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It is very useful to formulate the boundary problems of Markov
processes by means of stochastic differential equations.

Recently, S. Watanabe showed in  [9 ] [10 ] , the existence and
the uniqueness of solutions of stochastic differential equations with
boundary conditions in the case that all coefficients are Lipschitz
continuous. On the other hand, D. W. Stroock and S. R. S. Varadhan
in [8] formulated this problem as sub-martingale problem and proved
that if diffusion processes with non-degenerated continuous coefficients
have boundary conditions with Lipschitz continuous oblique derivatives,
then the existence and the uniqueness of solutions of the sub-martingale
problems are valid.

We will refer to N. E. Karoui [3] as for the equivalence of sub-
martingale problems and stochastic differential equations with boundary
conditions.

We will also refer to S. Nakao [6 ] who showed that there exist
solutions if all coefficients are continuous.

In the present paper, we will be concerned with the case that
the boundary conditions have non-degenerated second order term with
continuous coefficients and solve the uniqueness problem.

Finally, the authors would like to express their hearty gratitude
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to Professor S. Watanabe for his valuable advices.

L e t  D = R„E = {x = (xl , x 2 , • ,  X " )  R ": x 1 0} D =  {X G D : x 1> 0 }

and a p  {x e r ) :  x 1 = 0 }.

Let a ,  b ,  a , r  and p  be given as follows:

a = ( a u ) j =1, • • • , n: D— >1?"OR")

b= (b ) i =1, • • •, n:

a= (a u ) j  =  2, • • •, n: aD—>I2n - JORn - '

r= (ri) i = 2, • • •, n: aD -.1?" - 1

p :[ 0 ,  0 0 ) .

It is assumed that they are all bounded and Borel measurable.
We corsider a stochastic differential equation of the following form;

d x 1 = c ( x i ) 1 D ( x t ) d B , + bi(x i)lp(x i)dt+dçoi

dx ;=cEi(x i)1D(x i)dB i+bi(x i)1p(x i)dt
+ (x i)1aD (x i)dM i + ri(x i)lan(x i)dgoi i =2, 3, ••-, n

1a,,(xi)dt = P(xi)laD(xi)dso,
where

B i = (B i, • • B 7), M i= (M i2 , • • Mi"),

(x i)10(x i)dB i = aii( X i) lp ( X i) d k , i = i, 2, •••, n
5= !

and

oi(x i)10D(x i)dM i— Ed, i (xOla,,,(x i)dM I • i =2, •••, n.,-2
l p ,  lap  are indicator functions o f D, OD.

To be precise, by a solution of the equation (1 ),  we mean a family
o f  stochastic processes I= {xi= (xi, 4 • • • , x7), B i — (BL  B , • ••, B7),

M i= (M i2 , ••., Mi"), çai}  defired on a stardard probability space in the

sense of K. Ito [1 ] with a right continuous increasing family of Borel
fields (D, g ,  P ; g i ) ,  i.e. ,  such that

5>0
(i) with probability one, they are all continuous in  t, B o =0,

M0=0, ç90-0 and x ,E D  for each
(ii) they are all 9,-adapted, i.e. for any t ,  they are 9,-measurable,

1 ) R n O R n  is the class o f linear applications of R n  into Rn.

(1)
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(iii) with probability one, ço, is non-decreasing and ço, increases

only when x1=0, i.e. ço,= i 1aD(xs)dços,

(iv) (13,, M ,)  is  a  system of ¶,-martingales such that <B', Bi>,
=8 ,t, M >,=0  and <M', ----(7, ; (,0„

(v) 2E= {x,, B ,, M,, ço,} satisfies

.x — .4 =V ,a l (x .)1,(x ,)d13,. + b1(x ,)1(x s)ds+ço,0 0

-X  — x̀o = V  a'(x)I.D(x,)dBs+V b,(xJ1D(x.,)ds0 0

+V Ge ( i , ) s )d  M s +V  ri( is )1 0 D (X s)C k 's  i = 2, •••, n0 0

i lar,(xOds= 1 p(is) 4 s  ,0 0

where • denotes the projection of x  on OD,

a' (xs)dB s= E  ai i (x ,)dM  , (Z )dM s= E  (i,V M s1

5=1 5=2

and the integrals by dB  and d M  are understood in the sense of
stochastic integrals.

Remark 1. In ( I ) ' ,  if it is called "non-sticky case". Then

i f  I al (x ) I - = ( E 4 ( x ) ) 1 / 2 c  v x e D , for some constant c>0, (1)' is5=1
equivalent to the following equations;

x;— x!= t ,,,T1 (x 0dB s+V bi(x ,)ds+ço,
0 0

x it teei(x0dB, + t b,(xs)ds0 0

+Ç ( i ) d M , ,+ '  n(is)dy) i =2 , •••, n.0 0

Then  t 1a,,(x,.)ds=0 holds automatically.

Assumption ( C - I ) .  There are positive constants p i, P 2  such
that

( a )  a (x )  is continuous on D  and pi I E I 2 <  E  [aa*i l 2
' . 5 = 1
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(b) ( i )  is continuous on aD and pi I E  [ow* i i ( i ) $ i  E i - < P 2  I E I 2
i j= 2

1̀ ER".

Now, our result is summarized in the following.

Theorem 1. Under Assumption ( C - I ) ,  the solutions of the
equation (1 ) is unique in the sense of probability law . That is, if

= (x„ Bi, sot) defined on (s2, ,  P ;  t )  and X' = (x'„ B;, 1111 , ç9;)
defined on (s2', g ',P ';  g ;)  such that x o=x , a.s. and 4 =x  a.s . are
two solutions of (1 ) , the Probability law of the processes {x,} and
{x;} on the space { W ,B (W )}  coincides, where W  is  the Fréchet
space o f  a ll D-valued continuous functions o n  [0 , 00) with the
compact uniform topology and B ( W )  is  the topological Borel
field on W.

First, we consider the special case b O, r==-0, p=1 and then, we

reduce the general case to this special case by means of drift trans-
formations and time-changes.

For the sake o f  technical convenience we treat the following

time-dependent case.

