On the classification of H -spaces of rank 2

By
Mamoru Mimura, Goro Nishida and Hirosi Toda

(Received, January 11, 1973)

§ 1. Introduction

For a finite H-complex X, the classical Hopf theorem states that the rational cohomology $H^{*}(X ; Q)$ is isomorphic to $\Lambda\left(x_{1}, \ldots, x_{l}\right)$, the exterior algebra over Q with $\operatorname{deg} x_{i}$ odd. We call l the rank of X and ($\left.\operatorname{deg} x_{1}, \ldots, \operatorname{deg} x_{l}\right)$ the type of X.

In the present paper we will consider the homotopy type classification for l-connected, finite H-complexes of rank 2. In the case $H_{*}(X ; Z)$ has no 2 -torsion, the classification has been given by Hilton-Roitberg [6] and Zabrodsky [21] as follows:

Theorem. The complete list of homotopy types of 1-connected, 2-torsion free, finite H-complexes of rank 2 is the following: $S^{3} \times S^{3}$, $S U(3), E_{k}(k=0,1,3,4,5), S^{7} \times S^{7}$, where E_{k} is the principal S^{3}-bundle over S^{7} with the characteristic class $k \omega \in \pi_{7}\left(B S^{3}\right) \cong Z_{12}, \omega$ a generator.

Thus our object is to classify H-spaces of rank 2 with 2 -torsion.
Let X be a l-connected, finite H-complex of rank 2 such that $H^{*}(X ; Z)$ has 2-torsion. According to J. R. Hubbuck [7], $H^{*}\left(X ; Z_{2}\right)$ $\cong H^{*}\left(G_{2} ; Z_{2}\right)$ as Hopf algebras, where G_{2} is the compact, exceptional Lie group of rank 2.

Let $f: V_{7,2} \rightarrow B S^{3}$ be the classifying map of $G_{2}, \varphi: V_{7,2} \rightarrow V_{7,2} \backslash S^{11}$ the suitable shrinking map, and α a generator of $\pi_{11}\left(B S^{3}\right)$ suitably
chosen. We denote by $G_{2, b}$ the principal S^{3}-bundle over $V_{7,2}$ induced by the composition $\left(f \bigvee g_{b}\right) \circ \varphi: V_{7,2} \rightarrow V_{7,2} \backslash S^{11} \rightarrow B S^{3}$, where g_{b} represents $b a, b \in Z$. (For details see $\S 5$).

Then our result is

Theorem 5.1. Let X be a l-connected, finite H-complex of rank 2 such that $H_{*}(X ; Z)$ has 2-torsion. Then X is homotopy equivalent to $G_{2, b}$ for some b. There are just 8 homotopy types of such H-complexes: $G_{2, i}$ for $-2 \leq i \leq 5$.

Then together with the result by Zabrodsky [21] we obtain

Main Theorem. The complete list of homotopy types of 1-connected, finite H-complexes of rank 2 is the following: $S^{3} \times S^{3}, S U(3)$, $E_{k}(k=0,1,3,4,5), S^{7} \times S^{7}, G_{2, i}(-2 \leq i \leq 5)$.

The paper is organized as follows. The Hubbuck's theorem is introduced in §2. In §3 we determine the mod p homotopy types of S^{3}-bundles over S^{11}. Some results on homotopy, which will be needed in $\S 5$, are prepared in $\S 4$. The classification of the homotopy types of H-complexes of type $(3,11)$ are discussed and thoroughly determined in the section 5. Further, some additional properties of $G_{2, b}$ is studied. Namely $G_{2, b}$ is homotopy equivalent to a loop space if and only if $1+8 \mathrm{~b} \not \equiv 0 \mathrm{mod} 3$ and 5 (Theorem 5.8).

Throughout the paper, we use the following notations. For two complexes X and $Y, X \simeq Y$ denotes that X is homotopy equivalent to $Y ; X \underset{p}{\sim} Y$ denotes that X is p-equivalent to Y. (The direction of a p-equivalence is irrelevant, since all complexes under consideration are H-spaces $\bmod 0$, see [11]). $X^{(n)}$ stands for the n-skeleton of X and $\pi_{i}(X: p)$ the p-component of $\pi_{i}(X)$. We denote by \mathcal{A}_{p} the $\bmod p$ Steenrod algebra.

