J. Math. Kyoto Univ. (JMKYAZ)
12-3 (1972) 451-478

On the uniqueness of solutions of
stochastic differential equations
with boundary conditions

By

Shintaro Nakao and Tokuzo SHicA

(Received November 26, 1971)

It is very useful to formulate the boundary problems of Markov
processes by means of stochastic differential equations.

Recently, S. Watanabe showed in [9] [10], the existence and
the uniqueness of solutions of stochastic differential equations with
boundary conditiors in the case that all coefficients are Lipschitz
continuous. On the other hand, D. W. Stroock and S. R. S. Varadhan
in [8] formulated this problem as sub-martingale problem and proved
that if diffusion processes with non-degenerated continuous coefficients
have boundary conditions with Lipschitz continuous oblique derivatives,
then the existence and the uniqueness of solutions of the sub-martingale
problems are valid.

We will refer to N. E. Karoui [3] as for the equivalence of sub-
martingale problems and stochastic differential equations with boundary
conditions.

We will also refer to S. Nakao [6] who showed that there exist
solutions if all coefficients are continuous.

In the present paper, we will be concerned with the case that
the boundary conditions have non-degenerated second order term with
continuous coefficients and solve the uniqueness problem.

Finally, the authors would like to express their hearty gratitude
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to Professor S. Watanabe for his valuable advices.

Let D=R;={x=(x' 4% -, x)eR": x'=0} D= {xeD: x>0}
and D= {xeD: x'=0}.

Let &, b, 6, ¥y and p be given as follows:

a= (a;;) =1, n: D>RQ®R"V
b=(b;) =1,+-,n: D>R"

o= (a:;) i,7=2,,n: 0D->R QR
=0 i=2,,n: dD—>R
o:0D—[0, o).

It is assumed that they are all bounded and Borel measurable.
We corsider a stochastic differential equation of the following form;

dxi=a'(x)1p(x)dB,+b,(x)1o(x,)dt +do,
dxg (24 (xg)].p(xl)dB +b (x,)lp(x,)dt

1
( ) +d’ (x,)lag(x,)dM.+7’;(x:)1an(xx)d¢: i=2y 37 ) n
lap(x,>dt=p(x,)lan(x,)d(p, y
where
B:: (B}, t) Mt (Mt, .M;,),
a'(x)1p(x,)dB,= jz_aii(xt)lD(xt)dB{ 1=1,2,-,n
and ' '

a"(x,)lap(x,)dM,=§"20.~,-(x,)lap(x,)dM," =2 e,

1,, 1sp are indicator functions of D, 8D. A
To be precise, by a solution of the equation (1), we mean a family
of stochastic processes %= {x,=(x}, x}, -+, x}), B,=(B}, B}, ---, B}),
=(M} -, M), ¢} defired on a stardard probability space in the
sense of K. Ito [1] with a right continuous increasing family of Borel
fields (@, F, P; &,), i.e. 9,+,Eef>703,_+5=9,, such that
(i)  with probability oné they are all continuous in ¢, B,=0,

M,=0, ¢,=0 and x,€D for each #=0,
(ii)  they are all E?,—aclapted, i.e. for any £, they are <,-measurable,

1) R"@R" is the class of linear applications of R” into R™.
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(iii) with probability one, ¢, is non-decreasing and ¢, increases
only when x}=0, i.e. ¢,=Stlau(xs)d<os,

(iv) (B, M,) is a system of <, martingales such that (B’ B>,
=0,;t, (B, M7),=0 and {M‘, M?),=d;;¢.,

v) %={x., B, M., ¢} satisfies

x}—x(‘,=S;a’(x,)l,,(xs)dB,JrS;bl(x.v)ln(xs)dSwL(m

X S‘a‘(x,)l,,(x,)st—i— S‘b;(xs)ln(xs)ds
@’ . "
+ Soo"(a?s)lap(xs)dMs—!-Sor.-(fcs)lan(xs)d(os i=2,

S;lap(x,)ds= S;p(md@ ,

where ¥ denotes the projection of x on 8D,
@ (£)dB.=Sa,(x)dB!, o (%)dM,= }ﬁza;j(a?,)de
i=1 =

and the integrals by dB and dM are understood in the sense of
stochastic integrals.

Remark 1. In (1), if p=0, it is called “non-sticky case”. Then
if (%) |=(ad(x))"=c Yx€D, for some constant ¢=>0, (1)’ is
j=1

equivalent to the following equations;
si-w=\ w@)aB.+ { bxds+o,
| si-ai=\ wx)aB.+ { bexas
| +\e@am+{r@ae.  i=2,n.
Then S:lap(xf)ds=0 holds automatically.

Assumption (C-I). There are positive constants s, x such
that

(a) a(x) is continuous on D and /11|$|2<2 [aa™*];;(x)6:6,= | &|*
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(b) (%) is continuous on @D and ullé‘lzg.zﬂ_‘.z [oo*]“(x)sis,.guzlélz
vee R, -

Now, our result is summarized in the following.

Theorem 1. Under Assumption (C-I), the solutions of the
equation (1) is unique in the sense of probability law. That is, if
X¥=(x,, B,, M,, ¢,) defined on (2, <, P; F,) and ¥ = (x., B:, M, ¢})
defined on (2,F’, P'; F,) such that x,=2x, a.s. and x,=x a.s. are
two solutions of (1), the probability law of the processes {x.} and
{x;} on the space { W, B( W)} coincides, where W is the Fréchet
space of all D-valued continuous functions on [0, o) with the
compact uniform topology and B(W) is the topological Borel
field on W.