Assumption (C -II).
a(t, x ) : [0, co) X D--.R"OR"
a(t, Xs) : [0, 00) x OD--4?" - 1 0 R - 1

a and d are continuous mappings.

b )  an (t, x )=- 0 ao(t, x) =a
for To and ai i (t, x )=8 0  for Vt TO .

c) E I [aa*1.(t, E  [(se ] (t, 8 1 <e
i , j= j i f - _ 2

and for every E'cRn,

/111 I  E  [aa* i i (t, x)EE, ,i21 E

pi I I 2 <  E rad*1(t x )$ ,$ ; ._ //2 I I 2 ,

where e depends only on pl, p2, To and is chosen in the proof of
Theorem 2 and Theorem 4.
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Consider the following equation under Assumption (C -II).

t — x%=S t 1D (x,)d.B.! + sc4°
I 0

455

— t ai (s, Fc,)1aD(xs)dM,

i = 2, • • •, n

la° (x )ds= çoit. .

It suffices to prove in the case to = O.
Let 3E= (x o  Bo M o § ) on (D, F , P; 9 - 0  be a solution o f (2).

Lemma 1. L e t X ( t )  be a  continuous martingale which is
uniformly bounded on any bounded interval and Ilp(t) .__O be a
continuous increasing process such that .E 4 p (t)‹+  0 0  for each

Then X ( t ) * ( t )  ' X (u )d (ù )  is a martingale.0

The proof o f  Lemma 1 can be found in  Stroock-Varadhan [8]

Lemma 2.1.

Lemma 2. F or ço of the equation (2),

t O and limy 9 t= +oo. a.s. (P ).

Proof . (xl)d.B 1 +_ 0 ,  0 . , )ç p ,
0

E§9,<+ 0. for each

Let Et b e  a Brownian local t im e  a t the origin and At= t + E t. It
is know n that çat h as the sam e law as EAT'. USing this fact and
the properties of Brownian local time, we can conclude this lemma
(cf. Ito-McKean [2] ).

Lemma 3. Let f (t, x ) be a  bounded continuous function on
[0, 0 0

)  x D  such that f (t, x) = 0  f o r  V t 9 T > 0  and let g(s, e0),
h(s, (0) be bounded non-anticipating functionals such that g(t, (0)
=h (t, 0 )=0  fo r  V t> 3 T>0 . I f

X (t) = f (t, x(t)) g (s ,  (0 )0

(2)

h(s (0)4.,0
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is a m artingale, then

(3) f(0, x0) = AE[ 0
-  e- "I(s ,i(s ) )4 ,1 —  E [ 0

-  e- AP'g(s, co)ds]

— E[ 0 e . h(s, to)4 , ]

holds.

Proof. N o t i n g   e
3,

4  
-,\9

,
1 , because0 
A

o f  lim 40, = 00 a.s., the

integrals of the right hand o f (3 ) are well - defined and by Lemma 1

X (t) t
ee- " . 4 , —

Therefore

e ' .X ( s ) 4 ,  is a martingale.
0

1- E [X ( ...)]=E [
0 e X ( s ) 4 .

A 
( 3 )  can be ob-

tamed by arranging this equality

Throughout the present paper we shall assume P > n + 2 .  We
will introduce two functionals as follows and obtain some LP-estimates

of them.

Let / I A [ h ]  = CAP' h(t, i1) 4 , 1  for any h  defined on  [0, 00)

X V )  and [u] = E[ 1D(x ,)u(t, x t)dti for any u  defined on [0, T)0
x D.

Theorem 2. Under Assumption (C -II), we have

(4) to,[h]l CA111111-;) fo r  vheL P ([0, 00) xaD)

(5 ) vr [u] _5137, 11u110.7- f or v ueL P ( [0, T )x D ),

where CA is uniformly bounded in

In  order to prove this theorem, we approximate {x i }  in the
following procedure. Let 7 V ,, (s) be defined as follows:

 f o r  
 k   

< 5 <
k+ 1

, k =0,1,•••,m 2 - 1
n .(S )=1 171

for s m2 .

2) The definitions of II•II-v and II . IIP,T are stated in Appendix.

— 112
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L et {x ">} = {3 , • • •, m = 1 , 2, • • • be defined by

• x;
(6)

▪ = )6'3 +  1 ( 0 , - ) ( x ) a i (1r,„(s), x(,))dB .,

1,01(x!)(i(7r,n(s), i= 2, 3, • • n.
0

Then,

(7) t  (0 )(X (;" " ) d  S 0 t

is verified trivially.
Also, we can show by usual method

(8) P ( m a x  x!!") -  > e )  - * 0  as m-.00 for v e > 0 .
ogsgi

- Lemma 4. I f  u  o f  C P ([0 ,0 0 )x D ) 3 )
 s a t is f ie s  u (t, x )= 0  for

vt T > 0 ,  then,

(9) u(0, x0)
-

=  -  E [  e - A9'.1 ( 0,- ) (xD [A . + [aa*],(ir(s), xii-,”0))1A1
,,J=1 2

u(s, 4" ) )ds]

+ E [ 2 (ir„,(S ), k ir )) M 1  D 1 ]/-
U (S , 4" ) )dTs1

P ro o f . Applying Ito's formula to ( 6 )  for u, we see that

u(t, x ) 1(0,-)(x!)[ [aa*il i; ( 7 6 ( S ) ,  n  w ) ) 21(s , X )1(IS
o ,;=1 2

- [et] ,  ( n ( S ) ,  7,- ( , ) ) 1 A u ( s , +Diu(s, i!'" ) )14.,
0 j=2

- Ds u(s,x!'" ) )ds0

is a m artingale. Therefore, we obtain ( 9 )  by making use of ( 7 )  and

Lemma 3.

3 )  C ' 2
 ([O , 00) x D )  denotes the class of functions which together with their first

1-derivative an d  first two x-derivatives are  bounded and continuous.
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We define two sequences of functionals;
-

fir  [h] E [  e , 11(t, -4 " ) ) 4 , 10
h E C;' ( [0, ..) x aD) 4 )

14■"3 [U1 = E [  e - A9't 1(0 (X D  (t X (Z" ) ) d t i  u EC; ([0 , T ) x  I)) .0

L e m m a  5 . T here ex ist constants C,,,A, B,.,  such  that

(10) 114'") [h]  p v  hEC7 ([0, .0) x aD)

(11) I v(A71.[u] l v u e C r ( [0 , T )x D ) ,

w here C,.  is unif orm ly  bounded in ,1 1.

