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§ 1. Introduction

The initial boundary value problem which we are concerned with

is the following one:

1. D wi— (Waz+wyy+wez)=0, in £, >0
1. 2 w(X, 0)=/1(X), wi(X, 0)=/(X),
. 3) <--g7+o)w(X, H=0, X

where X=(x, y, 2)ER3, Q2 is the exterior of the unit sphere, 0Q is its
boundary and o is a real constant. f1(X) and f»(X) have compact
supports in 92N and are sufficiently smooth and satisfy the following
compatibility conditions, (%—I—o)ﬁ(z\’)z(%—l—o)fz(X):(%—l—o)Afl
(X)=0, X 0.

Then the solution w(X, ) of (1,1), (1,2) and (1,3) is written w (X, £)
=ov(X, £)4+u(X, £) where v(X, ¢) is the solution of (1,1) and (1.2) is
in R3 instead of £2. It is well-known that »(X, £)=0 for sufficiently
large ¢. Hence the behavior of w(X, ¢) for large ¢ is decided by that
of w(X, #). Next u(X, ¢) is the solution of
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1. 1y stit— (gt otyy+uz)=0, in Q, #>0,

1. 4) (X, 0)=ui( X, 0)=0,

L s d d

1. 5) 72,7—}—0)%(/\’, t)=—(W+a>z/(X, ), Xeo.

The purpose of this paper is to show the exponential decay of

u(X, t) when ¢ tends to infinity under the conditioned mentioned below.
Assumption 1. o s real and o<l.

Assumption 2. We denote the right side of (1.5) by f(w, ?).
Then compatibility conditions imply f(w, 0)=flw, 0)= fu(w, 0)=0.
We assume that f(w, t) is sufficiently smooth, for example it suffices
that f(w, t) is of class C® on the product 0Q X [0, o), and that there
exists To(>0) such that f(w, £)=0 for t>T,.

The above result was announced with a short proof by C. Wilcox
[4] in the case of the first boundary value problem. Our method is
essentially similar to that of [4] except for some additional considerations.

We state the Theorem and give its proof in §2 assuming two
Lemmas 1 and 2. These lemmas on the asymptotic behavior of zeros
of modified Bessel functions of large order are established in §§3 and
4. In §5 we apply this method to an equation of the fourth order and
we show the exponential approach of the solution to a constant state

by its explicit formula.

§2. Statement and proof of the Theorem

Theorem. 7ke solution u(X, t) satisfying (1.1)', (1.4) and (1.5) with
the Assumptions 1 and 2 decays exponentially with t. Namely there
exists a positive p such that for fixed X 82,

@. 1 W(X, )=0(e~t),

where p is determined only by o.
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Proof. We begin with the construction of the formal solution. In-
troducing polar coordinates we expand «(7, w, #) and f(w, ) in spherical

harmonics as follows

o 2m+1
2. 2) u(7, w, t)=n§0 m2=1 Uun,m(7, ) Yo,m(w)
oo 2M+1
@3 f@)=E E fam®)Vame),

where { Y, m(w)}m=1,2,...,2n41 are normalized spherical harmonics of
order z. We remark that the series (2.3) is uniformly convergent with
respect to (w, #) because f(w, #) is smooth. On the other hand the
expansion (2.2) is formal.

Next we perform the Laplace transformation with respect to ¢,

@. 4 dim, m(r, N)= /0 oMy m(r, D)t

@. 5) Farn®= [ fu, m(t)at,

where R, A is positive.

An easy computation shows that

2. 6) dn,m(7, )= fn,mQ)Pn(7, X), D
where ‘

M) K s (V)
/\%K,’L+%(/\)+(o—%))r%1(n+12.()\) ’

Q.7 Bulr, V=

@8 Fa®=(5) ' L oy

1) Substituting (2.2) into (1.1)" we obtain

a2 2 2 3  nn+l
(o a7 5+ Herntr, =0,

(%Jra)u,,, (L, )=fn, m(2).

We remark that #,, m(», A) has not the term of ()«r)—'2LI,,+Jz_()«r).
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Kn+1() is a solution of the modified Bessel equation.

We consider the inverse Lapalace transform of #,,m(7, ). We
first remark that #(X, £) is identically zero if z—»+1<0. We con-
sider the expression of «(X, #) when #—»+1>0. Fixing (», #) in

this region, let us divide (2.5) into two parts,

@9 Fum®=[ e fu @t [ fo,m(r

We denote the first term by f M) and the second by f @ ). Then
f o) and f @ () are holomorphic in the whole domain and in RA>0
respectively. The following estimates are obtained by means of in-

tegration by parts.
2. 10 | FD )< C|A|teRAE—THD | if f—r 4120, RA<O.
n,
@ 11) 1@, CIN e R if t—r 120, RA>O0.