First, we consider the special case b=0, y=0, p=1 and then, We
reduce the general case to this special case by means of drift trans-
formations and.time-changes.

For the sake of technical convenience we treat the following

time-dependent case.

Assumption (C-II).
a) a(t,x): [0, 00)xD—>R'QR"
6(t, %) : [0, 00) X0D—>R QR
« and ¢ are continuous mappings.
b)  au(t, )=1, ai:(¢, 2)=0 (ix*1), «;;(¢, x) =35,
for Vt=3T, and ¢;;(t, x) =0;; for Vté Ts. '
©) 31 laa 1t )—dyl <o, 3| [ar*] (4 =] <

and for every £ R",
€ Zg_z_l [aa™] -'j(t, x)fiéjgllzlfl %
mIE1P= ) oo |is(t, )88, =l €12,

wh:ere e depends only on 4, s, To and is chosen in the proof of

Theorem 2 and Theorem 4.
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Consider the following equation under Assumption (C-II).

Xl = S 1,(2)d B!+ L

- K — g o (s, 1)1y (x.)dB. +§ (s, E) oo (x)d M.,

Z=2, ...’n

S, Lop(2)ds =gl .

It suffices to prove in the case #,=0.
Let ¥=(x,, B., M., ¢.) on (2, F, P; F,) be a solution of (2).

Lemma 1. Let X(t) be a 'continuous martingale which is
uniformly bounded on any bounded interval and ~1r(t)20 be a
continuous increasing process such that E(t)<+ oo for each

t20. Then X(Ww(®) | X)) is a martingale.

The proof of Lemma 1 can be found in Stroock- Varadhan’ (8]
D
Lemma 2:1. : : f A

Lemma 2. For ¢ of the equation (2), {Eqa, Yoo for each
t=0 and 11m<p, + oo, a.s. (P)

Proof x,—xo—g 1(0 w)(x )dB‘+go, .

Let & be a Brownian local time at the origin and A, —t+{-‘, It
is known that ¢, has the same law as £,:. Using this fact ‘and
the properties of Brownian local time, we can conclude this lemma
(cf. Tto-McKean [2]).

Lemma 3. Let f(t,x) be a bounded continuous function on
[0, 00) XD such that f(t,x)=0 for Vt=3T>0 and let g(s, o),
h(s,w) be bounded nom-anticipating functionals such that g(t, w)
=h(t,0)=0 for Vt=3T>0. If o

X0 =f(t, x(0) g5, s~ s, ).
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is a martingale, then
@ SOx)=2E| [T f (s, 8)do. |- E[ [T mg (s, 03ds]|

—E[S:e‘*”'h(s, w)d%]
holds.

1 because of limg,=oo a.s., the

T’ t->c0

integrals of the right hand of (3) are well-defined and by Lemma 1
t ¢

x@\ e do.~\ e X(5)do. is 2 martingale.

Proof. Noting S:e’“" do,=

Therefore —i—E [X(oo)]=E[S:e'*’"X(s)d¢s:|. (3) can be ob-
tained by arranging this equality.

Throughout the present paper we shall assume p>n+2. We
will introduce two functionals as follows and obtain some L’-estimates
of them.

Let m[h]=El:S:e"""h(t, E,)d¢,:| for any % defined on [0, 0o)
8D and vy [u] =E[S:1D(x,)u(t, x,)dt:| for any  defined on [0, T)
X D.

Theorem 2. Under Assumption (C-II), we have
4) i [B] | CAllR||-,»  for YheL? ([0, =) x8D)

) lvr () | <B:llull,.r for YueL’ ([0, T) xD),

where C, is uniformly bounded in i=1.

In order to prove this theorem, we approximate {x,} in the
following procedure. Let z,(s) be defined as follows:

_k_. for _k_és<ﬂ, k=0, ]_, eeey m:—1
mﬂ(s): m m m
m  for s=m’.

2) The definitions of ||-||~» and ||-||p,r are stated in Appendix.
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Let {x™} = {x{™1, -, (™"} m=1,2, - be defined by

2 =%
271 = i { oD@ (70(5), #r.00)dB.

10D ru(), FrdM. =28, .

Then,
@ (le@ends=.
is verified trivially.

Also, we can show by usual method
(8) P(rogfxsxllxﬁ"')—x,l>e)—*0 as m—>oo for Ye=>0.

Lemma 4. If # of Ci*([0,0)xD)® satisfies u(t, x)=0 for
vi=T>0, then,
) u(0, xo) _ .

_ E[S:e'”’- 1<0,,,)(x})|:D, + 35 1 fa0], (ra(9), #r) D?f]

u(s, x§"’)ds:|
+E[ (" a-D.— 31 2 10)y (), B DD |
u(s, £")do |
Proof. Applying Ito’s formula to (6) for u, we see that

u(t, xm) — S:)l(o.m)(x!)[ 21% [aa*] i (An(S), Xmpir) Diu(s, xﬁ"”):|ds

ii=

(LS5 2 106 Gra(), Eracd DiyaCs, 5 + Daa(s, 1) Jdon

‘ —S;Dsu(s, x™)ds

is a martingale. Therefore, we obtain (9) by making use of (7) and
Lemma 3.

