Deformations of \boldsymbol{G}-structures and infinitesimal automorphisms

By
Toshimasa Yagyu

(Received October 26, 1971) ${ }^{1)}$

When we consider a transitive G-structure g_{0} on a compact differentiable manifold M, another G-structure g on M is said to be locally equivalent to g_{0}, if there exists a local transformation f of a neighborhood U of each point of M such that the G-structure induced by from g_{0} is equal to g on U, and g is said to be globally equivalent to g_{0}, if there exists a global transformation f of M such that the G-structure induced by f from g_{0} is equal to g on M. The theory of deformations of G structures is considered to represent a difference between the local equivalence and the global equivalence of G-structures. In our paper, we take note of a certain global property for G-structures and we consider the extent of G-structures which are locally equivalent to g_{0} and have the global property. We represent the extent in the space of G structures, using the theory of deformations, and describe a relation between the global property and the equivalence of G-structures.

We suppose throughout our paper that G is closed and of finite type and the transitive G-structure g_{0} satisfies the following condition. When \tilde{g}_{0} denotes the lift of g_{0} by p on the universal covering manifold \widetilde{M} of M, where p is the covering projection, and $\mathfrak{Y}\left(\tilde{g}_{0}\right)$ denotes the sheaf of germs of infinitesimal automorphisms of \tilde{g}_{0}, the Lie algebra of the Lie group of automorphisms of \tilde{g}_{0} is equal to $H^{0}\left(M, \mathfrak{H}\left(\tilde{g}_{0}\right)\right)$.

[^0]Then the G-structures on M correspond one-to-one to the crosssections of the associated bundle $F(M) / G$ of the frame bundle $F(M)$ over M. The set of all G-structures forms a Banach manifold \mathcal{G} as the space of cross-sections with respect to a riemannian metric on the bundle of jets of cross-sections. We regard the whole set \mathscr{D} of G structures locally equivalent to g_{0} as a subspace of \mathcal{G}. Then deformations of g_{0} are given by curves in \mathscr{D} through g_{0}. Let us take note of the equivalence of the infinitesimal automorphisms as a global property. We also regard the whole set \mathcal{J} of G-structures having the infinitesimal automorphisms equivalent to those of g_{0} as a subspace of \mathcal{G}. A deformation g_{t} of g_{0} is said to have the equivalent infinitesimal automorphisms, if each G-structure of g_{t} has the infinitesimal automorphisms equivalent to those of g_{0}, that is, if g_{t} is a curve in $\mathcal{J} \cap \mathscr{D}$ through g_{0}. Let \mathcal{E} be the subspace of \mathcal{G} consisting of G-structures globally equivalent to g_{0} and \mathcal{S} be one consisting of G-structures having the same infinitesimal automorphisms as g_{0}. The group $\operatorname{Diff}(M)$ of diffeomorphisms of M is a transformation group of \mathcal{G}, under which \mathcal{E} and \mathcal{J} are the obrits of g_{0} and \mathcal{S} respectively. Then there exists a differentiable submanifold \mathcal{V} of \mathcal{G} such that $\mathcal{I} \cap \mathscr{D}$ in a neighborhood $U_{g_{0}}$ of g_{0} is the image of \mathcal{V} transformed by the elements of a neighborhood U_{e} of e in $\operatorname{Diff}(M)$. The tangent space of \mathcal{V} at g_{0} is isomorphic to some subspace \mathcal{K} of the kernel of the homomorphism ω : $H^{1}\left(M, \mathfrak{N}\left(g_{0}\right)\right) \rightarrow H^{1}(M, \mathfrak{R})$ induced by the injection $\mathfrak{N}\left(g_{0}\right) \rightarrow \mathfrak{R}$, where $\mathfrak{Y}\left(g_{0}\right)$ is the sheaf of germs of infinitesimal automorphisms of g_{0} and \mathfrak{R} is the sheaf of normalizer of $\mathfrak{N}\left(g_{0}\right)$ in the sheaf of germs of vector fields on M. Thus G-structures not globally equivalent to g_{0} with respect to the elements of U_{e}, but locally equivalent to g_{0} and having the infinitesimal automorphisms equivalent to those of g_{0}, exist in $U_{g_{0}}$ to the extent of \mathcal{K}. As for deformations of g_{0}, infinitesimal deformations corresponding to elements of \mathcal{K} can be extended to deformations having the equivalent infinitesimal automorphisms, and classes of germs of deformations having the equivalent infinitesimal automorphisms are represented uniquely by curves in \mathbb{V} through g_{0}. Then we have the
following proposition as a special case. If the homomorphism ω is injective, deformations having the equivalent infinitesimal automorphisms are trivial.

§ 1. The space of G-structures and the group of diffeomorphisms.

Let M be a compact differentiable manifold of class C^{∞} with dimension $n . G$-structures on M are reductions of the structure group of the frame bundle $F(M)$ over M to a subgroup G of $G L(n)$, where we suppose G to be closed and of finite type. They are represented as submanifolds $B_{G}(M)$ of $F(M)$. Let $F(M) / G$ be the quotient space of $F(M)$ by G. Then G-structures are represented as cross-sections of $F(M) / G$, where the image of $B_{G}(M)$ by the quotient projection π^{\prime} of $F(M)$ onto $F(M) / G$ is the corresponding cross-section of $F(M) / G$. In our paper, we represent G-structures by not only submanifolds but cross-sections.

Remark about the class of differentiable G-structures. If the class of differentiable G-structures is $C^{r}, B_{G}(M)$ is of class C^{r} and the s-th prolongation of $B_{G}(M)$ is of class C^{r-s}. Then we take $r>k$, in order that the k-th prolongation of $B_{G}(M)$ with $\{e\}$-structure may be of class C^{1}, where k is the order of G of finite type. Moreover, we suppose r to be finite.

Let B_{V} be a finite dimensional vector bundle over M of class C^{r}. The whole of r-jets of cross-sections of B_{V} is a vector bundle over M which is denoted by B_{V}^{r}. We define a norm on each fibre of B_{V}^{r} which is continuously dependent to $x \in M$, that is, $\left\|\phi^{r}(x)\right\|$ is continuous on x for any continuous local cross-section ϕ^{r} of B^{r}. Let us define a norm $\|\phi\|^{(r)}$ of C^{r}-cross-section ϕ of B_{V} by $\operatorname{Max}_{x \in M}\left\|j_{x}^{r} \phi\right\|$, where $j_{x}^{r} \phi$ is the r-jet of ϕ at x and $\left\|j_{x}^{r} \phi\right\|$ is the norm of $j_{x}^{r} \phi$ in the fibre $B_{V}^{r}(x)$ of B_{V}^{r} over x. Then the whole of C^{r}-cross-sections of B_{V} is a Banach space with respect to the above norm. Let us denote this space by $\Gamma^{(r)}\left(B_{V}\right)$.

Lemma 1. Let B_{V} and B_{W} be vector bundles of class C^{r} over M and $\eta: B_{V} \rightarrow B_{W}$ be a fibre mapping of class C^{r} such that η is infinitely partial differentiable with respect to the fibre of B_{V}, every partial derivative of η of any order with respect to the fibre is also of class C^{r} and the diffeomorphism of M induced by η is identity. Then, the mapping $\bar{\eta}: \Gamma^{(r)}\left(B_{V}\right) \rightarrow \Gamma^{(r)}\left(B_{W}\right)$ defined by $(\bar{\eta} \phi)(x)=\eta(\phi(x))$ is of class C^{∞}.

Proof. η induces the continuous mapping η^{r} of B_{V}^{r} in B_{W}^{r} well defined by $\eta^{r}\left(j_{x}^{r} \phi\right)=j_{x}^{r}(\bar{\eta} \phi)$ for any $j_{x}^{r} \phi \in B_{V}^{r}$. Then η^{r} is infinitely partial differentiable with respect to the fibre and every partial derivative of η^{r} of any order with respect to the fibre is continuous on B_{V}^{r}. Let ϕ_{0} be a fixed element of $\Gamma^{(r)}\left(B_{V}\right)$. We have

$$
\left\|\eta^{r}\left(j_{x}^{r} \phi+j_{x}^{r} \phi_{0}\right)-\eta^{r}\left(j_{x}^{r} \phi_{0}\right)-d \eta_{j_{x}^{r} \phi_{0}}^{r}\left(j_{x}^{r} \phi\right)\right\|<\left\|j_{x}^{r} \phi\right\|^{2} \cdot K
$$

for any element ϕ of $\Gamma^{(r)}\left(B_{V}\right)$ such that $\|\phi\|^{(r)}<\epsilon$ for a fixed ϵ, where K is a constant independent to x and $d \eta_{j_{x}^{r} \phi_{0}}^{r}$ is the partial differential of η^{r} at $j_{x}^{r} \phi_{0}$ with respect to the fibre of B_{V}^{r}, because every 2 nd partial derivative of η^{r} with respect to the fibre of B_{V}^{r} is bounded on an open set $\bigcup_{x \in M}\left\{j_{x}^{r} \phi \in B_{V}^{r}(x) ;\left\|j_{x}^{r} \phi-j_{x}^{r} \phi_{0}\right\|<\epsilon\right\}$ of B_{V}^{r}. Let $\bar{d}_{\phi_{0}}$ be a continuous linear mapping of $\Gamma^{(r)}\left(B_{V}\right)$ into $\Gamma^{(r)}\left(B_{W}\right)$ defined by $\overline{d \eta}_{\phi_{0}}(\phi)(x)=d \eta_{\phi_{0}}(\phi(x))$, where $d \eta_{\phi_{0}}: B_{V} \rightarrow B_{W}$ is the partial differential of η at ϕ_{0} with respect to the fibre. Since the mapping of B_{V}^{r} into B_{W}^{r} induced by $d \eta_{\phi_{0}}$ is $d \eta_{j_{x}^{r} \phi_{0}}^{r}$ over x, we have

$$
\begin{aligned}
& \| \bar{\eta}\left(\phi_{0}\right.+\phi)-\bar{\eta}\left(\phi_{0}\right)-\overline{d \eta}_{\phi}(\phi)\| \|^{(r)} \\
& \quad= \operatorname{Max}_{x \in M}\left\|j_{x}^{r}\left(\bar{\eta}\left(\phi_{0}+\phi\right)-\bar{\eta}\left(\phi_{0}\right)-d \bar{\eta}_{\phi}(\phi)\right)\right\| \\
& \quad= \operatorname{Max}_{x \in M}\left\|\eta^{r}\left(j^{r} x\left(\phi_{0}+\phi\right)\right)-\eta^{r}\left(j_{x}^{r}\left(\phi_{0}\right)\right)-d \eta_{j_{x}^{r} \phi_{0}}^{r}\left(j_{x}^{r} \phi\right)\right\| \\
& \quad<\operatorname{Max}_{x \in M}\left\|j_{x}^{r} \phi\right\|^{2} \cdot K \\
& \quad=\left(\|\phi\| \|^{(r)}\right)^{2} \cdot K, \text { for }\|\phi\|^{(r)}<\epsilon
\end{aligned}
$$

