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§ 1. Introduction

The initial boundary value problem which we are concerned with

is the following one:

wtt — (zvxx+ wyy+ zvzz)= 0 , in Q ,  t>

(1. 2) w (X , 0 )= f1(X ), w t(X , 0 )= f2(X),

(1. 3) ( - :k + a )w (X , t)= 0 , X F Q

where X = (x , y, z)ER 3 , Q  is  the exterior of the unit sphere, aQ is its

boundary and a  is  a  real constant. f i (X )  and f 2 (X )  have compact

supports in aD n Q and are sufficiently smooth and satisfy the following
dd d  \

compatibility conditions, ( d r  + cr ) fi (X )— (d r  ± cr) f 2 ( X ) —

I

 d r  + 6  )L if l
(X )= 0 , X  E  as?.

Then the solution w (X , t) of (1,1), (1,2) and (1,3) is written w (X , t)

= -v(X , t).-1 -u(X , t) where v (X , t )  is the solution of (1,1) and (1.2) is
in  R3 instead o f Q . It is well-known that v (X , t) = 0  for sufficiently

large t. Hence the behavior of w (X , t )  for large t  is decided by that

o f u ( X ,  t ) .  N ext u (X , t )  is the solution of
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(1. 1)' utt—(uxx+uyy+uzz)=0, in D , t> 0 ,

(1. 4) u (X , 0 )=u t(X , 0)=0,

(1. 5) ddr +cr)u(X, t)— —( c`fr  + + (X ,  t ) ,  X  E  as-2.

The purpose o f  this paper is to show the exponential decay of
u(X , t) when t tends to infinity under the conditioned mentioned below.

Assumption 1. 0 -  i s  r e a l  and u<1.

Assumption 2. W e d en o te  the r i g h t  s i d e  o f  (1.5) by f (a), t).
T h e n  c o m p a t ib i l i t y  conditions im p l y  f (co, 0)=ft(co, 0)=ftt(co, 0)=0.
W e assume th a t f (co, t )  i s  s u f f i c i e n t ly  sm o o th ,  f o r  ex a m p le  i t  su ff i c e s
tha t f(co, t) i s  o f  c l a s s  C 8 on the p r o d u c t  apx [O , .], and th a t  th e r e
e x i s t s  T o ( > 0 ) s u ch  th a t  f (co, t) =0  f o r  t>  To .

The above result was announced with a short proof by C. Wilcox

[4 ] in the case of the first boundary value prob lem . Our method is

essentially similar to that of [4] except for some additional considerations.

We state the Theorem and g ive its  p roo f in  § 2  assuming two

Lemmas 1 and 2. These lemmas on the asymptotic behavior of zeros

of modified Bessel functions of large order are established in §§ 3 and

4. In  § 5 we apply this method to an equation of the fourth order and

we show the exponential approach of the solution to  a constant state

by its explicit formula.

§ 2. Statement and proof of the Theorem

Theorem . The solution u(X , t) s a t i s f y in g  (1.1)', (1.4) and (1.5) w ith
the A ssu m p tion s  1 a n d  2 d e ca y s  ex p o n en t ia l ly  w i th  t. N a m ely  th e r e

ex i s t s  a positive p, s u c h  t h a t  fo r  f i x e d  X E

(2. 1) u(X, t)=0(e - Pt),

w h e r e  ,u i s  d e t e r m in e d  o n l y  b y  u.



(Ar) -
4  K n +-t-(Ar)

n (r, A)—
Ali.1(;, + (A)-F (o-- 2

1 )A- K n + i(A)

(2. 6)

where

(2. 7)

, M (r , A )=f n , m (A)On (r, A), 1)
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Proof. W e  b e g in  w ith  the construction of the formal solution. In-
troducing polar coordinates we expand u(r, , w,, t) and f (co , t) in spherical
harmonics as follows

2n+1
(2. 2) u(r, , w , t) =  E  E  un,m(r, 1792,m(co)

n=0 m=1

2n+1
(2. 3) f(co, t) =  E  E fn ,m (t)Y  n ,m(co)n=o m=1

w h e r e  Y n , m ( c 0 ) 1 m = 1 , 2 , • • • , 2 n + 1  a re  normalized spherical harmonics of

order n. We remark that the series (2.3) is uniformly convergent with
respect to (co, t )  because f  (co, t )  is  sm o o th . On the other hand the

expansion (2.2) is  formal.