3) C32([0, o) X D) denotes the class of functions which together with their first
t-derivative and first two x-derivatives are bounded and continuous.
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We define two sequences of functionals;

w” h]=E [S:e“"”'h(t, ES””)d:m] heCy ([0, o) XaD)*»
() = E| [ e 10 (aut, siyat] weCrio, 7)< D).

Lemma 5. There exist constants C,.., Bn.r such that

(10) | (R | ZConllkll-,  YRECF([0, 00) XaD) .
(11) v ul | <B,.cl|ull,,r YueCi([0, T) x D),

where C, is uniformly bounded in i=1.
Proof.
m2—1 GHD)Im
it =S B[ et w)do. [+ B [T emhts 3)d ]

j=0 ilm

We shall prove only
|E[ (s, xﬁ”))d¢s:||<cm||h||~,,,

since’ other terms can be proved in a similar way. (6) is rewritten
in the following form "

[ 21 = g, 1_|_S 10,y (2 d B(0,, )5)+¢:+m o
(12).
- % xf,,'?,’ 2+ o (m, x,,)S 1, ,,,,(xf,,'",jg)dB (,9m)
+o'(m, %,) (M,,n,— M,) =2, -, n.

Let P= P( |,) be the regular conditional probability of P relative to
G and EZ«, EZ'H,,,, B, B,H,, B,, M M,+,,, ,,,, @ =¢1im—¢n and
#=%m. Then, = (x,,B,,M,,qa,) on (£, 9 P EF) is a solution of
equation (2) with coefficients {a(m, x..), s(m, x..)}. However, we can
regard {a(m, x..), s(m, %)} as constant coefficients, as far as we con-
sider the probability space (2, &, ﬁ; .él"\,). Suppose ¥= (x,, B,, M., ¢.)
on (2,F,P;d,) is a solution of the equation (2) with constant

coefficients (a, 0).

4) C7([0,00)xaD) is the class of infinitely differeentiable functions havmg com-
pact support.
5) 6 is the shift operator.
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Let H™ be the harmonic operator corresponding to D,+%"Z1
5=

[aa*);; D% and V)1 be the resolvent operator corresponding to
LRI P 2 % o _
D'+;,‘§_:’22 loo*]:; D}; + ﬁnH , where on D,. |
For each & of C{([0, o) xdD), it is known that H™V,*h
belongs to C=([0, o) xD) and there exists constant 7" such that
HV=p(t, x)=0 for Vi=T. Applying Ito’s lemma for H'“ V,[*Ip,
we see that
[a] Y/, [a.0] _ ! 1 A * 2 0 ol |
H V)\ h(ty xl) D:+——2 [dd ]5iDii+'_H i
0 2= on
V(s x,)do,
is martingale.

Accordingly, by Lemma 3
(13) H@ V0, x,) =FE [S:e""’*h (s, i,)d:ps]
and
|E[{emhts, 22do. | = 1 BV 00, 1)
<sup| Vi (¢, ) | <Cill Al -, ,
where C, is bounded in agi.

The last estimate is found in Theorem A.3 and Theorem A.4
in Appendix. It is uniform in a&€M|u; p.] and o‘EM[,ul; .

(cf. Appendix)
Hence, we have obtained the following estimate as to (12)

oo

(14) |E[S°"e—mh(s, )| g]l _ |§[S e (s, §§"'))dgﬁs]|
<C,.lhll<s.

By an analogous argument we can obtain

(15) =C.allhll-,.

B G+1)Im . 2 do | F
. e (S, Xs ) (osl ilm

ilm

Taking expectation in (14) and (15), the first estimate in Lemma 5
follows. |
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Next, we shall estimate the functional »{?. We may assume
{a, s} are constant matrices by the same arguments as z"

Let us denote by GI* the minimal (absorbing) potential operator
on D qssociated with D,+idi’;}1%[aa*];,D?j.

It is well-’known that for each f of Cy([0, T) xD), u=Gyf
belongs: to C=([0, T) x D) and satisfies the following equation. |

16) { [P B gttt Jems
. u]ap=0. ‘

Therefore it follows easily from Ito’s formula that

an w2+ 1om@r (s 235 Dauts, 2)do

is a matringale. ‘Applying Lemma 3 to (17), we have

a8) )= E| {0 (s 245
—E[ (e Doucs, 2)do. .

By Theorem A.4 in Appendix, we have

|00, x0) | = | GEf(0, %) | <Crll f [l5r
IDiu(s, £)| = | D:GEf (s, ©) | <Cil fllor for YxEaD.

Thus, it is immediately from (18) that

(19>’ |E[S 721, (EDF s, xs)ds]ISBrllflln =1,

By 19 ‘and the similar arguments as the proof of (10), we can
obtain the estimate (11).

Now, we will prove Theorem 2, by making use of the estimates
in Lemma 5. o

Let us denote by H® the harmonic extension operator of

D,+— ZD.,, and by V\® the resolvent operator associated with
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_1_" 2 i )
D,+2§D.,+anH .