Therefore, we have $\lim _{\|\phi\| \rightarrow 0}\left\|\bar{\eta}\left(\phi_{0}+\phi\right)-\bar{\eta}\left(\phi_{0}\right)-\bar{d}_{\phi_{0}}(\phi)\right\|(r) /\|\phi\|^{(r)}=0$, that is, $\bar{\eta}$ is differentiable at ϕ_{0}. Next, we consider the bundle Hom ($B_{V} ; B_{W}$) of which the fibre over each x is a linear space of homomorphisms of $B_{V}(x)$ into $B_{W}(x)$. The bundle $\mathrm{Hom}^{r}\left(B_{V} ; B_{W}\right)$ of r-jets of cross-sections of $\operatorname{Hom}\left(B_{V} ; B_{W}\right)$ can be identified with a subbundle of the bundle $\operatorname{Hom}\left(B_{V}^{r}: B_{V}^{r}\right)$, of which each fibre has a norm continuously dependent to $x \in M$ defined by the norm of $B_{V}^{r}(x)$ and that of $B_{W}^{r}(x)$. The space $\Gamma^{(r)}\left(\operatorname{Hom}\left(B_{V} ; B_{W}\right)\right)$ with respect to the above norm can be identified with a subspace of the Banach space $L\left(\Gamma^{(r)}\right.$ $\left(B_{V}\right) ; \Gamma^{(r)}\left(B_{W}\right)$) of continuous linear mapping of $\Gamma^{(r)}\left(B_{V}\right)$ into $\Gamma^{(r)}$ (B_{W}). Let $d \eta$ be the partial derivative of η with respect to the fibre of B_{V} and then it is a fibre mapping of B_{V} into Hom ($B_{V} ; B_{W}$). If we take the bundle Hom ($B_{V} ; B_{W}$) instead of B_{W}, the mapping $d \eta$ satisfies the condition of η in Lemma l and we have a differentiable mapping

$$
\overline{d \eta}: \Gamma^{(r)}\left(B_{V}\right) \longrightarrow \Gamma^{(r)}\left(\operatorname{Hom}\left(B_{V} ; B_{W}\right)\right) \subset L\left(\Gamma^{(r)}\left(B_{V}\right) ; \Gamma^{(r)}\left(B_{W}\right)\right)
$$

induced from $d \eta$, such that $\overline{d \eta}\left(\phi_{0}\right)$ for any $\phi_{0} \in \Gamma^{(r)}\left(B_{V}\right)$ is the differential of $\bar{\eta}$ at ϕ_{0}. Following the above argument for any order of the differential of $\bar{\eta}$ in succession, we conclude the mapping $\bar{\eta}$ is of class C^{∞}.

Remark. Even if η is not a mapping of the whole space of B_{V} into B_{W} but a mapping of a fibre subspace B^{\prime} of B_{V} into B_{W}, Lemma 1 is right for $\Gamma^{(r)}\left(B^{\prime}\right)$ instead of $\Gamma^{(r)}\left(B_{V}\right)$.

Let B be a fibre bundle over M of class C^{∞} and let us define a riemannian metric on B of class C^{∞}. Let B^{r} denote a bundle of r-jets of cross-sections of B. Since B^{r} is a C^{∞}-bundle over B, we can define a riemannian metric on B^{r} of class C^{∞} based on the metric on B such that $\rho_{x}\left(\pi^{r} b, \pi^{r} b^{\prime}\right) \leqq \rho_{x}^{r}\left(b, b^{\prime}\right)$ for each x, where $b, b^{\prime} \in B^{r}(x), \pi^{r}: B^{r} \rightarrow B$ is the canonical projection and $\rho_{x}\left(\right.$ resp. $\left.\rho_{x}^{r}\right)$ is the distance along each fibre $B(x)$ (resp. $\left.B^{r}(x)\right)$. Let $\Gamma^{(r)}(B)$ be the whole of C^{r}-cross-sections
of B with the metric defined by

$$
\rho^{(r)}(\phi, \psi)=\operatorname{Max}_{x \in M} \rho_{x}^{r}\left(j_{x}^{r} \phi, j_{x}^{r} \psi\right) \text { for } \phi, \psi \in \Gamma^{(r)}(B)
$$

Applying the notion of the Banach manifold (see [2]) to $\Gamma^{(r)}(B)$, under the fact of Lemma 1 which gives the smoothness of the coordinate transformation, we have

Proposition 1. The metric space $\Gamma^{(r)}(B)$ is a Banach manifold of class C^{∞}. The tangent space of $\Gamma^{(r)}(B)$ at ϕ is the Banach space $\Gamma^{(r)}\left(V_{\phi}(B)\right)$, where $V_{\phi}(B)$ is the bundle of vertical vectors of B at ϕ.

Definition. The space \mathcal{G} of G-structures of class C^{r} on M is the Banach manifold $\Gamma^{(r)}(F(M) / G)$ of class C^{∞}, with respect to a riemannian metric of the bundle space of r-jets of cross-sections of $F(M) / G$.

The tangent space $T_{g}(\mathcal{G})$ at $g \in \mathcal{G}$ is the Banach space $\Gamma^{(r)}$ $\left(V_{g}(F(M) / G)\right)$, where $V_{g}(F(M) / G)$ is the vertical vector bundle of $F(M) / G$ at g.

Let B and B^{\prime} be fibre bundles of class C^{∞} over M and $\xi: B \rightarrow B^{\prime}$ be a fibre mapping of class C^{r} such that ξ is infinitely partial differentiable with respect to the fibre of B, every partial derivative of any order of ξ with respect to the fibre is of class C^{r} and the diffeomorphism of M induced by ξ is identity. Let us define the mapping $\bar{\xi}: \Gamma^{(r)}(B)$ $\rightarrow \Gamma^{(r)}\left(B^{\prime}\right)$ by $(\bar{\xi} \phi)(x)=\xi(\phi(x))$. Since ξ induces a mapping $\dot{\xi}$ of the tangent space $\Gamma^{(r)}\left(V_{\phi}(B)\right)$ to $\Gamma^{(r)}\left(V_{\psi}\left(B^{\prime}\right)\right)$ for any $\xi \in \Gamma^{(r)}(B), \psi \in$ $\Gamma^{(r)}\left(B^{\prime}\right)$ and $\dot{\bar{\xi}}$ is of class C^{∞} by Lemma 1, we have

Proposition 2. The mapping $\bar{\xi}$ is of class C^{∞}.

Let us define a riemannian metric of class C^{∞} on M. The product mainfold $M \times M$ is a trivial bundle over M and the space $C^{\left(r^{\prime}\right)}(M)$ of $C^{r^{\prime}}$-transformations of M is the Banach manifold $\Gamma^{\left(r^{\prime}\right)}(M \times M)$ of $C^{r^{\prime}}$ -
cross-sections of the above bundle with respect to a riemannian metric of the bundle $J^{r^{\prime}}(M \times M)$ of r^{\prime}-jets based on the product riemannian metric of $M \times M$. Any element of the ϵ-neighborhood of identity of $C^{\left(r^{\prime}\right)}(M)$ is a $C^{r^{\prime}}$-diffeomorphism of M by the definition of the metric of $C^{\left(r^{\prime}\right)}(M)$ and then the set of $C^{r^{\prime}}$-diffeomorphisms of M is an open subspace of $C^{\left(r^{\prime}\right)}(M)$. Let $\rho^{\left(r^{\prime}\right)}$ be the metric of $C^{\left(r^{\prime}\right)}(M)$. We define the metric $\rho\left(f_{1}, f_{2}\right)=\rho^{\left(r^{\prime}\right)}\left(f_{1}, f_{2}\right)$ on the set Diff ${ }^{\left(r^{\prime}\right)}(M)$ of $C^{r^{\prime}}$-diffeomorphisms of M. Then $\operatorname{Diff}\left(r^{\prime}\right)(M)$ is a Banach manifold of class C^{∞}. The tangent space of $\operatorname{Diff}{ }^{\left(r^{\prime}\right)}(M)$ at any f is the Banach space $\Gamma^{\left(r^{\prime}\right)}(T(M))$ with respect to the norm of each fibre of $J^{r^{\prime}}(T(M))$ based on the metric of $J^{r^{\prime}}(M \times M)$, where $T(M)$ is the tangent bundle which is identified with the vertical vector bundle of the trivial bundle $M \times M$ at f.

§ 2. Infinitesimal automorphisms.

Let θ be a vector field of class C^{r+1} on an open set U of M. For $g \in \mathcal{G}$, let g^{\prime} be a cross-section of $F(M)$ on U such that $\pi^{\prime} g^{\prime}=g$ and $\mathcal{L}_{\theta} g^{\prime}$ be the Lie derivative of a tensor field g^{\prime} with respect to θ. If we set $\mathcal{L}_{\theta} g^{\prime}=g^{\prime} \times \mathfrak{a}$, then \mathfrak{a} is a $\mathfrak{g l}$-valued function on U. Since $F(M) \times \mathfrak{g l}$ is the bundle of vertical vectors of $F(M), g^{\prime} \times \mathfrak{a}$ is a vertical vector field of $F(M)$ at g^{\prime}. The bundle of vertical vectors of $F(M) / G$ is an associated bundle $F(M) \times \underset{G}{f}$ of $F(M)$ by the linear isotropy representation is: $G \rightarrow G L(\mathrm{f})$, where $\mathrm{f}=\mathfrak{g l} / \mathfrak{g}$. Then $g_{G}^{\prime} \times q \cdot a$ is a vertical vector field of $F(M) / G$ at g, where q is the projection $\mathfrak{g l} \rightarrow \mathfrak{f}$. This field is determined by θ and g, that is, $g_{G}^{\prime} \times q \cdot a$ is independent to a choice of g^{\prime} such that $\pi^{\prime} g^{\prime}=g$. We denote $g_{G}^{\prime} \times q \cdot a$ by $\mathcal{L}_{\theta} g$. Then θ is an infinitesimal automorphism of g, if and only if $\mathcal{L}_{\theta} g=0$.

By the condition of g_{0} in Introduction, g_{0} is of class C^{∞}. When θ is a global vector field of class C^{r+1} on $M, \mathcal{L}_{\theta} g_{0}$ is a global C^{r}-crosssection of the vertical vector bundle $V_{g_{0}}(F(M) / G)$ of $F(M) / G$ at g_{0}. Then we have a linear mapping $\bar{\delta}_{g_{0}}$ of the Banach space $\Gamma^{(r+1)}(T(M))$ of all vector fields of class C^{r+1} on M into the Banach space $\Gamma^{(r)}\left(V_{g_{0}}\right.$ $(F(M) / G)$) of all C^{r}-cross-sections of $V_{g_{0}}(F(M) / G)$, such that $\bar{\delta}_{g_{0}} \theta=$ $\mathcal{L}_{\theta} g_{0}$.

Proposition 3. The linear mapping $\bar{\delta}_{g_{0}}$ is continuous.

Proof. Since a vertical vector $\mathcal{L}_{\theta} g_{0}(x)$ is determined by $j_{x}^{1} \theta$ and ${ }^{j}{ }^{1} g_{0}$, we have a mapping L of the bundle $J^{1}(T(M))$ of l-jets of vector fields on M into $V_{g_{0}}(F(M) / G)$ such that $L\left(j^{1} \theta\right)=\mathcal{L}_{\theta} g_{0}$ for any vector field θ on a neighborhood of x, and L is a bundle mapping of vector bundles. Then L induces a continuous linear mapping \bar{L} of $\Gamma^{(r)}$ $\left(J^{1}(T(M))\right)$ into $\Gamma^{(r)}\left(V_{g_{0}}(F(M) / G)\right)$ and a correspondence defined by $\theta \rightarrow j^{1} \theta$ is an imbedding im of $\Gamma^{(r+1)}(T(M))$ into $\Gamma^{(r)}\left(J^{1}\right.$ $(T(M)))$. Then $\bar{L} \cdot i m$ is continuous linear and $\bar{\delta}_{g_{0}}=\bar{L} \cdot i m$.

