J. Math. Kyoto Univ. (JMKYAZ) 12-1 (1972) 1-15

The theorem of the cube for principal homogeneous spaces

By

Masayoshi MIYANISHI

(Received, February 4, 1971)

0. The statement of the theorem.

Let $f_i: X_i \to S$, (i=1, 2, 3) be a proper flat S-prescheme of finite presentation such that f_i has a section e_i and that $f_{i*}(\mathcal{O}_{X_i}) \cong \mathcal{O}_S$ universally. Let G be a flat commutative S-group prescheme of finite presentation. For any subset I of $\{1, 2, 3\}$, we denote by $X_I = \prod_{i \in I} X_i$ the fibre product of X_i , $i \in I$, by s_I the immersion $X_I \to X_{\{1,2,3\}}$ defined by id_{X_i} for $i \in I$ and e_i for $i \in \{1, 2, 3\} - I$ and by $s_{I,I}$ the immersion $X_I \to X_I$ defined by id_{X_i} for $j \in J$ and e_j for $j \in I - J$ if $J \subset I$.

A trivialization of a $G_{X_{\{1,2,3\}}}$ -torsor E with respect to e_i , (i=1, 2, 3)is a set of isomorphisms $\alpha_I: s_I^*(E) \rightarrow G_{X_I}$ for any subset I of $\{1, 2, 3\}$ such that for $J \subset I$, $s_{J,I}^*(\alpha_I) = \alpha_J$. The set of isomorphism classes of trivializable $G_{X_{\{1,2,3\}}}$ -torsors forms an abelian group which is denoted by $PH_{(e_1,e_2,e_3)}(X_1 \times X_2 \times X_3, G)$.

We shall prove the following

The theorem of the cube. Let $f_i: X_i \rightarrow S$ (i=1, 2, 3) and G be as above. Then $PH_{(e_1, e_2, e_3)}(X_1 \times X_2 \times X_3, G) = 0$ if G satisfies moreover one of the following conditions:

- (1) G is affine and smooth over S.
- (2) G is finite and flat over S.

Masayoshi Miyanishi

(3) G is an abelian scheme, S is quasi-compact and normal and f_i (i=1, 2, 3) are geometrically normal.

If G is the multiplicative group prescheme, $G_{m,S}$, this theorem is the ordinary theorem of the cube (cf. [1], [3], [6]). The notation and definitions are those of [4] and [5]. The cohomologies should be understood to be (f. p.q.c.)-cohomologies unless otherwise mentioned.

1. The formal non-ramifiedness of the functor $\operatorname{Corr}_{S}^{G}(X_{1}, X_{2})$.

Let $f_i: X_i \to S$ (i=1, 2) be a proper S-prescheme such that f_i has a section e_i and that $f_{i*}(\mathcal{O}_{X_i}) \cong \mathcal{O}_S$ universally and let G be a commutative affine flat S-group prescheme of finite presentation. We define a (f.p.q.c.)-sheaf of abelian groups, $\operatorname{Corr}_S^G(X_1, X_2)$, on the site $(\operatorname{Sch}/S)_{pq}$ by the following split exact sequence,

$$0 \longrightarrow \mathbf{PH}(X_1/S, G) \underset{S}{\times} \mathbf{PH}(X_2/S, G) \xrightarrow{pr_2^* + pr_1^*}_{(s_1^*, s_2^*)} \mathbf{PH}(X_1 \underset{S}{\times} X_2/S, G)$$
$$\longrightarrow \mathbf{Corr}_S^G(X_1, X_2) \longrightarrow 0.$$

Corr^{*G*}_{*S*}(X_1, X_2) is called the functor of divisorial correspondences of type *G* between X_1 and X_2 and satisfies the following properties;

(1) $\operatorname{Corr}_{S}^{G}(X_{1}, X_{2}) \underset{s}{\times} S' \cong \operatorname{Corr}_{S'}^{G'}(X_{1}', X_{2}')$, where ' on the shoulders denote the base change by $S' \to S$.

(2) $\operatorname{Corr}_{S}^{G}(X_{1}, X_{2}) \equiv \operatorname{Corr}_{S}^{G}(X_{1}, X_{2})(S)$ is a direct summand of $\operatorname{PH}(X_{1} \underset{S}{\times} X_{2}/S, G) \equiv \operatorname{PH}(X_{1} \underset{S}{\times} X_{2}/S, G)(S)$ with the complement $\operatorname{PH}(X_{1}/S, G) \oplus \operatorname{PH}(X_{2}/S, G).$

First of all, we shall prove

Lemma 1. Corr^G_S (X_1, X_2) is formally non-ramified if G is a smooth affine commutative S-group prescheme of finite presentation and f_1 or f_2 is flat.

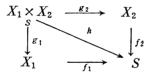
Proof. We may assume that S is affine and that f_1 is flat. Let $S=\operatorname{Spec}(A)$, let I be a square zero ideal of A and let $\overline{S}=\operatorname{Spec}(A/I)$.