C is a positive constant.
We see that the number of the poles of @,(7, A) is at most n+1

from (2.7) and (2.8). We state two Lemmas 1 and 2 concerning these
poles of @y(7, A) which will be proved in §§3 and 4.

Lemma 1. @u(r, X) (=0, 1, 2, ...) is a meromorphic function of
A in the whole complex plane for fixed v(r >1). All its poles lie in
RAL0 and they ave at most of order 2 and simple if n >—o.

Lemma 2. We have the following estimates for the poles \y(s=1,

2, ..., n+1). If we choose no sufficiently large there exists a constant
A, B(>0) suck that

@. 12) ReXo < —An’,
@. 13) 13| <Bn,

Jor n=ng and 1<s<n+1.
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Lemma 1 and 2 give

Corollary. There exists a positive number u such that

2. 14) RN, < —p, for all n and s.

In order to calculate the inverse Laplace transform we divide the

integral into two parts taking account of (2.9),

1 prie
2. 15) wn,m(7, t)=—2—7;2~. / eXp, m(7, N)dA

r-‘ioo

1 T+l .
= 2m /,_1“ oM f LN, A)dA

1 prtte
+ 907 /r_,w M f DN Pulr, Ndd
=u§;1,)m(r, l‘)+u$,2')m(r, )

where y is positive.

1) the case of #{),(7, £): Let us replace the path of integration ReA
=y(>0) by the line RJA=—M with sufficiently large 47/(>0). For
this, take the rectangle R, of vertices y+4+Zi, —M+L7 with a
large Z(>0) such that all the poles of ®y(», A) are included in R;.

Then we have

2. 16) —2717—2 . A FD D, NdA
L ’
n+1 ”
= 3 Res et fg’)m()\)@n(r, A).

s=1 =1

@,(7, A) is expanded in the neighborhood of A=oc0 from (2.7) and (2.8).

@17 Balr, = {% L EmDARI D= |

(2.10) and (2.17) allow us to make L, M — 4 oo in (2.16).
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We have

(2. 18) w7, 8)= 2 Res At f(” A Du(7, A).
s=1 ;=

2) the case of #{?,(r, £): In this case we replace the path of integration
RA=y by RA=M(>y). By Lemma 1 there is no poles of @u(7, A)

between these two lines. Letting M — 4 oo, we have
(2. 19) uﬁf’m(r H=

From (2.15), (2.18) and (2.19) we obtain

(2. 20) tn,m(7, £)= Z Res erf (1) NP7, ).

§=1 =
Substituting this result in (2.2) we obtain

@2.21) wu(r,w,?)

e 2041 nHl aporpl
=3 ( o / gln(t—f)fn,m(1->d7- Res fpn(r, A)) Yn,m(w)
n=0 m=1 \ s=17 0 =25,

for (7, w, ¢) lying in the region z—7»+41=0.

The series (2.21) and its derivatives up to order 2 all converge
uniformly on any compact set of £ X [0, co] on account of Lemma 2, the
smoothness of f(w, #), and of

@. 22) {(f’;)j Res @u(r, N =00, (j=0,1,2) »

a J—+lyl

@23 (5] Yam@|=06", wi=0,1,2)

Hence the series (2.21) is the genuine solution of (1,1)’, (1.4) and (1.5).
Now we show that #(X, #) decays exponentially with #(z — 4 o).

2) (2.22) is derived by using the asymptotic expansion of K,H_ZL(/\r) and its
derivative. See §4.

3) See the paper by A.P. Calderon and A. Zygmund:
Amer. J. Math. 79(1957) 901-921.
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If we take # such that #=27y+»—1, then from Lemma 2
t-r+1
Sy 1 f )

7o s 1 T +
<( " emaienar ([ fom(r)12dr)

(ot VL S 0

If 4’ is chosen in such a way that for sufficiently large »
2,u—An§>——A’n%, then we have

e—2tp2u—And)t o2t p—a'n

2An? 2An¥

Using these results we see that |u(», w, £)|=0(¢~#¢), which proves

the theorem.

Remark 2.1. We notice that the result of the theorem is still true
when (1,1)" and (1.5) are replaced by

a2 1 .
3;—74 w(X, t)=0, in 7>p,

(g;-Fa)u(X, H=flpw, ), |X|=p.

