Deformations of G-structures and infinitesimal automorphisms

By

Toshimasa YAGYU

(Received October 26, 1971)¹⁾

When we consider a transitive G-structure g_0 on a compact differentiable manifold M, another G-structure g on M is said to be locally equivalent to g_0 , if there exists a local transformation f of a neighborhood U of each point of M such that the G-structure induced by f from g_0 is equal to g on U, and g is said to be globally equivalent to g_0 , if there exists a global transformation f of M such that the G-structure induced by f from g_0 is equal to g on M. The theory of deformations of Gstructures is considered to represent a difference between the local equivalence and the global equivalence of G-structures. In our paper, we take note of a certain global property for G-structures and we consider the extent of G-structures which are locally equivalent to g_0 and have the global property. We represent the extent in the space of Gstructures, using the theory of deformations, and describe a relation between the global property and the equivalence of G-structures.

We suppose throughout our paper that G is closed and of finite type and the transitive G-structure g_0 satisfies the following condition. When \tilde{g}_0 denotes the lift of g_0 by p on the universal covering manifold \tilde{M} of M, where p is the covering projection, and $\mathfrak{A}(\tilde{g}_0)$ denotes the sheaf of germs of infinitesimal automorphisms of \tilde{g}_0 , the Lie algebra of the Lie group of automorphisms of \tilde{g}_0 is equal to $H^0(M, \mathfrak{A}(\tilde{g}_0))$.

¹⁾ Revised December 16, 1971

Then the G-structures on M correspond one-to-one to the crosssections of the associated bundle F(M)/G of the frame bundle F(M)The set of all G-structures forms a Banach manifold $\mathcal G$ as over M. the space of cross-sections with respect to a riemannian metric on the bundle of jets of cross-sections. We regard the whole set $\mathcal D$ of Gstructures locally equivalent to g_0 as a subspace of \mathcal{G} . Then deformations of g_0 are given by curves in \mathcal{D} through g_0 . Let us take note of the equivalence of the infinitesimal automorphisms as a global property. We also regard the whole set \mathcal{J} of G-structures having the infinitesimal automorphisms equivalent to those of g_0 as a subspace of \mathcal{G} . A deformation g_t of g_0 is said to have the equivalent infinitesimal automorphisms, if each G-structure of g_t has the infinitesimal automorphisms equivalent to those of g_0 , that is, if g_t is a curve in $\mathcal{I} \cap \mathcal{D}$ through g_0 . Let \mathcal{E} be the subspace of \mathcal{G} consisting of G-structures globally equivalent to g_0 and S be one consisting of G-structures having the same infinitesimal automorphisms as g_0 . The group Diff(M)of diffeomorphisms of M is a transformation group of \mathcal{G} , under which \mathcal{E} and \mathcal{J} are the obrits of g_0 and \mathcal{S} respectively. Then there exists a differentiable submanifold \mathcal{V} of \mathcal{G} such that $\mathcal{J} \cap \mathcal{D}$ in a neighborhood U_{g_0} of g_0 is the image of \mathcal{CV} transformed by the elements of a neighborhood U_e of e in Diff(M). The tangent space of \mathcal{V} at g_0 is isomorphic to some subspace \mathcal{K} of the kernel of the homomorphism ω : $H^{1}(M, \mathfrak{A}(g_{0})) \rightarrow H^{1}(M, \mathfrak{R})$ induced by the injection $\mathfrak{A}(g_{0}) \rightarrow \mathfrak{R}$, where $\mathfrak{A}(g_0)$ is the sheaf of germs of infinitesimal automorphisms of g_0 and \mathfrak{N} is the sheaf of normalizer of $\mathfrak{A}(g_0)$ in the sheaf of germs of vector fields on M. Thus G-structures not globally equivalent to g_0 with respect to the elements of U_e , but locally equivalent to g_0 and having the infinitesimal automorphisms equivalent to those of g_0 , exist in U_{g_0} to the extent of \mathcal{K} . As for deformations of g_0 , infinitesimal deformations corresponding to elements of \mathcal{K} can be extended to deformations having the equivalent infinitesimal automorphisms, and classes of germs of deformations having the equivalent infinitesimal automorphisms are represented uniquely by curves in \mathcal{V} through g_0 . Then we have the

following proposition as a special case. If the homomorphism ω is injective, deformations having the equivalent infinitesimal automorphisms are trivial.

§1. The space of G-structures and the group of diffeomorphisms.

Let M be a compact differentiable manifold of class C^{∞} with dimension n. G-structures on M are reductions of the structure group of the frame bundle F(M) over M to a subgroup G of GL(n), where we suppose G to be closed and of finite type. They are represented as submanifolds $B_G(M)$ of F(M). Let F(M)/G be the quotient space of F(M) by G. Then G-structures are represented as cross-sections of F(M)/G, where the image of $B_G(M)$ by the quotient projection π' of F(M) onto F(M)/G is the corresponding cross-section of F(M)/G. In our paper, we represent G-structures by not only submanifolds but cross-sections.

Remark about the class of differentiable G-structures. If the class of differentiable G-structures is C^r , $B_G(M)$ is of class C^r and the s-th prolongation of $B_G(M)$ is of class C^{r-s} . Then we take r > k, in order that the k-th prolongation of $B_G(M)$ with $\{e\}$ -structure may be of class C^1 , where k is the order of G of finite type. Moreover, we suppose r to be finite.

Let B_V be a finite dimensional vector bundle over M of class C^r . The whole of r-jets of cross-sections of B_V is a vector bundle over Mwhich is denoted by B_V^r . We define a norm on each fibre of B_V^r which is continuously dependent to $x \in M$, that is, $\|\phi^r(x)\|$ is continuous on x for any continuous local cross-section ϕ^r of B^r . Let us define a norm $\|\phi\|^{(r)}$ of C^r -cross-section ϕ of B_V by $\max_{x \in M} \|j_x^r \phi\|$, where $j_x^r \phi$ is the r-jet of ϕ at x and $\|j_x^r \phi\|$ is the norm of $j_x^r \phi$ in the fibre $B_V^r(x)$ of B_V^r over x. Then the whole of C^r -cross-sections of B_V is a Banach space with respect to the above norm. Let us denote this space by $\Gamma^{(r)}(B_V)$.

Lemma 1. Let B_V and B_W be vector bundles of class C^r over Mand $\eta: B_V \rightarrow B_W$ be a fibre mapping of class C^r such that η is infinitely partial differentiable with respect to the fibre of B_V , every partial derivative of η of any order with respect to the fibre is also of class C^r and the diffeomorphism of M induced by η is identity. Then, the mapping $\bar{\eta}: \Gamma^{(r)}(B_V) \rightarrow \Gamma^{(r)}(B_W)$ defined by $(\bar{\eta}\phi)(x) = \eta(\phi(x))$ is of class C^{∞} .

Proof. η induces the continuous mapping η^r of B_V^r in B_W^r well defined by $\eta^r(j_x^r\phi)=j_x^r(\bar{\eta}\phi)$ for any $j_x^r\phi\in B_V^r$. Then η^r is infinitely partial differentiable with respect to the fibre and every partial derivative of η^r of any order with respect to the fibre is continuous on B_V^r . Let ϕ_0 be a fixed element of $\Gamma^{(r)}(B_V)$. We have

$$\|\eta^{r}(j_{x}^{r}\phi+j_{x}^{r}\phi_{0})-\eta^{r}(j_{x}^{r}\phi_{0})-d\eta^{r}_{j_{x}^{r}\phi_{0}}(j_{x}^{r}\phi)\|\leq \|j_{x}^{r}\phi\|^{2}\cdot K$$

for any element ϕ of $\Gamma^{(r)}(B_V)$ such that $\|\phi\|^{(r)} \leq \epsilon$ for a fixed ϵ , where K is a constant independent to x and $d\eta^r_{j_x^r\phi_0}$ is the partial differential of η^r at $j_x^r\phi_0$ with respect to the fibre of B_V^r , because every 2nd partial derivative of η^r with respect to the fibre of B_V^r is bounded on an open set $\bigcup_{x \in M} \{j_x^r\phi \in B_V^r(x); \|j_x^r\phi - j_x^r\phi_0\| \leq \epsilon\}$ of B_V^r . Let $d\overline{\eta}_{\phi_0}$ be a continuous linear mapping of $\Gamma^{(r)}(B_V)$ into $\Gamma^{(r)}(B_W)$ defined by $d\overline{\eta}_{\phi_0}(\phi)(x) = d\eta_{\phi_0} \cdot (\phi(x))$, where $d\eta_{\phi_0} \colon B_V \to B_W$ is the partial differential of η at ϕ_0 with respect to the fibre. Since the mapping of B_V^r into B_W^r induced by $d\eta_{\phi_0}$ is $d\eta^r_{j_v^r\phi_0}$ over x, we have

$$\begin{split} \| \bar{\eta}(\phi_{0} + \phi) - \bar{\eta}(\phi_{0}) - \overline{d^{\eta}}_{\phi}(\phi) \|^{(r)} \\ &= \underset{x \in \mathcal{M}}{\operatorname{Max}} \| j_{x}^{r}(\bar{\eta}(\phi_{0} + \phi) - \bar{\eta}(\phi_{0}) - d\bar{\eta}_{\phi}(\phi)) \| \\ &= \underset{x \in \mathcal{M}}{\operatorname{Max}} \| \eta^{r}(j_{x}^{r}(\phi_{0} + \phi)) - \eta^{r}(j_{x}^{r}(\phi_{0})) - d\eta_{j_{x}^{r}\phi_{0}}^{r}(j_{x}^{r}\phi) \| \\ &< \underset{x \in \mathcal{M}}{\operatorname{Max}} \| j_{x}^{r}\phi \|^{2} \cdot K \\ &= (\|\phi\|^{(r)})^{2} \cdot K, \text{ for } \|\phi\|^{(r)} < \epsilon \end{split}$$