We have to show that the canonical morphism obtained from the base change by $\bar{S} \rightarrow S$,

$$i : \operatorname{Corr}_{S}^{G}(X_{1}, X_{2}) \longrightarrow \operatorname{Corr}_{S}^{G}(\bar{X}_{1}, \bar{X}_{2})$$

is injective. Let ξ be an element of $\operatorname{Corr}_{S}^{G}(X_{1}, X_{2})$ such that $i(\xi)=0$. By definition, ξ is representable by a $G_{X_{1}\overset{\times}{s}X_{2}}$ -torsor E such that $s_{1}^{*}(E)$ (resp. $s_{2}^{*}(E)$) is a trivial $G_{X_{1}}$ (resp. $G_{X_{2}}$)-torsor and that $E \times \overline{S}$ is also a trivial $\overline{G}_{\overline{X}_{1}\overset{\times}{s}\overline{X}_{2}}$ -torsor. Then we should prove that E is itself a trivial $G_{X_{1}\overset{\times}{s}X_{2}}$ -torsor.

Consider the following diagram,



where g_1 and g_2 are canonical projections and where $h = f_1g_1 = f_2g_2$. If \mathscr{F} is a quasi-coherent $\mathscr{O}_{X_1 \underset{S}{\times} X_2}$ -Module, the Leray spectral sequence for the composite morphism $h = f_1g_1$ gives an exact sequence,

$$0 \longrightarrow R^1 f_{1*}(g_{1*}\mathscr{F}) \longrightarrow R^1 h_*(\mathscr{F}) \longrightarrow f_{1*}R^1 g_{1*}(\mathscr{F}).$$

If $\mathscr{F} = h^* \mathscr{G}$ for some quasi-coherent \mathscr{O}_S -Module \mathscr{G} , this sequence becomes

$$0 \longrightarrow R^1 f_{1*}(f_1^* \mathscr{G}) \longrightarrow R^1 h_*(h^* \mathscr{G}) \longrightarrow R^1 f_{2*}(f_2^* \mathscr{G}),$$

where we used the flat base change theorem for f_2 (cf. EGA, III (1.4.15)). Since S is affine, this sequence is equal to an sequence,

$$0 \longrightarrow H^{1}(X_{1}, f_{1}^{*}\mathscr{G}) \longrightarrow H^{1}(X_{1} \underset{s}{\times} X_{2}, h^{*}\mathscr{G}) \longrightarrow H^{1}(X_{2}, f_{2}^{*}\mathscr{G}).$$

Moreover this sequence splits because X_1 and X_2 have sections from S.

On the other hand, we have the following commutative diagram from Lemma 2 below:

where the lines are exact and the left column splits. ξ defines an element ξ' of $H^1(X_1 \times X_2, G)$ such that $i_{1,2}(\xi')=0$ and $\xi=0$ if and only if $\xi'=0$.

Then the diagram chasing shows that $\xi = 0$. q.e.d.

Lemma 2. Let G be a smooth affine commutative S-group prescheme, let $f: X \rightarrow S$ be a S-prescheme quasi-compact and quasi-separated over S and let \overline{S} be a closed subprescheme defined by a square-zero Ideal \mathscr{I} of \mathcal{O}_S . Then we have an exact sequence.

$$0 \longrightarrow f_*(\text{Lie } G \bigotimes_{i \in S} \mathscr{I} \mathscr{O}_X) \longrightarrow f_*(G) \longrightarrow \bar{f}_*(\bar{G}) \longrightarrow R^1 f_*(\text{Lie } G \bigotimes_{i \in S} \mathscr{I} \mathscr{O}_X) \longrightarrow R^1 f_*(G) \longrightarrow R^1 \bar{f}_*(\bar{G}).$$

If $f_*(\mathcal{O}_X) \cong \mathcal{O}_S$ universally, then $f_*(G) \to \overline{f}_*(\overline{G})$ is surjective. Moreover, if S is affine, we have an exact sequence,

$$0 \longrightarrow H^{1}(X, \operatorname{Lie} G \underset{\underset{U_{S}}{\otimes} \mathscr{IO}_{X}}{\longrightarrow} H^{1}(X, G) \longrightarrow H^{1}(\overline{X}, \overline{G}).$$

Proof. We shall show that if S is affine, we have an exact sequence,

$$0 \longrightarrow \Gamma(X, \operatorname{Lie} G \bigotimes_{U_{S}} \mathscr{IO}_{X}) \longrightarrow G(X) \longrightarrow \overline{G}(\bar{X}) \longrightarrow$$
$$H^{1}(X, \operatorname{Lie} G \bigotimes_{U_{S}} \mathscr{IO}_{X}) \longrightarrow H^{1}(X, G) \longrightarrow H^{1}(\bar{X}, \bar{G}).$$

The first exact sequence is obtained by localizing the above sequence.

An element ξ of $H^1(X, G)$ can be given by a Čech-cocycle. Since

we are dealing with the (f.p.q.c.)-topology, $\boldsymbol{\xi}$ is given by a Čech-cocycle $g_{ij} \in G(U_{ij})$ for $\mathfrak{U} = \{U_i\} \in \operatorname{Cov}(X)$, where U_i is an affine scheme which is faithfully flat over an affine open set V_i of $X, \bigvee_i V_i = X$ and where $U_{ij} = U_i \times U_j$. The image of $\boldsymbol{\xi}$ in $H^1(\bar{X}, \bar{G})$ is zero if and only if $\{\bar{g}_{ij}\}$ is a Čech-coboundary. Then replacing \mathfrak{U} by a finer open cover of X, we may assume that there exists $\bar{h}_i \in \bar{G}(\bar{U}_i)$ for all i such that $\bar{g}_{ij} = \bar{h}_i - \bar{h}_j$ on \bar{U}_{ij} for all i, j.