§2. H-spaces of rank 2 with 2-torsion

Let X be a simply connected, finite H-complex of rank 2 where $H_{*}(X ; Z)$ has 2-torsion. Let G_{2} be the compact, exceptional Lie group of rank 2 .

Then the following theorem is due to J. R. Hubbuck [7].

Theorem 2.1. $H^{*}\left(X ; Z_{2}\right)$ is isomorphic as a Hopf algebra to $H^{*}\left(G_{2} ; Z_{2}\right)$.

From this theorem we deduce some facts for later use.

Theorem 2.2.

(i) $H^{*}\left(X ; Z_{2}\right) \cong H^{*}\left(G_{2} ; Z_{2}\right)$ as \mathcal{A}_{2}-algebras, in particular, $S q^{4} S q^{2} H^{3}$ $\left(X ; Z_{2}\right)=0$.
(ii) $H^{*}\left(X ; Z_{p}\right) \cong H^{*}\left(G_{2} ; Z_{p}\right)$ for any odd prime p.

Proof. (i) From Theorem 2.1 we have

$$
H^{*}\left(X ; Z_{2}\right) \cong Z_{2}\left[x_{3}\right] /\left[x_{3}^{4}\right] \otimes \Lambda\left(x_{5}\right)
$$

where $\operatorname{deg} x_{i}=i$.
From the relation $x_{3}^{2}=S q^{3} x_{3}=S q^{1} S q^{2} x_{3}$ it follows that $S q^{2} x_{3}=x_{5}$. Thus $H^{*}\left(X ; Z_{2}\right) \cong H^{*}\left(G_{2} ; Z_{2}\right)$ as \mathcal{A}_{2}-algebras. The element $S q^{4} S q^{2} x_{3}$ is trivial, since it is primitive. (ii) By (i) X is of type $(3,11)$. Then apparently $H^{*}(X ; Z)$ has no p-torsions for $p>3$ by Theorem 4.7 of [3]. Assume that X has 3 -torsion. Then we can easily see again by Theorem 4.7 of [3] that

$$
H^{*}\left(X ; Z_{3}\right) \cong \Lambda\left(x_{3}, x_{3}^{\prime}\right) \otimes Z_{3}\left[x_{4}\right] /\left[x_{4}^{3}\right] \text { with } x_{4}=\beta x_{3} .
$$

Now consider an Adem relation

$$
\begin{equation*}
\beta \mathscr{P}^{2}=\mathscr{P}^{2} \beta-\mathcal{P}^{1} \beta \mathscr{P}^{1} \tag{2.1}
\end{equation*}
$$

and an (unstable) secondary operation ϕ associated with (2.1). Then ϕ is well defined on x_{4}, since $\beta x_{4}=\beta \mathscr{P}^{1} x_{4}=0$. So we can apply Theorem
1.1 of [22] and obtain an indecomposable element $\phi\left(x_{4}\right)$ in $H^{12}\left(X ; Z_{3}\right)$, which is a contradiction. So $H^{*}(X ; Z)$ has no 3 -torsion. q. e. d.

As a corollary we have

Corollary 2.3. Let Y be a simply connected, finite H-complex of rank 2. Then $H^{*}(Y ; Z)$ has 2 -torsion if and only if Y is of type $(3,11)$.

§3. Homotopy type mod odd of \mathbf{S}^{3}-bundles over \mathbf{S}^{11}

The notion "homotopy type $\bmod p$ " means the classification by p-equivalences. Remark that the p-equivalence is an equivalence relation, since all spaces we shall consider are H-spaces $\bmod 0$ (see [11]).

Let us determine the homotopy types $\bmod p, p$ odd, of S^{3}-bundles over S^{11}. Such bundles are classified by $\pi_{11}(B S O(4)) \cong \pi_{10}(S O(4))$. Since $S O(4) \cong S O(3) \times S^{3}$, we have

$$
\pi_{10}(S O(4)) \cong \pi_{10}(S O(3)) \oplus \pi_{10}\left(S^{3}\right) \cong Z_{15} \oplus Z_{15}
$$

We represent an element of $\pi_{10}(S O(4))$ by a pair (n, m) with $n, m \in Z_{15}$. We denote by $B(n, m)$ the bundle corresponding to ($n, m) \in \pi_{10}(S O(4))$. Note that for any S^{3}-bundle B over S^{11}, there exists a S^{3}-bundle B^{\prime} over S^{11} with the characteristic class $\chi^{\prime} \in \pi_{10}(S O(4): p)$ such that $B \underset{p}{\sim} B^{\prime}$. Thus to determine the homotopy types mod p, it is enough to consider the bundles classified by $\pi_{10}(S O(4): p)$.