Therefore, we have $\lim_{\|\phi\|\to 0} \|\bar{\eta}(\phi_0 + \phi) - \bar{\eta}(\phi_0) - \overline{d^{\eta}}_{\phi_0}(\phi)\|^{(r)} / \|\phi\|^{(r)} = 0$, that is, $\bar{\eta}$ is differentiable at ϕ_0 . Next, we consider the bundle Hom $(B_V; B_W)$ of which the fibre over each x is a linear space of homomorphisms of $B_V(x)$ into $B_W(x)$. The bundle Hom^r $(B_V; B_W)$ of r-jets of cross-sections of Hom $(B_V; B_W)$ can be identified with a subbundle of the bundle Hom $(B_V^r; B_W^r)$, of which each fibre has a norm continuously dependent to $x \in M$ defined by the norm of $B_V^r(x)$ and that of $B_W^r(x)$. The space $\Gamma^{(r)}(\text{Hom}(B_V; B_W))$ with respect to the above norm can be identified with a subspace of the Banach space $L(\Gamma^{(r)}(B_V); \Gamma^{(r)}(B_W))$ of continuous linear mapping of $\Gamma^{(r)}(B_V)$ into $\Gamma^{(r)}(B_W)$. Let $d\eta$ be the partial derivative of η with respect to the fibre of B_V and then it is a fibre mapping of B_V into Hom $(B_V; B_W)$. If we take the bundle Hom $(B_V; B_W)$ instead of B_W , the mapping $d\eta$ satisfies the condition of η in Lemma 1 and we have a differentiable mapping

$$\overline{d\eta}: \Gamma^{(\mathbf{r})}(B_V) \longrightarrow \Gamma^{(\mathbf{r})}(\operatorname{Hom}(B_V; B_W)) \subset L(\Gamma^{(\mathbf{r})}(B_V); \Gamma^{(\mathbf{r})}(B_W))$$

induced from $d\eta$, such that $\overline{d\eta}(\phi_0)$ for any $\phi_0 \in \Gamma^{(r)}(B_V)$ is the differential of $\bar{\eta}$ at ϕ_0 . Following the above argument for any order of the differential of $\bar{\eta}$ in succession, we conclude the mapping $\bar{\eta}$ is of class C^{∞} .

Remark. Even if η is not a mapping of the whole space of B_V into B_W but a mapping of a fibre subspace B' of B_V into B_W , Lemma 1 is right for $\Gamma^{(r)}(B')$ instead of $\Gamma^{(r)}(B_V)$.

Let *B* be a fibre bundle over *M* of class C^{∞} and let us define a riemannian metric on *B* of class C^{∞} . Let B^r denote a bundle of *r*-jets of cross-sections of *B*. Since B^r is a C^{∞} -bundle over *B*, we can define a riemannian metric on B^r of class C^{∞} based on the metric on *B* such that $\rho_x(\pi^r b, \pi^r b') \leq \rho_x^r(b, b')$ for each *x*, where $b, b' \in B^r(x), \pi^r : B^r \to B$ is the canonical projection and $\rho_x(\text{resp. } \rho_x^r)$ is the distance along each fibre $B(x)(\text{resp. } B^r(x))$. Let $\Gamma^{(r)}(B)$ be the whole of C^r -cross-sections

of B with the metric defined by

$$\rho^{(\mathbf{r})}(\phi, \psi) = \max_{\mathbf{r} \in \mathcal{M}} \rho_x^{\mathbf{r}}(j_x^{\mathbf{r}}\phi, j_x^{\mathbf{r}}\psi) \text{ for } \phi, \psi \in \Gamma^{(\mathbf{r})}(B).$$

Applying the notion of the Banach manifold (see [2]) to $\Gamma^{(r)}(B)$, under the fact of Lemma 1 which gives the smoothness of the coordinate transformation, we have

Proposition 1. The metric space $\Gamma^{(r)}(B)$ is a Banach manifold of class C^{∞} . The tangent space of $\Gamma^{(r)}(B)$ at ϕ is the Banach space $\Gamma^{(r)}(V_{\phi}(B))$, where $V_{\phi}(B)$ is the bundle of vertical vectors of B at ϕ .

Definition. The space \mathcal{G} of G-structures of class C^r on M is the Banach manifold $\Gamma^{(r)}(F(M)/G)$ of class C^{∞} , with respect to a riemannian metric of the bundle space of r-jets of cross-sections of F(M)/G.

The tangent space $T_g(\mathcal{G})$ at $g \in \mathcal{G}$ is the Banach space $\Gamma^{(r)}(V_g(F(M)/G))$, where $V_g(F(M)/G)$ is the vertical vector bundle of F(M)/G at g.

Let *B* and *B'* be fibre bundles of class C^{∞} over *M* and $\xi: B \to B'$ be a fibre mapping of class C^r such that ξ is infinitely partial differentiable with respect to the fibre of *B*, every partial derivative of any order of ξ with respect to the fibre is of class C^r and the diffeomorphism of *M* induced by ξ is identity. Let us define the mapping $\overline{\xi}: \Gamma^{(r)}(B)$ $\to \Gamma^{(r)}(B')$ by $(\overline{\xi}\phi)(x) = \xi(\phi(x))$. Since ξ induces a mapping $\overline{\xi}$ of the tangent space $\Gamma^{(r)}(V_{\phi}(B))$ to $\Gamma^{(r)}(V_{\phi}(B'))$ for any $\xi \in \Gamma^{(r)}(B), \ \psi \in$ $\Gamma^{(r)}(B')$ and $\overline{\xi}$ is of class C^{∞} by Lemma 1, we have

Proposition 2. The mapping $\overline{\xi}$ is of class C^{∞} .

Let us define a riemannian metric of class C^{∞} on M. The product mainfold $M \times M$ is a trivial bundle over M and the space $C^{(r')}(M)$ of $C^{r'}$ -transformations of M is the Banach manifold $\Gamma^{(r')}(M \times M)$ of $C^{r'}$ -

cross-sections of the above bundle with respect to a riemannian metric of the bundle $J^{r'}(M \times M)$ of r'-jets based on the product riemannian metric of $M \times M$. Any element of the ϵ -neighborhood of identity of $C^{(r')}(M)$ is a $C^{r'}$ -diffeomorphism of M by the definition of the metric of $C^{(r')}(M)$ and then the set of $C^{r'}$ -diffeomorphisms of M is an open subspace of $C^{(r')}(M)$. Let $\rho^{(r')}$ be the metric of $C^{(r')}(M)$. We define the metric $\rho(f_1, f_2) = \rho^{(r')}(f_1, f_2)$ on the set $\text{Diff}^{(r')}(M)$ of $C^{r'}$ -diffeomorphisms of M. Then $\text{Diff}^{(r')}(M)$ is a Banach manifold of class C^{∞} . The tangent space of $\text{Diff}^{(r')}(M)$ at any f is the Banach space $\Gamma^{(r')}(T(M))$ with respect to the norm of each fibre of $J^{r'}(T(M))$ based on the metric of $J^{r'}(M \times M)$, where T(M) is the tangent bundle which is identified with the vertical vector bundle of the trivial bundle $M \times M$ at f.

§2. Infinitesimal automorphisms.

Let θ be a vector field of class C^{r+1} on an open set U of M. For $g \in \mathcal{G}$, let g' be a cross-section of F(M) on U such that $\pi'g' = g$ and $\mathcal{L}_{\theta}g'$ be the Lie derivative of a tensor field g' with respect to θ . If we set $\mathcal{L}_{\theta}g' = g' \times \mathfrak{a}$, then \mathfrak{a} is a gl-valued function on U. Since $F(M) \times \mathfrak{gl}$ is the bundle of vertical vectors of F(M), $g' \times \mathfrak{a}$ is a vertical vector field of F(M) at g'. The bundle of vertical vectors of F(M)/G is an associated bundle $F(M) \times \mathfrak{f}$ of F(M) by the linear isotropy representation $i_{\mathfrak{s}}: G \to GL(\mathfrak{f})$, where $\mathfrak{f} = \mathfrak{gl}/\mathfrak{g}$. Then $g' \times \mathfrak{g} \cdot \mathfrak{q} \cdot \mathfrak{a}$ is a vertical vector field of F(M)/G at g, where q is the projection $\mathfrak{gl} \to \mathfrak{f}$. This field is determined by θ and g, that is, $g' \times q \cdot \mathfrak{a}$ is independent to a choice of g' such that $\pi'g' = g$. We denote $g' \times \mathfrak{q} \cdot \mathfrak{a}$ by $\mathcal{L}_{\theta}g$. Then θ is an infinitesimal automorphism of g, if and only if $\mathcal{L}_{\theta}g = 0$.

By the condition of g_0 in Introduction, g_0 is of class C^{∞} . When θ is a global vector field of class C^{r+1} on M, $\mathcal{L}_{\theta}g_0$ is a global C^r -crosssection of the vertical vector bundle $V_{g_0}(F(M)/G)$ of F(M)/G at g_0 . Then we have a linear mapping $\bar{\delta}_{g_0}$ of the Banach space $\Gamma^{(r+1)}(T(M))$ of all vector fields of class C^{r+1} on M into the Banach space $\Gamma^{(r)}(V_{g_0}(F(M)/G))$ of all C^r -cross-sections of $V_{g_0}(F(M)/G)$, such that $\bar{\delta}_{g_0}\theta = \mathcal{L}_{\theta}g_0$.

Proposition 3. The linear mapping $\overline{\delta}_{g_0}$ is continuous.

Proof. Since a vertical vector $\mathcal{L}_{\theta}g_0(x)$ is determined by $j_x^{1}\theta$ and $j_x^{1}g_0$, we have a mapping L of the bundle $J^{1}(T(M))$ of 1-jets of vector fields on M into $V_{g_0}(F(M)/G)$ such that $L(j_x^{1}\theta) = \mathcal{L}_{\theta}g_0$ for any vector field θ on a neighborhood of x, and L is a bundle mapping of vector bundles. Then L induces a continuous linear mapping \overline{L} of $\Gamma^{(r)}(J^{1}(T(M)))$ into $\Gamma^{(r)}(V_{g_0}(F(M)/G))$ and a correspondence defined by $\theta \to j^{1}\theta$ is an imbedding *im* of $\Gamma^{(r+1)}(T(M))$ into $\Gamma^{(r)}(J^{1}(T(M)))$. Then $\overline{L} \cdot im$ is continuous linear and $\overline{\delta}_{g_0} = \overline{L} \cdot im$.

