# Supplement to my paper: Spherical functions on locally compact groups 

By<br>Hitoshi Shin'ya<br>(Communicated by Prof. H. Yoshizawa, Mar. 7, 1972)

## § 1. Description of the problem

In our earlier paper [l], we studied the characterization of spherical functions on locally compact unimodular groups and obtained Proposition 1 in [1]. But, recently, the author obtained a stronger result which he wish to show in this paper.

At first, let's recall some notations in [1]. Let $G$ be a locally compact unimodular group, and $K$ a compact subgroup of $G$. We shall denote by $L(G)$ the algebra of all continuous functions on $G$ with compact supports (the product is convolution product). We can topologize $L(G)$ in the usual way (see [1]). For every equivalence class $\delta$ of irreducible representations of $K$, put

$$
L(\delta)=\left\{f \in L(G) ; \bar{\chi}_{\delta^{*}} f=f * \bar{\chi}_{\dot{\delta}}=f\right\}
$$

where $\bar{\chi}_{\delta}=(\operatorname{dim} \delta) \operatorname{Tr}[\delta]$. Moreover put

$$
L^{0}(\delta)=\left\{f \in L(\delta) ; f^{0}=f\right\}
$$

where $f^{0}(x)=\int_{K} f\left(k x k^{-1}\right) d k$ ( $d k$ is the normalized Haar measure on $K$ ).

In [1], the author proved the following proposition: for every
spherical function $\phi$ on $G$, we can find a finite-dimensional irreducible (continuous) representation $f \rightarrow U(f)$ of $L^{0}(\delta)$ such that

$$
\int_{G} \phi(x) f(x) d x=(\operatorname{dim} \delta) \operatorname{Tr}[U(f)]
$$

for all $f \in L^{0}(\delta)$. But, conversely, for every finite-dimensional irreducible representation $f \rightarrow U(f)$ of $L^{0}(\delta)$, does there exist a spherical function $\phi$ satisfying the above relation? This problem is not completely solved in [1]. The purpose of the present paper is to give an affirmative solution.

We shall denote by $T(\delta)$ the set of all equivalence classes of finitedimensional irreducible representations of $L^{0}(\delta)$. If a representation $f \rightarrow U(f)$ of $L^{0}(\delta)$ belongs to $\tau \in T(\delta)$, we put

$$
\mu_{\tau}(f)=(\operatorname{dim} \delta) \operatorname{Tr}\left[U\left(\bar{\chi}_{\delta} * f^{0}\right)\right]
$$

for all $f \in L(G)$. Clearly $\mu_{\tau}$ is a continuous linear functional on $L(G)$.
Let $\Phi_{g}(\delta)$ be the set of all spherical functions in the generalized sence of type $\delta$ (see [l, p. 74]), and $\Phi(\delta)$ the set of all spherical functions of type $\delta$. If $G$ is $\sigma$-compact, $\Phi_{g}(\delta)=\Phi(\delta)$ as is shown in [1].

Now, our aim is to prove the following

Theorem. For every $\tau \in T(\delta), \mu_{\tau}$ is a function on $G$ and $\mu_{\tau} \in$ $\Phi_{g}(\delta)$, and $\tau \rightarrow \mu_{\tau}$ is a one-to-one mapping from $T(\delta)$ onto $\Phi_{g}(\delta)$. Moreover $\tau$ is $p$-dimensional if and only if $\mu_{\tau}$ is of height $p$.

## § 2. Proof of a proposition

We shall denote by $\epsilon_{x}$ the measure on $G$ given by $f \rightarrow f(x), f \in L(G)$.

Lemma 1. If $f \in L(\delta), \mu_{\tau}(f * g)=\mu_{\tau}(g * f)$ for all $g \in L(G)$.