Taking the germs of each cross-section, the correspondence $\theta \rightarrow$ $\mathcal{L}_{\theta} g_{0}$ induces a sheaf homomorphism $\delta_{g_{0}}: \mathfrak{I} \rightarrow \mathfrak{V}$, where \mathfrak{I} is a sheaf of germs of vector fields of class C^{r+1} on M and \mathfrak{B} is a sheaf of germs of C^{r}-cross-sections of $V_{g_{0}}(F(M) / G)$. The kernel of $\delta_{g_{0}}$ is the sheaf $\mathfrak{H}\left(g_{0}\right)$ of germs of infinitesimal automorphisms of g_{0}. Since G is of finite type, the sheaf $\mathfrak{A}\left(g_{0}\right)$ is locally constant and its stalks are finite dimensional vector spaces. Then the set $\Gamma\left(\mathfrak{A}\left(g_{0}\right)\right)\left(=H^{0}\left(M, \mathfrak{A}\left(g_{0}\right)\right)\right)$ of global infinitesimal automorphisms is a finite dimensional vector space which is a subspace of $\Gamma^{(r+1)}(T(M))$. Thus we have a closed complement D of $\Gamma\left(\mathfrak{Y}\left(g_{0}\right)\right)$ in $\Gamma^{(r+1)}(T(M))$ and $\bar{\delta}_{g_{0}}$ is isomorphic on D.

A C^{r+1}-diffeomorphism f of M induces a C^{r}-diffeomorphism f^{\prime} of $F(M)$ such that $f^{\prime}(b \cdot a)=\left(f^{\prime}(b)\right) \cdot a$ for any $a \in G$ and $b \in F(M)$, and then it induces a C^{r}-diffeomorphism f^{*} of $F(M) / G$ such that $\pi^{\prime}\left(f^{\prime}(b)\right)$ $=f^{*} \pi^{\prime}(b)$ and $f\left(\pi\left(b^{\prime}\right)\right)=\pi\left(f^{*}\left(b^{\prime}\right)\right)$ where $b^{\prime} \in F(M) / G$. Let us define $\bar{f} g$ by $(\bar{f} g)(x)=f^{*-1}(g(f(x)))$ for any $g \in \mathcal{G}$. Then $\bar{f} g$ is a new $C^{r_{-}}$ cross-section of $F(M) / G$ and \bar{f} is a transformation of the space \mathcal{G}. The partial differential of f^{*} with respect to the fibre of $F(M) / G$ is a diffeomorphism $f^{* *}$ of the vertical vector bundle defined by $f^{* *} v$ $=f^{\prime}(b) \underset{G}{\times} \mathfrak{a}$, where a vertical vector v is an element $\underset{G}{b \times a}$ of $F(M) \times \underset{G}{ } \mathfrak{f}$, and $f^{* *}$ induces a transformation $\bar{f}^{* *}$ of the vertical vector fields \bar{v} by $\left(\bar{f}^{* *} \bar{v}\right)(x)=f^{* *-1}(\bar{v}(f(x))$.

Proposition 4. $\bar{f}^{* *}\left(\mathcal{L}_{\theta} g\right)=\mathcal{L}_{f \theta}(\bar{f} g)$.

Proof. If $\pi^{\prime} g^{\prime}=g$ and $\mathcal{L}_{\theta} g^{\prime}=g^{\prime} \times a$, then

$$
\begin{aligned}
\left(\mathcal{L}_{f^{-1} \theta}\left(f^{\prime-1} g^{\prime}\right)\right)(x)= & f^{\prime \prime-1}\left(\mathcal{L}_{\theta} g^{\prime}(f(x))\right) \\
& =f^{\prime \prime-1}\left[g^{\prime}(f(x)) \times \mathfrak{a}(f(x))\right],
\end{aligned}
$$

where $f^{\prime \prime}$ is a diffeomorphism of vertical vector bundle of $F(M)$ induced by f^{\prime}. Therefore, we have

$$
\begin{aligned}
{\left[\mathcal{L}_{f \theta}(\bar{f} g)\right](x) } & =f^{\prime \prime-1}\left[g^{\prime}(f(x))\right] \times \underset{G}{\times} q[\mathfrak{a}(f(x))] \\
& =f^{* *-1}\left[g^{\prime}(f(x)) \times \underset{G}{\times} q(\mathfrak{a}(f(x))]\right. \\
& =f^{* *-1}\left[\mathcal{L}_{\theta} g(f(x))\right]=\left(\bar{f}^{* *}\left(\mathcal{L}_{\theta} g\right)\right)(x) .
\end{aligned}
$$

§ 3. Transitive \boldsymbol{G}-structures and associated \boldsymbol{G}-structures.

In our paper, we suppose that the G-structure g_{0} is transitive, that is, the local automorphisms of g_{0} act locally transitive on M and moreover those of every prolongation $B_{G}^{\mu}(\mu)$ of $B_{G}\left(=g_{0}\right)$ act locally transitive on $B_{G}^{\mu}{ }_{(\mu)}$, (see [4], Appendix I).

If and only if n is an element of the normalizer N of G in $G L(n)$, the right translation of g_{0} by n is also a G-structure, which is called to be associated to g_{0}. By the theory of G-structures (see [1]), we have

Proposition 5. A-structure g is associated to g_{0}, if and only if g has the same local infinitesimal automorphisms as g_{0}.

The product space $N \times M$ is a trivial C^{∞}-bundle over M and then a mapping of $N \times M$ into $F(M) / G$ defined by $n \times x \rightarrow g_{0}(x) \cdot n$ satisfies the condition of ξ of Proposition 2, because g_{0} is of class C^{∞}. Since N is a closed submanifold of $\Gamma^{(r)}(N \times M)$ as the constant cross-sections, the mapping $\rho_{g_{0}}: N \rightarrow \mathcal{G}$ defined by $\rho_{g_{0}}(n)=g_{0} \cdot n$ is of class C^{∞} by Proposition 2. For each x, the set $\left\{g_{0}(x) \cdot n ; n \in N\right\}$ is a closed submanifold of the fibre of $F(M) / G$ over x. Thus we have

Proposition 6. Let \mathcal{A} be the set of G-structures of class C^{r} associated to g_{0}. Then \mathcal{A} is a closed submanifold of \mathcal{G}.

If and only if $n \cdot n^{\prime-1} \in G$, we have $\rho_{g_{0}}(n)=\rho_{g_{0}}\left(n^{\prime}\right)$. Then ρ_{g} induces a C^{∞}-imbedding $\bar{\rho}_{g}: N / G \rightarrow \mathcal{G}$ such that $\bar{\rho}_{g} q^{\prime}=\rho_{g}$, where $q^{\prime}: N \rightarrow N / G$.

We consider a mapping of $\operatorname{Diff}{ }^{(r+1)}(M) \times N / G$ into \mathcal{G} defined by $f \times \bar{n} \rightarrow \bar{f} \cdot \bar{\rho}_{0}(\bar{n})$. Let $J^{1}(M, \alpha)$ (resp. $J^{1}(M, \beta)$) be the fibre bundle of invertible l-jets of diffeomorphisms of M with the source projection α (resp. the target projection β) as the bundle projection. Each jet $j^{1} f^{-1}$ with source y and target x operates on the fibre of $F(M) / G$ over y such that $\left(j^{1} f^{-1}\right) \cdot g(y)=(\bar{f} g)(x)$ for each $g \in \mathcal{G}$. The product space $J^{1}(M, \beta) \times N / G$ is also a C^{∞}-bundle over M with the projection $\bar{\beta}$: $\left(j^{1} f, \bar{n}\right) \rightarrow \beta\left(j^{1} f\right)$. Since g_{0} is of class C^{∞}, the mapping of $J^{1}(M, \beta)$ $\times N / G$ into $F(M) / G$ defined by $\left(j^{1} f^{-1}, \bar{n}\right) \rightarrow\left(j^{1} f^{-1}\right) \cdot\left(\bar{\rho} g_{0}(\bar{n})(y)\right)$ is a fibre mapping of class C^{∞}. Then, by Proposition 2 we have a C^{∞}-mapping $\tau^{\prime}: \Gamma^{(r)}\left(J^{1}(M, \beta) \times N / G\right) \rightarrow \Gamma^{(r)}(F(M) / G)$. The space $\Gamma^{(r)}$ $\left(J^{1}(M, \beta) \times N / G\right)$ is C^{∞}-diffeomorphic to $\Gamma^{(r)}\left(J^{1}(M, \beta)\right) \times \Gamma^{(r)}(M, N / G)$. On the other hand, the correspondence $j_{x}^{1} f \rightarrow j_{y}^{1} f^{-1}$, where $y=f(x)$, gives a C^{∞}-isomorphism of the bundle $J^{1}(M, a)$ onto $J^{1}(M, \beta)$, which induces a C^{∞}-diffeomorphism $\iota: \Gamma^{(r)}\left(J^{1}(M, a)\right) \rightarrow \Gamma^{(r)}\left(J^{1}(M, \beta)\right)$ such that $\iota\left(j^{1} f\right)=j^{1} f^{-1}$. From the definition of the Banach manifold Diff ${ }^{(r+1)}(M)$ in §l, we have a C^{∞}-injection ι^{\prime} of $\operatorname{Diff}{ }^{(r+1)}(M)$ into $\Gamma^{(r)}$ ($J^{1}(M, \alpha)$) such that $\iota^{\prime}(f)=j^{1} f$, and we have a C^{∞}-injection $\iota^{\prime \prime}$ of Diff ${ }^{(r+1)}(M)$ into $\Gamma^{(r)}\left(J^{1}(M, \beta)\right)$ such that $\iota^{\prime \prime}(f)=\iota \cdot \iota^{\prime}(f)=j^{1} f^{-1}$. The $C^{\infty}-$ manifold N / G, of which each element can be considered as a constant mapping of M into N / G, is a C^{∞}-submanifold of $\Gamma^{(r)}(M, N / G)$ and then we have a C^{∞}-injection $\kappa: N / G \rightarrow \Gamma^{(r)}(M, N / G)$. Let τ be the composed mapping of

$$
\begin{aligned}
& \tau^{\prime \prime} \times \kappa: \operatorname{Diff}(r+1)(M) \times N / G \rightarrow \Gamma^{(r)}\left(J^{1}(M, \beta)\right) \times \Gamma^{(r)}(M, N / G), \\
& \text { the isomorphism: } \Gamma^{(r)}\left(J^{1}(M, \beta)\right) \times \Gamma^{(r)}(M, N / G)
\end{aligned}
$$

$$
\rightarrow \Gamma^{(r)}\left(J^{1}(M, \beta) \times N / G\right)
$$

$$
\text { and } \tau^{\prime}: \Gamma^{(r)}\left(J^{1}(M, \beta) \times N / G\right) \rightarrow \Gamma^{(r)}(F(M) / G) \text {. }
$$

Then τ is of class C^{∞} from $\operatorname{Diff}{ }^{(r+1)}(M) \times N / G$ into \mathcal{G} such that $\tau(f \times \bar{n})$ $=\bar{f} \bar{\rho}_{g_{0}}(\bar{n})$. By the definition of $\mathcal{L}_{\theta} g_{0}$, the partial differential of τ at (identity $\times \bar{e}$) with respect to $\operatorname{Diff}{ }^{(r+1)}(M)$ is a continuous linear mapping $\bar{\delta}_{g_{0}}$ in Proposition 3. The partial differential of τ at (identity $\left.\times \bar{e}\right)$ with respect to N / G is a continuous linear mapping of $\mathfrak{n t} / \mathrm{g}$ into $\Gamma^{(r)}\left(V_{g_{0}}(F(M) /\right.$ $G)$) defined by $\dot{n} \rightarrow g_{0}^{\prime} \times \dot{n}$, where $g_{0}=\pi^{\prime} g_{0}^{\prime}$. Thus we have

Proposition 7. The mapping τ is of class C^{∞}. The differential of τ at (identity $\times \bar{e})$ is a continuous linear mapping of $\Gamma^{(r+1)}(T(M))$ $\times \mathfrak{n} / \mathrm{g}$ into $\Gamma^{(r)}\left(V_{g_{0}}(F(M) / G)\right)$ defined by $\theta \times \dot{n} \rightarrow \bar{\delta}_{g_{0}} \theta+\left(g_{0}^{\prime} \times \dot{n}\right)$ where $\pi^{\prime} g_{0}^{\prime}=g_{0}$.