Proof .
2-1 -F[(i1)1„, -

fir  [h] = E e-49'qt(s, ir)dço,.1+ E[- A g ' . 1 2 ( s , )4 , 1 .;=0

We shall prove only

e- AP=h(s,

since other terms can be proved in a similar w ay. ri(6 )  is rewritten
in the following form

.4 1 = 4 L 1 + 1 1(0,-)(472 1 )dB !(0 .) 5 ) +vt+.—Ç9,.

(12)
4'2;1 = + a1 (m, x 1(0 B0

+  ( m , M ) i =2, •••, n.

Let P= P(• „,) be the regular conditional probability of P  relative to
9 „ ,  and 6 . i = g t -F m , gi—Bt i_.— B ., — A/4+m—  M ., 1§"0,— q't+. — q, .  and

x1+ . Then, Y = Bet, Mt, ç'ot) on (sa, 9 ,  P; , )  is a solution of

equation (2 ) with coefficients {a(m, x„,), ci(m, x,,)} . However, we can
regard {a(m, x .) , a(m , x .)}  as constant coefficients, as far as we con-

sider the probability space (A g , P ;  t ) .  Suppose I=  (x t, Bo Mt, ç9,)
on (12, 9 , P ; 9 , )  i s  a solution of the equation ( 2 )  with constant

coefficients (a, a).

4) C 7 ([0 ,0 ° )x 8 D )  is the class o f infinitely differeentiable functions haying com-
pact support.

5) 8 is the shift operator.
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1 "L et HEOE1 b e  the harmonic operator corresponding to D i + 2 i,j 1

[aa''] a n d  VA E".°) b e  th e  resolvent operator corresponding to
" 1D,+— [ird*] +  (a1, where  a  

—  D, .
, O

8
n  

1-1
= 2 2 On

For each h  o f  Cc; ( [0, 00) X OD), it is known that 1-1("3 -17,P . ' 3h

belongs to C - ( [0, 00) X /7) an d  there exists constant T  such that
HE"3 VA EŒ.'3h(t, x ) = 0  for vt T. Applying Ito's lemma for WOE)  VA ia.roh,

we see that

Hug VA E°"3 h(t, x,) + [crd*] :n

V,ja .'311(s , i)chps

is martingale.
Accordingly, by Lemma 3

-
(13) H[a] V A ( Œ ) h ( 0 ,  x0) = E [ o e - AP.h(s,

and

ETe- A9''h(s, ji. )4,11= 111 ' 3 VAL"h(0, x0)10
< sup l i)  I <CAllhIl p ,

where CA  is bounded in

The last estimate is found in  Theorem A. 3  and  Theorem A. 4
in  Appendix. It is uniform in  a e M[tei ; ,ttz] and aG lii[t t i; /hi •

(cf. Appendix)
Hence, we have obtained the following estimate a s  to (12)

(14) E T  e h ( s , 0 -49..h(m + s,:x!'"))dsos =I g - 11 1k T e

By an  analogous argument we can obtain

(15)E l e- AP.h(s, i!)clso.,1 . .11”111 Cm,411h11̂ 'P •
0+1)1m

Taking expectation in  (14 ) and (15 ), the first estimate in  Lemma 5
follows.
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Next, we shall estimate the functional 14,'"3-. W e m ay assume
{a, al are constant matrices by the same arguments as

Let us denote by ad  the minimal (absorbing) potential operator

on D  associated with D + [aa*];;MJ.2
It is well-known that for each f  o f Cr ( [0, T ) x r)), u= G to"if

belongs to C- ( [0, T ) x  D ) and satisfies the following equation.

f  _- [D +f
(16)

'u I arg = O.

Therefore it follows easily from Ito's formula that

(17) u (t, x i ) + :1 ( 0,-) (xl)f (s,

is  a matringale. l Applying Lemma 3 to  (17), we have

(18) u(0, x0) E [ C " 'l(o ..) ( x ) f . (s, x,)c1.310

— c". D iu (s ,
0

By Theorem A. 4 in Appendix, we have

I u(0, x.) I I a l f ( 0 ,  x.) I _=_CTIlf

I D  u (s , i)  = D  G rocd f (s, f for viE0D.

Thus, it is immediately from (18) that

(19) lE[ore
1 ( o , . . ) ( x ) f ( s ,  x s ) d s ]  <B T

1 11B y (19) and the sim ilar arguments as the
obtain the estimate (11).

f 11,2- /1 1 .

proof o f (10)`, we can

Now, we will prove Theorem 2, by making use of the estimates
in Lemma 5.

Let u s  d en o te  b y  IF (') t h e  harmonic extension operator of
1D + — EIX ,

'

 a n d  b y  V,;°) t h e  resolvent operator associated with2 
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Di +  1 'r x +   a H").2i =2a n

We apply Lemma 4  to  H V r h  (heCô° ([0, T) x O D )) .  Then
noting 1-1( " V r h ( t ,  = 0 for vt T, we have

(20) .II(°) V°)h (0 , xo) =
0 id=2L

[8, i — [de] i; (n„,(s), i7, ) )] M i V,e)h(s, :i!'")) 4 ]

+ h(s, i!'" ) )cl(p]0

+ e '.1 ( 0 ,- ) ( x )O id -1 L

[aa*] (7c.(s), x ) ) ] H m IT ) h(s, x (s ') d s l .

Noting IIM V °)hil-p CAilh11-t. , IA , I  11")
h(0, x0) I C.,■111211-p , (where CA is uniformly bounded  i n  ,i 1) and
Assumption (C-II) (c f . Appendix, Theorem A. 2 ), we can obtain
that

(21) + II +CA

where 11,teN T  is  the functional norm of te ) o n  LP( [0, T) x aD) and
ilv(A"411 is that on LP( [0, T) x D).

