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Introduction

L e t T  be an arbitrary scheme, S  a  smooth T-scheme and 51 a

quasi-coherent O s -m odu le. A T-connection on 3 1  is by definition a

homomorphism of O s -modules:

V: o e to ,(0 5 , os) endo, (3 1)

which satisfies the "product formula":

(D )(sm )=s17 (D )(m )+  D (s)m

for sections D  o f  .D eto,(0 5 , Os), s  o f Os and  m  of 34  over an open

subset U S .  A  s e c t io n  m  o f ,51/ over U  is  ca lled  horizontal if

17  (D )(m )= 0  fo r  all D 's, derivations on  open  subsets o f  U .  Both

Oet0 T (Os, O s ) a n d  en clo r (A )  a r e  Or -Lie-algebras v ia  th e  com-

mutator bracket. Th e connection is called integrable i f  it  is  a  Lie-

algebra homomorphism. The obstruction t o  a  connection being

in tegrab le  is  t h e  curvature homomorphism K :  A  getor(os, Os)
e n d e 5 (3 1 )  d e fin ed  b y  K (D  A D') = [17 (D ), 17 (D )1-17 ([D , D ']).

Henceforth we will deal only with integrable connections.

A  horizontal morphism 0 between modules with connection
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:(31, V) , 17 ' )  is by definition an Os -linear mapping satisfying

choF (D)=V ' (D). 0. Taking as objects quasi-coherent Os -modules with

T-connections V ) and as m orphism s the horizontal morphisms
we obtain  a n  a b e lia n  category. T h is  category has a  partially

defined internal Horn obtained by defining Horn ((al, 17 ) ,  (JP, 17 '))
as being (Momo s (a l, In where P (D) (0)=-17"(D ).0 -0 .1 7 (D ) .  In

particular =  1comos(31, O s )  is t h e  underlying m od u le  o f

H om ((a l, V ), (Os , standard)) and hence has a  "d u a l"  connection 1-7

which satisfies the "product formula"

<V (D)(ch), m>+<ch, V (D)(m )> D <yh , m  >

where 0  is a local section of m o f a t  and D  o f .0et07.(05, Os).
T h e  category also has an  internal tensor product (34, V) 0  (511', 17 ')
w h ich  b y  d e fin ition  is  (34 0 ,  F )  w h ere  P  is  d e fin ed  b y

Os
P (D )(m  m ')-= V (D )(m ) m ' + m  Ø  F (D )(m ').  A s a  result, we can

define "induced" connections on the exterior powers of a module with

connection and hence can speak o f th e  determinant d e t  ((a l, 17 ))
provided 34 is locally free of constant (finite) rank.

I f  T  is  a  scheme o f  characteristic p  then both 20,0,(0s, Os)
and e n d 0 ,(3 4 )  are  p-O r-L ie-a lgeb ras (by D  1—>- ,  1—›- 9 ). We

can then ask if V is a  homomorphism of p-L ie-algebras, i.e., if V (D )
= (V (D )) 1 . The "p-curv ature" (introduced by Deligne) is the mapping

W : getOr(Os, s) e n d O T (514) defined by W (D )= (F (D ))P -1 7 P(DP).
It is known, [3 ], that the p-curvature W has the following properties:

1) W is additive

2) W  is p-linear i.e. T (sD ) = (D)
3 )  for each D , a section of Oet0 T (Os, O s) over U ,Y 1 (D ) is a  hori-

zontal endomorphism of (a l ,  17 )1 U (in particular Y-1 (D ) is Ou -linear).

I f  fo r  every section D  o f  get0 T (O5, O s) (over an open set U),
Y-1 (D )  is a  nilpotent endomorphism, then we say th e  connection is

nilpotent (a notion introducted by Berthelot [2], in the context of crystal-

line cohomology).
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W e observe that there is defined a notion of "inverse image" for

modules with connection. Namely, if T, S, (31,V) are given as above

and if we are given a base change T ' T, then there is associated

with V  a T'-connection, V ', on the S '= -S x T ' module 31 ' =-. .--910 0 .3/ •
Os

Locally we can give an explicit description of 17 ':

I f  we choose affine open sets Spec(A), Spec(A'), Spec(B) of T(resp.