§4. Transformation of the infinitesimal automorphisms.

Proposition 8. Let f be a local diffeomorphism of class C^{r+1} with domain U. A local isomorphism of the sheaf \mathfrak{I} induced by f maps a potion $\mathfrak{A}\left(g_{0}\right) \mid U$ of $\mathfrak{A}\left(g_{0}\right)$ over U onto $\mathfrak{N}\left(g_{0}\right) \mid f(U)$, if and only if a G-structure $\bar{f} g_{0}$ induced from g_{0} by f has the same infinitesimal automorphisms as g_{0} on $f(U)$.

Proof. By Proposition 4, we have $f\left(\mathfrak{Y}\left(g_{0}\right) \mid U\right)=\mathfrak{A}\left(\bar{f} g_{0}\right) \mid f(U)$. Then $\mathfrak{Y}\left(g_{0}\right) \mid f(U)=f\left(\mathfrak{Y}\left(g_{0}\right) \mid U\right)$, if and only if $\mathfrak{Y}\left(g_{0}\right)\left|f(U)=\mathfrak{A}\left(\bar{f} g_{0}\right)\right|$ $f(U)$.

Proposition 9. Let $f(t)$ be the 1-parameter diffeomorphisms $(\exp t \theta)$ generated by a local vector field θ. If and only if each $f(t)$ satisfies the condition of Proposition 8, the germs of θ belong to the sheaf \mathfrak{N} of normalizer of $\mathfrak{Y}\left(g_{0}\right)$ in \mathfrak{T}.

Proof. Let U be an open set of M and θ be a vector field on U. For an open set $V \subset U$, each $f(t)$ is diffeomorphism with domain V for a suitable small interval of $|t|$ such that $f(t) \cdot V \subset U$. If $f(t)\left(\mathfrak{2}\left(g_{0}\right) \mid V\right)$
$=\mathfrak{A}\left(g_{0}\right) \mid f(t) V$, then $[\theta, \lambda]$ is an infinitesimal automorphism for any infinitesimal automorphisms λ on V. Since V is any open set of U, the germ of θ at any $x \in U$ is in $\mathfrak{\Re}$. Conversely, let n be a vector field
 simal automorphism on U for any λ. Local diffeomorphisms (exp $t n) \cdot(\exp s \lambda) \cdot(\exp t n)^{-1}$ for a small fixed $|t|$ are local automorphisms $a(s)$ of g_{0} for a suitable small $|s|$ and on a suitable domain such that the above compositions are considerable, because $(\exp t n) \cdot(\exp s \lambda)$. $(\exp t n)^{-1}=\exp \left(\mathrm{e}^{\mathrm{ad}(t n)} s \lambda\right) . \quad$ By Proposition 4,

$$
\mathcal{L}_{(\exp t n) \lambda} g_{0}=(\exp t n)^{* *} \mathcal{L}_{\lambda}\left((\exp t n)^{-1} g_{0}\right) .
$$

On the notation ()' in $\S 2$, we have

$$
\begin{aligned}
& \mathcal{L}_{\lambda}\left((\overline{\exp t n})^{-1} g_{0}\right)^{\prime}(x)=\left[\frac{\mathrm{d}}{\mathrm{~d} s}(\exp s \lambda)^{\prime-1}(\exp t n)^{\prime-1}\right. \\
& \left.g_{0}^{\prime}((\exp t n)(\exp s \lambda) x)\right]_{s=0} \\
& =\left[\frac{\mathrm{d}}{\mathrm{~d} s}(\exp t n)^{\prime-1} a(s)^{\prime^{-1}}\left(g_{0}^{\prime}(a(s)(\exp t n) x)\right)\right]_{s=0} \\
& =\left[(\exp t n)^{\prime-1} \frac{\mathrm{~d}}{\mathrm{~d} s} g^{\prime}(s)((\exp t n) x)\right]_{s=0^{\prime}}
\end{aligned}
$$

where $g^{\prime}(s)=\overline{a(s)^{\prime-1}} g_{0}$. Here $a^{\prime}(s)(y) \in G$, if we set $g^{\prime}(s)(y)=g_{0}^{\prime}(y)$ $\left(a^{\prime}(s)(y)\right)$ and then $\mathfrak{a}(y) \in \mathfrak{g}$, if we set $\left[\frac{\mathrm{d}}{\mathrm{d} s} g^{\prime}(s)(y)\right]_{s=0}=g_{0}^{\prime}(y) \times \mathfrak{G}(y)$. Therefore,

$$
\begin{aligned}
& \mathcal{L}_{\lambda}\left((\overline{\exp t n})^{-1} g_{0}\right)(x) \\
& \quad=(\exp t n)^{* *-1}\left[g_{0}^{\prime}((\exp t n) x) \times \mathfrak{a}((\exp t n) x)\right]=0
\end{aligned}
$$

and then $(\exp t n) \lambda$ is a local infinitesimal automorphism.

Proposition 10. The dimension of the stalk of \mathfrak{M} is finite and constant for every $x \in M$.

Proof. For a point $x_{0} \in M$, the adjoint representation of $\mathfrak{R}\left(x_{0}\right)$
on $\mathfrak{A}\left(g_{0}\right)\left(x_{0}\right)$ defines a homomorphism K from an additive group $\mathfrak{R}\left(x_{0}\right)$ into an additive group $\operatorname{Hom}\left(\mathfrak{H}\left(g_{0}\right)\left(x_{0}\right)\right.$), where $\mathfrak{R}\left(x_{0}\right)$ (resp. $\mathfrak{H}\left(g_{0}\right)\left(x_{0}\right)$) is a stalk of \mathfrak{M} (resp. $\left.\mathfrak{A}\left(g_{0}\right)\right)$ at x_{0}. Each element of kernel of K is the germ of vector field n on a neighborhood of x_{0} at x_{0} such that $[n, \lambda]=0$ for any infinitesimal automorphisms λ on U. Since g_{0} is transitive, there exist n independent infinitesimal automorphisms $\lambda_{i}(i=1, \ldots, n)$ on U. The condition $\left[n, \lambda_{i}\right]=0(i=1, \ldots, n)$ is a system $\lambda_{j}\left(n^{i}\right)=$ $\sum_{k} n^{k} c_{k j}^{i}(i, j=1, \ldots, n) \ldots\left(^{*}\right)$ of linear differential equations, where $n=\sum_{i} n^{i} \lambda_{i}$ and $\left[\lambda_{i}, \lambda_{j}\right]=\sum_{k} c_{i j}^{k} \lambda_{k}$. By the uniqueness of solution for the initial condition $n\left(x_{0}\right)$, the dimension of the solutions is finite. Therefore the dimension of kernel of K is finite. Since dim. (Hom $\left.\left(\mathfrak{H}\left(g_{0}\right)\left(x_{0}\right)\right)\right)$ is finite, $\operatorname{dim} . \mathfrak{R}\left(x_{0}\right)$ is finite. Since g_{0} is transitive, there exists a local automorphism f of a neighborhood of x onto that of x^{\prime} for any x, x^{\prime} of M and f induces an isomorphism of $\mathfrak{M}(x)$ onto $\mathfrak{N}\left(x^{\prime}\right)$. Then, $\operatorname{dim} . \mathfrak{R}(x)=\operatorname{dim} . \mathfrak{R}\left(x^{\prime}\right)$.

Proposition 11. The sheaf \mathfrak{R} is locally constant.

Proof. Since dim. $\mathfrak{N}\left(x_{0}\right)$ is finite, $\mathfrak{N}\left(x_{0}\right)$ is the germs of vector fields n on some common neighborhood U of x_{0} such that $[n, \lambda]$ are infinitesimal automorphisms on U for any infinitesimal automorphisms λ on U. Let (\mathfrak{M}, U) denote the whole of such vector fields n on U and let $n_{1}, n_{2} \in(\Re, U)$. If $n_{1}=n_{2}$ on an open set V of U, then $\left[n_{1}-n_{2}, \lambda\right]$ $=0$ on U for any λ. Then $n_{1}-n_{2}$ is a solution of the system $\left(^{*}\right)$ in Proof of Proposition 10 and then $n_{1}=n_{2}$ on U. Therefore each vector field of (\Re, U) has a respectively different germ at any $x \in U$. Since $\operatorname{dim} . \mathfrak{R}(x)$ is constant, the whole of germs of vector fields of (\mathfrak{R}, U) at every point of U is the portion $\mathfrak{P} \mid U$. Therefore \mathfrak{R} is locally constant.

Since the dimension of the space $\Gamma(\mathfrak{N}, M)$ is finite, we have by Palais' theorem ([5])

Proposition 12. Let $N\left(g_{0}\right)$ be the group of C^{r+1}-diffeomorphisms of M which map all the local infinitesimal automorphisms of g_{0} onto
themselves. Then $N\left(g_{0}\right)$ is a Lie group.

Let \tilde{g}_{0} be the lift of g_{0} on the universal covering manifold \widetilde{M} of M. We have a Lie group $N\left(\tilde{g}_{0}\right)$ in the similar way to $N\left(g_{0}\right)$. We denote by $\tilde{\mathfrak{D}}$ the sheaf of germs of vector C^{r+1}-fields on \widetilde{M} and by $\mathfrak{N}\left(\tilde{g}_{0}\right)$ that of infinitesimal automorphisms of \tilde{g}_{0}. The Lie algebra of $N\left(\tilde{g}_{0}\right)$ is a subalgebra of $\Gamma(\tilde{\mathfrak{R}}, \widetilde{M})$, where $\tilde{\mathfrak{R}}$ is the sheaf of normalizer of $\mathfrak{X}\left(\tilde{g}_{0}\right)$ in $\tilde{\mathfrak{I}}$.

§ 5. Deformations of a transitive G-structure.

Definition. Let g_{t} be a 1 -parameter family of G-structures of class C^{r} parametrized by t of a neighborhood I of 0 in R. A family g_{t} is a deformation of g_{0}, if there exist an open covering $\left\{U_{i} ; i \in J\right\}$ of M and a family $\left\{f_{i}(x, t) ; i \in J\right\}$ of local continuous transformations of $M \times I$ such that (i) the domain of f_{i} is $U_{i} \times I$, (ii) $f_{i}(x, t)$ for each fixed t is a local C^{r+1}-transformation of $M \times t$, (iii) partial derivatives of $f_{i}(x, t)$ of any order ($\leqq r+1$) with respect to x are continuous on $U_{i} \times I$, (iv) $f_{i}^{*}(x, t)^{-1} g_{0}(f(x, t))=g_{t}(x)$ for $x \in U_{i}$, (v) $f_{i}(0)=$ identity for each i and (vi) $\left\{f_{i}\left(U_{i}, t\right) ; i \in J\right\}$ for each t is an open covering of M. Each G-structure of a deformation of g_{0} is called to be deformable to g_{0}.

Two transitive $\{e\}$-structures are locally equivalent, if they have the same constant structure function (see [6]). When we follow the proof of the above fact, while parametrizing by t, we have

Lemma 2. Let $\left\{\theta^{\alpha}(x, t) ; a \in N\right\}$ be a system of independent continuous 1-forms on $R^{N} \times I$ such that each 1 -form is of class $C^{r^{\prime}}$ on $R^{N} \times t$ for each t, partial derivatives of $\theta^{\alpha}(x, t)$ of any order $\left(\leqq r^{\prime}\right)$ with respect to x are continuous on $R^{N} \times I,<\theta^{\alpha}, \frac{\partial}{\partial t}>=0$ and $c_{\beta \gamma}^{\alpha}$ are constant, where $d_{x} \theta^{\alpha}=\sum_{\beta, \gamma} c_{\beta r}^{\alpha} \theta^{\beta} \wedge \theta r$ and d_{x} is the exterior differentiation with respect to x. Then there exist a neighborhood U of each point of R^{N} and a homeomorphism $\phi(x, t)$ of $U \times I$ into $R^{N} \times I$ such that $\phi(x, t)$
for any fixed t is a $C^{r^{\prime+1}}$-diffeomorphism of $U \times t$, partial derivatives of $\phi(x, t)$ of any order $\left(\leqq r^{\prime}+1\right)$ with respect to x are continuous on $R^{N} \times I, \phi^{*}(x, t)^{-1} \theta^{\alpha}(\theta(x, t), 0)=\theta^{\alpha}(x, t)$ and $\phi(x, 0)=$ identity.