Next we perform the Laplace transformation w ith  respect to  t,

(2. 4) itn,m(r, A)-= f  e - "u n ,m (r, , t)dt,

(2. 5)I n ,  in(A )=- e - À tf n ,m ( t ) d t ,

where R 5 A  is positive.

A n  easy computation shows that

(2. 8) Kn±i(A)—( 
 2A  )

I T

) 1e. ki j
o  k ,(11

(n  +4 ) (1 2 A)k •

1) Substituting (2.2) into (1.1)' we obtain
f a 2a 2 2  a , n(n+1) 
1. at 2a r  2 r  ar r2 /14,, m (r, t) = 0,

d
d
r  ±a)un, -=in, m ( 1).

W e remark that 12„,,n (r, A) has not th e  term o f (Arri-/,,+_1(Ar).
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K + -(A ) is  a solution of the modified Bessel equation.

We consider the inverse Lapalace transform o f  ii n , m (r, A). W e

first remark that u (X , t) is identically zero if t—r+1 <O . W e con -

sider the expression of u (X , t )  when t— r+ 1 > 0 . Fixing ( r , t )  in
this region, let us divide (2.5) into two parts,

(2. 9) in, in(A)— J o e- 4 r f n , m (7-)6/7-+ fc ar f r,, m ,(T)dr.
t-r+1

We denote the first term by A .,1?„„(A) and the second by AZ).(A). Then

.7-1.. ),.(A) and ;TWA) are holomorphic in the whole domain and in R,A>0
respectively. The following estimates are obtained by means o f in-

tegration by parts.

(2. 10) A
.,),n (A)1 ‹  c  —le—Re2(t—r+1), i f  t— r+ 1 ReA<0.

(2. 11) AZ)m (A)1<  C  Al—le —Rea(t—r-F1) , i f RA>0.

C  is a positive constant.

We see that the number of the poles of n (r , A) is at most n+1

from (2.7) and (2.8). We state two Lemmas 1 and 2 concerning these

poles of n (r , A) which will be proved in §§ 3 and 4.

Lemma 1. n (r, A) (n = 0 , 1 , 2 , . . . )  i s  a  m erom o rp h ic  f u n c t i o n  of

A in  th e  w h o le  com p lex  plane f or f ix e d  r ( r  > 1 ) .  A ll i t s  p o l e s  lie  in

R e A<0 an d  t h e y  are  a t  m o s t  of  o r d e r  2  and  sim p le  if  n > — a.

Lemma 2. W e hav e the f o l l o w in g  e s t im a t e s  f o r th e  p o l e s  g i (s-=1,

2 ,  . . . ,  n + 1 ) .  I f  w e  ch o o s e  n o s u f f i c i e n t ly  large th e r e  ex is t s  a  con s ta n t

A , B (> 0 )  s u ch  th a t

(2. 12)

(2. 13) 141 ‹B n ,

f o r  n n o  a n d  1S s< n + 1 .
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Lem m a 1 and 2 give

Corollary. T h er e  ex is ts  a  p o s i t iv e  n u m b er  p su ch  th a t

(2. 14) R , f o r  a l l  n  a n d  s.

In order to calculate the inverse Laplace transform we divide the

integral into two parts taking account o f (2.9),

(2. 15) un ,m (r, t) —
2
 .  f e" z n  , m (r , A)c/AI n  r

1 f eat i(i) (A)o n (r, A)c/A27ri " , " "

+I.,r
1274 r - f

i
i:e " ;122,,)m() On( r ,

= u ; P m (r, t) H-uPm (r, t)

where y  i s  positive.