We apply Lemma 4 to H®V®h (heCy ([0, T) x0D)). Then
noting H® V®h(t, x) =0 for V=T, we have ’

(20) HOY® h(0, x5) = E[Sre~)\9’. E" l
0 i, Jj=2 2
81— [60*] 13 Gan(S), Fmc)] D3 VIO (s, xﬁm))d%]
+ El:g:e‘*’"h(s, x§m>>d¢s]

+ EI:STe—w. 1o, (22) 2”: 1
(3= Lea®) (a5 £ D HO VIV, xﬁ"")ds]

Noting || D% Vi"h||~,<C\l|All~,, IID HOV®hl, <CAIIh||~,,, | HOV®
h(0, x,) | <C,||kl|~r, (where C, is uniformly bounded in i=1) and
Assumption (C-II) (cf. Appendix, Theorem A.2), we can obtain
that

@D 2”1z _C/\”/«‘(M)HT —CA”V("‘)” +Cy,

where ||| is the functional norm of ,{" on L?([0, T) x8D) and
Il is that on L*([0, T) X D).

Let us denote by G§¥ the minimal potential operator on D associat-
ed with D, +Z D .

A2
Applying Lemma 4 to #u=G{"f (f€C; ([0, T) xD)), we have
(22) £ (0, x0) = E[S L0 (RS s, x‘"”)ds] B
B[ e 10w 35 210, ~ lae ] (), 20a00))
Dy G £ (s, 7)ds |
—EI:S e D.GRf (s, E)do .

Note that [GI"f(0, ) I=Cillfllpr, DGO fllor=Cillfllsr and
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ID,G f(s, ) | <Cr||fll,,r hold (cf. Appendix, Theorem A.4).

Accordingly, we see
(23) i < 5 Crlwiall +2C; - va=1.

Choose €0 to be ¢Cr,<<2 and eC,<<2 for Yi=1l. ' Then there exist

C. and ET., such that are independent of m and
. ,

@) 1a1=C, IHI<B, (=D

| .
NOW, remember a(t, x) = {B,,} fj=1,m (f(t, .i) = {6,’1'} i,j=2, fOI'
t=T,. Accordingly, repeating a similar argument' as the proof of
Lemma 5, we can obtain the following estimates.

1

(25) |ES[ s, 1) do, || Cillkl-,

@) B[ e temucs a3ds | <Brlul,
for YT>T,; fixed,

where (23,\, §T are independent of m and i=1.
From (24), (25) and (26), we have

@7 | [h] | < (Ca+CDllAll-~,
(28) L3 ] | < (Bro+ Br) bl r .

Noting (8), (4) in Theorem 2 follows immediately from (27) for
heCy ([0, o) xXaD).
On the other hand, from (8) and (28)

|E[§ 1 Lo (DU, x,>dt]|<<én+Br>nun”

Therefore, (5) in Theorem 2 is also obvious for YuesCy ([0, T) x D),
since ¢,<t, a.s. (P). Moreover, it is easy to extend C; ([0, co) xXaD)
and Cr(l0, T) x D) to L*([0, o) x8D) and L*(|0, T) x D), respec-
tively. v

Let A:D‘+,,,E"=1é_[ad}é‘] '(t, x):;D% and denote by G* the minimal
(absorbing) potential operator associated with A and by H* the
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harmonic extention operator associated with A (cf. Appendix).
For each ucL*([0, T) X D) (T<<+oo: arbitrarily fixed), u=G*f
belongs to W%P(10, T) xD)® and satisfies the following equation;
—Au=f
(29) {
u ’ ap= 07
as to H*,

(30) H*h=H®h+G*De H”h holds for each heCy*([0, o) x D),

where De— > _‘( [aa*] ij (t x) 6:1)D

i,i=

Theorem 3. Fix any T<<+oo. For each h of Ci*(|0, o0) XaD)
and geL*([0, T) xD), put u=G*g+H*h. Then

B ult, x)

. Sllm,.,,)(xi) (D, 13w Gs xs)D?,-)u(s, x)ds
S (D + 2,% loo*] :; (s, xs) D} + : )u(s, %s)do,

is a martingale.

Proof. It suffices to prove for u=G*g, since H”k belongs to
Ce»([0, e0) x D), by (30).

Since # belongs to W;%®(10, T)xD) and u|s=0, it is not
difficult to show that there is a sequence {u.,) of C=(|0, T)xD)
such that each #, vanishes on 0D and {#.; converges to # in
Wi? ([0, T) x D).

Let us denote by X,(¢), X(¢) the processes given by (31) cor-
responding to u,, u respectively. It is sufficient to prove E|X.,(¢)
—X(#)|—0 as n—oo, since X,(?) is evidently a martingale by Ito’s
formula. Now,

EIX@®)—-X.@®] ésuplu(t, %) —u.(4, %) |

+E[g;1(o,m)(x}) I (D -I—Z laa*] ;; (s, %s) D?j> (u—u) (s, xs):ds]

i j=1

6) The definition of W ([0, T)XD) appears in Appendix.
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[S |—(u u.) (S, Xs)

d‘ps:| I]+Iz+13 .

Clearly I,, I; converges to 0 as n—oo, because there exists a constant
C, such that

sup|u(f, ) | = Cyllul5?, Sup
t,x

2wt »|=Clulg
(cf. Appendix (A. 38) (A. 39)).