Since g_{0} is transitive, the k-th prolongation of g_{0} is an $\{e\}$-structure with a constant structure function, where k is the order of G. Let \mathscr{D} denote the subspace of G consisting of G-structures of which k-th prolongations have the same constant functions as that of g_{0}.

Proposition 13. A deformation of g_{0} is a continuous mapping $g(t)$ of a neighborhood I of 0 in R into \mathscr{D} with $g(0)=g_{0}$ and conversely.

Proof. From (ii) and (iii), a correspondence $x \rightarrow j_{x}^{r}\left(\bar{f}_{i}(t) g_{0}\right)$ for $x \in U_{i}$ defines a continuous cross-section of $J^{r}(F(M) / G) \times I$ over $U_{i} \times I$, by the application of arguments in Proof of Proposition 7 on $f_{i}(t) U_{i}$, where $\left\{f_{i}, U_{i} ; i \in J\right\}$ defines the deformation g_{t} and

$$
\left(\bar{f}_{i}(t) g_{0}\right)(x)=f_{i}^{*}(x, t)^{-1} g_{0}\left(f_{i}(x, t)\right)
$$

Since $\bar{f}_{i}(t) g_{0}=g_{t}, j^{r} g_{t}$ is a continuous section of $J^{r}(F(M) / G) \times I$. Therefore g_{t} is a curve in \mathcal{G}. Since g_{t} is locally equivalent to g_{0}, each g_{t} has the same structure function as g_{0}. Therefore g_{t} is a curve in \mathscr{D} through g_{0}. Conversely, let $\left\{V_{i} ; i \in J\right\}$ be an open covering of M such that the restriction of the bundle $F(M)$ on each V_{i} are the product $V_{i} \times G L(n)$. Since a curve $g(t)$ in \mathscr{D} through g_{0} is an lparameter family of G-structures continuously dependent to t and $k<r$ by remark of $\S 1$, a set of the portions of the manifolds of k-th prolongations of $g(t)$ on V_{i} for all $t \in I$ constructs a domain $V_{i} \times V \times I$ on $R^{N} \times I$, where N is the dimension of the manifold of k-th prolongation, and the $\{e\}$-structures of k-th prolongations of $g(t)$ construct a system $\left\{\theta^{\alpha}(x, t) ; a \in N\right\}$ of 1 -forms which satisfies the condition of Lemma 2 with $r^{\prime}=r-k$. By Lemma 2, we have a neighborhood $U_{x}\left(\subset V_{i}\right)$ of each point x of V_{i} and a homeomorphism $\phi_{x}^{\prime}\left(x^{\prime}, t\right)$ of $U_{x} \times V \times I$ into $R^{N} \times I$ such that they satisfy the condition of the
conclusion of Lemma 2. Since local automorphisms of the prolongation of the G-structure induce those of the G-structure, $\phi_{x}^{\prime}\left(x^{\prime}, t\right)$ induces a diffeomorphism $\phi_{x}\left(x^{\prime \prime}, t\right)$ of $U_{x} \times I$ into $V_{i} \times I$ such that $\phi_{x}\left(x^{\prime \prime}, t\right)$ is a C^{r+1}-diffeomorphism of $U_{x} \times t$ into $V_{i} \times t$ for any fixed t, partial derivatives of $\phi_{x}\left(x^{\prime \prime}, t\right)$ of any order $(\leqq r+1)$ with respect to $x^{\prime \prime}$ are continuous on $U_{x} \times I$ and $\phi_{x}^{*}\left(x^{\prime \prime}, t\right)^{-1} g_{0}\left(\phi_{x}\left(x^{\prime \prime}, t\right)\right)=g(t)\left(x^{\prime \prime}\right)$. Then for a suitable index $J,\left\{U_{\lambda} ; \lambda \in J\right\}$ and $\left\{\phi_{x_{\lambda}}(x, t) ; \lambda \in J\right\}$ define a deformation g_{t} of g_{0} such that $g(t)=g_{t}$. This fact holds good, even if we use any one of $g(t)$ in place of g_{0}. Then we have Propostion, extending the above proof on I successively.

Two deformations g_{t}^{1} and g_{t}^{2} of g_{0} is said to have the same germ of deformation at 0 if there exists a positive number t_{0} such that $g_{t}^{1}=g_{t}^{2}$ on $\left(-t_{0}, t_{0}\right)$. If there is a positive number t_{0}^{\prime} and a continuous family $\left\{f_{t} ; t \in\left(-t_{0}^{\prime}, t_{0}^{\prime}\right)\right\}$ in $\operatorname{Diff}{ }^{(r+1)}(M)$ through $e=f_{0}$ such that $\bar{f}_{t} g_{t}^{1}=g_{t}^{2}$ for any $t \in\left(-t_{0}^{\prime}, t_{0}^{\prime}\right)$, the germ of g_{t}^{1} at 0 is said to be equivalent to that of g_{t}^{2}. Thus we have the equivalence class of germs of deformations. Let $\phi(x, t)$ be a local transformation of $M \times I$ such that $\phi(x, 0)$ is identity and $\phi(x, t)$ for any fixed t is a local automorphism of g_{0}. Let $\left[A\left(g_{0}\right) \times t\right]$ denote the whole of germs of such $\phi(x, t)$ at every point of $M \times 0$. Then $\left[A\left(g_{0}\right) \times t\right]$ is a sheaf of group on M and we have the l-chomology set $H^{1}\left(M,\left[A\left(g_{0}\right) \times t\right]\right)$. It is well known that $H^{1}\left(M,\left[A\left(g_{0}\right) \times t\right]\right)$ is one-to-one correspondent to the whole of equivalence classes of germs of deformations of g_{0} (see [3] or [7]).

§6. G-structures having the same infinitesimal automorphisms

Let $N_{e}\left(\tilde{g}_{0}\right)\left(\operatorname{resp} . A_{e}\left(\tilde{g}_{0}\right)\right)$ be the e-component of $N\left(\tilde{g}_{0}\right)$ (resp. $\left.A\left(\tilde{g}_{0}\right)\right)$.
On the notation and the argument of $\S 4$, a G-structure $\overline{\tilde{f}} \tilde{g}_{0}$ on \widetilde{M} for $\tilde{f} \in N_{e}\left(\tilde{g}_{0}\right)$ has the same infinitesimal automorphisms as \tilde{g}_{0}. By Proposition 6, there exists an element a of N such that $\overline{\tilde{f}} \tilde{g}_{0}=\tilde{g}_{0} \cdot a$. If $\overline{\tilde{f}} \tilde{g}_{0}=\tilde{g}_{0} \cdot a=\tilde{g}_{0} \cdot a^{\prime}$, then $a \cdot a^{\prime-1} \in G$. Thus we have a mapping $\sigma: N_{e}$ $\left(\tilde{g}_{0}\right) \rightarrow N / G$ defined by $\sigma(\tilde{f})=q^{\prime}(a)$ where $\overline{\tilde{f}} \tilde{g}_{0}=\tilde{g}_{0} \cdot a$ and $q^{\prime}: N \rightarrow N / G$.

Proposition 14. The mapping σ is an anti-homomorphism and of class C^{∞} from the Lie group $N_{e}\left(\tilde{g}_{0}\right)$ into N / G.

Proof. Since $\left(\overline{\tilde{f}}_{1} \cdot \bar{f}_{2}\right) \tilde{g}_{0}=\overline{\tilde{f}}_{1}\left(\overline{\tilde{f}}_{2} \tilde{g}_{0}\right)=\left(\tilde{g}_{0} \cdot a_{2}\right) \cdot a_{1}=\tilde{g}_{0} \cdot\left(a_{2} a_{1}\right)$, the mapping σ is an anti-homomorphism. Since $N_{e}\left(\tilde{g}_{0}\right)$ is a Lie transformation group of \widetilde{M}, the correspondence $\tilde{f} \rightarrow \tilde{f}(\tilde{x})$ for a fixed $\tilde{x} \in \widetilde{M}$ defines a C^{∞}-mapping $\gamma: N_{e}\left(\tilde{g}_{0}\right) \rightarrow \widetilde{M}$. Moreover, $N_{e}\left(\tilde{g}_{0}\right)$ is a Lie transformation group of $F(\tilde{M}) / G$, that is, the correspondence $y \times \tilde{f} \rightarrow \tilde{f}^{*}(y)$ defines a C^{∞}-mapping of $F(\widetilde{M}) / G \times N_{e}\left(\tilde{g}_{0}\right)$ into $F(\widetilde{M}) / G$, where \tilde{f}^{*} is a transformation of $F(\widetilde{M}) / G$ induced by \tilde{f}. Since $\tilde{f}(\gamma(\tilde{f}))=\tilde{x}$, the composed mapping

$$
\sigma^{\prime}: \tilde{f} \longrightarrow \gamma(\tilde{f}) \longrightarrow \tilde{g}_{0}(\gamma(\tilde{f})) \longrightarrow \tilde{f}^{*-1}\left(\tilde{g}_{0}(\gamma(\tilde{f}))\right)
$$

is of class C^{∞} from $N_{e}\left(\tilde{g}_{0}\right)$ into the fibre $F(\tilde{M}) / G \mid \tilde{x}$ of $F(\widetilde{M}) / G$ over \tilde{x}. By the right translation of $F(\tilde{M}) / G \mid \tilde{x}$ by N, we have an imbedding $\nu \tilde{x}$ of N / G into $F(\tilde{M}) / G \mid \tilde{x}$ such that $\nu \tilde{x} q^{\prime}(a)=\tilde{g}_{0}(\tilde{x}) \cdot a$ for $a \in N$. If $\overline{\tilde{f}} \tilde{g}_{0}=\tilde{g}_{0} \cdot a$. we have

$$
\sigma^{\prime}(\tilde{f})=\tilde{f}^{*-1}\left(\tilde{g}_{0}(\tilde{f}(\tilde{x}))\right)=\overline{\tilde{f}} \tilde{g}_{0}(\tilde{x})=\tilde{g}_{0}(\tilde{x}) \cdot a=\nu \tilde{x} q^{\prime}(a) .
$$

Then we have a C^{∞}-mapping $\nu \overline{\tilde{x}}^{1} \sigma^{\prime}$ of $N_{e}\left(\tilde{g}_{0}\right)$ into N / G, which is σ.

Proposition 15. For each $\tilde{f} \in N_{e}\left(\tilde{g}_{0}\right)$, the G-structure $\bar{\rho}_{g_{0}} \cdot \sigma(\tilde{f})$ is deformable to g_{0} and has the same infinitesimal automorphisms as g_{0}, where $\bar{\rho}_{0}$ is the C^{∞}-imbedding of N / G into \mathcal{G} in $\S 3$.