Let $U_i = \operatorname{Spec}(A_i)$ and let $\overline{U}_i = \operatorname{Spec}(A_i/I_i)$, I_i being a square-zero ideal of A_i . Since G is smooth over S, there exists $h_i \in G(U_i)$ for all i such that $\overline{h}_i = h_i$ modulo I_i . Let $g'_{ij} = g_{ij} - h_i + h_j$. Then $\overline{g}'_{ij} = 0$ modulo I_i .

Now we shall use the following

Sublemma. Let G be an affine smooth T-prescheme and let \overline{T} be a closed subprescheme of T defined by a square-zero Ideal \mathscr{I} of \mathcal{O}_T . Then we have the following exact sequence,

$$0 \longrightarrow \Gamma(T, \operatorname{Lie} G \underset{\mathcal{C}_T}{\otimes} \mathscr{I}) \longrightarrow G(T) \longrightarrow \overline{G}(\overline{T}).$$

Proof. Since G is affine over T, G is given by a quasi-coherent \mathcal{O}_T -Algebra \mathscr{A} and \mathscr{A} is the direct sum of \mathcal{O}_T and the augmentation Ideal \mathscr{J} , i.e., $\mathscr{A} \cong \mathcal{O}_T \oplus \mathscr{J}$. Let g be an element of G(T) such that $g=0 \mod \mathscr{I}$. Let g be defined by an \mathcal{O}_T -Algebra homomorphism $\varphi: \mathscr{A} \to \mathcal{O}_T$. Then φ sends \mathscr{J} to \mathscr{I} since the composite homomorphism $\mathscr{A} \stackrel{\varphi}{\to} \mathcal{O}_T \longrightarrow \mathcal{O}_{\overline{T}}$ factors through \mathscr{A}/\mathscr{J} . Since \mathscr{I} is square-zero, $\varphi \mid \mathscr{J}$ defines an \mathcal{O}_T -Module homomorphism $\overline{\varphi}: \mathscr{J}/\mathscr{J}^2 \to \mathscr{I}$. Conversely, if $\psi: \mathscr{I}/\mathscr{J}^2 \to \mathscr{I}$ is any \mathcal{O}_T -Module homomorphism, we can construct an \mathcal{O}_T -Algebra homomorphism $\widetilde{\psi}$ by $\widetilde{\psi}\mid_{\mathcal{O}_T} = \operatorname{id}_{\mathcal{O}_T}$ and $\widetilde{\psi}\mid \mathscr{J} = \psi$ composed with the canonical projection $\mathscr{J} \to \mathscr{J}/\mathscr{J}^2$. Then it is easy to see that $\widetilde{\varphi} = \varphi$ and $\widetilde{\widetilde{\psi}} = \psi$. On the other hand, $\operatorname{Hom}_{\mathcal{O}_T}(\mathscr{J}/\mathscr{J}^2, \mathscr{I}) \cong \operatorname{Hom}_{\mathcal{O}_T}(\mathscr{J}/\mathscr{J}^2, \mathscr{I})$ (T)= $\Gamma(T, \operatorname{Lie} G \otimes \mathscr{I})$ since $\mathscr{J}/\mathscr{I}^2$ is locally free \mathscr{O}_T -Module.

q.e.d.

Now we shall go back to the proof of Lemma 2. From the sublemma, there exists an element η_{ij} of $\Gamma(U_{ij}, \operatorname{Lie} G \bigotimes_{\mathcal{O}_S} \mathscr{IO}_{U_{ij}})$ determined uniquely by g'_{ij} . Then η_{ij} is a Čech-cocycle of $C^1(\mathfrak{U}, \operatorname{Lie} G \bigotimes_{\mathcal{O}_S} \mathscr{IO}_X)$, hence defines an element ζ of $H^1(X, \operatorname{Lie} G \bigotimes_{\mathcal{O}_S} \mathscr{IO}_X)$ which goes to ξ .

