C  f*(u)Ev .  

This means that in  an arbitrary neighborhood N2s  o f  w = f  * (q ) there

exists a fine limit f l (p ')  of f .  And p ' runs over the set 41 (G )n F (f )
o f  harmonic measure positive which may be assumed to be contained

in an arbitrarily given neighborhood U of p  by taking 11 small. There-

fore, fo r  w-= f* (q ) q  E [ ' , L(U, e, w) is  of positive harmonic measure

for all e>  0  and a ll U.

On the other hand, let L( U, a, w) be o f harmonic measure positive

fo r all a> 0  and all neighborhoods U  o f p. Put G -=f - 1 (N E )  for the

a-neighborhood N , o f w .  Then we have

zli.(G)) L(U, e, w),

because, for p' E L(U, e, w ) f'(p ')E N e , so that G = f -
1(N )  E 13p , and

p 'E  d i(G ). And, since zli(U )) Un.d i D L(U, e, w) we have

4 1(G n u )D L (u , e , w),

and so, di (G n U ) is  o f harmonic measure positive. T h i s  leads to ex-

istence o f a  component D  o f U  R ,  fo r  which 41 (D )  is  o f  harmonic

measure positive. Hence D  is not of the class SOuB, and w e have

(D — (R— D))nr*O,

where closures are taken in R .  H e r e ,  we put Tu =Tnrc -1 (U ),  then

it is  a  non-empty closed set containing D r Y r .  Since

f * (1 7 -1D )( f * (D)Cf(D)CN2e

there exists a point q in  T u  such that f * (q)E N2s. Now, let q„ be a

point of ru . such that w n f * ( q n ) E N .  By m aking e n  tend to  0  and

Vn = 7r - 1 (Un )  to  Irp, w e have a sequence {q„}. Since T u .  is closed,

{qn} C T u .  and w E f  * (T u . )  fo r  a l l  n. Therefore, iv E n f * ( ru „) =
f * ( rn■Fu,)=f*(rp).
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Theorem 9.

c*(f , p)= f*(T p).

P ro o f. First we recall that the boundary 4 does not contain a

singular point in the present case, especially, p  is o f harmonic measure

O. Now, let

w E f * ( 1- p),

then L(U , 6, w) is of harmonic measure positive for all e > 0 and all U,

so that

w E f /(q),
pEB

where B = U n F ( f ) — E— { p}  with an arbitrary set E  on 4  of harmo-

nic measure O. Hence,

w E ft;\ ( 4\J B  f'(q ))=  CI( f ,  p ) .

Since E  is arbitrary,

w EEQ T C l(f , p)=C*(f , P).

On the contrary, if

w  f p),

there exist E> 0 , U and E E J  such that N ,(w )n{ U  f '(q )}  =0 . Hence,
qe.13

f i ( q )=  C t ( f ,  p ) ,
9EB

and consequently,

Ere\J C1(f, p ) - P)-

Thus we conclude that
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f * (r P)=C*(f, P)

Theorem 8  and 9  suggest that properties o f harmonic boundary will
serve for the study of cluster sets. We shall prove a  few theorems in

the following as applications of the theorems.

Lemma. Let p  be a  regu lar m in im al po in t o f  d ,  an d  U  be its

neighborhood. T hen, f or F= R —  U,

1F(z)—>0 w h en  z—>p,

w here 1F is the inf im um  of  the class of  superharm onic functions w hich
are  not sm aller than 1 quasi-everywhere on  F.

P ro o f. Let f=xF ,,, be the characteristic function o f Pn 4, where
closure is taken in  R * .  f  is  resolutive and, by regularity of p, H f (z)
—>0 when z—>0. Let h i „-= inf s, where e is the class of superharmonic

S E S

functions s  such that s > 1F outside a compact set Ks. Then, since
hi , < H f  ( D a ,  hi ,(z)—>0 when z—>0. But w e have 0 <1 F < h i ,- F EP
outside a compact set, with Green potential P  and s  >  0  ([4 ]). And

the potential P tends to  0  at p ,  because the regular point p  belongs to
the harmonic boundary o f R * .  Therefore IF  tends to  0  at p.

Lemma. L e t  u  be a  continuous subharmonic function bounded above
in  a  neighborhood o f  a  regular m in im al poin t p  o f  d , then

max u =max u.
vv, r,

P ro o f .  L et U„ b e  the 1/n -neighborhood o f  p, V  „=-7r - 1 ( U )  and

T n = T r\ P „ . I f  u  satisfies the condition of the lemma in  U k ,  it is ex-
tended continuously on Pn fo r  sufficiently large n > k .  Because, for the

component C o f  Uk n R  belonging to O p , pE C *=-R *— (R — C ) and u
is extended continuously on  n- l (C * ) (c f. [ 4 1  Satz 9.11). L e t  u < M
and put m = m ax u= lim  max u ,  then there exists a  number n o such

r,,r n
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that, for n > n 0 , m a x  u  m  e <M, for a given 6> 0. B y  the precedingr.
lemma, 1F.—>-0 when z ->"), where F„ -=- 1? —  Un  f o r  n  n  0 . Put =

u — 2M IF., then  i  i s  a  subharmonic function bounded above and

m on rn
lim  < 

1. 0o n V „ .

Hence,

<m - Fs

in  V n ( [ 4 ] ) .  S in c e  1 F -0  for z — y ,1 F .< e ' in  V „i n R  for sufficiently
sm all V . .  Therefore,

u-="ii-F2Me 1 < m + 6+ 2M a i

in  V „z r1 R .  Since u is continuous on  TVp a n d  s  and s ' are arbitrary,
w e have

u < m  o n  1Fp ,

and complete the proof.

Theorem 1 0 . Let p  be a  regular m inim al point of  d , then C(f , p)
— C*(f , p) is an  open set.

P ro o f. I f C(f , p) is  total our assertion is evident. S o, w e assume

C (f , p )  is  n o t  total. T h e  proof is com pleted  by show ing that the

boundary O C(f , p) o f  C (f , p )  is contained in  C *( f , p). W e suppose

that wo E OC(f, p) —  C* ( f , p). W e m ay assume wo =  0  without loss of

generality. Put 2p the distance between wo an d  C*(f, p), and let
b e  a point in  th e  p-neighborhood o f  wo a n d  outside C(f , p). Then,

1/ Ifiz)-wi I is subharmonic and bounded above in Rn v„ for a certain

V . A n d  since f  (z „) tends to w o = 0 for a sequence tz n I tending to p,
max(1/1 ) >1/I
wp

have

T herefore, by the preceding lemma, we

1/1 <niliax < T x  1 /  —v  
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< m a x i / ( f  — 1w il) < 1/( 2 P —
r p

Consequently, we have

which contradicts that wi  belongs to the p-neighborhood of w o =0.

Theorem 1  and 10 lead to the following

Theorem 1 1 .  L et p  be a  regular m in im al poin t o f  4 , then each

point of  C (f, p )—  C * (f, p ) is assum ed by  f  inf initely  of ten in  R  except

f or points belonging to a se t o f  inner capacity  0.

W e notice that the values assumed by f  in any neighborhood of p

are those assumed by f *  on Ap, that is, R (  f ,  p )  C f  * (A p ).

C O L L E G E  O F  GENERAL

E D U C A T IO N , K Y O T O  U N IV E R S IT Y
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