Let us denote by Gr the minimal potential operator on D associat-

ed with

Applying Lemma 4 to u= GP) f  ( f  EC (7( [0, T) x p)), we have

(22) Ge) f  (0, x0) = E [  e'.1(0,-)(xD f  (s, x !" . ) )d s]0
" 1+  E [ e•  - À 9 '$1(0,...)(x!) -  laa* i X v . ( , ) ) ]

i,J=1

GP) f (s, x!"' ) )d s]

— E[

•

D iaPf  (s, i! '" ) )4 ]  •o

Note that I  GS°)f (0, x) f  IIp,r , D7i  GP)  f pa. -5 Ca f and
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1D1 G0f(s, 1 C7-11 f 11 P.T hold (c f. Appendix, Theorem A. 4).
Accordingly, we see

(23) v(A71-11+ 2C,

Choose e>0 to be ECT0 < 2  and 6CA< 2  fo r v,1->1. Then there exist
CA and f?To such that are  independent of m and

(24) IAte )  7 0<e A 011 ITT 0( A 1 ) .

N ow , remember a(t, x) = {a ,} ,„ (t = {8.} j, -2, ,„ for
t T o . Accordingly, repeating a  similar argument , a s  th e  proof of
Lemma 5, we can obtain the following estimates.

(25) Eh ( s ,  x ! ' " ) ) 415_CAllh11-oTo

(26) E T  C AT'1(0,.)(x)u(s, e ) )C1S1 f3 Tiltell p,T
To

for v T >  T o ; fixed,

where C A  B , are  independent of m and
From (24), (25) and  (26), we have

(27) ,u(:) [h] I _ (C' A+ C 011h11- p

(2 8 ) I 1)(A',"1-[u ]1_(B r o +BT)

Noting (8), (4) in  Theorem 2 follows immediately from (27) for

hEC;([0, 00) XD).
On the other hand, from (8) and  (28)

IE T e - ''1(0,-)(x)u(t, x To+ B T )  U J ,T .0

Therefore, (5) in  Theorem 2 is also obvious for vuEG'( [0, T) xD) ,
since („ot t, a.s. ( P ) .  Moreover, it is easy to extend Ci( [O, x  aD)
and C i( [O, T) x D ) t o  L P( [0, 0 0 ) x OD) and LP( [0, T) x D ), respec-
tively.

L et A = D i +[ a ]  x),, M ; and denote by G A  the minimal=1 2
(absorbing) potential operator associated with A  a n d  b y  H A  th e
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harmonic extention operator associated with A  (c f. Appendix).

For each u E  ( [0, T ) X D ) ( T<+ 00 : arbitrarily fixed), u=GA f
belongs to W 11-2 ) ( [0, T )x D ) 6 ) and satisfies the following equation;

(29)
—Au= f
ulap=0,

a s  to HA,

(30) .1-Ph= H(')h+GAD e H("h holds for each h EC4• 2 ( [0, cxD) X D),

w h ere  DE= -, ( [a a * ] x) — (30 ) IA  •i,I=1 4

Theorem 3. Fix any T<+ 0 .. For each h of  C 2 ( [0, 00) xaD)
and g e L P ([0 , T )x D ), pu t u= GA g+ HAh. Then

( 3 1 )  u(t, xt)

— (0 1(0,-) (x1)(D, + [aa*.] 0 (s, x8)D0u(s, xs)ds

- 0 [aa*] i i (s, s)M i + )u(s, x„)(49.

is a m artingale.

P ro o f .  It suffices to prove fo r u— GAg, since H ( ')h  belongs to
0 1 '2 ) ( [0, 00) x D ), by (30).

Since u  belongs to K,Ii-2 ) ( [0, T ) x D )  an d  u  dp= 0, it is not
difficult to show  that there is a  sequence {u „} o f  C- ( [0, T ) X D)

such that each u „ vanishes o n  aD a n d  {u„} co n v e rg e s  to  u  in

FVD2 ) ( [0, T ) x D).
L et us denote by X „(t), X (t) the processes given by (31) cor-

responding to u„, u respectively. It is sufficient to prove El X (t)
— X (t) a s  n-->0., since X „(t) is evidently a  martingale by Ito's
formula. Now,

El X(t)—  X„(t)l<  sup l u(t, x)—u„(t, x)I—

+EN1(0,-)(x ls)1(D.±
., ,

[acr*] 0 (s, xs)DO(u —u„)(s, xs)Ids]

6 ) T he definition o f  1.4',! " ([0 , T )  D )  appears in  Appendix.
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+ ESI°an (u u„)(s, isdc40]=11+12+12 .0 

Clearly 4, 13 converges to 0 as n-.00, because there exists a constant
Cp such that

sup I u(t, x) I supl u(t, x)1
t . ;  a n —<Cpllull̀p!'72)

(cf. Appendix (A. 38 ) (A. 39)).

Theorem 2  implies 1121 C 1 1  - u.II (p'22-) for a constant C .  Therefore,
El X(t) - X „(t) I - .0  as n-.00

Let

L9=D ,+E   1  D2„ + H(°)1=22a n
and

L = D ,+ ,
1  kra*],;(t, an HA .

Lemma 6. There exists a unique solution v  in  W.P."( [0, 00)
x6 D ) of the following equation;

(32) (2 -L )v -h ,

f o r  any h  o f  LP( [0, 00) x OD), 2 > 1 . Moreover i f  we denote the
solution by VA h, there exists a constant CA such that

(33) sup I V\h(t, i)l .<CAllhll-p •

Proof.

II(L - 1-0) VrhIl-p<suP [66*]'1(t, 8" MK1111
i, j= 22 i.j-2

+11  : n  [H A  — H(°)] VrhIl = +

By Assumption (C - II ) and Theorem A. 2 in Appendix, - p

12-11
a  

( H A  H ('))V rhOn L_  : n  GA Dell("VA(')h11-P- 4Cllh11-p

 

(by Theorems A. 1 and A. 3 in Appendix).



On the uniqueness of solutions of stochastic 465

I f  we choose e in Assumption (C -II)  to be ( C+C 
\  2 < 1 ,  then

(34) VA=E  L  L0)K °1"a 0

is well-defined as a bounded operator on LP( [0, co) x OD).