Taking the germs of each cross-section, the correspondence $\theta \rightarrow \mathcal{L}_{\theta}g_0$ induces a sheaf homomorphism $\delta_{g_0}: \mathfrak{T} \rightarrow \mathfrak{B}$, where \mathfrak{T} is a sheaf of germs of vector fields of class C^{r+1} on M and \mathfrak{B} is a sheaf of germs of C^r -cross-sections of $V_{g_0}(F(M)/G)$. The kernel of δ_{g_0} is the sheaf $\mathfrak{A}(g_0)$ of germs of infinitesimal automorphisms of g_0 . Since G is of finite type, the sheaf $\mathfrak{A}(g_0)$ is locally constant and its stalks are finite dimensional vector spaces. Then the set $\Gamma(\mathfrak{A}(g_0)) (=H^0(M, \mathfrak{A}(g_0)))$ of global infinitesimal automorphisms is a finite dimensional vector space which is a subspace of $\Gamma^{(r+1)}(T(M))$. Thus we have a closed complement D of $\Gamma(\mathfrak{A}(g_0))$ in $\Gamma^{(r+1)}(T(M))$ and $\overline{\delta}_{g_0}$ is isomorphic on D.

A C^{r+1} -diffeomorphism f of M induces a C^r -diffeomorphism f' of F(M) such that $f'(b \cdot a) = (f'(b)) \cdot a$ for any $a \in G$ and $b \in F(M)$, and then it induces a C^r -diffeomorphism f^* of F(M)/G such that $\pi'(f'(b)) = f^*\pi'(b)$ and $f(\pi(b')) = \pi(f^*(b'))$ where $b' \in F(M)/G$. Let us define $\bar{f}g$ by $(\bar{f}g)(x) = f^{*-1}(g(f(x)))$ for any $g \in \mathcal{G}$. Then $\bar{f}g$ is a new C^r -cross-section of F(M)/G and \bar{f} is a transformation of the space \mathcal{G} . The partial differential of f^* with respect to the fibre of F(M)/G is a diffeomorphism f^{**} of the vertical vector bundle defined by $f^{**v} = f'(b) \times \mathfrak{a}$, where a vertical vector v is an element $b \times \mathfrak{a}$ of $F(M) \times \mathfrak{f}_{G}$, and f^{**} induces a transformation \bar{f}^{**} of the vertical vector fields \bar{v} by $(\bar{f}^{**}\bar{v})(x) = f^{**-1}(\bar{v}(f(x))).$

Proposition 4. $\bar{f}^{**}(\mathcal{L}_{\theta}g) = \mathcal{L}_{f\theta}(\bar{f}g).$

Proof. If
$$\pi'g' = g$$
 and $\mathcal{L}_{\theta}g' = g' \times \mathfrak{a}$, then
 $(\mathcal{L}_{f^{-1}\theta}(f'^{-1}g'))(x) = f''^{-1}(\mathcal{L}_{\theta}g'(f(x)))$
 $= f''^{-1}[g'(f(x)) \times \mathfrak{a}(f(x))],$

where f'' is a diffeomorphism of vertical vector bundle of F(M) induced by f'. Therefore, we have

$$\begin{aligned} [\mathcal{L}_{f\theta}(\bar{f}g)](x) = f''^{-1}[g'(f(x))] &\underset{G}{\times} q[\mathfrak{a}(f(x))] \\ = f^{**-1}[g'(f(x)) &\underset{G}{\times} q(\mathfrak{a}(f(x))] \\ = f^{**-1}[\mathcal{L}_{\theta}g(f(x))] = (\bar{f}^{**}(\mathcal{L}_{\theta}g))(x). \end{aligned}$$

§3. Transitive G-structures and associated G-structures.

In our paper, we suppose that the G-structure g_0 is transitive, that is, the local automorphisms of g_0 act locally transitive on M and moreover those of every prolongation $B_G^{\mu}(\mu)$ of $B_G(=g_0)$ act locally transitive on $B_G^{\mu}(\mu)$, (see [4], Appendix I).

If and only if n is an element of the normalizer N of G in GL(n), the right translation of g_0 by n is also a G-structure, which is called to be associated to g_0 . By the theory of G-structures (see [1]), we have

Proposition 5. A G-structure g is associated to g_0 , if and only if g has the same local infinitesimal automorphisms as g_0 .

The product space $N \times M$ is a trivial C^{∞} -bundle over M and then a mapping of $N \times M$ into F(M)/G defined by $n \times x \rightarrow g_0(x) \cdot n$ satisfies the condition of ξ of Proposition 2, because g_0 is of class C^{∞} . Since N is a closed submanifold of $\Gamma^{(r)}(N \times M)$ as the constant cross-sections, the mapping $\rho_{g_0}: N \rightarrow \mathcal{G}$ defined by $\rho_{g_0}(n) = g_0 \cdot n$ is of class C^{∞} by Proposition 2. For each x, the set $\{g_0(x) \cdot n; n \in N\}$ is a closed submanifold of the fibre of F(M)/G over x. Thus we have

Proposition 6. Let \mathcal{A} be the set of G-structures of class C^r associated to g_0 . Then \mathcal{A} is a closed submanifold of \mathcal{G} .

If and only if $n \cdot n'^{-1} \in G$, we have $\rho_{g_0}(n) = \rho_{g_0}(n')$. Then ρ_g induces a C^{∞} -imbedding $\bar{\rho}_g : N/G \to \mathcal{G}$ such that $\bar{\rho}_g q' = \rho_g$, where $q': N \to N/G$.

We consider a mapping of $\text{Diff}^{(r+1)}(M) \times N/G$ into \mathcal{G} defined by $f \times \bar{n} \to \bar{f} \cdot \bar{\rho}_{q_0}(\bar{n})$. Let $/^{1}(M, \alpha)$ (resp. $/^{1}(M, \beta)$) be the fibre bundle of invertible 1-jets of diffeomorphisms of M with the source projection α (resp. the target projection β) as the bundle projection. Each jet $j^{1}f^{-1}$ with source y and target x operates on the fibre of F(M)/G over y such that $(j^1f^{-1})\cdot g(y) = (\bar{f}g)(x)$ for each $g \in \mathcal{G}$. The product space $J^{1}(M,\beta) \times N/G$ is also a C^{∞} -bundle over M with the projection $\bar{\beta}$: $(j^{1}f, \bar{n}) \rightarrow \beta(j^{1}f)$. Since g_{0} is of class C^{∞} , the mapping of $J^{1}(M, \beta)$ $\times N/G$ into F(M)/G defined by $(j^1f^{-1}, \bar{n}) \rightarrow (j^1f^{-1}) \cdot (\bar{\rho}_{g_0}(\bar{n})(\gamma))$ is a fibre mapping of class C^{∞} . Then, by Proposition 2 we have a C^{∞} -mapping τ' : $\Gamma^{(r)}(I^1(M, \beta) \times N/G) \rightarrow \Gamma^{(r)}(F(M)/G)$. The space $\Gamma^{(r)}$ $(I^{1}(M,\beta)\times N/G)$ is C^{∞} -diffeomorphic to $\Gamma^{(r)}(I^{1}(M,\beta))\times \Gamma^{(r)}(M,N/G)$. On the other hand, the correspondence $j_x^1 f \rightarrow j_y^1 f^{-1}$, where y = f(x), gives a C^{∞} -isomorphism of the bundle $J^{1}(M, \alpha)$ onto $J^{1}(M, \beta)$, which induces a C^{∞} -diffeomorphism $\iota : \Gamma^{(r)}(J^1(M, a)) \to \Gamma^{(r)}(J^1(M, \beta))$ such that $\iota(j^{1}f)=j^{1}f^{-1}$. From the definition of the Banach manifold Diff (r+1)(M) in §1, we have a C^{∞} -injection ι' of Diff (r+1)(M) into $\Gamma(r)$ $(J^{1}(M, \alpha))$ such that $\iota'(f) = j^{1}f$, and we have a C^{∞} -injection ι'' of Diff (r+1)(M) into $\Gamma^{(r)}(J^1(M,\beta))$ such that $\iota''(f) = \iota \cdot \iota'(f) = j^1 f^{-1}$. The C^{∞} manifold N/G, of which each element can be considered as a constant mapping of M into N/G, is a C^{∞} -submanifold of $\Gamma^{(r)}(M, N/G)$ and then we have a C^{∞} -injection $\kappa: N/G \to \Gamma^{(r)}(M, N/G)$. Let τ be the composed mapping of

 $\tau^{\prime\prime} \times \kappa : \operatorname{Diff}^{(r+1)}(M) \times N/G \to \Gamma^{(r)}(J^1(M,\beta)) \times \Gamma^{(r)}(M,N/G),$ the isomorphism: $\Gamma^{(r)}(J^1(M,\beta)) \times \Gamma^{(r)}(M,N/G)$ $\to \Gamma^{(r)}(J^1(M,\beta) \times N/G)$

and $\tau': \Gamma^{(r)}(J^1(M,\beta) \times N/G) \to \Gamma^{(r)}(F(M)/G).$

Then τ is of class C^{∞} from $\operatorname{Diff}^{(r+1)}(M) \times N/G$ into \mathcal{G} such that $\tau(f \times \bar{n}) = \bar{f}\bar{\rho}_{g_0}(\bar{n})$. By the definition of $\mathcal{L}_{\theta}g_0$, the partial differential of τ at (identity $\times \bar{e}$) with respect to $\operatorname{Diff}^{(r+1)}(M)$ is a continuous linear mapping $\bar{\delta}_{g_0}$ in Proposition 3. The partial differential of τ at (identity $\times \bar{e}$) with respect to N/G is a continuous linear mapping of $\mathfrak{n}/\mathfrak{g}$ into $\Gamma^{(r)}(V_{g_0}(F(M)/G))$ defined by $\dot{n} \to g'_0 \times \dot{n}$, where $g_0 = \pi' g'_0$. Thus we have

Proposition 7. The mapping τ is of class C^{∞} . The differential of τ at (identity $\times \tilde{e}$) is a continuous linear mapping of $\Gamma^{(r+1)}(T(M))$ $\times \mathfrak{n}/\mathfrak{g}$ into $\Gamma^{(r)}(V_{g_0}(F(M)/G))$ defined by $\theta \times \dot{n} \to \overline{\delta}_{g_0}\theta + (g'_0 \times \dot{n})$ where $\pi'g'_0 = g_0$.