T ', resp. S ) so as to obtain a commutative diagram

B  B 1= B  0 A '

and  if M  is a B-module with connection 17 : DerA (B, B)—)-EndA(M)

then the connection V ' on the module M':=M 0 A' is defined as the
A

canonical m apping V 0  1  : D e r A ,(B ', B ') =  Der A (B , B ) 0  A' --*

EndA (M) 0 A ' E n d A
, (M').

Now  let T=Spec (A), where A  is a ring of finite type over Z

and S=Spec (B ) when B is a  smooth A-algebra. I f  M  is  an  S-

module with connection, we say M  is globally  nilpotent if fo r each

closed point 1.1 o f T  the induced connection on the module M k(P)

is nilpotent.
Let us recall that if X  is a smooth S-scheme 7T: X—*  S, then the

De-Rham cohomology AD.R.(X/S) d e f .
 R T I *  (Q

.

 x i s )  has a "canonical"

integrable connection : the Gauss-Manin connection [3, 4]. I f  T
is of characteristic p ,  Katz and Berthelot [2, 3] proved that the Gauss-

Manin connection is nilpotent. Using this result Katz [3], gave a

beautiful arithmetic proof of the local monodromy theorem.
1

Let a, b, c  Q , n  be a common denominator, T=Spec(Z[—
n

] ) ,

S=Spec Z [A , 0 ( 1
1
 A )  where A  is an indeterminate. Associated to

the hypergeometric differential equation

d 2 ud u  A (1  A) d A 2  + [6.— (a+ b +1)A] (IA — abu=0
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is  an S-module, with integrable T-connection: It is the free

rank 2 module w ith  base fe l , e2 }

0

where

1

(a+b+1)A—c

(  el )
(17( ccit'À )  (

el
)

d (
17( clA )\ e 2 1 A(1z A) A(1—A)

W e refer to  M a ,b,, as the hypergeometric module.

K a tz  has conjectured that the hypergeometric module, M a)b)c)

is globally nilpotent. In the first section we prove that for a "large

class" of ia,b,c1 M a , b , c  occurs as a direct factor (as module with con-

nection) in the De Rham cohomology o f a  suitable family o f curves.

A s  a  corollary, each o f  these hypergeometric modules reduces (for

almost all primes p )  modulo p  to a  nilpotent module. In the second

section we prove the conjecture. The proof is based on the observation

that in  characteristic p ,  any hypergeometric equation has a nontrivial

polynomial solution.

I  wish to thank N. Katz for his help and encouragement during

both the research and preparation o f the manuscript. Also, several

discussions with Professor B . Dwork proved invaluable.

Relation to De Rham Cohomology

Let n  be a positive integer, 6,1 a  primitive nth root of 1 and A an

indeterminate. Assume a,b ,c  are positive integers such that (n, a)

=(n ,b )=-(n , c )=(n , a+b +c )=1  and n > a + b d - c .  Let X  be the curve

defined over Q ( n , A) which is the norm alization of the projective closure

of the affine cu rve  yn=xa (x-1 )(x -A )c . T h e  group p „ o f  n t h  roots

o f  1  operates on  X .  Explicitly p,, operates on  the function field

Q  ,  A)(x, y) via a .(x , y) =- (x  , y ) where o-E p „ because (Œy) = c r y =
y n  x a (x _ i)b (x_A )c  T h u s  p„ operates by functoriality on H D .R .(X ),
the D e R ham  cohom ology o f X .  S ince w e a re  in  characteristic

zero we may calculate FI'D .R . (X )  as the factor space of differentials of
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the second kind modulo exact differentials. I f we extend the action of

ten  to SY j a t b y  defin ing  g.(udx)=(a.u)dx, then this mapping preserves

both differentials of the second kind and exact differentials, and hence

b y  passage to the quotient gives the action of ten  o n  F11,.R . (X ).

L e t  u s  exp lic itly  co n stru c t the Gauss-M anin connection on

1-1 , ( X ) .  Let D  denote the unique derivation of the function field of
d 

X  which extends the action of o n  Q ( n , A) and kills x. Extend D

t o  a  derivation o f  Q P I b y  d e f in in g  D (fd g )= D (f) •  d g+  fd (D g ).