Noting that v =  V° ) h is  unique solution in M 1 .2 ) ( [0, co) x aD)
o f (A —Lo)v= h, we can show easily that v= V h  is unique solution

o f (32).
(3 3 )  is immediate from ( 3 4 )  and Theorem A. 2  (A. 1 4 )  in

Appendix.

Theorem 4. Under Assumption (C - I I ) ,  the uniqueness for
the stochastic differential equation (2 ) is valid.

P ro o f .  Suppose that X= (x o  B,, Mo ç9,) on  (..Q, 9 ,  P ; g , )  and

X'= (x;, B;, M,', Ç ) on (D', SF', P'; g ; )  are solutions o f ( 2 ) .  Fix any

T > 0 , let

hE C ; ([0 , ..) xaD ) and f EC (7 ([0 , T)xD).

Applying Theorem 3  to HA V°)h, we see that

HAW» h(t, x,)

is a martingale. Taking expectation

(35) HA h(O, xo) = [ I  (L— L0)VP]h(s,0

Further

t

GA f (t, x,) + 1(0: c..) (xpf (s, xo)ds " GA f (s, s)dgos
o0  an

is a martingale and so

(36) GA f (0, x0)= E[ 01 .(0,- ) (x)f (s, xo)ds]

—ErÇ T

n
 GAf (s,
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(3 5 )  implies l l '1 V rh(0, x0)= PA C[I—  (L—  Lo)V r] h).
Since it is easy to check that { [/— (L— L0) .17°) ] h : hEC[7( [0, 00)

x OD)} is dense in LP( [0, 00) xaD ), and hence there exists a  sequence
[/— (L— L0) K° ) ]h„ : 11,,EC7( [0 , CX )  )  X D )}  which converges to

a  given y  o f L (  [0, 00) x a D ) .  Thus

HA VA V„ (0, x 0 )—  H A  Vrh0(0, x0) = teA[vd .

According to Theorem 2  and  Lemma 6 ,  HA VA and p A  a re  bounded
linear functional on LP( [0, 00) x a D ) .  So we see

(37) HA VA V(0, x0) = PA  [V ] VV G  (  [0, 00) xaD).

Therefore
-

(38) E L  e - A9 , v(t, x t )clçoi l = v(t, x;) 4 ;10 0
vvELP([0, 00) x  OD),

However, since both sides o f (3 8 )  are  analytic in  2 > 0 ,  (3 8 )  holds
for each 2 > 0 .  Hence

(39) y(s, i s)dy0.,1=E'L o y(s,
0

for vyECbnfiLP( [0, 00) x a D ) and v  T >0.

From (3 6 )  and (3 9 ) ,  we conclude
rrT

(40) v (s, x s)ds1= E av (s , x :)d .910
for vy E c b  n L P( [o, 0 0 )  x  D).

Now, we can complete th e  proof o f  Theorem 4  by standard
arguments.

Theorem 4'. Suppose that 6(t, x ) and a(t, x) satisf y  the follow-
in g  conditions.

(a) T here is a constant strictly  Positive def inite ( n x n )  m atrix  a
such that

1 [cra* ] (t, x) —a1  < e .

7 )  C b  is the class o f bounded continuous functions.



On the uniqueness of solutions of stochastic 467

(b) There is a constant strictly positive definite (n -1  X n -1 )
matrix r  such that

E  I [0e ]  ( t — r , <E.
j  2

(c) a (t, x )  and a ( t ,  i )  are continuous in  (t, x) G  [0 , 0 0 ) X  D and
(t, [0, 00) x aD respectively.
Moreover there is a constant 0 <  TO< ± CC' such that

aa* (t, x)= a fo r  v t>7'0

aa* (t, r fo r  vt T e .

Then, if we choose e  sufficiently small, the uniqueness of the solu-
tion of the stochastic differential equation (2 ) is valid.

The proof is essentially same as the proof of Theorem 4, if we
use some estimates of Theorem A. 3 in Appendix.

Theorem 5. Suppose that a  and a satisfy Assumption (C-I).
Let b and r be bounded measurable functions on L  and aD, respec-
tively and p = 1 .  Then the uniqueness of the solution of (1) is
valid.

P ro o f. First we shall prove this theorem in the case that 1)=- 0,

r O and a 11 l a11===- 0  (i 1 ) .  Fix point xo of D.

Let U(x 0)= { x e D ;  x x  01 <n}  and

z-„= in f  { t > 0  x ,  U „ ( X 0 ) } An.

For any ie U„(x 0 )(10D and any e>0, there is a neighborhood o f i;

N (i) = {y D; <8} 3a>0,
such that

E  I E a a l  (y ) [ a a * ]  ( i )  I ‹ s  for v y  N (i)

and

E  I Eacr*1 ( y) [ < e for v y  N (i)n  OD.
j=2



468 S h in taro  Nakao an d  T ok uz o S higa

Theorem 4' im plies that the stochastic differential equation (1)
has the unique solution up  to  the first exit time from N ( x )  or n,
i f  we choose e sufficiently small.

On the other hand it is know n that the uniqueness o f (1 ) is
valid up to the first h itting tim e to  the boundary, if the solution
starts at an interior point.

11„(x0)r-18D can be covered with finite number o f N ( x ) .  There-
fore, by the standard arguments and taking regular conditional proba-
bilities, we can prove that the uniqueness o f (1 ) is valid up to 7, .

Accordingly, in  order to complete the proof o f  th is  case, it
suffices to note lim co as. ( P ) .  But it follows easily from the
boundedness of a  and a.

N ow we can extend to the general case, when ai i =1,
(i 1 ) is no t assum ed , by m eans of a transformation of Brownian
motion and a time change (cf. Watanabe [9] ).

Next, suppose that (z ,  B „ M „ ço,) is  a solution of (1 ) with
[a, b, a, r,

Let .13 " be the probability measure on (D, g )  such that for each
t  and each BEEF,,

1- 5 (B)— — '
ocx- 1  • b(xt)1D(xt)dBt— 0 a'•b1 2 (x ,)1D(x t)ds

(5-1 •2- (x )dM t. - 1
2 " a- 1  .112 (is)dtpsidP(0)).

o0
Then

t t
Y- - ---lx ,, = B , +  a- l •b(x s)ip(x ,)ds, kt= .m,+ 6- • r(x)dgo„ çg,10 0

is  a solution on (D, g , 7F"; gi )  which corresponds to  [a ,  b-=--- 0, a, 2--------0,
p = 1 ].  Therefore, it is reduced to the previous case.