§4. Transformation of the infinitesimal automorphisms.

Proposition 8. Let f be a local diffeomorphism of class C^{r+1} with domain U. A local isomorphism of the sheaf \mathfrak{T} induced by f maps a potion $\mathfrak{A}(g_0)|U$ of $\mathfrak{A}(g_0)$ over U onto $\mathfrak{A}(g_0)|f(U)$, if and only if a G-structure $\overline{f}g_0$ induced from g_0 by f has the same infinitesimal automorphisms as g_0 on f(U).

Proof. By Proposition 4, we have $f(\mathfrak{A}(g_0)|U) = \mathfrak{A}(\overline{f}g_0)|f(U)$. Then $\mathfrak{A}(g_0)|f(U) = f(\mathfrak{A}(g_0)|U)$, if and only if $\mathfrak{A}(g_0)|f(U) = \mathfrak{A}(\overline{f}g_0)|f(U)$.

Proposition 9. Let f(t) be the 1-parameter diffeomorphisms (exp $t\theta$) generated by a local vector field θ . If and only if each f(t)satisfies the condition of Proposition 8, the germs of θ belong to the sheaf \Re of normalizer of $\Re(g_0)$ in \mathfrak{T} .

Proof. Let U be an open set of M and θ be a vector field on U. For an open set $V \subset U$, each f(t) is diffeomorphism with domain V for a suitable small interval of |t| such that $f(t) \cdot V \subset U$. If $f(t)(\mathfrak{A}(g_0)|V)$

 $=\mathfrak{A}(g_0)|f(t)V$, then $[\theta, \lambda]$ is an infinitesimal automorphism for any infinitesimal automorphisms λ on V. Since V is any open set of U, the germ of θ at any $x \in U$ is in \mathfrak{R} . Conversely, let n be a vector field on U such that its germs belong to \mathfrak{R} . Then $e^{\mathrm{ad}(tn)}$ is an infinitesimal automorphism on U for any λ . Local diffeomorphisms (exp tn)·(exp $s\lambda$)·(exp tn)⁻¹ for a small fixed |t| are local automorphisms a(s) of g_0 for a suitable small |s| and on a suitable domain such that the above compositions are considerable, because (exp tn)·(exp $s\lambda$)· (exp tn)⁻¹ = exp ($e^{\mathrm{ad}(tn)}s\lambda$). By Proposition 4,

$$\mathcal{L}(\exp tn)\lambda g_0 = (\exp tn)^{**}\mathcal{L}_{\lambda}((\exp tn)^{-1}g_0).$$

On the notation ()' in §2, we have

$$\mathcal{L}_{\lambda}((\overline{\exp tn})^{-1}g_{0})'(x) = \left[\frac{\mathrm{d}}{\mathrm{d}s}(\exp s\lambda)'^{-1}(\exp tn)'^{-1} g_{0}'((\exp tn)(\exp s\lambda)x)\right]_{s=0}$$
$$= \left[\frac{\mathrm{d}}{\mathrm{d}s}(\exp tn)'^{-1}a(s)'^{-1}(g_{0}'(a(s)(\exp tn)x))\right]_{s=0}$$
$$= \left[(\exp tn)'^{-1}\frac{\mathrm{d}}{\mathrm{d}s}g'(s)((\exp tn)x)\right]_{s=0'}$$

where $g'(s) = \overline{a(s)'}^{-1}g_0$. Here $a'(s)(y) \in G$, if we set $g'(s)(y) = g'_0(y)$ (a'(s)(y)) and then $a(y) \in g$, if we set $\left[\frac{d}{ds}g'(s)(y)\right]_{s=0} = g'_0(y) \underset{G}{\times} a(y)$. Therefore,

$$\mathcal{L}_{\lambda}((\overline{\exp tn})^{-1}g_{0})(x) = (\exp tn)^{**-1}[g_{0}'((\exp tn)x) \underset{G}{\times} \mathfrak{a}((\exp tn)x)] = 0$$

and then $(\exp tn)\lambda$ is a local infinitesimal automorphism.

Proposition 10. The dimension of the stalk of \mathfrak{N} is finite and constant for every $x \in M$.

Proof. For a point $x_0 \in M$, the adjoint representation of $\Re(x_0)$

on $\mathfrak{A}(g_0)(x_0)$ defines a homomorphism K from an additive group $\mathfrak{R}(x_0)$ into an additive group $\operatorname{Hom}(\mathfrak{A}(g_0)(x_0))$, where $\mathfrak{R}(x_0)$ (resp. $\mathfrak{A}(g_0)(x_0)$) is a stalk of \mathfrak{R} (resp. $\mathfrak{A}(g_0)$) at x_0 . Each element of kernel of K is the germ of vector field n on a neighborhood of x_0 at x_0 such that $[n, \lambda] = 0$ for any infinitesimal automorphisms λ on U. Since g_0 is transitive, there exist n independent infinitesimal automorphisms λ_i (i=1, ..., n)on U. The condition $[n, \lambda_i] = 0$ (i=1, ..., n) is a system $\lambda_i(n^i) =$ $\sum_k n^k c_{kj}^i$ (i, j=1, ..., n) ... (*) of linear differential equations, where $n = \sum_i n^i \lambda_i$ and $[\lambda_i, \lambda_j] = \sum_k c_{ij}^k \lambda_k$. By the uniqueness of solution for the initial condition $n(x_0)$, the dimension of the solutions is finite. Therefore the dimension of kernel of K is finite. Since dim. (Hom $(\mathfrak{A}(g_0)(x_0)))$ is finite, dim. $\mathfrak{R}(x_0)$ is finite. Since g_0 is transitive, there exists a local automorphism f of a neighborhood of x onto that of x'for any x, x' of M and f induces an isomorphism of $\mathfrak{R}(x)$ onto $\mathfrak{R}(x')$. Then, dim. $\mathfrak{R}(x) = \dim \mathfrak{R}(x')$.

Proposition 11. The sheaf \Re is locally constant.

Proof. Since dim. $\mathfrak{N}(x_0)$ is finite, $\mathfrak{N}(x_0)$ is the germs of vector fields n on some common neighborhood U of x_0 such that $[n, \lambda]$ are infinitesimal automorphisms on U for any infinitesimal automorphisms λ on U. Let (\mathfrak{N}, U) denote the whole of such vector fields n on U and let $n_1, n_2 \in (\mathfrak{N}, U)$. If $n_1 = n_2$ on an open set V of U, then $[n_1 - n_2, \lambda]$ = 0 on U for any λ . Then $n_1 - n_2$ is a solution of the system (*) in Proof of Proposition 10 and then $n_1 = n_2$ on U. Therefore each vector field of (\mathfrak{N}, U) has a respectively different germ at any $x \in U$. Since dim. $\mathfrak{N}(x)$ is constant, the whole of germs of vector fields of (\mathfrak{N}, U) at every point of U is the portion $\mathfrak{N}|U$. Therefore \mathfrak{N} is locally constant.

Since the dimension of the space $\Gamma(\mathfrak{N}, M)$ is finite, we have by Palais' theorem ([5])

Proposition 12. Let $N(g_0)$ be the group of C^{r+1} -diffeomorphisms of M which map all the local infinitesimal automorphisms of g_0 onto

themselves. Then $N(g_0)$ is a Lie group.

Let \tilde{g}_0 be the lift of g_0 on the universal covering manifold \tilde{M} of M. We have a Lie group $N(\tilde{g}_0)$ in the similar way to $N(g_0)$. We denote by $\tilde{\mathfrak{X}}$ the sheaf of germs of vector C^{r+1} -fields on \tilde{M} and by $\mathfrak{A}(\tilde{g}_0)$ that of infinitesimal automorphisms of \tilde{g}_0 . The Lie algebra of $N(\tilde{g}_0)$ is a subalgebra of $\Gamma(\tilde{\mathfrak{N}}, \tilde{M})$, where $\tilde{\mathfrak{N}}$ is the sheaf of normalizer of $\mathfrak{A}(\tilde{g}_0)$ in $\tilde{\mathfrak{X}}$.

\S 5. Deformations of a transitive G-structure.

Definition. Let g_i be a 1-parameter family of G-structures of class C^r parametrized by t of a neighborhood I of 0 in R. A family g_t is a *deformation* of g_0 , if there exist an open covering $\{U_i; i \in J\}$ of M and a family $\{f_i(x, t); i \in J\}$ of local continuous transformations of $M \times I$ such that (i) the domain of f_i is $U_i \times I$, (ii) $f_i(x, t)$ for each fixed t is a local C^{r+1} -transformation of $M \times t$, (iii) partial derivatives of $f_i(x, t)$ of any order $(\leq r+1)$ with respect to x are continuous on $U_i \times I$, (iv) $f_i^*(x, t)^{-1}g_0(f(x, t)) = g_t(x)$ for $x \in U_i$, (v) $f_i(0) =$ identity for each i and (vi) $\{f_i(U_i, t); i \in J\}$ for each t is an open covering of M. Each G-structure of a deformation of g_0 is called to be *deformable* to g_0 .

