Correction to "On the modulus of continuity of sample functions of Gaussian processes"

(This Journal Vol. 10, No. 3, 1970, 493-536)

By
Norio Kôno
(Communicated by Professor Yoshizawa, November 26, 1971)

1. Lemma 6, (i) (p. 509) is not true without some conditions. This assertion must be changed into the following: Let $f(x)$ be a concave function which is non-decreasing with $f(0)=0$, then we have

$$
f\left(x_{1}\right)+f\left(x_{2}\right)-f\left(x_{3}\right)-f\left(x_{4}\right) \leq f\left(\left|x_{1}+x_{2}-x_{3}-x_{4}\right|\right)
$$

if $x_{1} \bigvee x_{2} \geq x_{3} \bigvee x_{4}$ and $x_{3}+x_{4} \geq x_{1} \wedge x_{2}$, or

$$
f\left(x_{1}\right)+f\left(x_{2}\right)-f\left(x_{3}\right)-f\left(x_{4}\right) \leq f\left(\left|x_{1} \wedge x_{2}-x_{3} \wedge x_{4}\right|\right)
$$

if $\quad x_{1} \bigvee x_{2}<x_{3} \wedge x_{4}$.
According to this correction, Theorem 3 is not valid when $N \geq 2$ without a slight restriction. From the conditions of Theorem 3, it is necessary that the exponent α of n.r.v.f. $\sigma(x)$ is less than or equal to $1 / 2$. In case of $0<\alpha<1 / 2$, (8.49) is still valid by virtue of the relation $\left(x_{1} \wedge x_{2}\right)\left|\sigma^{2}\left(x_{1}\right)-\sigma^{2}\left(x_{2}\right)\right| \leq\left|x_{1}-x_{2}\right| \sigma^{2}\left(x_{1} \vee x_{2}\right)$. But in case of $\alpha=1 / 2$, I cannot prove that the estimate (8.49) is true or not. Nevertheless in case of $\sigma(x)=|x|^{\alpha}, 0<\alpha \leq 1 / 2$, Theorem 3 is true since metric $\sigma^{2}(|x-y|)$ has four point property.

Remark. The conditions of Theorem 7 do not need to be changed and other results coming from Lemma 6 are still valid.
2. Since (8.67) is not true, the last part of Theorem 4 must be changed into the following: $\varphi_{\varepsilon}(x)$ belongs to $\mathcal{L}^{u}(X)$ if $1+\varepsilon<\beta$. In case of $1+\varepsilon<\beta$, $\# L_{m, k}^{(1)}$ is less than a constant independent of m, n and k if $k \leq c n^{\varepsilon}$, therefore setting $L_{m}^{(2)}=\left\{(p, q) \in L_{m} ;\left(\varphi_{\varepsilon}\left(r_{i j}\right) \varphi_{\varepsilon}\left(r_{p q}\right)\right)^{-1}\right.$ $\left.\leq_{r_{p q}^{(m)}}^{(n)} \leq 1-c / n^{1-\varepsilon}\right\}$, the estimate (8.70) is still valid.
3. Other errata (erratum \rightarrow correction)
p. $503 \downarrow 11 \quad x^{2} / 2 \rightarrow x^{2} /(2 \log 2)$,
p. $505 \uparrow 9 \quad a(x) \gg \frac{r}{\sqrt{\log 1 / x}} \rightarrow a(x) \gg \frac{r}{\log 1 / x}$,
p. $511 \uparrow 9$ Add $\left\|t_{0}-t\right\| \leq 2 \varepsilon_{n}$ to (7.9),
p. $512 \uparrow 15 \sigma^{2}\left(4 / 5 \cdot \varepsilon_{n}\right) \rightarrow \sigma\left(\varepsilon_{n}\right)$,
p. $518 \downarrow 6$ (8.25) is still valid by Lemma 6, (i) under the new conditions.
p. $520 \downarrow 8$ Omit the sentence "if $r_{i q}>2 r_{i p}$. If $r_{i p}>r_{j q}, \cdots \cdots(i, p)$ and (j, q).
p. $525 \uparrow 12 \quad \sqrt{2\left\{\left(\log _{(2)} 1 / x\right) \bigvee\left(F_{\sigma}(x) / \sigma(x)\right)\right\}}$ $\rightarrow \sqrt{2\left\{\left(\log _{(2)} 1 / x\right) \bigvee\left(F_{\sigma}(x) / \sigma(x)\right)^{2}\right\}}$,
p. $530 \uparrow 10 \quad 1-k / n \leq r_{j}^{(m)} \leq 1-(k-1) / n$ $\rightarrow 1-k / \log n \leq r_{j}^{(m)} \leq 1-(k-1) / \log n$,
p. $531 \uparrow 16 \sqrt{\frac{k}{c_{98} n}} \rightarrow \sqrt{\frac{k}{c_{98} \log n}}$,
p. $533 \uparrow 6 \bar{\sigma}(x) \sqrt{\log 1 / x} \leq c_{107} \rightarrow \bar{\sigma}(x) \leq c_{107} \sqrt{\log 1 / x}$.