Proof. For $f \in L^{0}(\delta)$,

$$
\mu_{\tau}(f * g)=(\operatorname{dim} \delta) \operatorname{Tr}\left[U\left(\bar{\chi}_{\delta} * f * g^{0}\right)\right]
$$

$$
\begin{aligned}
& =(\operatorname{dim} \delta) \operatorname{Tr}\left[U(f) U\left(\bar{\chi}_{\delta}{ }^{*} g^{0}\right)\right] \\
& =(\operatorname{dim} \delta) \operatorname{Tr}\left[U\left(\bar{\chi}_{\delta^{*}} g^{0}\right) U(f)\right] \\
& =(\operatorname{dim} \delta) \operatorname{Tr}\left[U\left(\bar{\chi}_{\delta^{*}}\left(g^{*} *\right)^{0}\right)\right] \\
& =\mu_{\tau}(g * f) .
\end{aligned}
$$

Therefore, for every $k \in K$ and $f \in L^{0}(\delta)$,

$$
\begin{aligned}
& \mu_{\tau}\left(\left(\epsilon_{k^{*}} f\right) * g\right)=\mu_{\tau}\left(\left(\epsilon_{k^{*}} f * g\right)^{0}\right)=\mu_{\tau}\left(\left(f * g * \epsilon_{k}\right)^{0}\right) \\
& \quad=\mu_{\tau}\left(f *\left(g * \epsilon_{k}\right)\right)=\mu_{\tau}\left(g * \epsilon_{k} * f\right)=\mu_{\tau}\left(g *\left(\epsilon_{k} * f\right)\right) .
\end{aligned}
$$

Since $\left\{\epsilon_{k} * f ; k \in K, f \in L^{0}(\delta)\right\}=\left\{f * \epsilon_{k} ; k \in K, f \in L^{0}(\delta)\right\}$ is total in $L(\delta)$ [1, Lemma 14], the above equation implies $\mu_{\tau}(f * g)=\mu_{\tau}(g * f)$ for every $f \in L(\delta)$.

If we put $f^{\prime}(x)=f\left(x^{-1}\right)$, it is natural to denote by $f^{\prime} * \mu_{\tau}(f \in L(\delta))$ the measure

$$
L(G) \ni g \longrightarrow \mu_{\tau}(f * g) .
$$

Now we must prove the following key proposition.

Proposition. $\mathfrak{p}=\left\{f \in L(\delta) ; f^{\prime} * \mu_{\tau}=0\right\}$ is a closed regular maximal two-sided ideal in $L(\delta)$ such that

$$
\operatorname{dim}(L(\delta) / \mathfrak{p})<+\infty
$$

Proof. It is obvious that $\mathfrak{p}$ is closed. For $f \in \mathfrak{p}, g \in L(\delta)$, and $h \in L(G)$,

$$
\begin{aligned}
(g * f)^{\prime} * \mu_{\tau}(h) & =\mu_{\tau}(g * f * h) \\
& =\mu_{\tau}(f * h * g)=\left(f^{\prime} * \mu_{\tau}\right)(h * g)=0, \\
(f * g)^{\prime} * \mu_{\tau}(h) & =\mu_{\tau}(f * g * h)=\left(f^{\prime} * \mu_{\tau}\right)(g * h)=0 .
\end{aligned}
$$

This implies that $g * f, f * g \in \mathfrak{p}$, i.e., $\mathfrak{p}$ is a two-sided ideal in $L(\delta)$. The
regularity of $\mathfrak{p}$ follows from the existence of a function $u \in L^{0}(\delta)$ such that $U(u)=1$ (Burnside's theorem). To show that $\operatorname{dim}(L(\delta) / \mathfrak{p})<+\infty$, we need some lemmas.

Denote by $V$ the space on which linear operators $U(f), f \in L^{0}(\delta)$, act. For every $k \in K$ and $v \in V$, we associate a $V$-valued continuous linear function

$$
\Phi_{v, k}(f)=U\left(\left(f * \epsilon_{k}\right)^{0}\right) v
$$

on $L(\delta)$.

