J. Math. Kyoto Univ. (JMKYAZ) 12-2 (1972) 385-392

Supplement to my paper: Spherical functions on locally compact groups

By

Hitoshi Shin'ya

(Communicated by Prof. H. Yoshizawa, Mar. 7, 1972)

§1. Description of the problem

In our earlier paper [1], we studied the characterization of spherical functions on locally compact unimodular groups and obtained Proposition 1 in [1]. But, recently, the author obtained a stronger result which he wish to show in this paper.

At first, let's recall some notations in [1]. Let G be a locally compact unimodular group, and K a compact subgroup of G. We shall denote by L(G) the algebra of all continuous functions on G with compact supports (the product is convolution product). We can topologize L(G) in the usual way (see [1]). For every equivalence class δ of irreducible representations of K, put

$$L(\delta) = \{ f \in L(G); \ \bar{\lambda}_{\delta} * f = f * \bar{\lambda}_{\delta} = f \}$$

where $\hat{\chi}_{\delta} = (\dim \delta) \operatorname{Tr}[\delta]$. Moreover put

$$L^{0}(\delta) = \{f \in L(\delta); f^{0} = f\}$$

where $f^{0}(x) = \int_{K} f(kxk^{-1})dk$ (dk is the normalized Haar measure on K).

In [1], the author proved the following proposition: for every

spherical function ϕ on G, we can find a finite-dimensional irreducible (continuous) representation $f \to U(f)$ of $L^0(\delta)$ such that

$$\int_{G} \phi(x) f(x) dx = (\dim \delta) \operatorname{Tr}[U(f)]$$

for all $f \in L^0(\delta)$. But, conversely, for every finite-dimensional irreducible representation $f \rightarrow U(f)$ of $L^0(\delta)$, does there exist a spherical function ϕ satisfying the above relation? This problem is not completely solved in [1]. The purpose of the present paper is to give an affirmative solution.

We shall denote by $T(\delta)$ the set of all equivalence classes of finitedimensional irreducible representations of $L^0(\delta)$. If a representation $f \rightarrow U(f)$ of $L^0(\delta)$ belongs to $\tau \in T(\delta)$, we put

$$\mu_{\tau}(f) = (\dim \delta) \operatorname{Tr}[U(\bar{\chi}_{\delta} * f^0)]$$

for all $f \in L(G)$. Clearly μ_{τ} is a continuous linear functional on L(G).

Let $\Phi_g(\delta)$ be the set of all spherical functions in the generalized sence of type δ (see [1, p. 74]), and $\Phi(\delta)$ the set of all spherical functions of type δ . If G is σ -compact, $\Phi_g(\delta) = \Phi(\delta)$ as is shown in [1].

Now, our aim is to prove the following

Theorem. For every $\tau \in T(\delta)$, μ_{τ} is a function on G and $\mu_{\tau} \in \Phi_g(\delta)$, and $\tau \to \mu_{\tau}$ is a one-to-one mapping from $T(\delta)$ onto $\Phi_g(\delta)$. Moreover τ is p-dimensional if and only if μ_{τ} is of height p.

\S 2. Proof of a proposition

We shall denote by ϵ_x the measure on G given by $f \rightarrow f(x), f \in L(G)$.

Lemma 1. If $f \in L(\delta)$, $\mu_{\tau}(f * g) = \mu_{\tau}(g * f)$ for all $g \in L(G)$.

Proof. For $f \in L^0(\delta)$,

$$\mu_{\tau}(f \ast g) = (\dim \delta) \operatorname{Tr}[U(\chi_{\delta} \ast f \ast g^{0})]$$

$$= (\dim \delta) \operatorname{Tr}[U(f) U(\bar{\chi}_{\delta} * g^{0})]$$
$$= (\dim \delta) \operatorname{Tr}[U(\bar{\chi}_{\delta} * g^{0}) U(f)]$$
$$= (\dim \delta) \operatorname{Tr}[U(\bar{\chi}_{\delta} * (g * f)^{0})]$$
$$= \mu_{\tau}(g * f).$$

Therefore, for every $k \in K$ and $f \in L^0(\delta)$,

$$\mu_{\tau}((\epsilon_k * f) * g) = \mu_{\tau}((\epsilon_k * f * g)^0) = \mu_{\tau}((f * g * \epsilon_k)^0)$$
$$= \mu_{\tau}(f * (g * \epsilon_k)) = \mu_{\tau}(g * \epsilon_k * f) = \mu_{\tau}(g * (\epsilon_k * f)).$$

Since $\{\epsilon_k * f; k \in K, f \in L^0(\delta)\} = \{f * \epsilon_k; k \in K, f \in L^0(\delta)\}$ is total in $L(\delta)$ [1, Lemma 14], the above equation implies $\mu_r(f * g) = \mu_r(g * f)$ for every $f \in L(\delta)$. q.e.d.