1) the case of 24 ,,,( r, t) : Let us replace the path o f integration R eA

=y(>0 ) b y the line R eA = — M  with sufficiently large M (> 0 ).  For

th is , ta k e  the rectangle R L  o f  vertices y +L i, — 11/1+L i w ith  a

large L(>0 ) such that all the poles o f On (r, A) are included in  R L .

T hen w e have

(2. 16) 277.1 i JI.RLe" i n(1')In(A) n ( r '  A)dA
n+1

=  E  Res eatj;Pm (A)0 n (r , A).
3=1 A= Asn

On (r, A) is expanded in the neighborhood of A= co from (2.7) and (2.8).

(2. 17) n(r, A)— —e—2(r-1) (1( a  —1)±2 - 1 n(n+1)(r —1) ± ...} .
1 A ± Az

  

(2.10) and (2.17) allow us to m ake L , M — *  00 in (2.16).



smoothness

(2. 22)

(2. 23)

of f  (co, t) , and of

d  y 
R e s  5 1 ( r ,

Y (c))a. n(
a Y

=0 (n 2+1), ( j = 0 ,  1, 2) 2 )

= 0  (n ), (11)1=0, 1 ,2 )  3 )

418

W e have

(2. 18)

T ak esi T ok ita

n+1
n ,(r, , t) =  E  Res e2 t)V„,(A)O n (r, A).

8=1 2=2;,

2 )  the case of 4 ),,(r, t ) : In this case we replace the path of integration

R eA=y by R eA = M (> y ) .  By Lemma 1 there is no poles of n (r, A)

between these two lines. Letting M — * +00, w e have

(2. 19) i(r, t) = 0 .

From (2.15), (2.18) and (2.19) we obtain

/1+1
(2. 20) un,m(r, t) =- E  Res dt/ n

(1 ),.(A)0,(r, A).
$=1 2=2s,

Substituting this result in  (2.2) we obtain

(2 . 21) u(r, w , t)
co (n + 1  r t—r-1-1

= E E i e4(t—)fn,m(r)dr Res On (r, A)) Yn  (0 ))
n=o m=1 8=1 ci

2=2313

for (r, co, t )  lying in the region t— r+1 >0.
The series (2.21) and its derivatives up to order 2 all converge

uniformly on any compact set of Qx [0, 09] on account of Lemma 2, the

Hence the series (2.21) is the genuine solution of (1,1)', (1.4) and (1.5).
Now we show that u(X, t)  decays exponentially with t(t + co).

2) (2. 22) is  derived  by  u sing  th e  asymptotic expansion of K „ + 1 (A r) an d  its

derivative. S ee §4 .
3) See the paper by A .P . Calderon and A. Zygmund:

Amer. J .  M ath. 79(1957) 901-921.



Ex ponential decay  of  solutions f o r  the  w ave equation 419

If we take t  such that t 2 To+r —1, then from Lemma 2

10

t—r+1
le A . " — r) f n ,m (r )I c ir

<(.1T e 2R e Vn (t- i)  d i . ) 2 f  T  
"

, m (T )12 dr ) 2

0 0 

< (  e t  \ 1 (  [To f

)
7-)12dcoch)2 .

2An3 Jaa I f  ( w
'

If A ' is chosen in such a way that for sufficiently large n

2p, — A 1.j> — A 'n3, then we have

e-2pte(2p— A ni)t e-211te—A'n

2An

 

2An-13-

Using these results we see that lu (r , , co, t)! = 0 (e - P t ) ,  which proves

the theorem.

Remark 2.1 . W e notice that the result of the theorem is still true

when (1,1)' and (1.5) are replaced by

/ 321
a t 2  —  a 2 ZI)u(X , t )= 0 ,  in r__ p,

d
d

r  a ) u (X  ,  t )=  f  (poi, t), 1= p .