Now we can complete the proof o f Theorem 1  as follows.
The uniqueness o f (1 ) w ith  [a , b, a, r, p=-0] is reduced to the case
[a ,  b, a, r, p=----- 1 ], and the general case [a ,  b, a, r, p ] is also reduced
to the case [a ,  b, a , r, p--=-0] by time changes, cf. Watanabe [10].
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Remark 2. The uniqueness implies that the solution x  of the

equation ( 1 )  defines a unique diffusion process (a  strong Markov
process with continuous paths) on D.

I t is  the diffusion process, whose infinitesimal generator is given,
roughly speaking, by the differential operator A  w ith  the domain
characterized by Lf = p- A f on OD, where

" 1A = E  [a a * ]  ;5 (x )1A +Eb,(x )D ,-1 z 
" 1 0  L = [cia*] ( i )  +  r , ( i )  D  +  .

i , i = 2 i = 2 On

Remark 3. If the coefficients of the stochastic differential equ-
ations (1 ) are time-dependent, our problemIremains open.

Appendix

Let D= {x e 12"; x1>0}  . Given uECr ( [0 , T ) x  D ), define the
following norm.

ID.T+
lalg2

w here 11 • lip.r i s  the ordinary L b -norm o n  [0, T ) x  D .  Denote by
WP."( [0, T ) <D) the completion of C (  [0, T ) x  D ) with respect to

• 11 (1p.P.
I f  T = 00 , we drop the subscript T .  In order to avoid confusion,

we use 11 • to denote ordinary L , norm on [0, 00) x OD. WP. 2 ) [(0,
T ) X 0D) is defined in an analogous w ay. Define

14°,) (t, 55) 1{to i  exP { — (xi + 2)/20 x1>0, y E D,t(27rt)"12

where jr" is  the projection of y  on 8D, and let
-

(A. 1) Hmf(s, x)=1-LT ) f(s, (t — s, :9)f (t, 5)).
s

Then H(' ). f  is the space-time harmonic extension for ( +  
1  

A) of fas 2
in  [0, x 8D.
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It is easily checked that {Hx( 2) } „-> o is a semi-group. Let 1-1(°)On
denote its generator. Then

(A. 2)
(aan

Hlf (p, 0) = —  (2i12+ I 0- 12) 112

where the symbol " z i"  denotes the Fourier transformation. Denoting

b y  1?;,°) t h e  resolvent operators (

2

0   H 0 ) ) withan
;

(A. 3) /?°)= .

We know the following estimates about R  (cf. Stroock-Varadhan
[8] )

(A. 4) f f

(A. 5) Ell D f If II -p 1<p<00,

where the constant C  is independent of
Next we introduce the following Lb-type norms on  [0, 0 0 )  x D.

" f " - " = LV d tan an
lf  (tr xx) —

„(+
t
p ' Y) I P dxdy l lIP

( ( f ) )  = [ andx -
0 V0   f (t It —

x) 
P  dtdST P

Ulf DI-p=11f - p +  f
Lemma A. 1. L e t (X , m )  be a  a-f inite m easure space. Fix

a; l< a < p + l .  F o r  each  f u nc tion  f (z : x )  o f  LP [X X R` ; dmdx]
such that D,f  ELP [X  x  R l: dm dx], the following inequality  holds.

(A. 6) I m ( d z ) L E , I f  (2: — fy  :  Y )  P  dxdyl l i P

<ci(e)EM D,f + c2(.)II f II ,

I =1

where C 1 (e) can be chosen arbitrarily  sm all and C2 (e) depends on

C1(e).



(A. 7) E

w h e r e 11f11 (2.p2 ) =11f11-p+

If IIV )P > 1 ,

Dif11 7 p+  E
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P ro o f .  Let us put

rn(dz) If (z : x )— f(z : ,Y) IP  dxdy

If (2: x )— f(z : y)IP  dxdy
Ix—yla

I2 = x m(dz)

for any e> 0 .

Noting

If (z : x )— f(z : y )IP C ,(1f (z : x )IP+ f (x : y )  P )

we can observe /i <C- el - 1 f  11Perx.Rii •
Next we will estimate '2;

I f (z :x )— f(z :y )I  ' =
,
D,f(z:xi,•••, x 3_1, u, y,+1, • • •, yi)du1-1

r
<El xi— )01 P du l

m(clZ) dxdy l x ,i — Y i l P: 1. 1 I D if  (2: x i, •••, u, •-•, yi)I P dul
j = 1  X IK e  ix —  - y

rn(dz) dxdy dv
3-1 x i”Ke (I x I z)a"Y

ID J(z : x i, •••, u, yi)IPdul
Y

D i  f (z :x )IPm (dz)dx dvdu M P  
1;TIKE.Iv K e • (lu

 12 +
 I V I2 ) 1 2

< C •  e P1-1— exD J  i Prx .R 13 •
3=1

Therefore, we can put C1(e) =Cl  • e(P -1 -1 — " P ,  C z ( e ) = E"—a)1°.

Theorem A. 1.

/X 12,—Y1)e ,

P ro o f .  The following estimate is known (cf. Ladyzhenskaya &

others [51, Chap. IV).
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(A. 8) j  D 1  11' )f  p C (EM  if » - P .x
i,J=1 i  = 2

If (t,.
"L J a D  Jo  Jo

x) — f Cs, x) 1P  dtdsTi P ).it -s11 / 2

Noting

„,--2
(A. 7) is immediate from (A. 6) and (A. 8).

Lemma A. 2. I f  2 < P <  c o  and

(A. 9) 1ID, R Pf  II-p C1 (e) IID f  11,+0(s)11f11-,,
where constant 0 ( 6 )  can be chosen arbitrary small and C2 (e) de-
pends on C° ( ) .