In this case the condition on o is o<?.

Remark 2.2. One can prove in the similar way that all the first
derivatives of (X, ¢) also decay exponentially with respect to # for

fixed X.

§3. Proof of Lemma 1

We prove Lemma 1 by three steps. we remark that @,(r, A) is
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holomorphic at A=0 because of o<1 and @u(r, 0):“77_';_1(—01:_?_”1—).

Hence it suffices to investigate the zeros of the denominator Dy(X) of

Dyu(r, A),

3. 1) Dn()\)=)\K’n+%(/\)+<c—-é)](n+%(/\), (=0, 1, ...).

1) Du(X) kas no zero on the imaginary axis.
Proof. Assume that A=25(s540, real) is a zero of D»(A). Remembering

the relation

o1

3.2 K sN)=AHO 4 1(1D), =Tez<n+%m
we have
g . 1 .
3. 3) isK ,H.%(zs)—l—(a——j)]( n+4(2s)

~[(o—3 /s =/ wrs(—)+

i{(a—%) Yn+%(~s)—:Y’n+%(—.r)}]=O.

The following expression is well-known as Lommel’s formula,

B A)  Jurt(— DY art(—9) -/ ns(— ) Vurd(—$)= gy 0.

From (3.3) and (3.4) we derive s=0.
2) Du(A) kas no zero in ReA>O0.
Proof. Assume that A=Xo(ReAo>0) satisfies

3. 5) D y(A0)=0.
Let us define the function L,(x) by

(3. 6) Ln(#)=K n43(o%).
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Ly(x) satisfies the following differential equation

1

2
nt+5
3.7 jdt,i—zan(x)—l—% %Ln(x)—{)%-l-(x—zz)][,n(x)zo,

and the boundary condition (from (3.5))
, 1
3. 8) L n(l)z—(o——z—)l,n(l).

Reducing / wx([,"n(x)[,n(?)—L”n(x)[,n(x))dx by means of integration
1
by parts and by (3.7), we obtain from (3.8)

(3. 9) %2/ " | Lu(%)|2dx=0.

Since Ly(x) is a solution of (3.7), Lx(x)=0. Consequently we obtain
Xdo=Xo. From this we see that Dy()) has no zero in RA>0 except on
the real axis.

Next we assume (3.5) for a positive Ap. In the similar way as above,

we have

1 2
(3. 10) /1°°[wn<x>2+&glucxﬂxz'n(xﬂdx

=(c—%)£n(1)2.

On the other hand, we have by Schwartz’ inequality

1
G 1) La(P=— [((Lueyar=<2 ] "L P L.

(3.10) and (3.11) lead us to 1<{o. This contradicts to the Assumptin 1.

3) The zeros of Du(X) are at most of order 2. They are simple for
—o<n.
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Proof. Assume that A=2Ag(R,M0<0) is the zero of order=3. That is
3. 12) D p(X0)= Dy(Ao)=D7(A0)=0.

Since Kpn+1(A) is a solution of the modified Bessel equation, we can
eliminate K""511(Ao) and K" 5+1(R0) in (3.12). In order that we have
Kn1(R0)70 or K'pi1(A0)7=0, it is necessary and sufficient that

519 el ) ane
3. 14) AZ:(O——;—)z—(H%)z.

Hence we have =0 contradicting to Re Ag<{0. This proves the first
half of 3).

If —o<n, from (3.14) we have A3<C0. This means that Ay lies
on the imaginary axis contradicting to 1).

Summarizing 1), 2) and 3) we obtain finally Lemma 1.

§4. Proof of Lemma 2

In this section we investigate the distribution of zeros of Dy(})

when # is large. Rewriting Dy(A) by (3.2) we have

@. 1) D,,()\)=z')\,éH(1>’n+Lz(z')t)+(a—%)kH(')npf(z‘)\).
If we put
1
@. 2) Fres ) =AHW 1 (N)+ (0_ 7) HO s (N,

the zeros of (4.1) are equal to those of Fy41(A) multiplied by 77
Therefore we investigate the zeros of Fp+l(A). We remark that the
zeros of Fy11(]) are situated symmetrically with respect to the imaginary

axis because of
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AetmiH ;Ll_),_’%()‘ei”i)—l—(o—-%-)ﬂi:l (et

’

— i (o L))

. . . . n+1
From this we know that it suffices to investigate [ _; ]-}—1 zeros

lying in the right half plane.