U nder th is derivation the differentials of the second k in d  and exact

differentials a re  s ta b le . T h e  in d u ced  a c t io n  o f D  o n  I-11,.,(X )

=d.s.k./exact i s  17
(  
 d   \

clA j .

We observe that for cxE p  D oa_aoD  is a derivation of the function
field of X .  Since it kills A  and x, it  is  zero . Th is  m eans that p n  ac-

tually  operates via horizontal automorphisms o n  HI,..,(X). Let us

den o te  b y  x  the inverse of the principal character o f  p n  a n d  by

I rD . R . (X )x  the sub-module consisting o f  elem ents which transform

according to x.

P rop os ition  T he m odule M e , a+b+c ,  a±c is  is o m o rp h ic  (as m odule
n n

w ith connection) to  FG . R . (X )x , and hence is a direct factor of  H b . (X ).

Pro o f : Consider X  as lying over /3 ' via the morphism induced by the

inclusion of function fields Q
( n , A) (x)—» Q(Cn , A) (x, y). The assump-

tions made on the four integers n, a, b, c im ply that lying over each of

the four points 0, 1, A, c>9 of .13 '  there is exactly one point of X(denoted

respectively Po, pi, PA , P.).  W e  h a v e  ordpo(x ) =  n ,  ordpo(y ) =  a;

ordpi (x) n , o rd p ,(y ) =  b ; ordp,(x) = n ,  ordp,(y) = c; ordp o.,(x) = —n,
dx xdx 

ordp.o(y) = — (a + b + c ).  This im plies that both    and h a v e
Y

p o le s  o n ly  a t  pc.° and  h en ce  a re  differentials o f th e  secon d  kind
(because the sum  of the residues o f any d ifferential is zero). L e t  (.01
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dx xdx and w2 denote the classes of and in  1-11) . ,.(X ).
Y Y

The proof breaks up into three parts;

1) W e show w1 and w2 span 1-11,.,.(X)/
2) W e define a surjective horizontal homomorphism
M c , a+b+c

 —1

,   a+c
n  n

HL.R.(X)x

3 )  We prove this horizontal morphism is injective.

1) Represent 1-11,.,.(X )  as a factor space of the space of differentials
having poles only at p . ,  and of some bounded order < N  (by Riemann-
Roch Theorem this is possible). Then A , operates on this space in
a  manner compatible with its action on 1-1 ., . ( X ) .  Both this space
o f differentials and 1-11.R . (X )  decompose into direct sums where the

summands are the spaces o f differentials (resp. cohomology classes)
which transform according to a  given character of A t t n .  Thus any
cohomology class which transforms according to x  is represented by
a differential, regular except at which transforms according to x.

Since SpecQ(C n , X)[x, y,   (w h e r e  yn = xc '(x -1 ) 6(x—A)e) is non-

singular any differential regular except at p .  can be written
R (x ,y ) 

h R (x ,y some power " X )  w ere

algorithm we can write it as

the R i E Q ( ,  A )(x ) . It can
. Ri(x) it is d x .  Because this

Y
must b e  a polynom ial. To

prove the following lemma.

L e m m a : T he d i f f e r e n t ia l s  x 1
d x

  

(1> 2) a re
Ydx xdx 

and m odulo ex act d iffe r en t ia ls .
Y Y

P r o o f :  (By induction on 1). W e have

l i n e a r l y  d e p e n d e n t  on

y ) E  (Cn ,  A) [x , y]. B y  the division

(Ro(x)± R i ( x ) ± ...+  
R i ( x )

 )dx  where
Y

transform according to x  if and only if

differential is regular except at poo, R i (x)

conclude the first part, it remains to

d(
x/- '(x - 1)(x — A)  )

— ( / + 1 ) x l

d x   
— 1 ( 1 ± A ) x

1 - i d x

 + ( l - 1 ) A x

1 - 2 d x

Y Y Y Y
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+ xi - 1 (x —1)(x —A)( —c
b  — a \   dx

n(x—A) n ( x - 1 ) '  n x  )  y

___= (1 + 1  a + b + c \ I dx 
n +P (x )

d x  

Y

a±b-i-c
where P(x ) is a polynomial of degree < 1 - 1 .  As 1+1— \  0

we are done.