P ro o f. By the analogous calculation to (A. 8),

If (t, f (S, X ) I P  d tdsT P

D 0
(A. n o  IIARPfll-p<C,E a d x n -

where CA is bounded in  ,1 1. Therefore (A. 9) follows from (A. 10)
and Lemma A. 1.

Lemma A. 3. If 2<p<oo,

(A. 11) a  11(H 1   1 1 ,+C IID 1 1 1 ,+C 2 (e ) I lf  I I -p  ,On j = 2

where C i ( e )  can be chosen arbitrarily small and C2(e) depends on
C 1(e).

P ro o f. From (A. 2), we have

; 12 II" ) ) f(u,é)--(2iti+ I él 2 ) .1( 2, ô)

11(  aanf l l _ p  C ( I I D J  II - + 11Dp 1 1, V II ) .-p

Noting (/—  a
a
n H 1 R IV = f,
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II( :n I P ) ) - p -41 R P )  f o
a
n H(0 )  f l p + II Rr f -f II-p

-11(k i l -1( 0 ))(R r f -f )IL+ I Rr f -f II-p

-11(  88n  H(0)) 2R1e)fil _ p +  Rr f - f II-p

RV) )  f I - 0+ E ID75RIVII-p)+11RIV - f11-0
i , j =2

Hence it is evident from (A. 5), (A. 9 ) and D i i R r  D i RrD i f.

80 -
L et L o — + + —1-1(' ), where denotes Laplace operator on

8t 2 8n
R- 1, and denote by { V ' ) } resolvent operators (2—L0) - 1 .

By Lem m a A . 3  w e can  obtain  th e  following essential esti-

mates.

Theorem A. 2. {  V r} A >0  is resolvent operators on Ln( [0, 00)

x 8D) and the following estimates hold.

(A. 12) 11 D i -17);°) f - p_ C11 f  II -0 2<p<oc.

(A. 13) v r f  11-p_ClIf
i,j=2

Furthe i f  p>(n-1)/2,

(A. 14) sup I V" f (t , f  p
(I, x)E(0,..) xaD

where above constants are independent of ,1 1.

P ro o f. It is easy to  check th a t V) ;°) i s  a convolution operator.

Therefore, W ) i s  a  bounded operator on L " (  [0, 00) xaD) with norm

1/2.

L e t BA
8
t( 2    

)  
. Then th e  following estimates are

0 2
well-known (cf. Stroock-Varadhan [8] ).

(A. 15) 111)1BAf f II-p

(A. 16) '111AB,f11-0_clIf11-0
1,5=2
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Noting (A--  0 —
Ot

(A. 17)

I F . ) v r f + f ,  we havean

K°) f = BA(  an
a  H"))Vr f + 13,f .

Note the following well - known fact.

(A. 18)I  D if II-p_C1(e) Ilf1=2

where C1(e) can be chosen arbitrarily small.
Making use of Lemma A. 3, (A. 15) and (A. 18), we obtain the

following two inequalities.

(A. 19) IID , II - p Ci(s) HID, V rf  II- p+ E II /A V f ) f;,;=2
+c2(.)IIf II-p

(A. 20) E ID E l I D  v r f  1 1 , 1i.i=2

+C2(6)11f11-p for ,1 1, 2< p < 0 ..

W e rem ark that M D , VZ ) f  — P< o e V , ■°) f II p< + c c  fo r  each
f  E Q ( [0, 0 0 ) X aD), because -17,;°) i s  a convolution operator, and so,
D,V,;° ) f  VP D, f , D ,  V ° f= f

Moreover we may assume C, (6) <1/2. Therefore (A. 12), (A. 13)
are immediate from (A. 19) and (A. 20). (A. 14) is clear by Sobolev's
lemma.

Let M [pi; 112] be the collection of a ll n x n matrices which satisfy

i) a = l  a 1 ,=0  ( j+ 1 )

ii) E I 2 .< <  [aa* ]E, 12 for any E o f R" (12,>0, p2>0)

and /1- 4[P1; P 2 ]  be the collection of all (n - 1) x (n - 1) matrices which
satisfy

ii)' 2 ‹ [ 6 6 * 1 i> .< P 2  I 2 for any of R -
1 ,

where an element o f  M [p i; t id  (resP. Al [pi; P2] )  is denoted by
a (a u ) (resp. 6 =  (6 i i ) i ,  j 2,•••, n ) •

Here, w e note th a t for every positive definite matrix a , there
exists a matrix a  such that a n  = 0  (i*1 ), a a * =  a.
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For each aG M  [P i ; P2], denote by 
H ( Œ 3 th e  space time harmonic

" 1 extension operator corresponding to D 1 + [aa*] 0 1 A  and for each

a  o f M [p i ; p a ] and a  o f /V/[pi; pa] , denote by  V A " )  th e  resolvent
" 1 a 

operator associated with D 1 + E [ea*] „ IA + / F a ' .
i=2 an

Theorem A. 3. {  V P ." 1} „ ,, is resolvent operators on LP( [0, 00)

x aD) and the following estimates hold.

(A. 21) D I VAE”  f  II .C1If II- 2 < p < + .

(A. 22) IIIAVAÈ4'''1f CI f 11-p •
j=2

Further i f  p >(n  —1)/2,

(A. 23)s u p I V » ' f ( t fII ,
( 1.x) .,0,...)x BD

where the above constants can be taken independent of and

aE 1 1 I [P i; P2] , 6E f a  [ui; 112] •

P r o o f .  Let {B , } be a n-dim. Brownian motion on (12, P )  such

that B4O =  0  an d  7  =  {t to, x1+ B ;= 0} . Then H 1' 1 can  be re-

presented in  the following form;

f  (to, x )= E f  (z -, + a • B,)

E f ( r , i x i•b),

where ix= {a i ; } b= ( a n ,  • • • ,

(A. 24) H [ °̀ 3../. (to, (x 1, i))

14) (t — to, )f (t, x + • ji —  x i •b)dtdji
ap

Accordingly, the following formula can be proved easily.