 ξ is a Čech-coboundary if and only if ζ comes from an element of $\overline{G}(\overline{X})$ by the following morphism δ : Let $\overline{g} \in \overline{G}(\overline{X})$ and let $\mathfrak{B} = \{V_i\}$ be an affine open cover of X. Then $\bar{g}|_{V_i}$ comes from g_i of $G(V_i)$, since G is smooth over S. Then for any $i, j, g_i - g_j$ corresponds with an element η_{ij} of $\Gamma(V_{ij}, \operatorname{Lie} G \bigotimes_{(j_s)} \mathscr{IO}_X)$ and $\{\eta_{ij}\}$ is a Čech-cocycle of $C^1(\mathfrak{V},$ Lie $G \bigotimes_{\mathcal{A}_{\sigma}} \mathscr{I}\mathcal{O}_X$. Hence $\{\eta_{ij}\}$ defines an element ζ of $H^1(X, \text{Lie } G \bigotimes_{\mathcal{A}_{\sigma}} \mathscr{I}\mathcal{O}_X)$. Then δ is a morphism which sends \overline{g} to ζ . If ξ defines an element ζ which comes from $\bar{g} \in G(\bar{X})$ by the morphism δ above, we can see easily from the definition that ξ is a Cech-coboundary. Conversely, if ξ is a Čech-coboundary, replacing \mathfrak{A} by finer cover, there exist $g'_i \in G(U_i)$ for all *i*, which is in turn coming from $\Gamma(U_i, \operatorname{Lie}(G) \bigotimes_{U_X} \mathscr{IO}_X)$, such that $g'_{ij} = g'_i - g'_j$ on U_{ij} for all i, j. Since $g'_{ij} (= g'_i - g'_j) = 0$ modulo I, $\bar{g}'_i = \bar{g}_j$ for all i, j. Hence $\{\bar{g}'_i\}$ defines an element \bar{g}' of $\bar{G}(\bar{X})$, which is easily seen to give ζ by δ . Here we note that $H^1_{pq}(X, \operatorname{Lie} G \bigotimes \mathscr{IO}_X)$ $\cong H^1_{Z_{ar}}(X)$, Lie $G \bigotimes_{U_S} \mathscr{IO}_X$. \overline{g} comes from an element of G(X) if and only if $\delta(\bar{g})=0$. The remaining parts follows from the sublemma.

If $f_*(\mathcal{O}_X) \cong \mathcal{O}_S$ universally, $G(X) \to \overline{G}(\overline{X})$ is surjective since $G(X) = \text{Hom}_S(\operatorname{Spec}(f_*\mathcal{O}_X), G), \ \overline{G}(\overline{X}) \cong \text{Hom}_{\overline{S}}(\operatorname{Spec}(\overline{f}_*\mathcal{O}_{\overline{X}}), \overline{G})$ and since $\operatorname{Spec}(\overline{f}_*(\mathcal{O}_{\overline{X}}))$ is a closed subprescheme of $\operatorname{Spec}(f_*(\mathcal{O}_X))$ defined by a squarezero Ideal. q.e.d.

Lemma 3. Let G, X_1 and X_2 be as in Lemma 1. Then the unit section e of $\operatorname{Corr}_S^G(X_1, X_2)$ is representable by an open immersion.

Proof. Let T be any S-prescheme and let $Z_T = (T, \alpha) \times \underset{Corr_S(X_1, X_2)}{(S, e)}$ for any S-morphism $\alpha: T \rightarrow \operatorname{Corr}_S^G(X_1, X_2)$. We have to prove that Z_T is an open set of T. Namely, if t is a point of T such that $\alpha(t)$ =0, then $\operatorname{Spec}(\mathcal{O}_{T,t}) \subset Z_T^{*}$. Since $Z_{\operatorname{Spec}}(\mathcal{O}_{T,t}) \cong Z_T \underset{T}{\times} \operatorname{Spec}(\mathcal{O}_{T,t})$ and $t \in Z_{\operatorname{Spec}(\mathcal{O}_{T,t})}$, we may replace T by $\operatorname{Spec}(\mathcal{O}_{T,t})$. Let $A = \mathcal{O}_{T,t}$. Then α defines an element ξ of $\operatorname{Corr}_S^{G_T}(X_{1,T}, X_{2,T})$. Finally we may assume that T = S. By (f.p.q.c.)-descent, we may replace A by its completion \hat{A} with respect to its maximal ideal un. In fact, if \hat{S} is $\operatorname{Spec}(\hat{A})$, the morphism

$$\operatorname{Corr}_{S}^{G}(X_{1}, X_{2})(S) \longrightarrow \operatorname{Corr}_{S}^{G}(X_{1}, X_{2})(\hat{S})$$

is injective because \hat{S} is faithfully flat and quasi-compact over S and $\operatorname{Corr}_{S}^{G}(X_{1}, X_{2})$ is a (f.p.q.c.)-sheaf. Let $A_{n} = A/\mathfrak{m}^{n+1}$ and let $S_{n} = \operatorname{Spec}(A_{n})$. Then by virtue of Lemma 1, the canonical morphism

$$\operatorname{Corr}_{S_n}^{G_n}(X_{1,n}, X_{2,n}) \longrightarrow \operatorname{Corr}_{S}^{\overline{G}}(\overline{X}_1, \overline{X}_2)$$

is injective, where $\tilde{S} = \text{Spec}(A/\mathfrak{n})$ and $\tilde{G} = G \times {}_{S}\tilde{S}$. Since ξ is zero, $\xi_n = \xi$ modulo $(\mathfrak{n}\mathfrak{n}^{n+1})$ is zero.

 \hat{s} is representable uniquely up to isomorphisms by a $G_{X_1 \underset{S}{\times} X_2}$ -torsor E such that s_1^*E and s_2^*E are trivial. Then $E = \lim_{n \to \infty} E \underset{S}{\times} S_n$ is trivial. The sections $\sigma_n : (X_1 \underset{S}{\times} X_2)_n \to E \underset{S}{\times} S_n$ which trivialize $E \underset{S}{\times} S_n$ can be chosen so that the following diagram is commutative for any $n \ge m$,

Then there exists a section $\sigma: X_1 \times X_2 \to E$ by virtue of EGA, III (5.4.1.). Therefore E is trivial. Thus $\operatorname{Spec}(A) \subset Z$. q.e.d.