Proof. Since $N_{e}\left(\tilde{g}_{0}\right)$ is arcwise connected, we have a curve $\tilde{f}(t)$ of $N_{e}\left(\tilde{g}_{0}\right)$ for t of an interval I such that $\tilde{f}(0)=$ identity and $\tilde{f}\left(t_{0}\right)=\tilde{f}$ for some t_{0}. There exists an open neighborhood $\tilde{U}_{\tilde{x}}$ of each $\tilde{x} \in \widetilde{M}$ such that the covering mapping $p: \widetilde{M} \rightarrow M$ is diffeomorphic on $\tilde{f}(t)$ $\left(\tilde{U}_{\tilde{x}}\right)$ for every $t \in I$. Then the correspondence $(p(y), t) \rightarrow(p(\tilde{f}(t) y), t)$ is a continuous transformation $f_{\tilde{x}}(x, t)$ of an open neighborhood $p\left(\tilde{U}_{\tilde{x}}\right) \times I$ into $M \times I$ such that $f_{\tilde{x}}(x, t)$ for any fixed t is a local C^{r+1} transformation of $M \times t$ and a system $\left\{f_{\tilde{x}}(p(\tilde{U} \tilde{x}) \times I ; \tilde{x} \in \tilde{M}\}\right.$ is an
open covering of $M \times I$. If $f_{\tilde{x}}\left(p\left(\tilde{U}_{\tilde{x}}\right) \times t\right) \cap f_{\tilde{x}},\left(p\left(\tilde{U}_{\tilde{x}^{\prime}}\right) \times t\right)=V \neq \phi$ a diffeomorphism $f_{\tilde{x}}(x, t)^{-1} f_{\tilde{x}^{\prime}}(x, t)$ is a local automorphism of g_{0} on $\left(f_{\tilde{x}}\right)^{-1} V$, because $\overline{\tilde{f}}(t) \tilde{g}_{0}=\tilde{g}_{0} \cdot a(t)=\bar{p}\left(g_{0} \cdot a(t)\right)$ and then $\left(\bar{f}_{\tilde{x}} g_{0}\right)(V)$ $=\left(\bar{f}_{\tilde{x}^{\prime}} g_{0}\right)(V)=\left(g_{0} a(t)\right)(V)$ where $\sigma(f(t))=q^{\prime}(a(t))$. Since M is compact, there exists a finite index J such that $\left\{p\left(\tilde{U}_{\tilde{x}_{j}}\right) ; j \in J\right\}$ and $\left\{f_{\tilde{x}_{j}} ; j \in J\right\}$ satisfy the conditions of definition of deformations. Since $\bar{f}_{\tilde{x}_{j}} g_{0}=\left(g_{0} \cdot a(t)\right)\left(p\left(\tilde{U}_{\tilde{x}_{j}}\right) \times t\right)=\left(\bar{\rho}_{g_{0}} \sigma(\tilde{f}(t))\right) \mid\left(p\left(\tilde{U}_{\tilde{x}_{j}}\right) \times t\right), \quad$ the family $\bar{\rho}_{g_{0}} \cdot \sigma(\tilde{f}(t))$ is a deformation of g_{0}. Since each G-structure of $\bar{\rho}_{g_{0}} \cdot \sigma(\tilde{f}(t))$ is associated to g_{0}, it has the same infinitesimal automorphisms as g_{0}.

By the condition of g_{0} in Introduction, $H^{0}\left(\widetilde{M}, \mathfrak{M}\left(\tilde{g}_{0}\right)\right)$ is the Lie algebra of the Lie group $A\left(\tilde{g}_{0}\right)$ of automorphisms of \tilde{g}_{0}. Then, if $\tilde{f}_{U}(t)$ is a 1-parameter family of local automorphisms such that $\tilde{f}_{U}(t)(\tilde{x})$ is continuous on $\tilde{U} \times I$ and $\tilde{f}_{\tilde{U}}(0)$ is identity, each of $\tilde{f}_{\tilde{U}}(t)$ can be extended to a unique element of $A_{e}\left(\tilde{g}_{0}\right)$. Let \tilde{g} be a G-structure locally equivalent to \tilde{g}_{0}. Let $\tilde{\psi}_{\tilde{U}}$ be a local bi- G-mapping of \tilde{g} into \tilde{g}_{0} on an open neighborhood \tilde{U}, satisfying the condition that there exists an l-parameter family $\tilde{\psi}_{\tilde{U}}(t)$ of local bi- G-mappings such that $\tilde{\psi}_{\tilde{U}}(t)(\tilde{x})$ is continuous on $\tilde{U} \times I, \tilde{\psi}_{\tilde{U}}(1)=\tilde{\psi}_{\tilde{U}}$ and $\tilde{\psi}_{\tilde{U}}(0)$ is identity. Then the germ of a local bi- G-mapping at any y of \tilde{U}, satisfying the similar condition to $\psi_{\tilde{U}}$, is the germ of $\tilde{f} \tilde{\psi}_{\tilde{U}}$ at y for some \tilde{f} of $A_{e}\left(\tilde{g}_{0}\right)$. Therefore the portion of the sheaf of germs of local bi- G-mapping which satisfies the above condition on \tilde{U}, is isomorphic to $\tilde{U} \times A_{e}\left(\tilde{g}_{0}\right)$. Since \widetilde{M} is simly connected, the $\tilde{\psi}_{\tilde{U}}$ can be extended to a global G-mapping of \tilde{g} into \tilde{g}_{0}.

Proposition 16. If \tilde{g}_{t} is a deformation of \tilde{g}_{0} such that $A\left(\tilde{g}_{t}\right)$ $=A\left(\tilde{g}_{0}\right)$ for each t, then \tilde{g}_{t} is trivial.

Proof. There exists a continuous mapping $\tilde{\psi}_{\tilde{U}}(t)$ of $\tilde{U} \times I$ into \widetilde{M} for some \tilde{U} such that for each fixed $t, \tilde{\psi}_{\tilde{U}}(t)$ is a local diffeomorphism of \tilde{U} into \widetilde{M} and a bi- G-mapping of \tilde{g}_{t} into \tilde{g}_{0} on \tilde{U}. Then $\tilde{\psi}_{\tilde{U}}(t)$ can be extended to a continuous mapping $\tilde{\psi}(t)$ of $\widetilde{M} \times I$ in \widetilde{M} such that for each $t, \tilde{\psi}(t)$ is a G-mapping of \tilde{g}_{t} into \tilde{g}_{0}. Because $A\left(\tilde{g}_{0}\right)=A\left(\tilde{g}_{t}\right)$ and \tilde{g}_{t} satisfies the condition of \tilde{g}_{0}, we have a G-mapping $\tilde{\psi}^{\prime}(t)$ such that
$\tilde{\psi}^{\prime}(t) \mid U=\tilde{\psi} \tilde{U}(t)^{-1} . \quad$ Since $\tilde{\psi}(t) \cdot \tilde{\psi}^{\prime}(t): \widetilde{M} \rightarrow \widetilde{M}$ is a G-mapping and $\tilde{\psi}(t)$ $\tilde{\psi}^{\prime}(t) \mid U=$ identity, $\tilde{\psi}(t) \tilde{\psi}^{\prime}(t)=$ identity, that is, $\tilde{\psi}(t)$ is a diffeomorphism of \widetilde{M} such that $\bar{\psi}(t) \tilde{g}_{0}=\tilde{g}_{t}$. Therefore \tilde{g}_{t} is trivial.

We denote by \mathcal{S} the g_{0}-component of the space of G-structures which are deformable to g_{0} and have the same infinitesimal automorphisms as g_{0}, that is, the g_{0}-component of $\mathcal{A} \cap \mathscr{D}$.

Proposition 17. The C^{∞}-mapping $\bar{\rho}_{g_{0}} \sigma(=\mu)$ maps $N_{e}\left(\tilde{g}_{0}\right)$ on \mathcal{S} and the differential $d \mu$ of μ at e satisfies a formula $\dot{p}(d \mu) \tilde{n}=\mathcal{L}_{\tilde{n}} \tilde{g}_{0}$ for $\tilde{n} \in \Gamma\left(\Re\left(\tilde{g}_{0}\right), \tilde{M}\right)$, where p is the mapping from $\Gamma\left(V_{g_{0}}(F(M) / G)\right)$ onto $\Gamma\left(V_{\tilde{g}_{0}}(F(\widetilde{M}) / G)\right)$ induced by p and $\mathfrak{P}\left(\tilde{g}_{0}\right)$ is the sheaf of vector fields of the Lie algebra of $N\left(\tilde{g}_{0}\right)$.

Proof. By Proposition 15, $\mu\left(N_{e}\left(\tilde{g}_{0}\right)\right) \subset \mathcal{S}$. For any $g \in \mathcal{S}$, let $g(t)$ be an 1-parameter continuous family in \mathcal{S} for $t \in[0,1]$ such that $g(0)=g_{0}$ and $g(1)=g$. Then the lift $\tilde{g}(t)=\bar{p} g(t)$ of $g(t)$ is a deformation of \tilde{g}_{0} on \widetilde{M}. By Proposition 16, we have an 1-parameter $\tilde{f}(t)$ of C^{r+1}-diffeomorphisms of \widetilde{M} such that $\tilde{\tilde{f}}(t) \tilde{g}_{0}=\tilde{g}(t)$ and $\tilde{f}(t)(\tilde{x})$ is continuous on $\tilde{M} \times I$. The G-structure $\tilde{g}(t)$ for each t has the same infinitesimal automorphisms as \tilde{g}_{0}. Since $A(\tilde{g}(t))=A\left(\overline{\tilde{f}}(t) \tilde{g}_{0}\right)=$ $\tilde{f}(t) A\left(\tilde{g}_{0}\right)$, each $\tilde{f}(t)$ transforms $A\left(\tilde{g}_{0}\right)$ onto itself and then $\tilde{f}(t) \in N_{e}\left(\tilde{g}_{0}\right)$. Therefore, $\mu(\tilde{f}(t))=g(t)$ and the image of μ is \mathcal{S}. Moreover, for $\tilde{n} \in \Gamma\left(\Re\left(\tilde{g}_{0}\right), \tilde{M}\right)$ we have

$$
\begin{aligned}
p^{* *} d \mu(\tilde{n})(x) & =\left\{\frac{\mathrm{d}}{\mathrm{~d} t} p^{*}\left(g_{0}(x) \cdot a(t)\right)\right\}_{t=0}=\left\{\frac{\mathrm{d}}{\mathrm{~d} t}\left(\tilde{g}_{0}(\tilde{x}) \cdot a(t)\right)\right\}_{t=0} \\
& =\left\{\frac{\mathrm{d}}{\mathrm{~d} t}\left(\tilde{f}(t) \tilde{g}_{0}\right)(\tilde{x})\right\}_{t=0}=\mathcal{L}_{\tilde{n}} \tilde{g}_{0}(\tilde{x}),
\end{aligned}
$$

where $p(\tilde{x})=x, \tilde{f}(t)=\exp t \tilde{n}, \sigma(\tilde{f}(t))=q^{\prime} a(t)$ and p^{*} (resp. $p^{* *}$) is the mapping of $F(M) / G$ (resp. $V_{g_{0}}(F(M) / G)$) onto $F(\widetilde{M}) / G$ (resp. $\left.V_{\tilde{g}_{0}}(F(\widetilde{M}) / G)\right)$ induced by p. Then $\dot{p}(d \mu(\tilde{n}))=L_{\tilde{n}} \tilde{g}_{0}$.

Theorem 1. The subspace \mathcal{S} is an immersed submanifold of \mathcal{G}.