In this case the condition on u is cr< -
1

Remark 2 .2 . One can prove in  the similar way that all the first
derivatives o f u (X ,  t )  also decay exponentially with respect to  t  for

fixed X .

§ 3. Proo f o f  Lem m a 1

We prove Lemma 1 by three steps. we remark that n (r , A) is
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1 
holomorphic at A = 0  because o f a < 1  and On (r, 0)— r n+
Hence it suffices to investigate the zeros of the denominator D ( A )  of

On ( r , A),

(3. 1) Dn(A)=AK'n+i_(A)+(a--21--)Kn+i(A), (n =0 , 1, ...).

1) D ( A )  h as  no zero on the im aginary  axis.

Proof . Assume that A =is(s  /  0, real) is a zero of D ( A ) .  Remembering

the relation

(3. 2) Kn+i(A)=kH(1),4_1(iA), k = 7r
2

i   e i(n+1.)ri

we have

1 
(3. 3) is K ' n _q(is)+(o.—  2 )K  n _4(is)

=k [( a —  )1 n _y_1(—s)—si'

i{(cr---1
2- )17 , + -1(—s)—s Y' n +t( - 5)}1=0.

The following expression is well-known as Lom m el's formula,

(3. 4) j n + s) r n +-1,-(—S)—j'n+ ( - s )  Y + +( — s) — 77.(
2

 s )

From (3.3) and (3.4) we derive s= 0 .

2) D ( A )  h a s  n o  z e ro  in  R eA>0.
P ro o f .  Assume that A=Ao(ReAo>0) satisfies

(3. 5) Dn(Ao)=0.

Let us define the function L n (x )  by

(3. 6) Ln(x)=K n+.i.(Aox).
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L n (x ) satisfies the following differential equation

d 21  d
(1 \ 2

(3. 7) dx2 L n( x ) +  x  dx  L n(x )— { A °+ 
11+-2-

 x
2 } L n ( x ) = 0 ,

and the boundary condition (from (3.5))

(3. 8) Lin(1)-= — (cr )L n (1).

Reducing f : x (L " n (x)L n (x)— L" n (x)L n (x ))dx  by means of integration

by parts and by (3.7), we obtain from (3.8)

(3. 9) — A6) r x  Ln(x)I 2d x =0 .

Since L n (x ) is a  solution of (3.7), L n ( x ) # 0 .  Consequently we obtain

Ao=Ao. From this w e see that D (A ) has no zero in R eA>0 except on

the real axis.
Next we assume (3.5) for a positive A o . In  th e  similar way as above,

we have

1 2
n +

)(3. 10) f i  { (A6xLn (x)2 + x L n (x) 2 +x L ' n (x) 2 }dx

= (° . - 2.- ) L n( 1 ) 2 '

On the other hand, we have by Schwartz' inequality

1
—4 (3. 11) L 91(1)2= — r ( L n (x)2 )'dx<2 f:(xL' n (x)2 + x  Ln (x)2 )dx.

(3.10) and (3.11) lead us to 1 < a .  This contradicts to the Assumptin 1.

3) The zeros of D ( A )  are at m ost of o rd e r 2 . T h e y  are sim ple fo r
— cr<n.
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P ro o f .  Assume that A=A0(R eAo<O) is the zero of order>3. That is

(3. 12) D n (A0 ) —  D'i t (A0 ) — D',/,(A0 ) — O.

Since K +4 (A ) is a solution of the modified Bessel equation, we can

eliminate Kw n _q(Ao) and ICHn+-i(Ao) in (3.12). In  order that we have

K n +i(Ao)  /  0 o r K ' n +.1(4)  /  0, it is necessary and sufficient that

(3. 13) A6= ( n + 2
1 ) 2 —(a— 1

2
. ) 2 a n d

(3. 14) = ( _ 12 )2 — (n +  12 ) 2

Hence we have A0 =0 contradicting to Re A0 <O. T h is  proves the first

half of 3).
I f  — g <n , from (3.14) we have Ag < O .  This means that Ao lies

on the imaginary axis contradicting to 1).
Summarizing 1), 2) and 3) we obtain finally Lemma 1.