2 )  The existence and th e  surjectivity o f a  h orizon ta l morphism

Mc, a Pb+c a + c FIL .R .(X )X  will follow immediately from the following
n n

three lemmas. Explicitly the mapping will be defined by e1---)- col ,
d

e2 w  where "  '"  stands for the action of 17( 4 ).

Let us write " ._= "  to denote congruence modulo exact.

Lemma : D (  xdx   — d x \  [ -- ( 1 a + b )
I IA n

1 (  c+Ab+a(1-1-A)—n(1+A)  i   dx
I ]  y

1  /  2n — (a+b +c )\x d x  
+ A y

Proof: W e compute:

— cxa(x-1)b(x— A )c - -1

ny" - 1  D(y) — cxa (x  — 1) 1) ( x  A)c - '

—c x a(x -1)b(x — A )c - '
D (y )_

D ( 1 \  c   x a(x -1 ) 6(x—A)c - 1  c x a(x -1 )b (x — A )c  c 1 
\ Y I n yn+i nyn+i(x n • (x— A )y

Therefore D (  d x \ _ c 1  \ dx  D (  x dx \ c  (   x   ) dx
n x — A )  y '  L y )  n x — A  y  and

D (  xdx  d x \ _ c   (  x - 1 \ d x
hence \ y y n\x -2( I  y
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Now writing f (x)= xa (x —1) 1)(x — A)c we have:

d(yn)=f'(x)dx--=-[cxa(x-1)b(x— A )c - i +bx a(x -1)b - i(x—A)c

axa - 1 (x —1)b(x —A)c]dx

d(
1  ) d ( y )  f  '  ( x ) d  x f  '   (x )  d  x

—  —  2 n y n + 1  y

c

—b — a\  dx
( n(x— A) n(x  — 1) " 1 -  n x  y

d (  x - 1 \  _ d x  x  i ) (  —  c a  d x  
\ Y  ) Y n(x — A ) n(x —1) n x  y

d x  c  x - 1 \ d x  b   d x  a  (   x - 1 \ d x
y 2,i x—A ) y n  y 11 Y

=-(1—
b  \  dx  c  x - 1 ) d x  a   dx

n y  n x y  n  x y

d
In  order to elim inate (m odulo exact) 

x
, we calculatexy

d ((x  — 1)y (x — A)  )
=

d yx [2x — (1+A)] — (x —1)(x —A)

x  ( n ( x _ A )   +  a   d xn ( x b  1)  +  n x   )  y  c

dyx n c  (x _ 1 ) dyx   _bn ( x  A )   dyx=[2x — (1+A )]

(x —1)(x —Ala d x
nx Y

(x —1)c ( x — A )b   1  dx=[2x— (1±A )— n i y

a (  x 2 — (1+A )x+A   \  dx 
n x ) Y

[ 2 n — (a+b +c ) lx d x
n -1 Y

+L
F  c+Ab+ —  A

a(1±A)—n(l+A)  1  dx  a  dxi n y  n  x y
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Therefore
c  x - 1  d x a + b \ d x  ,  a  d x   _ 61 (  x - 1 )
n k x — A  y n y  -1- n xy y

(1 + a + b \ d x ,  1 r  2n— (a+b+c) x d x  
n  ) y +  ALn Y

/  c+Ab+a(1+A)—n(1±A) d x
Y

— d (x-1)(x—A) 
y

Lemma:

( a +nc A- 7 1 ) dyx  + (2n— (an il-b+c))  x  ydx 

D ( d ; )  (n—n(Aa(1 -c )-c A )dyx  + ( a +nAb(-11-c—A)2n  ) x ydx

D (  x d x \ (   n — a   \ d x  ( a + b + c - 2 n \ x d x  
\ y \n(1—A) I y  m k  n (1 — A ) ) y