If we put $f'(x) = f(x^{-1})$, it is natural to denote by $f' * \mu_{\tau}(f \in L(\delta))$ the measure

$$L(G) \ni g \longrightarrow \mu_{\tau}(f \ast g).$$

Now we must prove the following key proposition.

Proposition. $\mathfrak{p} = \{f \in L(\delta); f'*\mu_{\tau} = 0\}$ is a closed regular maximal two-sided ideal in $L(\delta)$ such that

$$\dim(L(\delta)/\mathfrak{p}) < +\infty.$$

Proof. It is obvious that \mathfrak{p} is closed. For $f \in \mathfrak{p}$, $g \in L(\delta)$, and $h \in L(G)$,

$$(g*f)'*\mu_{\tau}(h) = \mu_{\tau}(g*f*h)$$

= $\mu_{\tau}(f*h*g) = (f'*\mu_{\tau})(h*g) = 0,$
 $(f*g)'*\mu_{\tau}(h) = \mu_{\tau}(f*g*h) = (f'*\mu_{\tau})(g*h) = 0.$

This implies that $g*f, f*g \in \mathfrak{p}$, i.e., \mathfrak{p} is a two-sided ideal in $L(\delta)$. The

regularity of \mathfrak{p} follows from the existence of a function $u \in L^0(\delta)$ such that U(u)=1 (Burnside's theorem). To show that $\dim(L(\delta)/\mathfrak{p}) < +\infty$, we need some lemmas.

Denote by V the space on which linear operators U(f), $f \in L^0(\delta)$, act. For every $k \in K$ and $v \in V$, we associate a V-valued continuous linear function

$$\Phi_{v, k}(f) = U((f * \epsilon_{k})^{0})v$$

on $L(\delta)$.

Lemma 2. The set $\{\Phi_{v, k}; k \in K, v \in V\}$ spans a finite-dimensional vector space W.

Proof. Let $k \to D(k)$ be a unitary irreducible representation of K belonging to δ , and $d_{ij}(k)$ the matrix elements of D(k). Since

$$f * \epsilon_{k} = f * \bar{\lambda}_{\delta} * \epsilon_{k} = f * \left\{ (\dim \delta) \sum_{i,j=1}^{\dim \delta} d_{ij}(k) \bar{d}_{ij} \right\}$$
$$= (\dim \delta) \sum_{i,j=1}^{\dim \delta} d_{ij}(k) (f * \bar{d}_{ij})$$

for every $f \in L(\delta)$ and $k \in K$, we have

$$\begin{split} \Phi_{v, k}(f) &= U((f \ast \epsilon_{k})^{0})v \\ &= (\dim \delta) \sum_{i,j=1}^{\dim \delta} d_{ij}(k) U((f \ast \bar{d_{ij}})^{0})v \\ &= (\dim \delta) \sum_{i,j=1}^{\dim \delta} d_{ij}(k) \Phi_{v, e}(f \ast \bar{d_{ij}}) \quad (f \ast \bar{d_{ij}} \in L(\delta)!!) \end{split}$$

where e is the unit of G. Moreover $\Phi_{v+w, k} = \Phi_{v, k} + \Phi_{w, k}$ is obvious. From these facts, the lemma immediately follows. q.e.d.

For every $v \in V$ and $f \in L(\delta)$, let's define a V-valued continuous linear function $\Phi_{v, f}$ on $L(\delta)$ as

388

$$\Phi_{v,f}(g) = U((g*f)^0)v.$$

Clearly we have $\Phi_{v+w,f} = \Phi_{v,f} + \Phi_{w,f}$, $\Phi_{\lambda v,f} = \lambda \Phi_{v,f} = \Phi_{v,\lambda f}$ ($\lambda \in \mathbb{C}$), and $\Phi_{v,f+g} = \Phi_{v,f} + \Phi_{v,g}$.

Lemma 3. $\Phi_{v, f} \in W$ for all $f \in L(\delta)$ and $v \in V$.