§ 4. Proof o f Lemma 2

In  this section we investigate the distribution of zeros of D (A )
when n  is large. R ew ritin g  D (A ) by (3.2) we have

(4. 1) D n (A)==iAkHOY ± Ji ( iA )+(a- -y )k H ( ') ,, ± ii (iA).

I f  we put

(4. 2) Fn+-(X )=A 1 1 ( 1 ) ' n+-k(A) + ( a —
2
1 )11 (1) 71+1 (A),

the zeros o f  (4.1) are equal to those o f  F n i i(A ) multiplied by i - 1 .

Therefore we investigate the zeros o f F 71+I(A). We remark that the

zeros of F n + 1(A) are situated symmetrically with respect to the imaginary

axis because of
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(cr—  )H .(1±
)
 i (Ae±xi)

1± (-1)n i{A li na4(A)-1-- (a — ) H , ( ) l.

[n + 1  From this we know that it suffices to investigate 2 1 + 1 zeros

lying in the right half plane.
1

Let us replace n + -2-  by n and A by nz in F n +i-(A). We construct

the asymptotic expansions of F n (n z) with respect to positive parameter

n using the results of F. W. O lver [2], [3]. We take only the first term

of the asymptotic expansion with respect to n and obtain the following

(4. 3) F n (n z) =nzH (n z) +(a — 2
1 )H (,1) (nz)

=  ) (  ,  n ' a) (A ' (I) — n- ÷ A WO (C , n)),

where the relation between z, and 71 are

(4. 4) \2 _  1 — Z2

dz J z
2

,,
n = e 3 7 92 3 C.

We can take a positive constant n1, such that for n ni , Og, n, a)  I  0
and

(4. 5) 10g, n)I C(1+11j2-)* 4)

A(n) is a solution of the following differential equation

(4. 6) d2 A ( I ) A  f,
ob •a'n2

This is the Airy function and denoted as A1 (72) in [2], [3]. The problem

is reduced to investigate the zeros of f,(17) fo r  n>_n i ,  where fn(7))
represents the second factor of (4.3),

4 )  W e use the symbol C in  order to represent positive constants.
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(4. 7) f  n(7)= A ' (77)— n-  A  (-q)tkg , n) .

The following properties are known (see [2]).
A ll  the z eros of  A ' ( )  are real, negativ e and s im p le .  I f  we denote

the sth z ero by  17' 8 ,  w e have

(4. 8) 71's = - 1 3
8  7r(4s-3)} +0(s - 1 )

f o r suf f iciently  large  s.

From (4.8) we obtain

(4. 9) /  3 \  f
4 7r)  n 3

Since it is shown in the following that the zeros of f n (71) approach to

those of A ' ( ), it sufficies to discuss in the disk of the radius K  n i where
3 

K  is a  opsitive number larger than ( 4  7r)  .

T h a t is , K , , i = {7); 1171 < K n i} .  T h e  corresponding domain in the

-p lane i s  Kc, n -= -g; l {< K } .
W h e n  E./.(c ,n we obtain  by (4.5)

(4. 10) 10 (, n)1 < C ,  f o r  /I >  n i .

We define g n(n) as follows f n (7))=A  '(7)) (1 —gn(n)) where

(4. 11)
A ( )  

gneq)— n).
n 3 A  (7?)

Look at any fixed zero n = n 's o f  A ' ( ). Then there exist holornorphic
A i ( ) ,  A2(7)) such that

(4. 12) A ()= A ( 71;)+ A 307)(17- 6 ) 2

(4. 13) '( ) = 17's A ( .'s) (71- 1 7's) + A 2.(71) 70 2 '

Substituting (4.10), (4.12) and (4.13) in  (4.11) we obtain
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(4. 14) I g n(71)1 I  , Ih(n)1,
n 3 1.77/807- 178)1

where

1 4 - A(77'8) - 4 A i ( n ) ( 7 ) — n / s ) 2
15)(4.