Lemma 4. Let $f_i: X_i \rightarrow S$ (i=1, 2, 3) be a proper flat S-prescheme such that f_i has a section e_i and that $f_{i*}(\mathcal{O}_{X_i}) \cong \mathcal{O}_S$ universally and let G be a smooth affine commutative S-group prescheme of finite presenta-

^(*) In fact, $\operatorname{Corr}_{S}^{q}(X_{1}, X_{2})$ is a functor of finite presentation since **PH**-functors are so and $\operatorname{Corr}_{S}^{q}(X_{1}, X_{2})$ is a direct summand of a **PH**-functor, (cf. [4] or SGAD, Exp VI_{B} (10. 16)). Then the fact that $\operatorname{Spec}(0_{T,t}) \subset Z_{T}$ implies that there exists an affine open set U of t such that $U \subset Z_{T}$.

tion. Then any S-morphism $f: X_3 \rightarrow \operatorname{Corr}_S^G(X_1, X_2)$ which sends the section e_3 to the unit section e of $\operatorname{Corr}_S^G(X_1, X_2)$ factors through the unit section, i.e., $f = e \cdot f_3$.

Proof. Let $Z=(X_3, f) \times (S, e)$. Then by Lemma 3, Z is an corr ${}_{S}^{G}(X_1, X_2)$ open subprescheme of X_3 which contains $e_3(S)$. To complete the proof, we have to show that $Z=X_3$. If $Z\neq X_3$, take any closed point x of X_3-Z and let $s=f_3(x)$. Then $f_s\colon X_{3,s}\rightarrow \operatorname{Corr}_{k(s)}^G(X_{1,s}, X_{2,s})$ does not factor through the unit section e_s of the latter. Therefore we are reduced to consider the case where $S=\operatorname{Spec}(k)$, where k is a field. By (f.p.q.c.)-descent, we may assume that k is algebraically closed. If G is connected, $\operatorname{Corr}_{S}^{G}(X_1, X_2)$ is representable by a S-group prescheme locally of finite type over S. In fact, $\operatorname{Corr}_{S}^{G}(X_1, X_2)$ is the kernel of the S-homomorphism $(s_1^*, s_2^*) \colon \operatorname{PH}(X_1 \times X_2/S, G) \to \operatorname{PH}(X_1/S, G) \times \operatorname{PH}(X_2/S, G)$, where $\operatorname{PH}(T/S, G), T=X_1 \times X_2, X_1$ or X_2 is representable by a S-group prescheme locally of finite type over S. If G is etale, S - group prescheme locally of finite type ore S. The functional setable of the S-homomorphism (s_1^*, s_2^*) \colon \operatorname{PH}(X_1 \times X_2/S, G) \to \operatorname{PH}(X_1/S, G) \times \operatorname{PH}(X_2/S, G), where $\operatorname{PH}(T/S, G), T=X_1 \times X_2, X_1$ or X_2 is representable by a S-group prescheme locally of finite type over S. If G is etale, S - group prescheme locally of finite type over S. If G is etale, setale, the setale setale setale setale to the setale and satisfies the following exact sequence,

$$0 \longrightarrow \mathbf{Corr}_{\mathcal{S}}^{G_0}(X_1, X_2) \longrightarrow \mathbf{Corr}_{\mathcal{S}}^{\mathcal{G}}(X_1, X_2) \longrightarrow \mathbf{Corr}_{\mathcal{S}}^{\mathcal{G}/G_0}(X_1, X_2),$$

whence the connected component $\operatorname{Corr}_{S}^{G}(X_{1}, X_{2})^{0}$ of the unit section of $\operatorname{Corr}_{S}^{G_{0}}(X_{1}, X_{2})$ is representable and coincides with $\operatorname{Corr}_{S}^{G}(X_{1}, X_{2})^{0}$. Therefore $\operatorname{Corr}_{S}^{G}(X_{1}, X_{2})^{0}$ is separated over S. Then the unit section e is a closed immersion. Then Z is a closed and open subprescheme of X. However since $f_{3*}(\mathcal{O}_{X_{3}}) \cong \mathcal{O}_{S}$, X_{3} is connected by Zariski's connectedness theorem. Therefore $X_{3}=Z$. q.e.d.

2. The proof of the theorem. The first case.

Let *E* be a $G_{X_{\{1,2,3\}}}$ -torsor representing an element of $PH_{(e_1,e_2,e_3)}$ $(X_1 \underset{S}{\times} X_2 \underset{S}{\times} X_3/S,G)$. Then *E* defines a *S*-morphism

$$\xi: X_3 \longrightarrow \mathbf{Corr}_S^G(X_1, X_2)$$

which sends the section e_3 to the unit section e of $\operatorname{Corr}_S^G(X_1, X_2)$. Then ξ factors through the unit section e by virtue of Lemma 4. Moreover E considered as a $G_{(X_1 \underset{X_3}{\overset{\times}{X_3}}) \underset{X_3}{\overset{\times}{X_3}} (X_2 \underset{S}{\overset{\times}{X_3}})$ -torsor defines an element η of $\operatorname{PH}((X_1 \underset{X_3}{\overset{\times}{X_3}}) \underset{X_3}{\overset{\times}{X_3}} (X_2 \underset{S}{\overset{\times}{X_3}})/X_3, G)$ which is in turn isomorphic to the direct sum,

$$\operatorname{PH}(X_1 \underset{S}{\times} X_3 / X_3, G) \oplus \operatorname{PH}(X_2 \underset{S}{\times} X_3 / X_3, G) \oplus \operatorname{Corr}_{\mathcal{S}}^{\mathcal{C}}(X_1, X_2)(X_3).$$

The components of η by this decomposition are $s_{13}^*(E)$, $s_{23}^*(E)$ and ξ which are all zero. Hence η is zero. Then E is trivial. q.e.d.