Theorem 2 implies |L| < Cllu—u.|$® for a constant C. Therefore,
E|X®)—X,(t)| =0 as n—>oo.
Let

Li=D,+>Lpx+ aHm
iz 2

and

E I. u(t x)D:zJ+'—HA

VJ=
Lemma 6. There exists a unique solution v in W?(0, oo)
X0D) of the following equation;
(32) QA—L)v=h,

for any h of L*([0,o0) x0D), i=1. Moreover if we denote the
solution by Vi\h, there exists a constant C, such that

(33) sup| Vih(Z, 2) | <Cillhll-, .
Proof.
(L~ Ly) V)EO)h““'I’<SL1PZ_ | [o6* ]u(; x) —dil Z | D% V®h -,

211+Iz.

~p

i A_ o1 /O
g v

By Assumption (C-II) and Theorem A.2 in Appendix, Il<iC|Ihl|~,,

L=| 2 ot —EO) Ve

_=|Zepene vion|_<£Cinl-,

(by Theorems A.1 and A.3 in Appendix).
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c+C
2

If we choose ¢ in Assumption (C-II) to be < ><1, then

(34) Vi= VO S (L~ L) V)

is well-defined as a bounded operator on L?( [0, o) Xa8D).

Noting that v= V®h is unique solution in W; ([0, o) XaD)
of A1—Ly)v="h, we can show easily that v= V k& is unique solution
of (32).

(33) is immediate from (34) and Theorem A.2 (A.14) in
Appendix. '

Theorem 4. Under Assumption (C-II), the uniqueness for
the stochastic differential equation (2) is valid.

Proof. Suppose that X=(x,, B,, M,, ¢.) on (2, &, P; &¥,) and
¥ =(«i, Bi, M/, ¢}) on (&, &', P’; &F;) are solutions of (2). Fix any
T=0, let

heCy(10, ) xaD) and feCi(l0, T)x D).
Applying Theorem 3 to HAV"h, we see that

HA VRt 5) | LVih(s, 5(5))do.
is a martingale. Taking expectation
@) HA VOO, 1) = E[ [ e [ (L~ L) V) (s, F)do. |
Further

A7t )+ \ Lo aDF (5, 2dds ~ {2621 (s, 7do

is a martingale and so

@6) GO, )= E| [ 1005, 2)ds |

_ E[S:% G*f (s, is)d%} .
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(35) implies H*V®h(0, x,) =m([I— (L—L,) VOl h).

Since it is easy to check that {[/— (L—Ly) V®1h : heCy ([0, o)
x08D)} is dense in L*( [0, oo) X8D), and hence there exists a sequence
{v.=[[—(L—Ly) V®1h, : h,eC; ([0, o) xaD)} which converges to
a given v of L?([0, o) xX8D). Thus

H* V0.0, 20) = H*V®1.(0, x0) = m [v.] .

According to Theorem 2 and Lemma 6, H*V, and ux are bounded
linear functional on L*( [0, =) x9D). So we see

G H'Vio(0,x)—ml]  weLr([0, =) xaD).

Therefore

(38) E[S:e‘”"v(t, x,)d¢,] - E’[S:e”*”f v(, x:)d¢:]
we ([0, o) xoD), Vi1,

However, since both sides of (38) are analytic in i>0, (38) holds
for each 17>0. Hence

@9 E[{ o6 2)de. |- B (65 o

for Yoe(C,”NL*(|0, o) x9D) and YT >0.
From (36) and (39), we conclude
(40 E[S:v(s, xs)ds}=E’D:v(s, x;)czs]

for YoeC,MNL ([0, o) X D).

Now, we can complete the proof of Theorem 4 by standard
arguments.

Theorem 4'. Suppose that «(¢, x) and o(i, x) satisfy the follow-

ing conditions.

(@) There is a constant strictly positive definite (nXn) matlrix a
such that

E_ | laa™]; (2, x) —a:;| <e.

7) Cy is the class of bounded continuous functions.
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(b) There is a constant strictly positive definite (n—1xn—1)
matrix r such that

Zﬂzl [0'0'*] ij (t, i) - T,'jl e,

(c) a(t,x) and o(t, %) are continuous in (t,x)€ [0,00) XD and
(t, x) € [0, o) X0D respectively.
Moreover there is a constant 0<<T,<<+ oo such that

ac*(t,x)=a for Yi=T,

o* (1, X)=r for Vi=T,.

Then, if we choose ¢ sufficiently small, the uniqueness of the solu-
tion of the stochastic differential equation (2) is valid.

The proof is essentially same as the proof of Theorem 4, if we
use some estimates of Theorem A.3 in Appendix.

Theorem 5. Suppose that o and o satisfy Assumption (C-I).
Let b and v be bounded measurable functions on D and 8D, respec-
tively and o=1. Then the uniqueness of the solution of (1) is
valid.

Proof. First we shall prove this theorem in the case that =0,
7=0 and any=1 a,=0 (ix1). Fix point %, of D.
Let U,(x)={x€D; |x—x,|<n} and
r,=inf {{=0 : x,€ U,(x,)} \n.
For any x€ U,(x,) N8D and any ¢>0, there is a neighborhood of *;
N(x)={yeD; |y-%l<a  3>0,
such that
35 aa] () = [aa*] (B | < for Yy N(D)
and

HZ;I [66*]:; (¥) — [as™]:; (X)) |<<e  for Yye N(x)NaD.
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Theorem 4’ implies that the stochastic differential equation (1)
has the unique solution up to the first exit time from N(x) or #,
if we choose ¢ sufficiently small.