4 ) -  1 +  A (71/s) - 1  A 201)ni ( 7 - 7);) •

Next we estimate h(7)) on a circle.

From (4.8) we have

(4. 16) in's+1-n's

we have from Cauchy's integral formula

1  A(4. 17) 'A1(7))I < I W I  , ,,, i

27r
1,,d i

su p  1 A N )I
<   1 , 2-741=P, 
- P s (Ps - 17 1- 7 7;1)'

where Ps represents C's - k, ( C '  <  C).

Using the asymptotic expansion of A(7)) (see [3], p. 364), we obtain

(4. 18) C os-k<  sup I A (71)1 <C i s - i ,  s > s i .
172---7),I Ps

From (4.17) and (4.18) we have if 7) belongs to the disk 17)--q's 1< n – J3- ps

(4. 19) 1241(71)1<Csi , > n i .

similarly we have

(4. 20) 1A2 (77)1< C s -P-3 , n > n i .

Substituting (4.8), (4.18), (4.19) and (4.20) in (4.15) we see that

(4. 21) Ih(71)1 C, s > s ,
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T h us w e o b ta in  fro m  (4 .14 ) an d  (4.21)

(4. 22) Ign(n)1 < 1 ,  1 71- 7l's I =n 31,s, n n2.

Rouche's theorem is now applicable to compare the zeros of _A() and

those of A'(71). It follows that f n (7))  has on ly one zero in  the disk

I17- - -ii's1< n - Ips. Let us denote it by 17's (n ),  then w e have

(4. 23) 177's(n) -71/s1 <n--Ips, n>n2.

Let us consider the case 1< s < s i .
W e denote 2E= m in {Inis+1-77's (€> 0). In  this case it is easily

15s<s,

seen that h(77) is  bounded. W e have again by Rouche's theorem

(4. 24) In; (n) — n n3 .

W hen w e denote a (n)= e - ixin - in s' (n ) ,  w e obtain  from  (4 .23) and

(4.24).

(4. 25) (n)=. + 0(n-'),

n
where s=1, 2, ..., 

[ + 1 1

2+ 1  and n >  max (n 2 , n3 ). From  (4.25) each
3 I

Cs (n ) approaches to the fixed segment IL = -g ; C=re3 7'1, 0 < r ‹ ( - -4 -77-) }

when n  tends to  in f in ity . O n  account o f th e  boundedness of the

image of L  transformed into z plane there exists a positive constant B

such that

(4. 26) I nz(Cs(n))1 B  n

I f  I Cs  (n )! is small enough, we have b y ch an g in g  in to  z  (see [3],
p. 336)

(4. 27) nz(Cs(n ))= -n -2-In3
I e-1"71's +0(1).

From this there exists a constant A  (> 0) such that
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(4. 28) Im n z ( 's (n)) < —  A ni .

Writing Al, =nz (Cs (n)), we have Tm<  — ,z1)A and 14 I Bn.
Thus the Lemma 2 is established.

§ 5. Extension to  a  fourth order equation

In this section we treat the product of the wave operator of the
following form :

(5. 1)/ —
821 a 2  
a t 2 a f a t 2 — a i Ll)w(X , t)-=0, in D, t > 0

(5. 2) w (X , 0 )=f i(X ), for j=0, 1, 2, 3

(5. 3) w (X , t)=Z 1w (X , t)=0, X  E  aQ

where a l  and a2 are real (0<ai<a2). The notations are the same as in

§ 1. In this case the solution v(X , t) of the Cauchy problem in R3 equals
af.ai

)4 (to  a constant d  for large t  where d— f In7r a i ± a 2

order to investigate the behavior o f w (X , t) for large t  our interest
goes to the following equation :

(5. 1)' aat22— d )  a
a
t
2
2 — 013 Gl)u(X , t)=0, in D, t >  0

(5. 4) ( : t  )5 u(X , 0 )= 0 , fo r  j=0, 1, 2, 3

(5. 5) u(X , t)=— v (X  , t) , L lu (X  , t)=-4v (X , t) , X  a.Q .