Before stating a theorem let us recall the result due to JamesWhitehead. Consider a sequence:

$$
\pi_{13}\left(S^{10}\right) \xrightarrow{\left(\pi_{*} \chi\right) *} \rightarrow \pi_{13}\left(S^{3}\right) \leftarrow \pi_{10}(S O(3)) \xrightarrow{i_{*}} \pi_{10}(S O(4))
$$

for $\chi \in \pi_{10}(S O(4))$, where $\pi: S O(4) \rightarrow S^{3}$ is the projection. Denote by $G(\chi)$ the subgroup $i_{*^{\circ}} J^{-1 \circ}\left(\pi_{*} \chi\right)_{*}\left(\pi_{13}\left(S^{10}\right)\right)$ of $\pi_{10}(S O(4))$. For a subset S of $\pi_{10}(S O(4)),\{S\}_{\chi}$ means the coset of S modulo $G(\chi)$. Then the following is a special case of the James-Whitehead theorem [9].

Proposition 3.1. Let B_{1} and B_{2} be total spaces of S^{3} bundles over S^{11} with characteristic classes χ_{1} and χ_{2} in $\pi_{10}(S O(4))$ respectively. Then $B_{1} \simeq B_{2}$ if and only if $\pi_{* \chi_{1}}= \pm \pi_{*} \chi_{2}$ and $\left\{ \pm \chi_{1}\right\} \chi_{1}=\left\{ \pm \chi_{2}\right\}_{\chi_{2}}$.

The following is a main result in this section:

Theorem 3.2. The complete list of the homotopy types mod p of S^{3}-bundles over S^{11} is the following
(i) $B(0,0)$ for any prime $p \geq 7$,
(ii) $B(0,0)$ and $B(0,3)$ for $p=5$,
(iii) $B(0,0), B(0,5)$ and $B(5,0)$ for $p=3$.

Further, all but $B(5,0)$ are H-spaces mod p for the respective p.

Proof. First we show the last statement that all representatives except $B(5,0)$ are H-spaces $\bmod p$. In fact $\mathrm{B}(0,0)=S^{3} \times S^{11}$ is an H-space $\bmod p$ for any odd prime p ([1]). Also by [10] we have $B(0,5) \underset{3}{\simeq} G_{2}$ and $B(0,3) \underset{5}{\simeq} G_{2}$, whence $B(0,5)$ is an H-space $\bmod 3$ and $B(0,3)$ is an H-space mod 5 . Now we prove the theorem dividing it into three cases:
[Case i) $p \geq 7$]. Clearly the homotopy type $\bmod p$ is unique, i.e., $B(0,0)$ $=S^{3} \times S^{11}$, since $\pi_{10}(S O(4): p)=0$.
[Case ii) $p=5$]. An element of $\pi_{10}(S O(4): 5) \cong Z_{5} \oplus Z_{5}$ is represented by (n, m) with $n \equiv 0(3)$ and $m \equiv 0(3)$. If $m \neq 0(15)$, there is an integer r with $(r, 5)=1$ such that $(n, m)=r\left(n^{\prime}, 3\right)$. So $B(n, m) \simeq B\left(n^{\prime}, 3\right)$ for some n^{\prime}. Now we apply Proposition 3.1. We get that $\left(\pi_{*} \chi\right)_{*}=0$ for any $\chi \in \pi_{10}(S O(4): 5)$, since $\pi_{13}\left(S^{10}: 5\right)=0$, and hence

$$
G(\chi)=i_{*}\left(Z_{5}\right)=\{(n, 0): n \equiv 0(3)\} .
$$

Therefore by Proposition 3.1 we obtain that $B(n, m) \simeq B\left(n^{\prime}, m\right)$ for any n and n^{\prime}. So there are only two representatives: $B(0,0)$ and $B(0,3)$. But apparently $B(0,0)$ is not 5 -equivalent to $B(0,3)$.
[Case iii) $p=3$]. By the same argument as in the Case ii), we can see
that the candidates for the representatives of the homotopy type mod 3 are $B(0,0), B(0,5)$ and $B(5,0)$. We shall show that they are actually of the distinct homotopy type mod 3 . Clearly neither $B(0,0)$ nor $B(5,0)$ is 3 -equivalent to $B(0,5)$. For they are not 3 -equivalent on the 11skeleton. The following lemma then completes the proof.