On the other hand it is known that the uniqueness of (1) is
valid up to the first hitting time to the boundary, if the solution
starts at an interior point.

U.(x,) 0D can be covered with finite number of N(x). There-
fore, by the standard arguments and taking regular conditional proba-
bilities, we can prove that the uniqueness of (1) is valid up to ..

Accordingly, in order to complete the proof of this case, it
suffices to note limr,=co as. (P). But it follows easily from the
boundedress of « and .

Now we can extend to the general case, when a;=1, a;=0
(ix1) is not assumed, by means of a transformation of Brownian
motion and a time change (cf. Watanabe [9]).

Next, suppose that ¥=(x,, B,, M,, ¢,) is a solution of (1) with
[a, b, s, 1, p=1].

Let P be the probability measure on (2, F) such that for each
t and each Be%,,

PB) = exs| ~ (' bcorta(eaB— L\ 1ot ()10
rrram =3\ 11 )de JaP).
Then

=[x, Bi= B+ (o b1 ds, M= M+ (o120, o

is a solution on (2, &, ﬁ; <F,) which corresponds to [a, =0, s, y=0,
p=1]. Therefore, it is reduced to the previous case.

Now we can complete the proof of Theorem 1 as follows.
The uniqueness of (1) with [a, b, o, 7, 0=0] is reduced to the case
la, b, 0, 1, p=1], and the general case [, b, g, 7, p] is also reduced
to the case [a, b, g, y, )=0] by time changes, cf. Watanabe [10].
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Remark 2. The uniqueness implies that the solution x, of the
equation (1) defines a unique diffusion process (a strong Markov
process with continuous paths) on D.

It is the diffusion process, whese infinitesimal generator is given,
roughly speaking, by the differential operator A with the domain
characterized by Lf=p-Af on 98D, where

A:.i—'__‘ % [aa*]; (x)D?,‘-FZ"Ib,-(x)D‘.
= >0 L 10 (DD + ST (R) Dy + 2
L_,.'J.=2 2 [‘w ]u (x)D,;+§r.(x)D,+ o

Remark 3. If the coefficients of the stochastic differential equ-
ations (1) are time-dependent, our problemjremains open.

Appendix

Let D= {xeR"; x,>0}. Given #=C;y([0, T) xD), define the
following norm.

loell5:? = el + I Dellr+ 35 |1 D2et]r

where ||-|l,r is the ordinary L,norm on [0, T) xD. Denote by
Wa ([0, T) X D) the completion of Cy([0, T) x D) with respect to
(RPN

If T=oo, we drop the subscript 7. In order to avoid confusion,
we use |-||~, to denote ordinary L, norm on [0, o) XaD. W?[(0,
T) x8D) is defined in an analogous way. Define

- x -
h(t y) = 1('20’t(2_n;)"72_ exp{— («x1+|¥|*)/2t} x>0, yED,
where ¥ is the projection of ¥ on 8D, and let

AD  HOfs 0 =HYf D=\ at| ayne—s z-nra, .

Then Hf is the space-time harmonic extension for <i+%A> of f

0s
in [0, o) x8D.
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It is easily checked that {H "}, ., is a semi-group. Let %H“’)

denote its generator. Then
é/\ 5 _ . B
(A2)  (ZHO) G 0)= = @it 101977 ),

where the symbol “~” denotes the Fourier transformation. Denoting
-1
by R{® the resolvent operators (x—aa—nH ‘”’) associated with

{Hx(?) >0 5
(A.3) R® = So e HYdx, .

We know the following estimates about R (cf. Stroock-Varadhan

(81)

AD RS Z IS - 1< pieo
(A5  SIDROSILECIf - 1<p<oo,

where the constant C is independent of Ai=0.
Next we introduce the following L,type norms on [0, o) xaD.

|z =yl
(9y-pa=|§, o T LED T DV gyas |

mf|"~1:: I|f||~1>+<<f>>~#.x+<<f> ~pot o

Lemma A.1. Let (X, m) be a ofinite measure space. Fix
a; l<<a<<p+l. For each funclion f(z:x) of L'[XXR'; dmdx]
such that D;feL?[ XX R dmdx], the following inequality holds.
lfz: 2) —f(z: ) |* T“’
a6 [{ma| =D dray

SCUOZND,F Noncnwy+ Cul L foerrr,

wheré C.(e) can be chosen arbitrarily small and C,(c) depends on

Ci(eo).
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Proof. Let us put

- |f(z: ) —f(2: DI |
"‘Li Sxm(dz)gglx-ype ‘ lx—y|* dxdy

(] V@mose: DI

|x-y]|<€ lx—y|®

for any ¢=>0.
Noting

f(z: ©)—f(z: M IP<C(If (22 1) 12+ | f(x: 9D
we can observe I,<<C-&'*|| f||torx <z -