Two transitive $\{e\}$ -structures are locally equivalent, if they have the same constant structure function (see [6]). When we follow the proof of the above fact, while parametrizing by t, we have

Lemma 2. Let $\{\theta^{\alpha}(x, t); \alpha \in N\}$ be a system of independent continuous 1-forms on $\mathbb{R}^N \times I$ such that each 1-form is of class $C^{r'}$ on $\mathbb{R}^N \times t$ for each t, partial derivatives of $\theta^{\alpha}(x, t)$ of any order $(\leq r')$ with respect to x are continuous on $\mathbb{R}^N \times I$, $\langle \theta^{\alpha}, \frac{\partial}{\partial t} \rangle = 0$ and $c_{\beta \tau}^{\alpha}$ are constant, where $d_x \theta^{\alpha} = \sum_{\beta, \tau} c_{\beta \tau}^{\alpha} \theta^{\beta} \wedge \theta^{\gamma}$ and d_x is the exterior differentiation with respect to x. Then there exist a neighborhood U of each point of \mathbb{R}^N and a homeomorphism $\phi(x, t)$ of $U \times I$ into $\mathbb{R}^N \times I$ such that $\phi(x, t)$

339

for any fixed t is a $C^{r'+1}$ -diffeomorphism of $U \times t$, partial derivatives of $\phi(x, t)$ of any order ($\leq r'+1$) with respect to x are continuous on $R^N \times I$, $\phi^*(x, t)^{-1}\theta^{\alpha}(\theta(x, t), 0) = \theta^{\alpha}(x, t)$ and $\phi(x, 0) = identity$.

Since g_0 is transitive, the k-th prolongation of g_0 is an $\{e\}$ -structure with a constant structure function, where k is the order of G. Let \mathcal{D} denote the subspace of \mathcal{G} consisting of G-structures of which k-th prolongations have the same constant functions as that of g_0 .

Proposition 13. A deformation of g_0 is a continuous mapping g(t) of a neighborhood I of 0 in R into D with $g(0)=g_0$ and conversely.

Proof. From (ii) and (iii), a correspondence $x \to j_x^r(\bar{f}_i(t)g_0)$ for $x \in U_i$ defines a continuous cross-section of $J^r(F(M)/G) \times I$ over $U_i \times I$, by the application of arguments in Proof of Proposition 7 on $f_i(t)U_i$, where $\{f_i, U_i; i \in J\}$ defines the deformation g_t and

$$(\bar{f}_i(t)g_0)(x) = f_i^*(x, t)^{-1}g_0(f_i(x, t)).$$

Since $f_i(t)g_0 = g_t$, j^rg_t is a continuous section of $J^r(F(M)/G) \times I$. Therefore g_t is a curve in \mathcal{G} . Since g_t is locally equivalent to g_0 , each g_t has the same structure function as g_0 . Therefore g_t is a curve in \mathcal{D} through g_0 . Conversely, let $\{V_i; i \in J\}$ be an open covering of M such that the restriction of the bundle F(M) on each V_i are the product $V_i \times GL(n)$. Since a curve g(t) in \mathcal{D} through g_0 is an 1-parameter family of G-structures continuously dependent to t and k < r by remark of §1, a set of the portions of the manifolds of k-th prolongations of g(t) on V_i for all $t \in I$ constructs a domain $V_i \times V \times I$ on $R^N \times I$, where N is the dimension of the manifold of k-th prolongations of $g(x, t); a \in N$ of 1-forms which satisfies the condition of Lemma 2 with r' = r - k. By Lemma 2, we have a neighborhood $U_x(\subset V_i)$ of each point x of V_i and a homeomorphism $\phi'_x(x', t)$ of $U_x \times V \times I$ into $R^N \times I$ such that they satisfy the condition of the

conclusion of Lemma 2. Since local automorphisms of the prolongation of the G-structure induce those of the G-structure, $\phi'_x(x', t)$ induces a diffeomorphism $\phi_x(x'', t)$ of $U_x \times I$ into $V_i \times I$ such that $\phi_x(x'', t)$ is a C^{r+1} -diffeomorphism of $U_x \times t$ into $V_i \times t$ for any fixed t, partial derivatives of $\phi_x(x'', t)$ of any order $(\leq r+1)$ with respect to x'' are continuous on $U_x \times I$ and $\phi^*_x(x'', t)^{-1}g_0(\phi_x(x'', t))=g(t)(x'')$. Then for a suitable index J, $\{U_\lambda; \lambda \in J\}$ and $\{\phi_{x_\lambda}(x, t); \lambda \in J\}$ define a deformation g_t of g_0 such that $g(t)=g_t$. This fact holds good, even if we use any one of g(t) in place of g_0 . Then we have Propositon, extending the above proof on I successively.

Two deformations g_t^1 and g_t^2 of g_0 is said to have the same germ of deformation at 0 if there exists a positive number t_0 such that $g_t^1 = g_t^2$ on $(-t_0, t_0)$. If there is a positive number t'_0 and a continuous family $\{f_t; t \in (-t'_0, t'_0)\}$ in $\text{Diff}^{(r+1)}(M)$ through $e = f_0$ such that $\bar{f}_t g_t^1 = g_t^2$ for any $t \in (-t'_0, t'_0)$, the germ of g_t^1 at 0 is said to be equivalent to that of g_t^2 . Thus we have the equivalence class of germs of deformations. Let $\phi(x, t)$ be a local transformation of $M \times I$ such that $\phi(x, 0)$ is identity and $\phi(x, t)$ for any fixed t is a local automorphism of g_0 . Let $[A(g_0) \times t]$ denote the whole of germs of such $\phi(x, t)$ at every point of $M \times 0$. Then $[A(g_0) \times t]$ is a sheaf of group on M and we have the 1-chomology set $H^1(M, [A(g_0) \times t])$. It is well known that $H^1(M, [A(g_0) \times t])$ is one-to-one correspondent to the whole of equivalence classes of germs of deformations of g_0 (see [3] or [7]).

§6. G-structures having the same infinitesimal automorphisms

Let $N_{e}(\tilde{g}_{0})$ (resp. $A_{e}(\tilde{g}_{0})$) be the *e*-component of $N(\tilde{g}_{0})$ (resp. $A(\tilde{g}_{0})$).

On the notation and the argument of §4, a *G*-structure $\overline{\tilde{f}}\tilde{g}_0$ on \tilde{M} for $\tilde{f} \in N_e(\tilde{g}_0)$ has the same infinitesimal automorphisms as \tilde{g}_0 . By Proposition 6, there exists an element a of N such that $\overline{\tilde{f}}\tilde{g}_0 = \tilde{g}_0 \cdot a$. If $\overline{\tilde{f}}\tilde{g}_0 = \tilde{g}_0 \cdot a = \tilde{g}_0 \cdot a'$, then $a \cdot a'^{-1} \in G$. Thus we have a mapping $\sigma \colon N_e$ $(\tilde{g}_0) \to N/G$ defined by $\sigma(\tilde{f}) = q'(a)$ where $\overline{\tilde{f}}\tilde{g}_0 = \tilde{g}_0 \cdot a$ and $q' \colon N \to N/G$. **Proposition 14.** The mapping σ is an anti-homomorphism and of class C^{∞} from the Lie group $N_{e}(\tilde{g}_{0})$ into N|G.

Proof. Since $(\tilde{f}_1, \tilde{f}_2)\tilde{g}_0 = \tilde{f}_1(\tilde{f}_2\tilde{g}_0) = (\tilde{g}_0 \cdot a_2) \cdot a_1 = \tilde{g}_0 \cdot (a_2a_1)$, the mapping σ is an anti-homomorphism. Since $N_e(\tilde{g}_0)$ is a Lie transformation group of \tilde{M} , the correspondence $\tilde{f} \to \tilde{f}(\tilde{x})$ for a fixed $\tilde{x} \in \tilde{M}$ defines a C^{∞} -mapping γ : $N_e(\tilde{g}_0) \to \tilde{M}$. Moreover, $N_e(\tilde{g}_0)$ is a Lie transformation group of $F(\tilde{M})/G$, that is, the correspondence $y \times \tilde{f} \to \tilde{f}^*(y)$ defines a C^{∞} -mapping of $F(\tilde{M})/G$, that is, the correspondence $y \times \tilde{f} \to \tilde{f}^*(y)$ defines a C^{∞} -mapping of $F(\tilde{M})/G$, that is, the correspondence $\tilde{f}(\tilde{M})/G$, where \tilde{f}^* is a transformation of $F(\tilde{M})/G$ induced by \tilde{f} . Since $\tilde{f}(\gamma(\tilde{f})) = \tilde{x}$, the composed mapping

$$\sigma': \tilde{f} \longrightarrow \gamma(\tilde{f}) \longrightarrow \tilde{g}_0(\gamma(\tilde{f})) \longrightarrow \tilde{f}^{*-1}(\tilde{g}_0(\gamma(\tilde{f})))$$

is of class C^{∞} from $N_{e}(\tilde{g}_{0})$ into the fibre $F(\tilde{M})/G|\tilde{x}$ of $F(\tilde{M})/G$ over \tilde{x} . By the right translation of $F(\tilde{M})/G|\tilde{x}$ by N, we have an imbedding $\nu_{\tilde{x}}$ of N/G into $F(\tilde{M})/G|\tilde{x}$ such that $\nu_{\tilde{x}}q'(a) = \tilde{g}_{0}(\tilde{x})\cdot a$ for $a \in N$. If $\tilde{f}\tilde{g}_{0} = \tilde{g}_{0}\cdot a$, we have

$$\sigma'(\tilde{f}) = \tilde{f}^{*-1}(\tilde{g}_0(\tilde{f}(\tilde{x}))) = \tilde{f}\tilde{g}_0(\tilde{x}) = \tilde{g}_0(\tilde{x}) \cdot a = \nu_{\tilde{x}}q'(a).$$

Then we have a C^{∞} -mapping $\nu_{\bar{x}}^{-1}\sigma'$ of $N_{\ell}(\tilde{g}_0)$ into N/G, which is σ .

Proposition 15. For each $\tilde{f} \in N_e(\tilde{g}_0)$, the G-structure $\bar{\rho}_{g_0} \cdot \sigma(\tilde{f})$ is deformable to g_0 and has the same infinitesimal automorphisms as g_0 , where $\bar{\rho}_{g_0}$ is the C^{∞}-imbedding of N/G into G in §3.