Proof: d(— x \ ___d x  , x ( c ba   ) dx  
Y ) y  -1- kn(x—A) + n(x-1) ± n x  y

( a + 1 \dx ,  c  (1 , A   \  dx  ,  b  ( 1 , 1   \ d x
kn ) y  - r- nk - r x—A) y - r- nk - T- x - 1 )  y

( a+b +c   + i \dx , c (  A   ) dxb (  1   \ d x  
kn ) y  - r- n k x— A  y  H  - n  x -1 ) y

d (  x ( x — A ) ) — (2x --A)
d x

1 Y Y

± x ( x  A ) ( n ( x — A )  n ( x - 1 )  : x  dyx

dx  c  d x  a dx  =(2x—A) y  —  n x  y  — n (x—A) y

b 1—A  1  dx 
n V - H (1 — A ) - k x -1 ) y

a +b + c \x d x  (  a A
m  

+  b(A-1)d ;n  

n ) Y k
b 1—A  \  dx  
n (x - 1 ) y
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b

(

1  \d x 1  r(   a+b+c  _ 2 \xdx
x - 1 )  y 1.—A n )  Y

± ( A a nA b (1  —A)  \  dxi
n f y i

But we have

1 ) (  dxc   (  1   \dx 
y — A ) y

[ V  a + b + c d x  b  1   \ d x  
A — n ) y  n x - 1 )  y

[1-À  ( 1 _   ad - 6 +c \ r

n n ) ]A(11—A) (A\ — anA b(1—A) d x
Y

1  (  a+b+c-2n\xdx 
• A(1—A) ) Y

Combining this expression for D
( d x

Y

)  

with the result of the preceeding

lem m a, w e find the desired formulae.

Let us denote by "  '"  the action of V( d
d
x  )  on  FIkR. (X ) .  Then

w e have the following

A 0 ,— )o c o l , + -  a+ c a+b-P2c) Ai w i _ (a ± b + c — n )c  
(piLemma: n

= 0

Pro o f : Using the previous lemma we find:

n (1—A)
n— (a+ c)+ cA 

n(1—A) J (01— n coi

, c n _a f ad-b+c —2n \
Aw+ n w i '"- - n( 1- — A) ) (1 )1 + n ( 1-- A) ) W 2

nAco-Pcw i (   (n—a)A\f   a±b+c-2n\
n(1—A)A n(1—A)A f w 2

A—A2 (nAtoid-ccoi ) =  (n— a)Aco + (a- c —2n)Ac02

(0 2 — nA3 )coi=[(n— a)A — c(A —A2 )]w 1+ ( a  b c —2n)Aco 2

(nA— 02 )04= [n — a— c(.1. --A)]04-1- ( a  b c-2n )w 2



c— n -1  if a=0 and ord(ax+P)
Y
dx

Just as

( a x +  /3)
dx 
Y

13
i (x) 

+ y n-
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Therefore (n-20)coi+(nA— A 2)col'=cco l -k[n—a—c(1—A)1a4-1-(a+b-kc

2n)(.0. But co'2 = c  coi +Acoii . Therefore we obtain:

[nA(1—A)]04/±[n-20—(n—a—c(1—A))]co—ccoi

—(a+b+c-211)(ACO /
i ± n

C  C 0 1 ) = 0

and hence

A j _ k w ,i ,± [a + c a+b-H-2c\ c o ' ,  (a + b + c — n )c   0)1 _ 0

n

3 ) W e now show that our mapping is injective.

b; at pa ord(ax-±f3)
d x   

> n -1 — c.

A) such that (ax+P)
d x  

is exact.
Y
dx a ; at pi ord((ax+-13) y

But at p .  ord(ax+P)
d x

If not, there exist a, PE Q(Cn,

Then at Po o r d ( a x + f i )

d x   
> n - 1 —

— a + b + c - 2 n -1  if a  \  O. Let g

be a  function such that dg=(ax+P )
d x

. Because (ax+P)
d x  

has
Y Y

either ordpoo(g ) =  a d -b +c— n  or

ordp .,(g )=a+b+c-2n  depending on whether a=0 or a    \  O.