(A. 25) a a WOE' f  (to, — 
an 

H ( ' f)  (a)(to, x )  —  
2

D  (t, x ) ,
an i- 

where f  ( a) is defined as f  (a)(t, y )= (t,
Therefore, according to Lemma A. 3, we can see
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(A. 26) Ii On1 k o

[Ca +Z1 ail ]1 1 --P± C 2 (0 1 1 f 1 1 - ,
i =2 i =2

I t  is easy to check that there exists a constant C(u1, /22) such that

I ,< C 0 - 11, PO f o r  Va G M [p i ; /-12]

</I I - -C (/ / 1 ., for E A-C P I  ; ittd •I . j= 2

Thus, from (A. 26), we have

(A. 27) 1 O1 &n H E O E 3 f 11 C1( Dif
- p

e)11 II -p

+ C(pi,p2 ) IlD1f Il-p+C2(6)11f II-p •
1= 2

Moreover by an analogous consideration for

Br =[2 — D — — 1 [de] u m ] ,
i=2 2

we can obtain

(A. 28)D I  B lZ3 f II p011f II,
(A. 29) >72111/A B EZ'f I p<C (11 1 f f o r  v2>1.

Remaining part of the proof is same as in  Theorem A. 2.

L et a(t, x)= X)} . be a  n x n  matrix which is con-
tinuous in  (t, x) G  [0 , 00 ) X  D and satisfies

(A. 30) I [aa*] (t, x)— 8 0 1< e  a n d  ao (t, x) = 8i; V 1 3 To .

If we choose 6  sufficiently small, the minimal (absorbing) potential

operator GA associated with A— D, + —  [aa*] (t, ;  is well-
2

defined a s  a  bounded operator which maps L P([0, T ) x D) into
WA 2 ) ( [0, T) X D ) ,  w h ere  T <+ 0 0  (cf. Stroock-Varadhan [8]
Appendix).
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Moreover let us denote by HA the harmonic extention operator
and by G`,4, the resolvent operator associated with A.

In the following theorem, we summarize some important facts
about G A ,

 H A and G .

Theorem A. 4. I f  p>n+ 2,

(A. 31)

(A. 32)

(A. 33)

(A. 34)

(A. 35)

IIM G A f 11,T
sup D i GA f (t, X)

(t , .; ) E(:), T) xaD

sup G A f(t, X) I -CT11.f
( t , x ) e (O,T) x13

111A  G2̀1, f (t, All f p
sup I x)I Ilp

( t , ; -)E [ o . - )x a D

(A. 36) sup I GU (t, x)I C All f  II p
( t ,x )E [0 ,.0 )x D

(A. 37) HA g(to, x0)= E (1 0 , 0 ) [ g ( z - t o  ,  x r i o ) ]

for VE  W 1 .2 ( [0, 00) x OD),

where CA is uniformly bounded in A 1 and further (P (,o.xo), x1) is
the A-diffusion staring at (to, xo) and z-t.= in f {t te: x i EOD).

P ro o f. Let p>n+  2.
The following estimate is immediate from Sobolev's lemma and

the trace theory.

(A. 38) sup I Diu(t,X)1 Cllull';' )

(6 - )E[0,0) xaD
(A. 39) sup I u(t, x) ClIttli (pi ' 2 ) .

.0) ,a)

Therefore, (A. 32), (A. 33), (A. 35) and (A. 36) are obvious. For
any g  o f  C7( [0, 0 0) X aD ), (A. 37) holds (Stroock-Varadhan [8]
Appendix). Note

HA g= H ( ')g+ GADE Hmg ,
where

DE = — ([aa.] (t, x)-4„)1X ., .2  i=1
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For V g  W p " '" (  [0 , 0 0 ) x  OD), there exists a  sequence {g„} o f  Cr( [0,
00) x aD) such that { g,,} converges to g  i n  Wp"'"( [0, 00) x aD ) . It
is clear that I -Pg„ converges to  I -P g  with uniform norm by means

o f th e  result about Brownian motion.

Hence (A. 3 7 )  holds fo r any g  o f  Wip,2)( IV 0 0 )  XaD).

Remark 4 .  All estimates in  Theorem A. 4  a re  valid for

1A =D t + E [act*] 1 ;  ( t ,  x ) IA

i f  there exists a  strictly positive definite matrix a  such that

E  [cra*] x )— a ii i< e
i,J=1

an d  if  we choose e  sufficiently small.

References

[ 1 ] K. Ito. Canonical measurable random functions, Proc. International Conference
on Functional Analysis and Related Topics. Univ. Tokyo Press (1970) pp. 369-
377.

[ 2 ] K . I t o  and H. P . McKean, Jr., Diffusion processes and their sample paths,
Springer Verlag (1965).

[ 3 ] N. E. Karoui, Diffusions avec condition frontière associées à  u n  opérateur
elliptique dégénéré, C. R. Acad. Sc. t. 273 (1971) pp. 311-314.

[ 4 ] H. Kunita and S. Watanabe, On square integrable martingales, Nagoya Math.
J . Vol. 30 (1967) pp. 209-245.

[ 5 ] 0 .  A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'ceva, Linear and quasi-
linear eqations o f parabolic type. A. M. S. Transi, of Math. Monograph No. 23
(1968).

[ 6 ] S .  Nakao, On the existence of solutions of stochastic differential equations with
boundary conditions. (to appear).

[ 7 ] D. W. Stroock and S. R. S . Varadhan. Diffusion processes with continuous
coefficients I, I I , Comm. Pure Apple. Math. Vol. 22 (1969) pp. 345-400 & pp.
479-530.

[ 8 ] D. W . Stroock and S. R. S. Varadhan, Diffusion processes with boundary
conditions, Comm. Pure Appl. Math. Vol. 24 (1971) pp. 147-225.

[ 9 ] S. Watanabe, On stochastic differential equations for multi-dimensional diffusion
processes with boundary conditions, J . Math. of Kyoto U niv. Vol. 11, No. 1
(1971) pp. 169-180.

[1 0 ] S. Watanabe, On stochastic differential equations for multi-dimensional diffusion
processes with boundary conditions II. (to appear).

DEPARTMENT OF MATHEMATICS, OSAKA UNIVERSITY
DEPARTMENT OF MATHEMATICS, NARA WOMEN'S UNIVERSITY