Proof. Since $N_e(\tilde{g}_0)$ is arcwise connected, we have a curve $\tilde{f}(t)$ of $N_e(\tilde{g}_0)$ for t of an interval I such that $\tilde{f}(0) = \text{identity}$ and $\tilde{f}(t_0) = \tilde{f}$ for some t_0 . There exists an open neighborhood $\tilde{U}_{\tilde{x}}$ of each $\tilde{x} \in \tilde{M}$ such that the covering mapping $p: \tilde{M} \to M$ is diffeomorphic on $\tilde{f}(t)$ $(\tilde{U}_{\tilde{x}})$ for every $t \in I$. Then the correspondence $(p(y), t) \to (p(\tilde{f}(t)y), t)$ is a continuous transformation $f_{\tilde{x}}(x, t)$ of an open neighborhood $p(\tilde{U}_{\tilde{x}}) \times I$ into $M \times I$ such that $f_{\tilde{x}}(x, t)$ for any fixed t is a local C^{r+1} transformation of $M \times t$ and a system $\{f_{\tilde{x}}(p(\tilde{U}_{\tilde{x}}) \times I; \tilde{x} \in \tilde{M}\}$ is an

open covering of $M \times I$. If $f_{\tilde{x}}(p(\tilde{U}_{\tilde{x}}) \times t) \cap f_{\tilde{x}}, (p(\tilde{U}_{\tilde{x}'}) \times t) = V \neq \phi$ a diffeomorphism $f_{\tilde{x}}(x, t)^{-1}f_{\tilde{x}'}(x, t)$ is a local automorphism of g_0 on $(f_{\tilde{x}})^{-1}V$, because $\bar{f}(t)\bar{g}_0 = \bar{g}_0 \cdot a(t) = \bar{p}(g_0 \cdot a(t))$ and then $(\bar{f}_{\tilde{x}}g_0)(V)$ $= (\bar{f}_{\tilde{x}'}g_0)(V) = (g_0a(t))(V)$ where $\sigma(f(t)) = q'(a(t))$. Since M is compact, there exists a finite index J such that $\{p(\tilde{U}_{\tilde{x}_j}); j \in J\}$ and $\{f_{\tilde{x}_j}; j \in J\}$ satisfy the conditions of definition of deformations. Since $\bar{f}_{\tilde{x}_j}g_0 = (g_0 \cdot a(t))(p(\tilde{U}_{\tilde{x}_j}) \times t) = (\bar{\rho}g_0\sigma(\tilde{f}(t)))|(p(\tilde{U}_{\tilde{x}_j}) \times t)$, the family $\bar{\rho}g_0 \cdot \sigma(\tilde{f}(t))$ is a deformation of g_0 . Since each G-structure of $\bar{\rho}g_0 \cdot \sigma(\tilde{f}(t))$ is associated to g_0 , it has the same infinitesimal automorphisms as g_0 .

By the condition of g_0 in Introduction, $H^0(\tilde{M}, \mathfrak{A}(\tilde{g}_0))$ is the Lie algebra of the Lie group $A(\tilde{g}_0)$ of automorphisms of \tilde{g}_0 . Then, if $\tilde{f}_U(t)$ is a 1-parameter family of local automorphisms such that $\tilde{f}_U(t)(\tilde{x})$ is continuous on $\tilde{U} \times I$ and $\tilde{f}_{\tilde{U}}(0)$ is identity, each of $\tilde{f}_{\tilde{U}}(t)$ can be extended to a unique element of $A_e(\tilde{g}_0)$. Let \tilde{g} be a *G*-structure locally equivalent to \tilde{g}_0 . Let $\tilde{\psi}_{\tilde{U}}$ be a local bi-*G*-mapping of \tilde{g} into \tilde{g}_0 on an open neighborhood \tilde{U} , satisfying the condition that there exists an 1-parameter family $\tilde{\psi}_{\tilde{U}}(t)$ of local bi-*G*-mappings such that $\tilde{\psi}_{\tilde{U}}(t)(\tilde{x})$ is continuous on $\tilde{U} \times I$, $\tilde{\psi}_{\tilde{U}}(1) = \tilde{\psi}_{\tilde{U}}$ and $\tilde{\psi}_{\tilde{U}}(0)$ is identity. Then the germ of a local bi-*G*-mapping at any y of \tilde{U} , satisfying the similar condition to $\psi_{\tilde{U}}$, is the germ of $\tilde{f}\tilde{\psi}_{\tilde{U}}$ at y for some \tilde{f} of $A_e(\tilde{g}_0)$. Therefore the portion of the sheaf of germs of local bi-*G*-mapping which satisfies the above condition on \tilde{U} , is isomorphic to $\tilde{U} \times A_e(\tilde{g}_0)$. Since \tilde{M} is simly connected, the $\tilde{\psi}_{\tilde{U}}$ can be extended to a global *G*-mapping of \tilde{g} into \tilde{g}_0 .

Proposition 16. If \tilde{g}_t is a deformation of \tilde{g}_0 such that $A(\tilde{g}_t) = A(\tilde{g}_0)$ for each t, then \tilde{g}_t is trivial.

Proof. There exists a continuous mapping $\tilde{\psi}_{\tilde{U}}(t)$ of $\tilde{U} \times I$ into \tilde{M} for some \tilde{U} such that for each fixed t, $\tilde{\psi}_{\tilde{U}}(t)$ is a local diffeomorphism of \tilde{U} into \tilde{M} and a bi-G-mapping of \tilde{g}_t into \tilde{g}_0 on \tilde{U} . Then $\tilde{\psi}_{\tilde{U}}(t)$ can be extended to a continuous mapping $\tilde{\psi}(t)$ of $\tilde{M} \times I$ in \tilde{M} such that for each t, $\tilde{\psi}(t)$ is a G-mapping of \tilde{g}_t into \tilde{g}_0 . Because $A(\tilde{g}_0) = A(\tilde{g}_t)$ and \tilde{g}_t satisfies the condition of \tilde{g}_0 , we have a G-mapping $\tilde{\psi}'(t)$ such that

 $\tilde{\psi}'(t)|U = \tilde{\psi}_{\tilde{U}}(t)^{-1}$. Since $\tilde{\psi}(t) \cdot \tilde{\psi}'(t) : \tilde{M} \to \tilde{M}$ is a *G*-mapping and $\tilde{\psi}(t)$ $\tilde{\psi}'(t)|U =$ identity, $\tilde{\psi}(t)\tilde{\psi}'(t) =$ identity, that is, $\tilde{\psi}(t)$ is a diffeomorphism of \tilde{M} such that $\bar{\psi}(t)\tilde{g}_0 = \tilde{g}_t$. Therefore \tilde{g}_t is trivial.

We denote by S the g_0 -component of the space of G-structures which are deformable to g_0 and have the same infinitesimal automorphisms as g_0 , that is, the g_0 -component of $\mathcal{A} \cap \mathcal{D}$.

Proposition 17. The C^{∞} -mapping $\bar{\rho}_{g_0}\sigma$ (= μ) maps $N_e(\tilde{g}_0)$ on Sand the differential $d\mu$ of μ at e satisfies a formula $\dot{p}(d\mu)\tilde{n} = \mathcal{L}_{\tilde{n}}\tilde{g}_0$ for $\tilde{n} \in \Gamma(\mathfrak{N}(\tilde{g}_0), \tilde{M})$, where p is the mapping from $\Gamma(V_{g_0}(F(M)/G))$ onto $\Gamma(V_{\tilde{g}_0}(F(\tilde{M})/G))$ induced by p and $\mathfrak{N}(\tilde{g}_0)$ is the sheaf of vector fields of the Lie algebra of $N(\tilde{g}_0)$.

Proof. By Proposition 15, $\mu(N_e(\tilde{g}_0)) \subset S$. For any $g \in S$, let g(t) be an 1-parameter continuous family in S for $t \in [0, 1]$ such that $g(0) = g_0$ and g(1) = g. Then the lift $\tilde{g}(t) = \tilde{p}g(t)$ of g(t) is a deformation of \tilde{g}_0 on \tilde{M} . By Proposition 16, we have an 1-parameter $\tilde{f}(t)$ of C^{r+1} -diffeomorphisms of \tilde{M} such that $\overline{\tilde{f}}(t)\tilde{g}_0 = \tilde{g}(t)$ and $\tilde{f}(t)(\tilde{x})$ is continuous on $\tilde{M} \times I$. The G-structure $\tilde{g}(t)$ for each t has the same infinitesimal automorphisms as \tilde{g}_0 . Since $A(\tilde{g}(t)) = A(\overline{\tilde{f}}(t)\tilde{g}_0) = \tilde{f}(t)A(\tilde{g}_0)$, each $\tilde{f}(t)$ transforms $A(\tilde{g}_0)$ onto itself and then $\tilde{f}(t) \in N_e(\tilde{g}_0)$. Therefore, $\mu(\tilde{f}(t)) = g(t)$ and the image of μ is S. Moreover, for $\tilde{n} \in \Gamma(\mathfrak{N}(\tilde{g}_0), \tilde{M})$ we have

$$p^{**}d\mu(\tilde{n})(x) = \left\{\frac{\mathrm{d}}{\mathrm{d}t}p^{*}(g_{0}(x)\cdot a(t))\right\}_{t=0} = \left\{\frac{\mathrm{d}}{\mathrm{d}t}(\tilde{g}_{0}(\tilde{x})\cdot a(t))\right\}_{t=0}$$
$$= \left\{\frac{\mathrm{d}}{\mathrm{d}t}(\tilde{f}(t)\tilde{g}_{0})(\tilde{x})\right\}_{t=0} = \mathcal{L}_{\tilde{n}}\tilde{g}_{0}(\tilde{x}),$$

where $p(\tilde{x}) = x$, $\tilde{f}(t) = \exp t\tilde{n}$, $\sigma(\tilde{f}(t)) = q'a(t)$ and p^* (resp. p^{**}) is the mapping of F(M)/G (resp. $V_{g_0}(F(M)/G)$) onto $F(\tilde{M})/G$ (resp. $V_{\tilde{g}_0}(F(\tilde{M})/G)$) induced by p. Then $\dot{p}(d\mu(\tilde{n})) = L_{\tilde{n}}\tilde{g}_0$.