Proof. Let X be the dense subspace of $L(\delta)$ spanned by $\{\epsilon_k * f; f \in L^0(\delta), k \in K\}$, and put

$$H_v = \{ \Phi_{v,f} ; f \in L(\delta) \},$$
$$H'_v = \{ \Phi_{v,f} ; f \in X \}.$$

By the pointwise convergence, H_v is a topological vector space. Since the linear mapping

$$L(\delta) \ni f \longrightarrow \Phi_{v,f} \in H_v$$

is continuous, H'_v is densely contained in H_v . On the other hand, for every $\epsilon_{k*}f \in X$, we have

$$\begin{split} \Phi_{v,\epsilon_k*f}(g) &= U((g*\epsilon_k*f)^0)v = U((g*\epsilon_k)^0*f)v \\ &= U((g*\epsilon_k)^0)U(f)v = \Phi_{U(f)v,k}(g) \in W. \end{split}$$

This shows that $H'_v \in W$, and therefore H'_v is finite-dimensional. Consequently H_v must be also finite-dimensional and $H_v = H'_v \subset W$. q.e.d.

By Lemma 3, we can define linear operators T_f , $f \in L(\delta)$, on W by

$$(T_f \Phi)(g) = \Phi(g * f) \qquad g \in L(\delta).$$

Moreover, $f \rightarrow T_f$ is a (continuous) representation of $L(\delta)$ on W. Using the notation

Hitoshi Shin'ya

$$A \iff B$$

to denote the equivalence of statements A and B,

$$\begin{split} f \in \mathfrak{p} \iff \mu_{\mathfrak{r}}(f \ast g) = 0 \quad \text{for every } g \in L(G) \\ \iff & \operatorname{Tr}[U(\tilde{\lambda}_{\delta} \ast (f \ast g)^{0})] = 0 \quad \text{for every } g \in L(G) \\ \iff & \operatorname{Tr}[U((\tilde{\lambda}_{\delta} \ast f \ast g \ast \tilde{\lambda}_{\delta})^{0})] = 0 \quad \text{for every } g \in L(G) \\ \iff & \operatorname{Tr}[U((f \ast g)^{0})] = 0 \quad \text{for every } g \in L^{0}(\delta) \text{ and } k \in K \\ \iff & \operatorname{Tr}[U((f \ast g \ast \epsilon_{k})^{0})] = 0 \quad \text{for every } g \in L^{0}(\delta) \text{ and } k \in K \\ \iff & \operatorname{Tr}[U((\epsilon_{k} \ast f)^{0}) = 0 \quad \text{for every } g \in L^{0}(\delta) \text{ and } k \in K \\ \iff & \operatorname{Tr}[U((\epsilon_{k} \ast f)^{0}) = 0 \quad \text{for every } g \in L^{0}(\delta) \text{ and } k \in K \\ \iff & U((\epsilon_{k} \ast f)^{0}) = 0 \quad \text{for every } g \in L^{0}(\delta) \text{ and } k \in K \\ \iff & U((\epsilon_{k} \ast f)^{0}) = 0 \quad \text{for every } g \in L^{0}(\delta) \text{ and } k \in K \\ \iff & U((\epsilon_{k} \ast f)^{0}) = 0 \quad \text{for every } k \in K \text{ and } g \in L^{0}(\delta) \\ \iff & U((\epsilon_{k} \ast f \ast g)^{0}) = 0 \quad \text{for every } k, \ k' \in K \text{ and } g \in L^{0}(\delta) \\ \iff & U((f \ast g \ast \epsilon_{k})^{0}) = 0 \quad \text{for every } k \in K \text{ and } g \in L(\delta) \\ \iff & U((h \ast f \ast g \ast \epsilon_{k})^{0}) = 0 \quad \text{for every } k \in K, \ h \in L^{0}(\delta), \text{ and } g \in L(\delta) \\ \iff & U((h \ast f \ast g \ast \epsilon_{k})^{0}) = 0 \quad \text{for every } k \in K, \ h \in L^{0}(\delta), \text{ and } g \in L(\delta) \\ \iff & U((h \ast f \ast g \ast \epsilon_{k})^{0}) = 0 \quad \text{for every } k \in K, \ h \in L^{0}(\delta), \text{ and } g \in L(\delta) \\ \iff & U((h \ast f \ast g \ast \epsilon_{k})^{0}) = 0 \quad \text{for every } k \in K, \ h \in L^{0}(\delta), \text{ and } g \in L(\delta) \\ \iff & U((h \ast f \ast g)^{0}) = 0 \quad \text{for every } k \in K, \ h \in L^{0}(\delta), \text{ and } g \in L(\delta) \\ \iff & U((h \ast f \ast g)^{0}) = 0 \quad \text{for every } k \in K, \ h \in L^{0}(\delta) \\ \iff & U((h \ast f \ast g)^{0}) = 0 \quad \text{for every } k \in K, \ h \in L^{0}(\delta) \\ \iff & U((h \ast f \ast g)^{0}) = 0 \quad \text{for every } k \in K, \ h \in L^{0}(\delta) \\ \iff & U((h \ast f \ast g)^{0}) = 0 \quad \text{for every } k \in K, \ h \in L^{0}(\delta) \\ \iff & U((h \ast f \ast g)^{0}) = 0 \quad \text{for every } k \in K, \ h \in L^{0}(\delta) \\ \iff & U((h \ast f \ast g)^{0}) = 0 \quad \text{for every } k \in K, \ h \in L^{0}(\delta) \\ \iff & U((h \ast f \ast g)^{0}) = 0 \quad \text{for every } k \in K, \ h \in L^{0}(\delta) \\ \iff & U((h \ast f \ast g)^{0}) = 0 \quad \text{for every } k \in K \quad \text{for } k \in L(\delta) \\ \iff & U((h \ast f \ast g)^{0}) = 0 \quad \text{for every } k \in K \quad \text{for } k \in L(\delta) \\ \iff & U((h \ast f \ast g)^{0}) = 0 \quad \text{for every } k \in K \quad \text{for } k \in L(\delta) \\ \iff &$$