Next we will estimate I ;
4
|f<z x) f(z y) |ﬁ— IES Jf(z xly R xj-l) u: yj+1v Y yl)dul

gglxi—yjl’"‘lSyID,-f(Z:xl, ey X, Uy Vi, ot J’/)lpdul

S |D,f(2 X1, 5 Uy Yivry *0y y1)|pd%l

| 21—y |<E | yle

<si{ m@aoff ,Ked"dyg.v.« (x— y'lvlfww

27 (WL Al
R! i

S—ZI‘-S m(dZ)Sdedyﬁ__'_.

gz'g S 1D, f(z:2) | m(dz)dxg dvdu—— 1"
= ’ <&10|<E (lul*+ [v]*)*"
<C-e&" aZ” ;f”z"[xw’]-
Therefore, we can put C;(e) =CU?- "=t Cy(e) =CHr- "0,
Theorem A. 1.
(A.D E |1DLHOf|,ZCIfISY - p>1,

where AN =1f 1~ + ZHD Sl 2 JD: ,f||~p+ DS I~ -

Proof. The following estimate is known (cf. Ladyzhenskaya &
others [5], Chap. IV).



472 Shintaro Nakao and Tokuzo Shiga

(A.8)  SIDLHOL|,<C(SUDS -,
Hf e I ED TR 1],

o Jo It_S|1/2+ﬁ

Noting
SUD S 1-ZCOUSf -yt STIDLS I,
(A.7) is immediate from (A.6) and (A.8).

Lemma A.2. If 2<<p<< oo and i=1,
(A.9) 1D, R f (| <o<C' (D f |l <p+C* (N flI~p,

where constant C'(e) can be chosen arbitrary small and C*(e) de-
pends on C'(e).

Proof. By the analogous calculation to (A.8),

(A.10)  ||D,R® f||~,,;c{gandxg°°8” (8 2) —f(s, 01 dtds]"’,

o Jo lt_s|p+1lz

where C, is bounded in 2=1. Therefore (A.9) follows from (A. 10)
and Lemma A. 1.

Lemma A.3. If 2<<p<Too,
A1) | LA <C@IDA I+ CHIDS It G,

where C.(¢) can be chosen arbitrarily small and C.(¢) depends on
Cl(e).

Proof. From (A.2), we have

T T
(;—nﬂ“”)zf(ﬂ, 0)=(2ip+1612)-f(u 0)
|(Zae) 7| =capsiz+ Sipiri-.

on

Noting (I— %H“’)) RO f=f,
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|Gl =]

| (& m)®or-p|_+1ROF 1

Rof—f—( L HO) £ +IROF =71

(2 mo)ros| + 1RO £ 11
<CUID,ROF |4+ 331D ROFI-)+ IR~ I-s.

Hence it is evident from (A.5), (A.9) and D;;R®f=D.R{" D;f.

_aat—+ %+ —%H © where A denotes Laplace operator on

D= R", and denote by {V\"} resolvent operators (A—L,)™"

Let Lo:

By Lemma A.3 we can obtain the following essential esti-
mates.

Theorem A.2. {V®},so is resolvent operators on L*([0, o)
x9D) and the following estimates hold.
(A.12)  ID.VEOSfILZClfll-  2<p<oo
(A13)  SIDLVOSI-=CIf .

Furthe if p>(n—1)/2,
(A.14) _sup | VEOFEOIZClIf~,

(t,x)E[0,00) x3D

where above constants are independent of i1=1.

Proof. It is easy to check that Vi” is a convolution operator.
Therefore, V® is a bounded operator on L”( [0, o) X8D) with norm
1/

A \-1
Let BA=(/I 0 A) . Then the following estimates are

ot 2
well-known (cf. Stroock-Varadhan [8]).
(A.15) ID, Brf | <»=<CIll f I~

(A.16) S IDYBS=Clf -
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0

Noting (/1 o %) A= aa—nH OO f+f, we have

(A.17) VOS=B( L HO) Vs Bas
Note the following well-known fact. |
(A18)  SUDS14=Ci(&) 33 ID5S -+ CulN S -,

where C;(¢) can be chosen arbitrarily small.

Making use of Lemma A. 3, (A.15) and (A.18), we obtain the
following two inequalities.

(A19) D, VS | <C@ UID VO f |p+ 31D VOS] )
GO

(A.20) S IDLVOS1-<Cile) D, VIOF |-+ 33D, VS |1)
+C(Ifll-,  for 1=1, 2<<p<Too.

We remark that |[D,V"f|.,<<co, D% V"f]|l.)<<+oo for. each
feC5 ([0, o) xaD), because V” is a convolution operator, and so,
D, V{°f=V\"D.f, D;; V" f=V{"D};f. '

Moreover we may assume C,(e)<C1/2. Therefore (A. 12), (A. 13)
are immediate from (A. 19) and (A.20). (A.14) is clear by Sobolev’s
lemma.

Let M [su; ] be the collection of all % X#n matrices which satisfy
i) an=1 a;=0 (j¥1)
i) mleP<[aa*18, 6)<m|&]*  for any & of R" (4>0, m>>0)
and M [u; 1] be the collection of all (#—1) X (z—1) matrices which
satisfy ’
i) u|€1°<([0*]16,E><m|€|*  for any & of R,
where an element of M[u; 1] (resp. M [s1; 12]) is denoted by
a=(a;})i j=1,.n (x€SP. 6= (0:})1, ;o2 n).