Theorem 1. The subspace S is an immersed submanifold of \mathcal{G} .

Proof. If and only if $\mu(\tilde{f}_i) = \mu(\tilde{f}_2)$ for $\tilde{f}_1, \tilde{f}_2 \in N_e(\tilde{g}_0)$, then $\bar{f}_1\tilde{g}_0 = \tilde{f}_2\tilde{g}_0$, that is, $\tilde{f}_1\tilde{f}_2^{-1} \in A(\tilde{g}_0)$. Now, $N_e(\tilde{g}_0) \cap A(\tilde{g}_0)$ is closed in $N_e(\tilde{g}_0)$. The differentiable mapping μ induces a differentiable injection $\bar{\mu}$ from a factor space $N_e(\tilde{g}_0)/[N_e(\tilde{g}_0) \cap A(\tilde{g}_0)]$ into the space \mathcal{G} . Here, the image of $\bar{\mu}$ is S and the image of its differential $d\bar{\mu}$ at e is that of $d\mu$, of which the rank is equal to the dimension of $N_e(\tilde{g}_0)/[N_e(\tilde{g}_0) \cap A(\tilde{g}_0)]$. Then $d\bar{\mu}$ is injective and split. Therefore S is an immersed submanifold in \mathcal{G} .

Corollary. The tangent space of S at g_0 is the vector space $\Gamma(\delta_{g_0}p'\mathfrak{N}(\tilde{g}_0), M)$ of all the sections of the subsheaf $\delta_{g_0}p'\mathfrak{N}(\tilde{g}_0)$ of V, where p' is the sheaf mapping induced by p.

Proof. A diagram of sheaves

is commutative, where *i* is the injection. Since $\mathfrak{N}(\tilde{g}_0)$ is a constant sheaf, we have $\Gamma(\delta_{\tilde{g}_0}\mathfrak{N}(\tilde{g}_0), \tilde{M}) = \bar{\delta}_{\tilde{g}_0}\Gamma(\mathfrak{N}(\tilde{g}_0), \tilde{M})$. Since $\mathcal{L}_{\tilde{n}}\tilde{g}_0 \in \bar{\delta}_{\tilde{g}_0}\Gamma(\mathfrak{N}(\tilde{g}_0), \tilde{M})$ for an $\tilde{n} \in \Gamma(\mathfrak{N}(\tilde{g}_0), \tilde{M})$ and $p'\delta_{\tilde{g}_0}\mathfrak{N}(\tilde{g}_0) = \delta_{g_0}p'\mathfrak{N}(\tilde{g}_0)$, we have $d\mu(\tilde{n}) \in \Gamma(\delta_{g_0}p'\mathfrak{N}(\tilde{g}_0), M)$ by Proposition 17. Conversely, we have $\dot{p}\dot{g} \in \Gamma(\bar{\delta}_{\tilde{g}_0}(\mathfrak{N}(\tilde{g}_0), \tilde{M}) = \bar{\delta}_{g_0}\Gamma(\mathfrak{N}(\tilde{g}_0), \tilde{M})$ for an $\tilde{n} \in \Gamma(\mathfrak{N}(\tilde{g}_0), \tilde{M})$, where $\dot{p}\dot{g}$ is the lift of \dot{g} by p. Then $\dot{g} = d\mu(\tilde{n})$.

§7. Equivalence of G-structures having the same infinitesimal automorphisms.

Since M is compact, there is a positive number ϵ such that the covering mapping p is diffeomorphic on each connected component of $p^{-1}(U_{\epsilon}(x))$ for the ϵ -neighborhood $U_{\epsilon}(x)$ of any point x of M. For this ϵ , each diffeomorphism f belonging to the ϵ -neighborhood $D_{\epsilon}(e)$

of e in Diff^(r+1)(M) induces a diffeomorphism \tilde{f} of \tilde{M} such that $p(\tilde{f}(\tilde{x})) = f(p(\tilde{x}))$ for any $\tilde{x} \in \tilde{M}$ and $\tilde{f}(\tilde{x})$ belongs to the same connected component of $p^{-1}(U_{\epsilon}(p(\tilde{x})))$ as \tilde{x} . The correspondence $f \to \tilde{f}$ defines a continuous injection p of $D_{\epsilon}(e)$ into the topological group Diff (\tilde{M}) with the compactopen topology, because the topology of Diff^(r+1)(M) is stronger than the compact-open topology. Since the topology of the Lie group $A_{e}(g_{0})$ (resp. $N_{e}(g_{0})$) is the modified compact-open topology (see [5]), the identity component of $A_{e}(g_{0}) \cap D_{\epsilon}(e)$ (resp. $N_{e}(g_{0}) \cap D_{\epsilon}(e)$) is an open neighborhood of e in $A_{e}(g_{0})$ (resp. $N_{e}(g_{0})$).

The Lie algebra \overline{A} (resp. \overline{N}) of $A(\tilde{g}_0)$ (resp. $N(\tilde{g}_0)$) is $\Gamma(\mathfrak{A}(\tilde{g}_0), \widetilde{M})$ (resp. $\Gamma(\mathfrak{R}(\tilde{g}_0), \widetilde{M})$). Let N be the lift ' $p(\Gamma(\mathfrak{R}, M))$ of the Lie algebra $\Gamma(\mathfrak{R}, M)$ of $N(\tilde{g}_0)$. Then N and \overline{A} are respectively subalgebra of the Lie algebra \overline{N} of $N(\tilde{g}_0)$. Take a complement V of the sum $N + \overline{A}$ in \overline{N} and a complement N' of \overline{A} in $N + \overline{A}$. Then, $\overline{N} = V \oplus N' \oplus \overline{A}$. Since $A_{\ell}(\tilde{g}_0)$ is closed in $N_{\ell}(\tilde{g}_0)$ and $\tilde{p}(A_{\ell}(g_0) \cap D_{\ell}(\ell))$ is locally closed in $N_{\ell}(\tilde{g}_0)$, we have

Lemma 3. There exist open neighborhoods \overline{A}_0 , N'_0 and V_0 of 0 in \overline{A} , N' and \dot{V} respectively, such that the mapping

$$\begin{split} \Phi \colon (a, b, c) &\longrightarrow (\exp a) \cdot (\exp b) \cdot (\exp c) \\ for \ a \in \bar{A}_0, \ b \in N'_0, \ c \in V_0 \end{split}$$

is a diffeomorphism of $\bar{A}_0 \oplus N'_0 \oplus V_0$ onto an open neighborhood \tilde{U} of e in $N_{\epsilon}(\tilde{g}_0)$ and $\Phi(N'_0 + V_0) \cap A_{e}(\tilde{g}_0) = e$.

Let \tilde{V} denote the submanifold $\{\exp \tilde{v}; \tilde{v} \in \tilde{V}_0\}$ of $N_{\ell}(\tilde{g}_0)$. The restriction of μ on \tilde{V} is an imbedding and then its image $\mu(\tilde{V})$ is a differentiable submanifold of S which we denote by \mathcal{V} .

Proposition 18. If $\bar{f}(t)g(t)$ is a curve in \mathcal{V} for a curve f(t) in Diff $^{(r+1)}(M)$ through e = f(0) and for a curve g(t) in \mathcal{V} through $g_0 = g(0)$, then there exists $t_0 > 0$ such that f(t) for $t \in [-t_0, t_0]$ is in $A_e(g_0)$.

Proof. We have curves $\tilde{n}(t)$ and $\tilde{n}'(t)$ in \tilde{V} with $\tilde{n}(0) = \tilde{n}'(0) = e$ such that $\mu(\tilde{n}(t)) = g(t)$ and $\mu(\tilde{n}'(t)) = \bar{f}(t)g(t)$. Since $f(t) \subset D_{\epsilon}(e)$, where $|t| < t_0$ for some $t_0 > 0$, we have $\bar{\tilde{n}}'(t)g_0 = (p\bar{f}(t))\bar{\tilde{n}}(t)g_0$, that is, $(\tilde{n}'(t))^{-1}(\tilde{p}f(t))\tilde{n}(t) = \tilde{b}(t) \subset A_e(\tilde{g}_0)$. Then $\tilde{p}f(t) = \tilde{n}'(t)\tilde{b}(t)\tilde{n}(t)^{-1} \subset N_e(\tilde{g}_0)$. Taking a smaller t_0 if necessary, we see that the curves $\tilde{p}f(t)$, $\tilde{b}(t)$, $\tilde{n}'(t)\bar{b}(t)$ and $\tilde{n}'(t)\tilde{b}(t)\tilde{n}'(t)^{-1} = \tilde{b}'(t)$ are in \tilde{U} . Since $\tilde{p}(f(t))\tilde{n}(t) = \tilde{n}'(t)\tilde{b}(t) =$ $\tilde{b}'(t)\tilde{n}'(t)$, $\tilde{p}(f(t)) \subset \tilde{U} \cap P(D_{\epsilon}(e))$, $\tilde{n}(t) \subset \tilde{V}$, $\tilde{n}'(t) \subset \tilde{V}$ and $\tilde{b}'(t) \subset \tilde{U} \cap A_e(\tilde{g}_0)$, we have $\tilde{p}(f(t)) = \tilde{b}'(t)$ and $\tilde{n}(t) = \tilde{n}'(t)$ by Lemma 3. Therefore, $\tilde{p}(f(t)) \subset \tilde{p}(A_e(g_0) \cap D_{\epsilon}(e))$, that is, $f(t) \subset A_e(g_0)$.

Proposition 19. If we take a suitable connected neighborhood U_0 of g_0 on S, then for each g of U_0 there exist a unique $g' \in \mathbb{V}$ and an $f \in N_e(g_0) \cap D_e(e)$ such that $g = \overline{f}g'$, and the correspondence $g \to g'$ is a differentiable mapping of U_0 onto \mathbb{V} .

Proof. If we set $U_0 = \mu(\tilde{U})$, then we have Proposition from the definition of \tilde{U} and by Lemma 3.

§8. Deformations having the equivalent infinitesimal automorphisms.