Lemma 2. The set $\left\{\Phi_{v, k} ; k \in K, v \in V\right\}$ spans a finite-dimensional vector space $W$.

Proof. Let $k \rightarrow D(k)$ be a unitary irreducible representation of $K$ belonging to $\delta$, and $d_{i j}(k)$ the matrix elements of $D(k)$. Since

$$
\begin{aligned}
f * \epsilon_{k} & =f * \bar{\chi}_{\dot{\delta} * \epsilon_{k}}=f *\left\{(\operatorname{dim} \delta) \sum_{i, j=1}^{\operatorname{dim} \delta} d_{i j}(k) \bar{d}_{i j}\right\} \\
& =(\operatorname{dim} \delta) \sum_{i, j=1}^{\operatorname{dim} \delta} d_{i j}(k)\left(f * \bar{d}_{i j}\right)
\end{aligned}
$$

for every $f \in L(\delta)$ and $k \in K$, we have

$$
\begin{aligned}
\Phi_{v}, k(f) & =U\left(\left(f * \epsilon_{k}\right)^{0}\right) v \\
& =(\operatorname{dim} \delta) \sum_{i, j=1}^{\operatorname{dim} \delta} d_{i j}(k) U\left(\left(f * \bar{d}_{i j}\right)^{0}\right) v \\
& =(\operatorname{dim} \delta) \sum_{i, j=1}^{\operatorname{dim} \delta} d_{i j}(k) \Phi_{v, e}\left(f * \bar{d}_{i j}\right) \quad\left(f * \bar{d}_{i j} \in L(\delta)!!\right)
\end{aligned}
$$

where $e$ is the unit of $G$. Moreover $\Phi_{v+w, k}=\Phi_{v, k}+\Phi_{w, k}$ is obvious. From these facts, the lemma immediately follows.
q.e.d.

For every $v \in V$ and $f \in L(\delta)$, let's define a $V$-valued continuous linear function $\Phi_{v, f}$ on $L(\delta)$ as

$$
\Phi_{v, f}(g)=U\left((g * f)^{0}\right) v
$$

Clearly we have $\Phi_{v+w, f}=\Phi_{v, f}+\Phi_{w, f}, \Phi_{\lambda v, f}=\lambda \Phi_{v, f}=\Phi_{v, \lambda f}(\lambda \in \mathbf{C})$, and $\Phi_{v, f+g}=\Phi_{v, f}+\Phi_{v, g}$.

Lemma 3. $\Phi_{v, f} \in W$ for all $f \in L(\delta)$ and $v \in V$.

Proof. Let $X$ be the dense subspace of $L(\delta)$ spanned by $\left\{\epsilon_{k^{*}} f ; f \in L^{0}(\delta), k \in K\right\}$, and put

$$
\begin{aligned}
H_{v} & =\left\{\Phi_{v, f} ; f \in L(\delta)\right\}, \\
H_{v}^{\prime} & =\left\{\Phi_{v, f} ; f \in X\right\}
\end{aligned}
$$

By the pointwise convergence, $H_{v}$ is a topological vector space. Since the linear mapping

$$
L(\delta) \ni f \longrightarrow \Phi_{v, f} \in H_{v}
$$

is continuous, $H_{v}^{\prime}$ is densely contained in $H_{v}$. On the other hand, for every $\epsilon_{k^{*}} f \in X$, we have

$$
\begin{aligned}
\Phi_{v, \epsilon_{k} * f}(g) & =U\left(\left(g * \epsilon_{k} * f\right)^{0}\right) v=U\left(\left(g^{*} \epsilon_{k}\right)^{0} * f\right) v \\
& =U\left(\left(g^{*} \epsilon_{k}\right)^{0}\right) U(f) v=\Phi_{U(f) v, k}(g) \in W
\end{aligned}
$$

This shows that $H_{v}^{\prime} \in W$, and therefore $H_{v}^{\prime}$ is finite-dimensional. Consequently $H_{v}$ must be also finite-dimensional and $H_{v}=H_{v}^{\prime} \subset W$.
q.e.d.