As this proof shows, if $\operatorname{Corr}_{\mathcal{S}}^{G}(X_{1}, X_{2}) = 0$, the proof of the theorem becomes almost trivial. The following result shows that the difficulty of the proof of the theorem comes from the torus part of G.

Proposition 5. Let $f_i: X_i \to S(i=1, 2)$ be a proper flat S-prescheme of finite presentation such that f_i has a section e_i and that $f_{i*}(\mathcal{O}_{X_i}) \cong \mathcal{O}_S$ and let G be a smooth affine commutative S-group prescheme of finite presentation. Suppose that the semi-simple rank of G is zero at every point of S. Then $\operatorname{Corr}_S^G(X_1, X_2) = 0$.

Proof. It is sufficient to prove that $\operatorname{Corr}_{S}^{G}(X_{1}, X_{2})=0$. We may assume that S is affine, $S=\operatorname{Spec}(A)$. Since $\operatorname{Corr}_{S}^{G}(X_{1}, X_{2})$ is a functor locally of finite presentation (cf. [4]), we may assume that A is a local ring. By (f.p.q.c.)-descent, we can replace A by its completion \hat{A} with respect to the maximal ideal m. Let $k=A/\operatorname{m}$ and let $s=\operatorname{Spec}(k)$. Suppose we have shown that $\operatorname{Corr}_{S}^{G_{s}}(X_{1,s}, X_{2,s})=0$. Then by Lemma 1, $\operatorname{Corr}_{S_{n}}^{G_{n}}(X_{1,n}, X_{2,n})=0$, whence one deduces $\operatorname{Corr}_{S}^{G}(X_{1}, X_{2})=0$, using the argument of the proof of Lemma 3.

Now we shall show by induction on the unipotent rank of G_s that $\operatorname{Corr}_{s}^{G_s}(X_{1,s}, X_{2,s}) = 0$. By (f.p.q.c.)-descent, we may assume that k is perfect. Then G_s has a composition series,

$$0 = G_0 \subset G_1 \subset \cdots \subset G_n = G_s$$

such that $G_{i+1}/G_i \cong G_{a,k}$ the additive group prescheme over k for $i=0, 1, \dots, n-1$.

For an exact sequence, $0 \longrightarrow G_i \longrightarrow G_{i+1} \longrightarrow G_a \longrightarrow 0$, we have an exact sequence of group functors,

$$0 \longrightarrow \operatorname{Corr}_{s}^{G_{i}}(X_{1,s}, X_{2,s}) \longrightarrow \operatorname{Corr}_{s}^{G_{i+1}}(X_{1,s}, X_{2,s})$$
$$\longrightarrow \operatorname{Corr}_{s}^{G_{a}}(X_{1,s}, X_{2,s}).$$

Therefore if $\operatorname{Corr}_{s}^{G_{a}}(X_{1,s}, X_{2,s}) = 0$, we are done by induction on *n*. In the case where $G_{s} = G_{a}, \operatorname{Corr}_{s}^{G_{a}}(X_{1,s}, X_{2,s}) \cong \operatorname{PH}(X_{1,s} \times X_{2,s}/s, G_{a})/\operatorname{PH}(X_{1,s}/s, G_{a}) \times \operatorname{PH}(X_{2,s}/s, G_{a}) \cong \operatorname{Lie}(\operatorname{Pic}(X_{1,s} \times X_{2,s}))/\operatorname{Lie}(\operatorname{Pic}(X_{1,s})) \times \operatorname{Lie}(\operatorname{Pic}(X_{2,s})) = 0 \quad (cf. [4]).$ q.e.d.

Corollary 6. Let G, X_1 and X_2 be as in Proposition 5. Then we have

$$\operatorname{PH}(X_1/S, G) \underset{S}{\times} \operatorname{PH}(X_2/S, G) \cong \operatorname{PH}(X_1 \underset{S}{\times} X_2/S, G).$$

Therefore

$$H^{1}(X_{1} \times X_{2}, G) \cong H^{1}(X_{1}, G) \oplus H^{1}(X_{2}, G)/H^{1}(S, G),$$

where $H^1(S, G)$ is considered as a subgroup of $H^1(X_1, G) \oplus H^1(X_2, G)$ by the injective homomorphism $E \rightarrow (f_1^*E, -f_2^*E)$.

Proof. Obvious by definition. See [4] and [5].