In fact, the lemma indicates that $B(0,0)$ is not 3 -equivalent to $B(5,0)$, since $B(0,0)$ is an H-space $\bmod 3$.

Lemma 3.3. $B(5,0)$ admits no H-structures $\bmod 3$.

Proof. Assume that $B(5,0)$ admits an H-structure $\bmod 3$. So by definition ([12]), there exists a map $\mu: B(5,0) \times B(5,0) \rightarrow B(5,0)$ such that $f=\mu(\quad, *)=\mu(*):, B(5,0) \rightarrow B(5,0)$ is a 3-equivalence, where * is a base point of $B(5,0)$. Then $\mu \mid B(5,0) \bigvee B(5,0)=\mathrm{f} \circ \pi$, where π : $\mathrm{B}(5,0) \bigvee B(5,0) \rightarrow B(5,0)$ is the canonical projection. Therefore $f_{*}[\alpha, \beta]$ $=0$ for $a \in \pi_{n}(B(5,0))$ and $\beta \in \pi_{m}(B(5,0))$, and hence the Whitehead product $[a, \beta]$ is of order prime to 3 . Since $B(5,0)$ has a cross-section, we have $B(5,0)^{(11)} \simeq S^{3} \bigvee S^{11}$ and $i_{*}: \pi_{n}\left(S^{3}\right) \rightarrow \pi_{n}(B(5,0))$ is a monomorphism, where i_{*} is factored as $\pi_{n}\left(S^{3}\right) \xrightarrow{i_{1 *}} \pi_{n}\left(S^{3} \bigvee S^{11}\right) \xrightarrow{i_{2}} \pi_{n}$ ($B(5,0)$). Let $\varphi \in \pi_{13}\left(B(5,0){ }^{(11)}\right)$ be the attaching element of the top cell. Then by [8] we obtain $\varphi=k i_{1 *} \circ J\left(\alpha_{2}\right)+\left[\sigma_{3}, \sigma_{11}\right]$, where α_{2} is a generator of $\pi_{10}(S O(3): 3), k \neq 0(3)$ and $\sigma_{i}: S^{i} \rightarrow S^{3} \bigvee S^{11}$ is the canonical inclusion ($i=3,11$). Since $i_{2 *} \varphi=0$, we deduce that $k i_{*} J\left(\alpha_{2}\right)=k i_{2 *} i_{1 *}$ $J\left(\alpha_{2}\right)=-i_{2 *}\left[\sigma_{3}, \sigma_{11}\right]$ is of order prime to 3 . But this contradicts to the fact that α_{2} is a generator of $\pi_{10}(S O(3): 3)$, since i_{*} and J are monomorphisms on the 3 -component and since $k \neq 0$ (3). q.e.d.

We end this section with

Corollary 3.4. Every principal S^{3}-bundle over S^{11} is an H-space $\bmod p$, for any odd p.

§4. Some results on homotopy

The results in this section will be used in the next section. Let G_{2}
be the compact, exceptional Lie group of rank 2. Let $V_{7,2}=S O(7) / S O(5)$ be the Stiefel manifold. Then we have the principal bundle

$$
\begin{equation*}
S^{3} \rightarrow G_{2} \xrightarrow{p} V_{7,2} . \tag{4.1}
\end{equation*}
$$

Denote by $M^{n}=S^{n-1} \bigcup_{2} e^{n}$ the mapping cone of a map: $S^{n-1} \rightarrow S^{n-1}$ of degree 2. We have cellular decompositions: $V_{7,2}=M^{6} \cup e^{11}, G_{2}^{(9)}=p^{-1}$ $\left(M^{6}\right)=S^{3} \cup e^{5} \cup e^{6} \cup e^{8} \cup e^{9}$ the 9-skeleton of G_{2} and $G_{2}=G_{2}^{(9)} \cup e^{11} \cup e^{14}$. Let $S^{n-1} \xrightarrow{i} M^{n} \xrightarrow{q} S^{n}$ be the cofibering.