By Lemma 3, we can define linear operators $T_{f}, f \in L(\delta)$, on $W$ by

$$
\left(T_{f} \Phi\right)(g)=\Phi(g * f) \quad g \in L(\delta) .
$$

Moreover, $f \rightarrow T_{f}$ is a (continuous) representation of $L(\delta)$ on $W$. Using the notation

$$
A \Leftrightarrow B
$$

to denote the equivalence of statements $A$ and $B$,

$$
\begin{aligned}
& f \in \mathfrak{p} \Leftrightarrow \mu_{\tau}(f * g)=0 \quad \text { for every } g \in L(G) \\
& \Leftrightarrow \operatorname{Tr}\left[U\left(\bar{\chi}_{\delta} *(f * g)^{0}\right)\right]=0 \quad \text { for every } g \in L(G) \\
& \Leftrightarrow \operatorname{Tr}\left[U\left(\left(\bar{\chi}_{\delta} * f * g * \bar{\chi}_{\delta}\right)^{0}\right)\right]=0 \quad \text { for every } g \in L(G) \\
& \Leftrightarrow \operatorname{Tr}\left[U\left((f * g)^{0}\right)\right]=0 \quad \text { for every } g \in L(\delta) \\
& \Leftrightarrow \operatorname{Tr}\left[U\left(\left(f * g * \epsilon_{k}\right)^{0}\right)\right]=0 \quad \text { for every } g \in L^{0}(\delta) \text { and } k \in K \\
& \Leftrightarrow \operatorname{Tr}\left[U\left(\left(\epsilon_{k^{*}} f * g\right)^{0}\right)\right]=0 \quad \text { for every } g \in L^{0}(\delta) \text { and } k \in K \\
& \Leftrightarrow \operatorname{Tr}\left[U\left(\left(\epsilon_{k} * f\right)^{0}\right) U(g)\right]=0 \quad \text { for every } g \in L^{0}(\delta) \text { and } k \in K \\
& \Leftrightarrow U\left(\left(\epsilon_{k^{*}} f\right)^{0}\right)=0 \quad \text { for every } k \in K \\
& \Leftrightarrow U\left(\left(\epsilon_{k^{\prime}} \epsilon_{k^{*}} f\right)^{0}\right) U(g)=0 \quad \text { for every } k, k^{\prime} \in K \text { and } g \in \\
& L^{0}(\delta) \\
& \Leftrightarrow U\left(\left(\epsilon_{k} * f * g * \epsilon_{k^{\prime}}\right)^{0}\right)=0 \quad \text { for every } k, k^{\prime} \in K \text { and } g \in L^{0}(\delta) \\
& \Leftrightarrow U\left(\left(\epsilon_{k} * f * g\right)^{0}\right)=0 \quad \text { for every } k \in K \text { and } g \in L(\delta) \\
& \Leftrightarrow U\left(\left(f * g * \epsilon_{k}\right)^{0}\right)=0 \quad \text { for every } k \in K \text { and } g \in L(\delta) \\
& \Leftrightarrow U(h) U\left(\left(f * g * \epsilon_{k}\right)^{0}\right)=0 \quad \text { for every } k \in K, h \in L^{0}(\delta) \text {, and } \\
& g \in L(\delta) \\
& \Leftrightarrow U\left(\left(h * f * g * \epsilon_{k}\right)^{0}\right)=0 \quad \text { for every } k \in K, \quad h \in L^{0}(\delta), \text { and } \\
& g \in L(\delta) \\
& \Leftrightarrow U\left(\left(\epsilon_{k} * h * f * g\right)^{0}\right)=0 \quad \text { for every } \quad k \in K, \quad h \in L^{0}(\delta), \text { and } \\
& g \in L(\delta) \\
& \Leftrightarrow U\left((h * f * g)^{0}\right)=0 \quad \text { for every } h, g \in L(\delta) \\
& \Leftrightarrow U\left((h * f * g)^{0}\right) v=0 \quad \text { for every } v \in V \text { and } h, g \in L(\delta) \\
& \Leftrightarrow T_{f} \Phi_{v, g}=0 \quad \text { for every } v \in V \text { and } g \in L(\delta) \\
& \Leftrightarrow T_{f}=0 \text {. }
\end{aligned}
$$

Thus $\operatorname{dim}(L(\delta) / \mathfrak{p})<+\infty$ is obvious. This completes the proof of the proposition.