1 
in part 1) above we have g Q( n , A)Lx,y, y  because

Pi(x) 
is regular except at po.s. Writing g— P 0( x )d -  y

w ith  P i(x )E Q ( n , A, x )  and using the projection 7rx=

relation dg — (ax+P) d;  w e  fin d  d ( P l
y
( x )  ) —

Pi(x) dx 
may assume g  —  y  . A s  ( a x + P )

Y
 i s

P l ( x )  hence also P i (x) and therefore P i (x)
Y '

a  p o le  a t  p ,  (a s  n > a + b + c ),

1 
n  EEOE)• 0"

(ax+P) d;  . Thus we

regular except at po,„ so is

on the

is a polynomial.
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Hk R. (X )x  is injective.
1 

Let S  be a principal open set of Spec Z [ , , ,  A, 0(1 — A) J  over

which there is a  proper, irreducible, smooth S-scheme X  w ith

Î x  s  Spec Q(Cn , A)= X .  W e assume that S  has been chosen suffi-

ciently small so that I-1 .R . (1 /S ) is locally free and commutes with

base change. Furthermore we assume the horizontal isomorphism

M ,  a - F c  H R ( X ) 7  extends to S. Thus we can state:
n  n  - 1 ,   n

1
Theorem : T here is a  non -em pty open  set S o f S p ec Z[6,, A, n A ( 1  A )

a n d  a  h o r iz o n ta l isom orph ism  M c, a+b+c_
i '  a n

+ c !S H 1,.R.(zi;/S)X.

C orollary: F or a ll b u t fin ite ly  m an y  p r im es  p ,  M c, a+b+c a + c  F p

n n n  z
is n ilp o ten t.

P r o o f :  If a prime ideal ( p ) ( 0) of Z  belongs to the image of S, then

Mc, a+b+c a+c I S O F p  is  a  sub-module o f  I- 11) . 5 . (X—  F p IS  Fp ).
n n n

By the theorem of Katz and Berthelot: the Gauss-Manin connection

(in characteristic p )  is nilpotent, we see that MIS® Fp is nilpotent.

This implies M , a+b+c ,  a+cF p  is nilpotent.
n n n

The Theorem

Let us return momentarily to the general situation of the intro-

duction; T  arbitrary, S  a  smooth T-scheme, 31 a  quasi-coherent S-
module with a  T-connection V , . . .  W e note the following elementary

facts:

Now ordpc.,(x) =— n and thus ordp,„,(Pi (x))=--n-cleg(P i (x)). Thus
P i(x ) .

P i(x ) has degree < 2 .  As is regular at Po, Pi, PA we findy
x (x -1 ) (x— A ) divides P i (x). Thus P i (x)------0 an d  (ax+13)

d x   
—0

which implies a= i3 = 0 .  This concludes the proof that M , a + c
n  — 1 , n
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1) I f  (S i, V a )  and (a  V17) a r e  tw o  S-modules with connection,

D, m, n  are sections of g e o r (es, Os), at, Y/ over an open subset U

= S  and 1 is a strictly positive integer, then we have the Leibniz rule:

(17 a 0 T (D )) 1(In n ) - =  E ()V a (D) 1(m) 0 V  g i(D )"(n ) (proved as usual
i=o

by induction on /)

2) Suppose 32  free of a fixed finite rank n , with base le1,—,enl•
el e l

I f  D  is a section of geto T (Os, Os ) and if V ( D )  ;  =A D  ;  where(
en e n

A D E M n (Os1 is the so called "connection matrix", then Vde t(a )(D )(e i A

• • •Aen)=-- tr(A 4'el A • • • A e n .  We suppose in the next four statements

that T  is o f characteristic p .

3) t/sa(5-02(D) = /i (D ) 0  id gi+ id 310 tir T (D )

(because (17 a 0 T (D ))P (n t 0  n )=  ra (D )P (m ) 0  n+ m (8) 17  yi(D)P (n) by

Leibniz)

4) I f  0: ,_.9i —.)- Yl is a horizontal morphism, 0 ,z(D),,,k _—_ 0 .0 a (D )

5) Suppose 5 11 fre e  o f finite rank. A  necessary and sufficient

condition that (al, 17 )  be nilpotent is that fo r  every section D  of

gete r (es, Os), every coefficient except the leading one of the charac-

teristic polynomial of iii(D )  is nilpotent in Os.