Proof. If and only if $\mu\left(\tilde{f}_{i}\right)=\mu\left(\tilde{f}_{2}\right)$ for $\tilde{f}_{1}, \tilde{f}_{2} \in N_{e}\left(\tilde{g}_{0}\right)$, then $\tilde{\tilde{f}}_{1} \tilde{g}_{0}=$ $\overline{\tilde{f}}_{2} \tilde{g}_{0}$, that is, $\tilde{f}_{1} \tilde{f}_{2}^{-1} \in A\left(\tilde{g}_{0}\right)$. Now, $N_{e}\left(\tilde{g}_{0}\right) \cap A\left(\tilde{g}_{0}\right)$ is closed in $N_{e}\left(\tilde{g}_{0}\right)$. The differentiable mapping μ induces a differentiable injection $\bar{\mu}$ from a factor space $N_{e}\left(\tilde{g}_{0}\right) /\left[N_{e}\left(\tilde{g}_{0}\right) \cap A\left(\tilde{g}_{0}\right)\right]$ into the space \mathcal{G}. Here, the image of $\bar{\mu}$ is \mathcal{S} and the image of its differential $d \bar{\mu}$ at e is that of $d \mu$, of which the rank is equal to the dimension of $N_{e}\left(\tilde{g}_{0}\right) /\left[N_{e}\left(\tilde{g}_{0}\right) \cap A\left(\tilde{g}_{0}\right)\right]$. Then $d \bar{\mu}$ is injective and split. Therefore \mathcal{S} is an immersed submanifold in \mathcal{G}.

Corollary. The tangent space of \mathcal{S} at g_{0} is the vector space $\Gamma\left(\delta_{g_{0}} p^{\prime} \Re\left(\tilde{g}_{0}\right), M\right)$ of all the sections of the subsheaf $\delta_{g_{0}} p^{\prime} \mathfrak{M}\left(\tilde{g}_{0}\right)$ of V, where p^{\prime} is the sheaf mapping induced by p.

Proof. A diagram of sheaves

is commutative, where i is the injection. Since $\mathfrak{R}\left(\tilde{g}_{0}\right)$ is a constant sheaf, we have $\Gamma\left(\delta_{\tilde{g}_{0}} \Re\left(\tilde{g}_{0}\right), \widetilde{M}\right)=\bar{\delta}_{\tilde{g}_{0}} \Gamma\left(\Re\left(\tilde{g}_{0}\right), \widetilde{M}\right)$. Since $\mathcal{L}_{\tilde{n}} \tilde{g}_{0} \in$ $\bar{\delta}_{\tilde{g}_{0}} \Gamma\left(\mathfrak{M}\left(\tilde{g}_{0}\right), \widetilde{M}\right)$ for an $\tilde{n} \in \Gamma\left(\Re\left(\tilde{g}_{0}\right), \tilde{M}\right)$ and $p^{\prime} \delta_{\tilde{g}_{0}} \mathfrak{R}\left(\tilde{g}_{0}\right)=\delta_{g_{0}} p^{\prime} \mathfrak{R}\left(\tilde{g}_{0}\right)$, we have $d \mu(\tilde{n}) \in \Gamma\left(\delta_{g_{0}} p^{\prime} \Re\left(\tilde{g}_{0}\right), M\right)$ by Proposition 17. Conversely, we have $\dot{p} \dot{g} \in \Gamma\left(\bar{\delta}_{\tilde{g}_{0}}\left(\mathfrak{M}\left(\tilde{g}_{0}\right), \widetilde{M}\right)=\bar{\delta}_{g_{0}} \Gamma\left(\Re\left(\tilde{g}_{0}\right), \widetilde{M}\right)\right.$ for an $\tilde{n} \in \Gamma\left(\mathfrak{R}\left(\tilde{g}_{0}\right), \widetilde{M}\right)$, where $\dot{p} \dot{g}$ is the lift of \dot{g} by p. Then $\dot{g}=d \mu(\tilde{n})$.

§ 7. Equivalence of G-structures having the same infinitesimal automorphisms.

Since M is compact, there is a positive number ϵ such that the covering mapping p is diffeomorphic on each connected component of $p^{-1}\left(U_{\epsilon}(x)\right)$ for the ϵ-neighborhood $U_{\epsilon}(x)$ of any point x of M. For this ϵ, each diffeomorphism f belonging to the ϵ-neighborhood $D_{\epsilon}(e)$
of e in $\operatorname{Diff}{ }^{(r+1)}(M)$ induces a diffeomorphism \tilde{f} of \widetilde{M} such that $p(\tilde{f}(\tilde{x}))=$ $f(p(\tilde{x}))$ for any $\tilde{x} \in \widetilde{M}$ and $\tilde{f}(\tilde{x})$ belongs to the same connected component of $p^{-1}\left(U_{\epsilon}(p(\tilde{x}))\right)$ as \tilde{x}. The correspondence $f \rightarrow \tilde{f}$ defines a continuous injection p of $D_{\epsilon}(e)$ into the topological group $\operatorname{Diff}(\widetilde{M})$ with the compactopen topology, because the topology of $\operatorname{Diff}{ }^{(r+1)}(M)$ is stronger than the compact-open topology. Since the topology of the Lie group $A_{e}\left(g_{0}\right)$ (resp. $\left.N_{e}\left(g_{0}\right)\right)$ is the modified compact-open topology (see [5]), the identity component of $A_{e}\left(g_{0}\right) \cap D_{\epsilon}(e)$ (resp. $N_{e}\left(g_{0}\right) \cap D_{\epsilon}(e)$) is an open neighborhood of e in $A_{e}\left(g_{0}\right)$ (resp. $N_{e}\left(g_{0}\right)$).

The Lie algebra $\bar{A}($ resp. $\bar{N})$ of $A\left(\tilde{g}_{0}\right)\left(\right.$ resp. $\left.N\left(\tilde{g}_{0}\right)\right)$ is $\Gamma\left(\mathfrak{H}\left(\tilde{g}_{0}\right), \widetilde{M}\right)$ (resp. $\left.\Gamma\left(\Re\left(\tilde{g}_{0}\right), \widetilde{M}\right)\right)$. Let \dot{N} be the lift ' $p(\Gamma(\mathfrak{R}, M)$) of the Lie algebra $\Gamma(\mathfrak{R}, M)$ of $N\left(\tilde{g}_{0}\right)$. Then \dot{N} and \bar{A} are respectively subalgebra of the Lie algebra \bar{N} of $N\left(\tilde{g}_{0}\right)$. Take a complement \dot{V} of the sum $\dot{N}+\bar{A}$ in \bar{N} and a complement \dot{N}^{\prime} of \bar{A} in $\dot{N}+\bar{A}$. Then, $\bar{N}=\dot{V} \oplus \dot{N}^{\prime} \oplus \bar{A}$. Since $A_{e}\left(\tilde{g}_{0}\right)$ is closed in $N_{e}\left(\tilde{g}_{0}\right)$ and $\tilde{p}\left(A_{e}\left(g_{0}\right) \cap D_{\epsilon}(e)\right)$ is locally closed in $N_{e}\left(\tilde{g}_{0}\right)$, we have

Lemma 3. There exist open neighborhoods $\bar{A}_{0}, N_{0}^{\prime}$ and V_{0} of 0 in $\bar{A}, \dot{N}^{\prime}$ and \dot{V} respectively, such that the mapping

$$
\begin{aligned}
\Phi:(a, b, c) \longrightarrow & (\exp a) \cdot(\exp b) \cdot(\exp c) \\
& \text { for } a \in \bar{A}_{0}, b \in N_{0}^{\prime}, c \in V_{0}
\end{aligned}
$$

is a diffeomorphism of $\bar{A}_{0} \oplus N_{0}^{\prime} \oplus V_{0}$ onto an open neighborhood \tilde{U} of e in $N_{\epsilon}\left(\tilde{g}_{0}\right)$ and $\Phi\left(N_{0}^{\prime}+V_{0}\right) \cap A_{e}\left(\tilde{g}_{0}\right)=e$.

Let \tilde{V} denote the submanifold $\left\{\exp \tilde{v} ; \tilde{v} \in \tilde{V}_{0}\right\}$ of $N_{e}\left(\tilde{g}_{0}\right)$. The restriction of μ on \tilde{V} is an imbedding and then its image $\mu(\tilde{V})$ is a differentiable submanifold of \mathcal{S} which we denote by \mathcal{V}.

Proposition 18. If $\bar{f}(t) g(t)$ is a curve in $\odot \mathcal{V}$ for a curve $f(t)$ in Diff ${ }^{(r+1)}(M)$ through $e=f(0)$ and for a curve $g(t)$ in \mathbb{V} through $g_{0}=$ $g(0)$, then there exists $t_{0}>0$ such that $f(t)$ for $t \in\left[-t_{0}, t_{0}\right]$ is in $A_{e}\left(g_{0}\right)$.

Proof. We have curves $\tilde{n}(t)$ and $\tilde{n}^{\prime}(t)$ in \tilde{V} with $\tilde{n}(0)=\tilde{n}^{\prime}(0)=e$ such that $\mu(\tilde{n}(t))=g(t)$ and $\mu\left(\tilde{n}^{\prime}(t)\right)=\bar{f}(t) g(t)$. Since $f(t) \subset D_{\epsilon}(e)$, where $|t|<t_{0}$ for some $t_{0}>0$, we have $\bar{n}^{\prime}(t) g_{0}=(\overline{p \bar{f}}(t)) \overline{\tilde{n}}(t) \tilde{g}_{0}$, that is, $\left(\tilde{n}^{\prime}(t)\right)^{-1}(\tilde{p} f(t)) \tilde{n}(t)=\tilde{b}(t) \subset A_{e}\left(\tilde{g}_{0}\right)$. Then $\tilde{p} f(t)=\tilde{n}^{\prime}(t) \tilde{b}(t) \tilde{n}(t)^{-1} \subset N_{e}\left(\tilde{g}_{0}\right)$. Taking a smaller t_{0} if necessary, we see that the curves $\tilde{p} f(t), \tilde{b}(t), \tilde{n}^{\prime}(t) \tilde{b}(t)$ and $\tilde{n}^{\prime}(t) \tilde{b}(t) \tilde{n}^{\prime}(t)^{-1}=\tilde{b}^{\prime}(t)$ are in \tilde{U}. Since $\tilde{p}(f(t)) \tilde{n}(t)=\tilde{n}^{\prime}(t) \tilde{b}(t)=$ $\tilde{b}^{\prime}(t) \tilde{n}^{\prime}(t), \tilde{p}(f(t)) \subset \tilde{U} \cap P\left(D_{\epsilon}(e)\right), \tilde{n}(t) \subset \tilde{V}, \tilde{n}^{\prime}(t) \subset \tilde{V}$ and $\tilde{b}^{\prime}(t) \subset \tilde{U} \cap A_{e}\left(\tilde{g}_{0}\right)$, we have $\tilde{p}(f(t))=\tilde{b}^{\prime}(t)$ and $\tilde{n}(t)=\tilde{n}^{\prime}(t)$ by Lemma 3. Therefore, $\tilde{p}(f(t)) \subset \tilde{p}\left(A_{e}\left(g_{0}\right) \cap D_{\epsilon}(e)\right)$, that is, $f(t) \subset A_{e}\left(g_{0}\right)$.

Proposition 19. If we take a suitable connected neighborhood U_{0} of g_{0} on \mathcal{S}, then for each g of U_{0} there exist a unique $g^{\prime} \in \mathcal{V}$ and an $f \in N_{e}\left(g_{0}\right) \cap D_{\epsilon}(e)$ such that $g=\bar{f} g^{\prime}$, and the correspondence $g \rightarrow g^{\prime}$ is a differentiable mapping of U_{0} onto \mathcal{V}.

Proof. If we set $U_{0}=\mu(\tilde{U})$, then we have Proposition from the definition of \tilde{U} and by Lemma 3 .

§8. Deformations having the equivalent infinitesimal automorphisms.

Definition. A deformation $g(t)$ of g_{0} is called to have the equivalent infinitesimal automorphisms, if each $g(t)$ have the infinitesimal automorphisms equivalent to those of g_{0}, that is, if there exists a continuous curve $\phi(t)$ in $\operatorname{Diff}{ }^{(r+1)}(M)$ through e such that $\phi(0)=e$ and $\phi(t) A\left(g_{0}\right)=A(g(t))$ for each t.