Let us replace n—{—% by # and A by #z in Fp11(X). We construct
the asymptotic expansions of Fyp(7z) with respect to positive parameter
n using the results of #.WW. Olver [2], [3]. We take only the first term

of the asymptotic expansion with respect to # and obtain the following
4. 3) Fo(nz)y=nzH g)'(nz)—l—(o—%)]-[ Wing)

=@, n, 0)(A'())—n"F AL, n)),

where the relation between 2z, { and % are

dt\? 1—22 2
(4 4) ((‘d—g) =5 > n=e%’”n3§
We can take a positive constant 7y, such that for »=#,, @, 7, 6)5~0
and
“. 5) (L, m) | < CA+ILD). @

A(m) is a solution of the following differential equation

. 6 LD ).

This is the Airy function and denoted as A4; (n) in [2], [3]. The problem
is reduced to investigate the zeros of fp(n) for n=#;, where fu(n)

represents the second factor of (4.3),

4) We use the symbol C in order to represent positive constants.
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@ 7 Fa()=A'()—n" S A, ).

The following properties are known (see [2]).
All the zeros of A'(m) are real, negative and simple. If we denote
the sth zero by v's, we have

4. 8) wo=—|gntas—3)] 107

Jor sufficiently large s.
From (4.8) we obtain

’ 3 '32‘ 2
(4 9) n[nzﬁ]_*_l'\-‘—(xﬂ) n3.

Since it is shown in the following that the zeros of fu(n) approach to
those of A4'(n), it sufficies to discuss in the disk of the radius K %% where

2

3

K is a opsitive number larger than (%ﬂ) .
That is, Ky u=1{n; |77|<Kn%}. The corresponding domain in the

{-plane is Krn=A{{; [{I<<K}.
When {€ K¢, we obtain by (4.5)

(4. 10) (L, n)|<C, for n=wn.

We define gp(n) as follows fu(n)=4A"'(n) (1—gun(n)) where

@1 o= Dt ).

)
A'(m)
Look at any fixed zero n=mn; of A’(y). Then there exist holomorphic
Ai(n), A2(n) such that

(4. 12) A@my=AMms)+4:(n) (n—m5 )%,

(4. 13) A'()=mns A(s) (n—ns)+A2(n) (p—ms )%

Substituting (4.10), (4.12) and (4.13) in (4.11) we obtain
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(4. 14) | gn(I =5~ <A,
75 s (n—ms)!
where
@ 15) hmy— A EACT ) AC) (s )*

L+A@s) " Ax(p)ns™ (—ms)

Next we estimate /(n) on a circle.

From (4.8) we have
(4. 16) s 41 —ms |<Cs™5,  s=s,.
we have from Cauchy’s integral formula

‘ 1 4@
@D ADIS g [ i BT 1

sup |A4()
|7I—77§|=Ps

= ps(ps— |'7—"If9 1’

where ps represents C's™%, (C'<O0).
Using the asymptotic expansion of A(n) (see [3], p. 364), we obtain

(4. 18) Cos—t= sup |AMIZCis—%, s=s;.
177,105

From (4.17) and (4.18) we have if n belongs to the disk [p—nj lgn‘%ps
(4. 19) A< Cs?, s=s51 n=n,.

similarly we have
(4. 20) | A< G5, s=s51, n=n.

Substituting (4.8), (4.18), (4.19) and (4.20) in (4.15) we see that

(4. 21) IS C, In—ns |=n"3ps, s=s51, n=mny.
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Thus we obtain from (4.14) and (4.21)

4. 22) lgn(m! <1, |”I—77§|=n"3Lps, s=51, n=ns.

Rouche’s theorem is now applicable to compare the zeros of f(n) and
those of A'(n). It follows that fu(n) has only one zero in the disk
In—mn4|<n Sps. Let us denote it by n}(%), then we have

@. 23) s (0)—ns | < Sps, s=s51, n=m,

Let us consider the case 1<s<sy.

We denote 2e= mi<n {Ims+1—ns 1}, (¢2>0). In this case it is easily

1s5<s,

seen that 4(n) is bounded. We have again by Rouche’s theorem
(4. 24) s () —ns | < en™3, 1<s<s1, n=ns.

When we denote Z’s(n)ze_%”’n'%n's(n), we obtain from (4.23) and
(4.24).

(. 25) Ly (m)y=e" 37t~y +-0(n ),
where s=1, 2, ..., [%—1‘]—1-1 and 7> max (7, 73). From (4.25) each
2
{5 (n) approaches to the fixed segment {L={{; {=redmi 0<r< (‘217)3]
when 7 tends to infinity. On account of the boundedness of the

image of L transformed into z plane there exists a positive constant 52
such that

(4. 26) |n2(Ls (n)| < Bn.