390

Thus dim $(L(\delta)/\mathfrak{p}) < +\infty$ is obvious. This completes the proof of the proposition.

§3. Proof of Theorem

The proof of Theorem is similar to that of Proposition 1 in [1]. Only difference is that we don't know at the beginning whether μ_{τ} is a function or not.

Let \mathfrak{a} be a maximal left ideal in $L(\delta)$ containing \mathfrak{p} , then \mathfrak{a} is closed since $\dim(L(\delta)/\mathfrak{p}) < +\infty$. Therefore

$$\mathfrak{m} = \{ f \in L(G); \ \bar{\lambda}_{\delta} * g * f * \bar{\lambda}_{\delta} \in \mathfrak{a} \text{ for all } g \in L(G) \}$$

is a closed regular maximal left ideal in L(G), and $\mathfrak{H}=L(G)/\mathfrak{m}$ is a locally convex topological vector space with respect to the topology induced from L(G). If we denote by L_x the linear operator on \mathfrak{H} defined by

$$L_x\{f\} = \{\epsilon_x * f\}$$

where $\{f\} = f + \mathfrak{n}$, we obtain an algebraically irreducible representation of G on \mathfrak{P} (the author does not know whether \mathfrak{P} is complete or not). The space $\mathfrak{P}(\delta)$, the set of all vectors in \mathfrak{P} transformed according to δ under $k \to L_k$, is identified with $L(\delta)/\mathfrak{a}$ (see [1]), and therefore dim $\mathfrak{P}(\delta) < +\infty$. If dim $\mathfrak{P}(\delta) = q$ dim δ , we obtain a spherical function ϕ_{δ} in the generalized sence of type δ of height q. Then, there exists a q-dimensional irreducible representation $f \to V(f)$ of $L^0(\delta)$ such that (i) V(f)=0 is equivalent to $L_f \mathfrak{P}(\delta)=0$ where $L_f = \int_G L_x f(x) dx$, (ii) $\int_G \phi_{\delta}(x) f(x) dx = (\dim \delta) \operatorname{Tr}[V(f)]$ for all $f \in L^0(\delta)$. On the other hand, U(f)=0 implies $f \in \mathfrak{P}$, and therefore $L_f \mathfrak{P}(\delta)=0$. Thus U(f)=0implies V(f)=0. From this fact, two representations $f \to U(f)$ and $f \to V(f)$ must be equivalent and

$$\int_{G} \phi_{\delta}(x) f(x) dx = (\dim \delta) \operatorname{Tr}[V(f)] = (\dim \delta) \operatorname{Tr}[U(f)] = \mu_{\tau}(f)$$

for every $f \in L^0(\delta)$. This implies $\mu_{\tau} = \phi_{\delta} \in \Phi_g(\delta)$. The latter half of the theorem is easily proved.

Remark. If G is σ -compact, we obtain a concrete one-to-one correspondence between $\Phi(\delta)$ and $T(\delta)$.

EHIME UNIVERSITY

Bibliography

 H. Shin'ya; Spherical functions on locally compact groups, J. Math. Kyoto Univ., 12-1 (1972), 55-85.