The composed mapping τ^{\prime} of $\sigma: N_{e}\left(\tilde{g}_{0}\right) \rightarrow N / G$ and $\tau: \operatorname{Diff}{ }^{r+1)}(M)$ $\times N / G \rightarrow \mathcal{G}$ is a C^{∞}-mapping of $\operatorname{Diff}{ }^{(r+1)}(M) \times N_{e}\left(\tilde{g}_{0}\right)$ into \mathcal{G}. Moreover, τ^{\prime} defines a C^{∞}-mapping $\tau^{\prime \prime}$ of $\operatorname{Diff}{ }^{(r+1)}(M) \times \mathcal{S}$ into \mathcal{G} by formula $\tau^{\prime \prime}(i d . \times \mu)=\tau^{\prime}$, such that $\tau^{\prime \prime}(f, g)=\bar{f} g$ for $f \in \operatorname{Diff}{ }^{(r+1)}(M)$ and $g \in \mathcal{S}$.

Proposition 20. There exists an open neighborhood U_{e} of e in Diff ${ }^{(r+1)}(M)$ such that, if and only if a deformation $g(t)$ of g_{0} have
the equivalent infinitesimal automorphisms, $g(t)$ is a curve through g_{0} in the image of $U_{e} \times \Upsilon$ by the C^{∞}-mapping $\tau^{\prime \prime}$ for t of some neighborhood of 0 in R.

Proof. The differential of $\tau^{\prime \prime}$ at $\left(e, g_{0}\right)$ is a continuous linear mapping $\theta+\dot{g} \rightarrow \bar{\delta}_{g_{0}} \theta+\dot{g}$ for $\theta \in T_{e}\left(\operatorname{Diff}{ }^{(r+1)}(M)\right)$ and $\dot{g} \in T_{g_{0}}(\mathcal{S})$. If \dot{g} is tangent to \mathcal{V}, we have $\tilde{v} \in \dot{V}_{0}$ such that $d \mu(\tilde{v})=\dot{g}$ and $\dot{p} \dot{g}=\mathcal{L}_{\tilde{v}} \tilde{g}_{0}$. If $\bar{\delta}_{g_{0}} \theta+\dot{g}=0$, we have

$$
\dot{p}_{g_{g_{0}}} \theta+\dot{p} \dot{g}=\mathcal{L}^{\prime}{ }_{p \theta} \tilde{g}_{0}+\mathcal{L}_{\tilde{v}} \tilde{g}_{0}=0
$$

and then ' $p \theta \in \bar{A}+\dot{V}$, where ' p denote the lift of vector fields on M. Since ' $p \theta \in \dot{N}$, we have ' $p \theta \in \bar{A} \cap N$ and then $\theta \in \Gamma\left(\mathfrak{H}\left(g_{0}\right), M\right)$. Since there exists a closed complement D of $\Gamma\left(\mathfrak{H}\left(g_{0}\right), M\right)$ in $T_{e}\left(\right.$ Diff $\left.{ }^{(r+1)}(M)\right)$, we have an open neighborhood U_{e} of e on $\operatorname{Diff}^{(r+1)}(M)$ and a submanifold C tangent to D at e in U_{e} such that $\tau^{\prime \prime}\left(U_{e} \times C\right)=\tau^{\prime \prime}(C \times C)$ and $\tau^{\prime \prime}$ is diffeomorphic on $C \times \mathcal{V}$. If $g(t)$ is a curve in $\tau^{\prime \prime}(C \times \mathcal{V})$ through g_{0}, then we have a curve $f(t)$ in C and a curve $v(t)$ in ϑ such that $g(t)=$ $\bar{f}(t) v(t)$. Therefore,

$$
A(g(t))=A(\bar{f}(t) v(t))=f(t) A(v(t))=f(t) A\left(g_{0}\right),
$$

that is, $g(t)$ is a deformation having the equivalent infinitesimal automorphisms. Conversely, if for a deformation $g(t)$ of g_{0} there exists $f(t)$ such that $A(g(t))=f(t) A\left(g_{0}\right)$ and $f(0)=$ identity, then $A\left(g_{0}\right)=$ $A\left(\bar{f}(t)^{-1} g(t)\right)$. By Theorem 1 and Proposition 19, $\bar{f}(t)^{-1} g(t)$ is a curve $v(t)$ in \mathcal{V} for a sufficiently small $|t|$. Then $f(t)$ is in U_{e} for t of some neighborhood of 0 in R and $g(t)=\bar{f}(t) v(t)$ is in $\tau^{\prime \prime}\left(U_{e} \times \mathcal{V}\right)$.

Taking germs at $t=0$, the above facts are represented in the cohomology with coefficient sheaf as follows. Let $\left\{f_{i}(t), U_{i} ; i \in J\right\}$ be a system of an open covering $\left\{U_{i}\right\}$ of M and local diffeomorphisms f_{i} defining a deformation $g(t)$ of g_{0}. For $i, j \in J$ such that $U_{i} \cap U_{j}$ $\neq \phi$, a local transformation $f_{i}(t)^{-1} f_{j}(t)$ is considered as a 1-parameter family of local automorphisms of g_{0} continuously dependent to t and its germ at $t=0$ is a section of the sheaf $\left[A\left(g_{0}\right) \times t\right]$ over $U_{i} \cap U_{j}$.

Let $\psi(x, t)$ be a local transformation of $M \times I$ such that $\psi(x, 0)$ is identity and $\psi(x, t)$ for any fixed t is a local C^{r+1}-transformation of $M \times t$ which transforms $\mathfrak{A}\left(g_{0}\right)$ onto itself and such that partial derivatives of $\psi(x, t)$ of any order ($\leqq r+1$) with respect to x are continuous on $M \times I$. Let [$N\left(g_{0}\right) \times t$] denote the whole of germs of such local transformations at every point of $M \times 0$. Then $\left[N\left(g_{0}\right) \times t\right]$ is a sheaf of group and $\left[N\left(g_{0}\right) \times t\right] \supset\left[A\left(g_{0}\right) \times t\right]$. Therefore, a system
\{germs of $f_{i}(t)^{-1} f_{j}(t)$ at $t=0 ; i, j \in J$ such that $\left.U_{i} \cap U_{j} \neq \phi\right\}$
is a $\left[N\left(g_{0}\right) \times t\right]$-valued 1-cocycle of the nerve of $\left\{U_{i}\right\}$. This cocycle is coboudary, if and only if the germ of $g(t)$ is equivalent to a deformation having the equivalent infinitesimal automorphisms. Let Ω denote the correspondence

$$
H^{1}\left(M,\left[A\left(g_{0}\right) \times t\right]\right) \longrightarrow H^{1}\left(M,\left[N\left(g_{0}\right) \times t\right]\right)
$$

induced by the injection $A\left(g_{0}\right) \rightarrow N\left(g_{0}\right)$. Then we have

Theorem 2. A cohomology class \mathbf{g} of $H^{1}\left(M,\left[A\left(g_{0}\right) \times t\right]\right)$ corresponds to a class of germ of a deformation having the equivalent infinitesimal automorphisms, if and only if $\Omega \cdot g$ is coboundary in $H^{1}(M$, $\left.\left[N\left(g_{0}\right) \times t\right]\right)$. Any such class is represented by a unique germ of a curve in \odot.

Since $d \tau^{\prime \prime}\left(T_{e}(C)+T_{g_{0}}(C)\right)=\left\{\bar{\delta}_{g_{0}} \theta+\dot{v} ; \theta \in T_{e}(C), \dot{v} \in T_{g_{0}}(\mathcal{V})\right\}$, the tangent vector of a differentiable curve in $\tau^{\prime \prime}\left(U_{e} \times \mathcal{V}\right)$ at $t=0$ is $\bar{\delta}_{g_{0}} \theta+\dot{v}$. Conversely, for any $\theta \in T_{e}(C)$ and any $\dot{v} \in T_{g_{0}}(C)$, a vector $\bar{\delta}_{g_{0}} \theta+\dot{v}$ is tangent to a differentiable curve in $\tau^{\prime \prime}(U \times \mathcal{V})$ at $t=0$. Here, from the definition of C and \mathcal{V},

$$
\left\{\bar{\delta}_{g_{0}} \theta+\dot{v} ; \theta \in T_{e}(C), \dot{v} \in T_{g_{0}}(C)\right\}=\left\{\bar{\delta}_{g_{0}} \Gamma(\mathfrak{T})+\Gamma\left(\delta_{g_{0}} p^{\prime} \mathfrak{M}\left(\tilde{g}_{0}\right)\right)\right\}
$$

Each element of $\bar{\delta}_{g_{0}} \Gamma(\mathfrak{I})+\Gamma\left(\delta_{g_{0}} p^{\prime} \Re\left(\tilde{g}_{0}\right)\right)$ is called an infinitesimal deformation of g_{0} having the equivalent automorphisms. Thus we have

Theorem 3. Every infinitesimal deformation having the equivalent infinitesimal automorphisms can be extended to a deformation having the equivalent infinitesimal automorphisms.

The whole of equivalent classes of infinitesimal deformations of g_{0} is a linear space $\Gamma\left(\delta_{g_{0}} \mathfrak{T}\right) / \bar{\delta}_{g_{0}} \Gamma(\mathfrak{I})$ which is isomorphic to $H^{1}\left(M, \mathfrak{Y}\left(g_{0}\right)\right)$. Since $\mathfrak{Y}\left(g_{0}\right) \subset p^{\prime} \mathfrak{P}\left(\tilde{g}_{0}\right)$, we have a homomorphism $\omega^{\prime}: H^{1}\left(M, \mathfrak{Y}\left(g_{0}\right)\right) \rightarrow$ $H^{1}\left(M, p^{\prime} \mathfrak{X}\left(\tilde{g}_{0}\right)\right) . \quad$ Ker $\omega^{\prime}(=\mathcal{K}$ in Introduction $)$ is the whole of equivalent classes of infinitesimal deformations having the equivalent infinitesimal automorphisms and this is a linear space with the dimension of the manifold $C \mathcal{V}$, which is equal to $\left[\operatorname{dim} . N\left(\tilde{g}_{0}\right)-\operatorname{dim} . A\left(\tilde{g}_{0}\right)-\right.$ $\left.\operatorname{dim} . N\left(g_{0}\right)+\operatorname{dim} . A\left(g_{0}\right)\right] . \quad$ Then we have

Theorem 4. If $\omega^{\prime}: H^{1}\left(M, \mathfrak{Y}\left(g_{0}\right)\right) \rightarrow H^{1}\left(M, p^{\prime} \mathfrak{P}\left(\tilde{g}_{0}\right)\right)$ is injective, that is, if $\left[\operatorname{dim} . N\left(\tilde{g}_{0}\right)-\operatorname{dim} . A\left(\tilde{g}_{0}\right)-\operatorname{dim} . N\left(g_{0}\right)+\operatorname{dim} . A\left(g_{0}\right)\right]=0$, then every deformations of g_{0} having the equivalent infinitesimal automorphisms are trivial.

Kyoto University

References

[1] D. Bernard, Sur la géométrie différentielle des G-structures, Ann. Inst. Fourier, 10 (1960), 151-270.
[2] J. Eells Jt., On the geometry of function space, Symposium de Topologia Algebrica, Mexico, (1958), 303-307.
[3] P. A. Griffiths, Deformations of G-structures, Math. Ann., 155 (1964), 292-315, 158 (1965), 326-351.
[4] P. A. Griffiths, On the existence of a locally complete germ of deformation of certain G-structures, Math. Ann., 159 (1965), 151-171.
[5] R. S. Palais, A global formulation of the Lie theory of transformation groups, Memoirs of Amer. Math. Soc., No. 22 (1957).
[6] S. Sternberg, Lectures on a differential geometry, Prentice-hall, (1964).
[7] T. Yagyu, On deformations of cross-sections of a differentiable fibre bundle, J. of Math. of Kyoto Univ., 2 (1963), 209-226.

[^0]: 1) Revised December 16, 1971