Corollary 7. Let G be as in Proposition 5 and let A be an abelian scheme over S. Then we have

$$H^1(A, G) \cong Ext^1_{S-gr}(A, G) \oplus H^1(S, G).$$

Proof. Let f_A and e_A be the structure morphism and the unit section of A respectively. Then we have,

$$H^1(A, G) \cong \operatorname{PH}(A/S, G) \oplus H^1(S, G).$$

Therefore it is sufficient to show that $PH(A/S, G) \cong Ext_{S-gr}^1(A, G)$. Take any element ξ of PH(A/S, G). ξ is representable by a G_A -torsor E such that e_A^*E is trivial. Let π be the multiplication of A. Then the $G_{A\times A}$ -torsor $\delta(E) = \pi^*E - pr_1^*E - pr_2^*E$ is trivial since $Corr_S^G(A, A) = 0$ from Proposition 5. Then E has a structure of commutative group S-prescheme with a section of e_A^*E as unit section E and is an extension of A by G (cf. [2], (1.3.5.)). The extension class of E is determined uniquely by ξ . Sending ξ to the extension class of E, one can define a homomorphism \emptyset which is the inverse of the canonical homomorphism i: $Ext_{S-gr}^1(A, G) \rightarrow PH(A/S, G)$.

3. The proof of the theorem. The second case.

Let $f_i: X_i \to S(i=1, 2)$ be a proper flat S-prescheme of finite presentation such that f_i has a section e_i and that $f_{i*}(\mathcal{O}_{X_i}) = \mathcal{O}_S$ universally, let G be a finite flat commutative S-group prescheme of finite presentation and let D(G) be its Cartier dual.

We shall recall the following

Lemma 8. ([5]). Corr ${}^{G}_{S}(X_{1}, X_{2}) \cong \operatorname{Hom}_{S-gr}(D(G), \operatorname{Corr}_{S}^{G_{m}}(X_{1}, X_{2}))$.

Lemma 9. Corr^G_S (X_1, X_2) is formally non-ramified.

Proof. Let S be an affine scheme and let \hat{S} be a closed subscheme of defi S ned by a square-zero ideal. We have only to show that the canonical morphism

$$\operatorname{Corr}_{S}^{G}(X_{1}, X_{2}) \longrightarrow \operatorname{Corr}_{S}^{G}(\bar{X}_{1}, \bar{X}_{2})$$

is injective. This follows from the commutativity of the diagram,

where $Corr_{S}(X_{1}, X_{2}) = Corr_{S}^{G_{m}}(X_{1}, X_{2}).$ q.e.d.

Lemma 10. The unit section e of $\operatorname{Corr}_{S}^{G}(X_{1}, X_{2})$ is representable by an open and closed immersion.

Proof. It is sufficient to show that if $u: D(G) \rightarrow \operatorname{Corr}_S(X_1, X_2)$ is any homomorphism of S-groups and H is the kernel of u, then the set $Z = \{s \in S; H_S = D(G)_s\}$ is an open and closed set of S.

However since the unit section of $\operatorname{Corr}_{S}(X_{1}, X_{2})$ is representable by an open and closed immersion (cf. [1]), H is an open and closed subgroup prescheme of D(G), hence it is finite and flat. Then the rank of each fibre of H is locally constant, whence the required result follows easily. q.e.d.

Now Lemma 4 is an easy consequence of Lemma 10 if G is understood a finite flat commutative S-group prescheme of finite presentation in Lemma 4. Then one can prove the second case of the theorem following word for word the proof for the first case.

Proposition 11. Let G, X_1 and X_2 be as above. If both f_1 and f_2 are geometrically normal, $\operatorname{Corr}_S^G(X_1, X_2) = 0$.

Proof. Since $\operatorname{Corr}_{S}^{G}(X_{1}, X_{2})$ is a (f.p.q.c.)-sheaf, we have only to show that $\operatorname{Corr}_{S}^{G}(X_{1}, X_{2})=0$ if S is an affine scheme. Moreover since $\operatorname{Corr}_{S}^{G}(X_{1}, X_{2})$ is a functor locally of finite presentation over S (cf. [4]), we may assume that the affine ring A of S is a local ring. We may replace A by its completion with respect to the maximal ideal m. If we could prove that $\operatorname{Corr}_{S}^{G}(X_{1}, X_{2})(k)=0$, where k=A/m, the proof will be completed, using the argument of the proof of Lemma 3. Therefore we shall show that $\operatorname{Corr}_{S}^{G}(X_{1}, X_{2})=0$ if S is the spectrum of a field k. We may assume k algebraically closed. In this case $\operatorname{Corr}_{S}(X_{1}, X_{2}) = \operatorname{Hom}_{k-gr}(\operatorname{Alb}(X_{1}), \operatorname{Pic}_{X_{2}/k}^{0})$ which is torsion free (cf. [3], p. 155). Then $\operatorname{Corr}_{S}^{G}(X_{1}, X_{2}) = \operatorname{Hom}_{k-gr}(D(G), \operatorname{Corr}_{S}(X_{1}, X_{2}))=0.$ q.e.d. **Corollary 12.** Let G, X_1 and X_2 be as in Proposition 11. Then

$$\operatorname{PH}(X_1 \underset{S}{\times} X_2/S, G) \cong \operatorname{PH}(X_1/S, G) \oplus \operatorname{PH}(X_2/S, G).$$

Therefore

$$H^{1}(X_{1} \underset{s}{\times} X_{2}, G) \cong H^{1}(X_{1}, G) \oplus H^{1}(X_{2}, G) / H^{1}(S, G)$$

where $H^1(S, G)$ is considered as a subgroup of $H^1(X_1, G) \oplus H^1(X_2, G)$ by the injective homomorphism defined as in Corollary 6.