Here, we note that for every positive definite matrix @, there
exists a matrix « such that a;=0 (ix1), ac*=a.
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For each € M [u; 1], denote by H™! the space time harmonic

extension operator corresponding to D,+ >) % [aa*];; D}; and for each
. i, j=1,

a of Mpm; )] and o of M[u; 1), denote by Vil*! the resolvent

operator associated with D,+ 22%[“*] ‘jD'?j+Fafz_H lod,

ivj=

Theorem A.3. (Vi .., is resolvent operators on L*([0, o)
x0D) and the following estimates hold.

(A.2)  IDVIf|L=Clfl.  2<p<teo
(A22) 3L IDEVEf <Ol |l

Further if p>(n—1)/2,

(A.23)  _sup ViS40 <CIS I,

(t.x)€[0,00)x3D

where the above constants can be taken independent of i=1 and
aEM[/l1§ AR e EM [ ﬂ2]|-

Proof. Let {B,} be a n-dim. Brownian motion on (2, &, P) such
that B,,=0 and r=inf{{=t,, x,+Bi=0}. Then H“ can be re-

presented in the following form;

~ //
H@f(t,, x)=Ef(z, i+ a-B.)
=Ef(z, i+a-B.—x.-b),

where a= {a;;} i 2,0 D="{(at, =, au1),
(A.24)  HYf(t, (1, %))

={, Unoe—t st 2+a5-5-0)dids.
Accordingly, the following formula can be proved easily.

(A.25) D HE(t, B = L HOf O, a0) ~ 3 anDif (1,0,

where [ is defined as f(, y)=f{, a-¥).

Therefore, according to Lemma A. 3, we can see
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(A. 26) Ilaa—nHral f

| <C@IDsI-,
163 oyl + Sl anl JBIDS |-p+ GOl s
It is easy to check that there exists a constant C(uy, #o) such that
3 layl SCla, ) for Ya& Mu; ]
3105 | SCQu, ) for YoM [ su).

Thus, from (A.26), we have

(A.27) ||aa—nHm f

~ﬁécl(€)”th||~p

+CCm, 1) ZDif -5+ C(IS I~ -
Moreover by an analogous consideration for
n 1 -1
B[A“]=|:R—D:— > = loo*] 4 ?;] ,
iz 2
we can obtain
(A.28) DB [-=C(ps, )| f I~

(A.29) 3 ID5BYSN=Cla, ) fll- for ¥azl.

Remaining part of the proof is same as in Theorem A. 2.

Let a(¢, x)= {a;;(t, 2)}: j-1.... be a nXn matrix which is con-
tinuous in (£, x)€ [0, o) X D and satisfies

(A. 30) j I [aa*] ij (t, x) —Bijl <e and (X.'j(t, x) :3;]' Vtga To .
iy j=1

If we choose ¢ sufficiently small, the minimal (absorbing) potential

operator G* associated with A=D,+ Z”%[aa*] 5@ 2D is well-
ij=1

defined as a bounded operator which maps L?([0, T)xD) into
W20, T)xD), where T<<+oo (cf. Stroock-Varadhan [8];
Appendix).
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Moreover let us denote by H“ the harmonic extention operator
and by G3 the resolvent operator associated with A.

In the following theorem, we summarize some important facts
about G4, H* and G3.

Theorem A.4. If p>n+2,
(A.381)  IDLG S 5 =Crll f sz

(A.32) csup DG ) | ZChll fllor
(¢4, x)€[0,T) x3D
(A.33) sup |G f(, )| ZCollfllor

(t,x)el0,T) xD

(A.34)  IDLEGRf @ DL=Callf 1l

(A.35) _sup  [DGIf(E o) [=ZCill fll,
(¢, 2)€[0,00) x 3D
(A. 36) sup |G 0| <Cl S,

(t, 1)€[0,00) xD

(A- 37) HAg(tO, x0)=E(lo.:o)[g<T‘0; x-r‘o)]
for vge W,*»([0, o) xaD),

where C\ is uniformly bounded in i=1 and further (P, ., %) IS
the A-diffusion staring at (i, x,) and t=inf{{=t,: x,€0D}.

Proof. Let p>n-+2.

The following estimate is immediate from Sobolev’s lemma and
the trace theory.

(A. 38) _sup [ Dyu(?, x) | <Cllul;?
(t,2)e[0,00) x3D
(A. 39) sup  |u(¢, 2) | <Cllull§>.

(t, )€[0,00) xD

Therefore, (A.32), (A.33), (A.35) and (A.36) are obvious. For

any g of Cy([0, o) x6D), (A.37) holds (Stroock-Varadhan [8]
Appendix). Note

H4g= H‘“’g—}- G*D:H%g,
where

D.= % j:l( [aa*]; (¢, x) —8:;) D} .
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For Yge W,»([0, =) xX8D), there exists a sequence {g,} of C; ([0,
o) X8D) such that {g.} converges to g in W, "»([0, o) X8D). It
is clear that H“g, converges to H%g with uniform norm by means
of the result about Brownian motion.

Hence (A.37) holds for any g of W,*®(|0, e0) x8D).

Remark 4. All estimates in Theorem A.4 are valid for

A=D,+.i %[aa*] i (8, 2) Dy,

if there exists a strictly positive definite matrix @ such that

n

2 [aa*];j(t, x)_a,'j|<€

i, j=1

and if we choose ¢ sufficiently small.
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