If |{s(»)| is small enough, we have by changing { into z (see [3],
p- 336)

4. 27) nz(ls (n)) =n—2" 55 e~ $min; 4-0(1).

From this there exists a constant A (>0) such that
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(4. 28) Im nz(ls (1)) < —An®.

Writing A, =n2({; (%)), we have Im X, << —A4#n% and |\$|< Bn.
Thus the Lemma 2 is established.

§ 5. Extension to a fourth order equation

In this section we treat the product of the wave operator of the
following form:

5.1 (a—z I AZ L A)wix, =0, in @, £>0
6. Er R T a3 w(X, £)=0, in 2, >

)
6. 2) (—g;) w(X, 0)=/f;(X), for j=0,1,2,3
5.3 w(X, )=dw(X, t)=0, X €R
where a; and a; are real (0<{a;<{a;). The notations are the same as in

§ 1. In this case the solution v(X, #) of the Cauchy problem in R? equals
aka3

to a constant & for large # where d=m /Rafg,(X)dx In
order to investigate the behavior of w(X, #) for large # our interest

goes to the following equation:

a2 52
5. 1) (* A)( A) X, £)=0, in Q, >0
¢ D 2 42 32 & (X, ¥) n

j
. 4) (%) w(X, =0, for 7=0,1,2, 3

(5. 5) w(X, )=—v(X, ¢), du(X, t)=—4Adv(X, t), X 3L,

When we denote the right sides of (5.5) by f (w, ¢) and g(w, #) respectively,

we put the following assumption.

Assumption 1. f(w,?) and g(w, t) are sufficiently smooth and
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ERAY o\ .
() . 0=( &) st =0, j=0.1.2.3

Furthermore there is a positive constant Ty such that for t> T,
flw, )=d, and glw, t)=0.

Theorem. 7re solution u(X,t) satisfying (5.1), (5.4) and (5.5) with
the Assumption | approaches exponentially to a constant dr= for fixed
X when t tends to infinity.

Proof. Since the method of the proof is quite similar to that of the
preceding problem, we state the proof briefly. As the differential
operator of (5.1)" is commutative z#y,m(#, A) corresponding to (2.6) is

represented as follows

g n,m()‘) K n+-§-()\ﬂ17’) K n+%(/\a2r)
)\z(af—ag)r% Kp+t(Aay)  Kp+i(Aaa)

fn.m()‘) Kn+i(Aar7) Kn+ir(Aaar)
_ a2 _42
(af_a§>ré' 2 Kn+-;-<Adl) 1 Kn-f-;—(Adz) )

(5. 6)  dam(r, V=

Kn+i(Aair)
K n+%0\ai)
0 for fixed »(>>1), more precisely the results of Lemma 1 and 2 are

(7=1,2) has only simple poles and its poles lie in Re A<C

true in this case. We obtain by using the inverse Laplace transfo-

rmation

6.7 tn,m(7, t)
a3 {fn,m(t—al(r— 1)

ai—a? »
n rt-a(r-1) kn(Ayar7)
As(t—r) n\‘n%1
+ El/o e fy m(T)dT aFp(Noar) ]
X & | fom(t—ax(r—1))
ar—a3 r

N rt—ay(r—1) kn(uparr)
13 (t—7) LA it Gt MV
+ 51/0 e fo m(T)dr ak (U as)
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1 1 t—a,(r-1)
+;ztg{m /0 (t—=7)gn,m(r)dr

1

B o e En(Na17) }
+s§1/0 (A) 2t D gy m(T)dT PN ACED

1 1 t—ay(r-1)
taralze T =gt

az

kn(pnazr) }

n t—a,(r—1) $N\—2,p5(t—7) z
+s§1/0 ()23t gy m(T) T okl ()

where A=A§, and p=p}, are the zeros of £,(A @1) and Zu(n a2). We

have put ,én(z):(éiz >?Kn+Lz(z).
By the Assumption 1 we have for sufficiently large ¢ if » is fixed

dj(dmy*, for n=0, i=1,2
6.8 Sum(t—ai(r—1))=

0, for n=1, i=1,2

1

5.9 W{/ot_al(r_l)(z‘—f)gn,m(‘r)a’r

t—a,(r—1)
— /0 (z—f)gn,m(f)df}=0.

Consequently we see that z(X, #) for fixed X approaches exponent-
ially to d»—1 when # tends to infinity.
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