## § 3. Proof of Theorem

The proof of Theorem is similar to that of Proposition 1 in [1]. Only difference is that we don't know at the beginning whether $\mu_{\tau}$ is a function or not.

Let $\mathfrak{a}$ be a maximal left ideal in $L(\delta)$ containing $\mathfrak{p}$, then $\mathfrak{a}$ is closed since $\operatorname{dim}(L(\delta) / \mathfrak{p})<+\infty$. Therefore

$$
\mathfrak{m}=\left\{f \in L(G) ; \bar{\chi}_{\delta} * g * f * \bar{\chi}_{\delta} \in \mathfrak{a} \text { for all } g \in L(G)\right\}
$$

is a closed regular maximal left ideal in $L(G)$, and $\mathfrak{C}=L(G) / \mathrm{mt}$ is a locally convex topological vector space with respect to the topology induced from $L(G)$. If we denote by $L_{x}$ the linear operator on $\mathfrak{S}$ defined by

$$
L_{x}\{f\}=:\left\{\epsilon_{x^{*}} f\right\}
$$

where $\{f\}=f+\mathfrak{m}$, we obtain an algebraically irreducible representation of $G$ on $\mathfrak{E}$ (the author does not know whether $\mathfrak{S}$ is complete or not). The space $\mathfrak{X}(\delta)$, the set of all vectors in $\mathfrak{g}$ transformed according to $\delta$ under $k \rightarrow L_{k}$, is identified with $L(\delta) / a$ (see [1]), and therefore dim $\mathfrak{g}(\delta)<+\infty$. If $\operatorname{dim} \mathfrak{\delta}(\delta)=q \cdot \operatorname{dim} \delta$, we obtain a spherical function $\phi_{\delta}$ in the generalized sence of type $\delta$ of height $q$. Then, there exists a $q$-dimensional irreducible representation $f \rightarrow V(f)$ of $L^{0}(\delta)$ such that (i) $V(f)=0$ is equivalent to $L_{f} \mathfrak{g}(\delta)=0$ where $L_{f}=\int_{G} L_{x} f(x) d x$, (ii) $\int_{G} \phi_{\delta}(x) f(x) d x=(\operatorname{dim} \delta) \operatorname{Tr}[V(f)]$ for all $f \in L^{0}(\delta)$. On the other hand, $U(f)=0$ implies $f \in \mathfrak{p}$, and therefore $L_{f} \mathfrak{E}(\delta)=0$. Thus $U(f)=0$ implies $V(f)=0$. From this fact, two representations $f \rightarrow U(f)$ and $f \rightarrow V(f)$ must be equivalent and

$$
\int_{G} \phi_{\delta}(x) f(x) d x=(\operatorname{dim} \delta) \operatorname{Tr}[V(f)]=(\operatorname{dim} \delta) \operatorname{Tr}[U(f)]=\mu_{\tau}(f)
$$

for every $f \in L^{0}(\delta)$. This implies $\mu_{\tau}=\phi_{\delta} \in \Phi_{g}(\delta)$. The latter half of the theorem is easily proved.

Remark. If $G$ is $\sigma$-compact, we obtain a concrete one-to-one correspondence between $\Phi(\delta)$ and $T(\delta)$.

Ehime University

## Bibliography

[1] H. Shin'ya; Spherical functions on locally compact groups, J. Math. Kyoto Univ., 12-1 (1972), 55-85.