Definition. A deformation g(t) of g_0 is called to have the equivalent infinitesimal automorphisms, if each g(t) have the infinitesimal automorphisms equivalent to those of g_0 , that is, if there exists a continuous curve $\phi(t)$ in Diff^(r+1)(M) through e such that $\phi(0) = e$ and $\phi(t)A(g_0) = A(g(t))$ for each t.

The composed mapping τ' of $\sigma: N_e(\tilde{g}_0) \to N/G$ and $\tau: \text{Diff}^{(r+1)}(M) \times N/G \to \mathcal{G}$ is a C^{∞} -mapping of $\text{Diff}^{(r+1)}(M) \times N_e(\tilde{g}_0)$ into \mathcal{G} . Moreover, τ' defines a C^{∞} -mapping τ'' of $\text{Diff}^{(r+1)}(M) \times \mathcal{S}$ into \mathcal{G} by formula $\tau''(id. \times \mu) = \tau'$, such that $\tau''(f, g) = \bar{f}g$ for $f \in \text{Diff}^{(r+1)}(M)$ and $g \in \mathcal{S}$.

Proposition 20. There exists an open neighborhood U_e of e in Diff^(r+1)(M) such that, if and only if a deformation g(t) of g_0 have

the equivalent infinitesimal automorphisms, g(t) is a curve through g_0 in the image of $U_e \times \mathbb{C}V$ by the C^{∞} -mapping τ'' for t of some neighborhood of 0 in R.

Proof. The differential of τ'' at (e, g_0) is a continuous linear mapping $\theta + \dot{g} \rightarrow \bar{\delta}_{g_0}\theta + \dot{g}$ for $\theta \in T_e(\text{Diff}^{(r+1)}(M))$ and $\dot{g} \in T_{g_0}(S)$. If \dot{g} is tangent to CV, we have $\tilde{v} \in \dot{V}_0$ such that $d\mu(\tilde{v}) = \dot{g}$ and $\dot{p}\dot{g} = \mathcal{L}_{\tilde{v}}\tilde{g}_0$. If $\bar{\delta}_{g_0}\theta + \dot{g} = 0$, we have

$$\dot{p}\dot{\delta}_{g_0}\theta + \dot{p}\dot{g} = \mathcal{L}_{p\theta}\tilde{g}_0 + \mathcal{L}_{\tilde{v}}\tilde{g}_0 = 0$$

and then $p \theta \in \overline{A} + \overline{V}$, where $p \theta$ denote the lift of vector fields on M. Since $p \theta \in \overline{N}$, we have $p \theta \in \overline{A} \cap N$ and then $\theta \in \Gamma(\mathfrak{A}(g_0), M)$. Since there exists a closed complement D of $\Gamma(\mathfrak{A}(g_0), M)$ in $T_e(\text{Diff}^{(r+1)}(M))$, we have an open neighborhood U_e of e on $\text{Diff}^{(r+1)}(M)$ and a submanifold C tangent to D at e in U_e such that $\tau''(U_e \times \overline{V}) = \tau''(C \times \overline{V})$ and τ'' is diffeomorphic on $C \times \overline{V}$. If g(t) is a curve in $\tau''(C \times \overline{V})$ through g_0 , then we have a curve f(t) in C and a curve v(t) in \overline{V} such that $g(t) = \overline{f}(t)v(t)$. Therefore,

$$A(g(t)) = A(f(t)v(t)) = f(t)A(v(t)) = f(t)A(g_0),$$

that is, g(t) is a deformation having the equivalent infinitesimal automorphisms. Conversely, if for a deformation g(t) of g_0 there exists f(t) such that $A(g(t)) = f(t)A(g_0)$ and f(0) =identity, then $A(g_0) = A(\bar{f}(t)^{-1}g(t))$. By Theorem 1 and Proposition 19, $\bar{f}(t)^{-1}g(t)$ is a curve v(t) in \mathcal{V} for a sufficiently small |t|. Then f(t) is in U_e for t of some neighborhood of 0 in R and $g(t) = \bar{f}(t)v(t)$ is in $\tau''(U_e \times \mathcal{V})$.

Taking germs at t=0, the above facts are represented in the cohomology with coefficient sheaf as follows. Let $\{f_i(t), U_i; i \in J\}$ be a system of an open covering $\{U_i\}$ of M and local diffeomorphisms f_i defining a deformation g(t) of g_0 . For $i, j \in J$ such that $U_i \cap U_j \neq \phi$, a local transformation $f_i(t)^{-1}f_j(t)$ is considered as a 1-parameter family of local automorphisms of g_0 continuously dependent to t and its germ at t=0 is a section of the sheaf $[A(g_0) \times t]$ over $U_i \cap U_j$.

Let $\psi(x, t)$ be a local transformation of $M \times I$ such that $\psi(x, 0)$ is identity and $\psi(x, t)$ for any fixed t is a local C^{r+1} -transformation of $M \times t$ which transforms $\mathfrak{A}(g_0)$ onto itself and such that partial derivatives of $\psi(x, t)$ of any order ($\leq r+1$) with respect to x are continuous on $M \times I$. Let $[N(g_0) \times t]$ denote the whole of germs of such local transformations at every point of $M \times 0$. Then $[N(g_0) \times t]$ is a sheaf of group and $[N(g_0) \times t] \supset [A(g_0) \times t]$. Therefore, a system

{germs of $f_i(t)^{-1}f_j(t)$ at t=0; $i, j \in J$ such that $U_i \cap U_j \neq \phi$ }

is a $[N(g_0) \times t]$ -valued 1-cocycle of the nerve of $\{U_i\}$. This cocycle is coboudary, if and only if the germ of g(t) is equivalent to a deformation having the equivalent infinitesimal automorphisms. Let Ω denote the correspondence

$$H^{1}(M, [A(g_{0}) \times t]) \longrightarrow H^{1}(M, [N(g_{0}) \times t])$$

induced by the injection $A(g_0) \rightarrow N(g_0)$. Then we have

Theorem 2. A cohomology class \mathbf{g} of $H^1(M, [A(g_0) \times t])$ corresponds to a class of germ of a deformation having the equivalent infinitesimal automorphisms, if and only if $\Omega \cdot \mathbf{g}$ is coboundary in $H^1(M, [N(g_0) \times t])$. Any such class is represented by a unique germ of a curve in ∇V .

Since $d\tau''(T_e(C) + T_{g_0}(\mathcal{V})) = \{\bar{\delta}_{g_0}\theta + \dot{v}; \theta \in T_e(C), \dot{v} \in T_{g_0}(\mathcal{V})\},\$ the tangent vector of a differentiable curve in $\tau''(U_e \times \mathcal{V})$ at t = 0 is $\bar{\delta}_{g_0}\theta + \dot{v}$. Conversely, for any $\theta \in T_e(C)$ and any $\dot{v} \in T_{g_0}(\mathcal{V})$, a vector $\bar{\delta}_{g_0}\theta + \dot{v}$ is tangent to a differentiable curve in $\tau''(U \times \mathcal{V})$ at t = 0. Here, from the definition of C and \mathcal{V} ,

$$\{\bar{\delta}_{g_0}\theta + \dot{v}; \theta \in T_e(C), \dot{v} \in T_{g_0}(CV)\} = \{\delta_{g_0}\Gamma(\mathfrak{T}) + \Gamma(\delta_{g_0}p'\mathfrak{N}(\tilde{g}_0))\}.$$

Each element of $\delta_{g_0}\Gamma(\mathfrak{T}) + \Gamma(\delta_{g_0}p'\mathfrak{N}(\tilde{g}_0))$ is called an *infinitesimal* deformation of g_0 having the equivalent automorphisms. Thus we have

Theorem 3. Every infinitesimal deformation having the equivalent infinitesimal automorphisms can be extended to a deformation having the equivalent infinitesimal automorphisms.

The whole of equivalent classes of infinitesimal deformations of g_0 is a linear space $\Gamma(\delta_{g_0}\mathfrak{T})/\overline{\delta}_{g_0}\Gamma(\mathfrak{T})$ which is isomorphic to $H^1(M, \mathfrak{A}(g_0))$. Since $\mathfrak{A}(g_0) \subset p'\mathfrak{A}(\tilde{g}_0)$, we have a homomorphism $\omega' : H^1(M, \mathfrak{A}(g_0)) \rightarrow H^1(M, p'\mathfrak{A}(\tilde{g}_0))$. Ker $\omega'(=\mathcal{K}$ in Introduction) is the whole of equivalent classes of infinitesimal deformations having the equivalent infinitesimal automorphisms and this is a linear space with the dimension of the manifold \mathcal{V} , which is equal to $[\dim N(\tilde{g}_0) - \dim A(\tilde{g}_0) - \dim N(g_0) + \dim A(g_0)]$.

Theorem 4. If $\omega' : H^1(M, \mathfrak{A}(g_0)) \to H^1(M, p'\mathfrak{A}(\tilde{g}_0))$ is injective, that is, if $[\dim N(\tilde{g}_0) - \dim A(\tilde{g}_0) - \dim N(g_0) + \dim A(g_0)] = 0$, then every deformations of g_0 having the equivalent infinitesimal automorphisms are trivial.

Kyoto University

References

- D. Bernard, Sur la géométrie différentielle des G-structures, Ann. Inst. Fourier, 10 (1960), 151–270.
- [2] J. Eells Jt., On the geometry of function space, Symposium de Topologia Algebrica, Mexico, (1958), 303–307.
- [3] P. A. Griffiths, Deformations of G-structures, Math. Ann., 155 (1964), 292–315, 158 (1965), 326–351.
- P. A. Griffiths, On the existence of a locally complete germ of deformation of certain G-structures, Math. Ann., 159 (1965), 151-171.
- [5] R. S. Palais, A global formulation of the Lie theory of transformation groups, Memoirs of Amer. Math. Soc., No. 22 (1957).
- [6] S. Sternberg, Lectures on a differential geometry, Prentice-hall, (1964).
- [7] T. Yagyu, On deformations of cross-sections of a differentiable fibre bundle, J. of Math. of Kyoto Univ., 2 (1963), 209-226.