111, - det(at)(D )6) I f  M  is free of finite rank, then =tr(0a(D ))

Having completed these preliminaries we turn to the main result.

To fix notation again let a, b, c Q, n be a common denominator and
1

S= Spec Z[A, 0 ( 1 — A )  1. Let WE—a, b, c be the hypergeometric S-module

defined in the introduction.

T h e o re m : Ma, b , c  is globally  nilpotent.

P ro o f : Fix once and for all a prime p  which does not become invertible
1 in Z[A, ]• Consider the Fp[A, A(1

1

) 1-module (with con-

nection) M a , b, c 0 F p . W e  must show that it is  n ilpoten t. B y
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statement 5) above this is equivalent to showing that the determinant

and trace of 0( d  )  are zero.dA It suffices to show this at the generic

point of Spec Fp [A, A (1 L A ) a n d  therefore we shall work with the

module M = Ma, b, c F(A).

First we shall deal with the determinant.

Denoting by ii dual module, it is immediately checked that

the mapping 01---)- ei>  establishes an  Fp (AP)-linear isomorphism

between the horizontal elements of M and the solutions in F (A ) of the

differential equation:

(*) A(1—A)u"±[c— (a+ b  1)A]u' —  abu=0

Suppose for the moment that there is a non-zero solution in F(A)
o f this equation, i.e., that M  possesses a non-zero horizontal section.

dThen 0N4'(—
d
—
A

)  has determinant=0. Applying 3 ) and 4 ) above to

th e  canonical horizontal morphism F (A )  we see that
I d )  is the transpose 0  dA ose of and h  d ( d ) )  0cm a n  hence t  a t e t m dA
In  order to find a non-zero solution of (*) we may assume that

a, b, c E Z , — 1)<a<0; c <a; b ,  c (in Z ) .  As is "well-known"

[1], the differential equation

A(1—A)u"+[c— (a+ b  1)A]u' — abu= 0  o v e r  Z[A,
1

A)

has a non-zero solution in Q[A], namely

- a  (a)r(b)r  ArF (a , b, c; A) —rEo  ( c )  r r where

(0)o=1

(0),-= 0(0+ 1)... (0+ r —1)
f o r  r  /  0.

By multiplying F (a, b, c; A) by the least common multiple of the de-

nominators of its coefficients we obtain a primitive polynomial in Z[A]
which is still a solution of this differential equation. The reduction

mod p  o f this polynomial is the desired polynomial solution o f (*).
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This completes the proof that det(0( d
c l
A )) -0 .

, d , .
In  order to show that tr(tp( c lA ))=u  we use statement 6) above,

tr( ,   d d 
w( c o t )) — Odet(M )( d d A ).  We observe that Ilidet(M)( c/A )= 0  if and only

i f  d et(M ) has a non-trivial horizontal section. B y  2 )  above

d  
det(m)( )  —  

d
A 1-

i (a±b+1)A— c 
Thus it suffices to find gE F p (A),F

dA d A(1—A) '
d g  ( a ± b +

g / 0  s u c h  t h a t  c m  ±
( 1 )A — c

A ( i _ A)) g - 0 .  B u t g = 4 ( 1 — A ) 44-b+'- e is

a  nonzero 1s o .u t io n  o f th e  equation, whence tr(tk( d
c l
A )) —0; which

completes the proof of the theorem.
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R eferences

[ 1 ] Bateman Manuscript Project (Erdélyi editor), Higher Transcendental Functions, Volume
1, Chapter II , McGraw-Hill, New York, 1953.

[ 2 ] Berthelot, P., Cohomologie p-cristalline des schémas I, II, III, C . R. Acad. Sc. Paris,
t. 269 Sér. A  (1969) pp. 297-300, 357-360, 397-400.

[ 3 ] Katz, N., Nilpotent Connections and the Monodromy Theorem Applications of a result
of Turrittin, Pub. M ath. IHES No. 39.

[ 4 ] K atz, N . and O da, T ., O n the differentiations of De Rham cohomology classes with
respect to parameters, J. Math. Kyoto Univ., 8-2 (1968) pp. 199-213.