Corollary 13. Let G be as above and let A be an abelian scheme over S. Then

$$H^1(A, G) \cong \operatorname{Ext}_{S-gr}^1(A, G) \oplus H^1(S, G).$$

Proof. The same reasoning as for Corollary 7.

4. The proof of the theorem. The third case.

We shall prove the following

Proposition 14. Let S be a quasi-compact normal prescheme, A be an abelian scheme over S and let $f_i: X_i \rightarrow S$ (i=1, 2) be a proper flat geometrically normal S-prescheme such that f_i has a section e_i and that $f_{i*}(\mathcal{O}_{X_i})=\mathcal{O}_S$ universally. Let $\operatorname{Corr}_S^A(X_1, X_2)$ be the set of all isomorphism classes of $A_{X_1 \times X_2}$ -torsor E such that s_1^*E and s_2^*E are trivial. Then $\operatorname{Corr}_S^A(X_1, X_2)=0$.

Proof. From our assumptions on S and f_i , we have an inclusion,

$$\operatorname{Corr}_{S}^{A}(X_{1}, X_{2}) \subset H^{1}(X_{1} \underset{S}{\times} X_{2}, A)_{\operatorname{rep}} = H^{1}(X_{1} \underset{S}{\times} X_{2}, A)_{\operatorname{tor}}$$

(cf. [6]). If ξ is an element of $\operatorname{Corr}_{S}^{A}(X_{1}, X_{2})$, there exists an integer n > 0 such that $n\xi = 0$.

Consider an exact sequence of (f.p.q.c.)-sheaves,

$$0 \longrightarrow_n A \longrightarrow A \xrightarrow{n} A \longrightarrow 0,$$

where ${}_{n}A$ is a finite flat commutative S-group prescheme.

Denote by $A_0(T)$, $H_0^1(T, {}_nA)$ and $H_0^1(T, A)$ the kernels of $A(T) \xrightarrow{e^*} A(S)$, $H^1(T, {}_nA) \xrightarrow{e^*} H^1(S, {}_nA)$ and $H^1(T, A) \xrightarrow{e^*} H^1(S, A)$ respectively, where T should be replaced by X_1, X_2 or $X_1 \times X_2$ and where e^* is the homomorphism canonically deduced from e_1 and e_2 . Then we have the following commutative diagram.

where the lines are exact and two left columns are split exact. Since $n\xi=0$, $\xi=i_{12}(\eta)$ for some element η of $H_0^1(X_1 \times X_2, nA)$. Let $\eta_1=s_1^*(\eta)$ and $\eta_2=s_2^*(\eta)$. Then $i_1(\eta_1)=s_1^*i_{12}(\eta)=0$. Also $i_2(\eta_2)=0$. Therefore $\eta_1=j_1(\zeta_1)$ and $\eta_2=j_2(\zeta_2)$. Put $\zeta=pr_1^*$ $(\zeta_1)+pr_2^*(\zeta_2)$. Then $j_{12}(\zeta)=\eta$. Hence $\xi=0$. Thus $\operatorname{Corr}_S^A(X_1, X_2)=0$. q.e.d.

Corollary 15. Let S and f_i (i=1, 2, 3) be as in the statement of the theorem and let A be an abelian scheme over S. Suppose moreover that S is a quasi-compact normal prescheme and that f_i (i=1, 2, 3)is geometrically normal. Then

$$PH_{(e_1,e_2,e_3)}(X_1 \underset{S}{\times} X_2 \underset{S}{\times} X_3, A) = 0.$$

Proof. Easy from Proposition 14.

Corollary 16. Let S be a quasi-compact regular prescheme and let A and B be abelian schemes over S. Then

$$H^1(B, A) = H^1(B, A)_{\operatorname{rep}} \cong \operatorname{Ext}_{S-gr}^1(B, A) \oplus H^1(S, A).$$

Proof. The first isomorphism is due to M. Raynaud ([6]). The second isomorphism is proved as in Corollary 7 and Corollary 13, using Corollary 15 and $\lceil 2 \rceil$, Exp. VII, (1.3.5).

University of British Columbia and Kyoto University

Bibliography

- [1] M. Demazure, J. Giraud and M. Raynaud, Schémas abéliens, Séminaire d'Orsay, 1967/68.
- [2] A. Grothendieck, Biextensions de faisceaux de groupes, S G A 7, Exp. VII, Mimeographed note from I. H. E. S.
- [3] S. Lang, Abelian varieties, Interscience publishers.
- [4] M. Miyanishi, On the cohomologies of commutative affine group schemes, J. Math. Kyoto Univ., 8 (1968), 1-39.
- [5] _____, Sur la première cohomologie d'un préschéma affine en groupes commutatifs, Jap. J. Math., 38 (1969), 51-60.
- [6] M. Raynaud, Faisceaux amples sur les schémas en groupes et les espaces homogènes, Lecture Notes, Springer, 1970.