When we denote the right sides of (5.5) by f  (w, t) and g(w, , t) respectively,

we put the following assumption.

Assumption 1. f  (w , t) and  g(w , t) are  s u f f i c i e n t ly  sm o o th  and



428 T ak esi T ok ita

a 
( ) 5 f *  

o _( y
a t g ( a ) ,  0 ) = 0 ,  j= 0 ,  1 , 2 , 3a

 

Fu rth e rm o re  th e re  is  a positive constant T o s u c h  t h a t  f o r  t>  T .

f ( a),  t )= d  ,  and  g(co , t)= 0 .

T h e o r e m . The solution u (X  ,t)  satisf y ing (5.1)', (5.4) and (5.5) w ith
the A ssu m p t io n 1  approaches exponentially  to a constant d r - i f or f ix ed

X  w hen t  tends to in f in i t y .

Proof . S in c e  the method of the proof is quite similar to that of the

preceding problem, we state the p roo f b rie fly . A s  th e  differential

operator of (5 .1 )' is commutative û n ,m (r, A ) corresponding to (2.6) is

represented as follows

kn,m(A)I K n+ -1 -(A ctir) Kn-F(A a2r) I
(5. 6) ii n ,m (r , A) —

A2(a2—ai)ri - 1 K  n+  (Aat) K n -Fi(Aa2)

n,m(A) I  K  n -F -(A a ir) K n + (Act2 r )
 a

2

aD rii 
 2

Kn-F
—  a-1-(Aai) 1 Kn-i-(Aa2.) •2

K n-q(A air)
Kni4(Aai) ( i - 1  ,2) has only simple poles and its poles lie in Re A<

0  fo r  fixed r (>1), m ore  precisely the results o f Lemma 1 and 2 are

true in  this ca se . We obtain by using the inverse Laplace transfo-

rmation

(5. 7) u n ,m (r ,t )

I
fn,m(t—  a i (r —1))

n f t- a 1(r -1) •  _r k n O n a l r )   1e A ,(t n  m i (r)our k , (Asa i na ls = 1  

f n ,m (t— a2 (r — 1)) 

n  
J

t-a2(r-1) 
e p t - r )

k  n(pliez2r)
a2k, (14a2) }Es=1 .
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1 
1a f— a22 r n + 1  fol - a l ( r - 1 ) (t — 7 . )gli,m(T ) d T

nn t-, (r- 1)
+ E (4)-2ea,si(t-O

k A a l r )g n ,m (T)dr a ik n, 0 1 .0 1 )3=1
a

o

r9
1,10  f  t - a 2 ( r - 1 ) (t — T)gn,m(r)dr

0

kn(p4a2r) ( 4 )e f t ; ,M - r )g - , , ,m (T )a r / sI
S-a,(r-1)

s=1 0 avcitur-kna2)

where A = 4 , and itc= 4 ,  are the zeros o f  kn (A ai) and k n (tc az). We
2have put k n (z)— ( 2

7
z )  K  n + (z).

By the Assumption 1 we have for sufficiently large t  if r is fixed

d/(47)i, f o r  n = 0 ,  i = 1 ,  2
(5. 8) f n a n ( t— ai(r-1 ))=

0, f o r  n > 1 ,  i=1 , 2

1f

0 

t -a ,(r -1 )

(a — ai)r n + 1  1./
(5. 9) (t--r)gn,m (r)drf 

Jo 
t-a2(r-1) 

(t— r)g n ,r,i (r)dr}  =0.

Consequently we see that u(X , t) for fixed X  approaches exponent-

ially to dr - 1  when t  tends to infinity.
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