Lemma 4.1. Let $h: S^{10} \rightarrow M^{9}$ be a map such that $q \circ h: S^{10} \rightarrow S^{9}$ is essential, and let $K=M^{9} \cup C M^{10}$ be the mapping cone of $h \circ q: M^{10} \rightarrow$ $S^{10} \rightarrow M^{9}$. Then there exists a map $f: K \rightarrow G_{2}^{(9)}$ such that $f_{*}: \pi_{i}(K) \rightarrow \pi_{i}\left(G_{2}^{(9)}\right)$ is a mod 2 isomorphism for $3<i<13$. The inclusion $S^{3} \rightarrow G_{2}^{(9)}$ is a p-equivalence for any odd prime p.

Proof. Let F be the 3 -connective fibre space over $G_{2}^{(9)}$. Then we have a fibering:

$$
F \xrightarrow{i} G_{2}^{(9)} \xrightarrow{\pi} K(Z, 3) .
$$

Since $H^{*}\left(G_{2}^{(9)} ; Z_{2}\right)=\left\{1, x_{3}, x_{5}=S q^{2} x_{3}, x_{3}^{2}, x_{3} x_{5}, x_{3}^{3}\right\}$, we have that π^{*} : $H^{*}\left(Z, 3 ; Z_{2}\right) \rightarrow H^{*}\left(G_{2}^{(9)} ; Z_{2}\right)$ is an epimorphism with $\operatorname{Ker} \pi^{*}=\sum_{i \geq 10} H^{i}(Z$, $\left.3 ; Z_{2}\right)+\left\{S q^{4} S q^{2} u\right\}, u$ being the fundamental class. It follows that there exists a transgressive element a of $H^{8}\left(F ; Z_{2}\right)$ whose transgression image is $\tau(a)=S q^{4} S q^{2} u$. Then $\tau\left(S q^{1} a\right)=S q^{5} S q^{2} u=\left(S q^{2} u\right)^{2}$ and $\tau\left(S q^{2} S q^{1} a\right)=$ $S q^{2}\left(S q^{2} u\right)^{2}=\left(S q^{3} u\right)^{2}=u^{4}$. Furthermore, a spectral sequence argument leads us to conclude $H^{*}\left(F ; Z_{2}\right)=\left\{1, a, S q^{2} a, b, S q^{2} S q^{1} a, c, \ldots\right\}$, where $b \in H^{10}\left(F ; Z_{2}\right)$ with $\tau(b)=u^{2} S q^{2} u, c \in H^{14}\left(F ; Z_{2}\right)$ and \ldots denote higher dimensional elements $\left(d_{4}(1 \otimes c)=S q^{2} u \otimes b\right)$. This follows from the fact that Ker π^{*} is generated by $\left\{S q^{4} S q^{2} u,\left(S q^{2} u\right)^{2}, u^{2} S q^{2} u, u^{4}, S q^{8} S q^{4} S q^{2} u\right.$, $\ldots\}$ as a right $H^{*}\left(Z, 3 ; Z_{2}\right)$-module and that the lowest dimensional relation is $\left(S q^{2} u\right)^{2} u^{2}=\left(u^{2} S q^{2} u\right) S q^{2} u$. Since $\tau\left(S q^{1} b\right)=S q^{1}\left(u^{2} S q^{2} u\right)=u^{2}$ $S q^{3} u=u^{4}=\tau\left(S q^{2} S q^{1} a\right)$ and since $\tau\left(S q^{2} a\right)=S q^{2} S q^{4} S q^{2} u=S q^{6} S q^{2} u+S q^{5}$ $S q^{3} u=0$, we have that $S q^{1} b=S q^{2} S q^{1} a$ and $S q^{2} a=0$. Take a $C W$
complex K^{\prime} with minimum cells 2-equivalent to F, and so we may take $K^{\prime}=M^{9} \cup \underset{g}{\cup} C M^{10} \cup e^{14} \cup \cdots$. Consider the attaching map $g: M^{10} \rightarrow M^{9}$. $g \mid S^{9}$ cannot cover the 9 -cell of M^{9} essentially. Then the relation $S q^{2}$ $a=0$ shows that $g \mid S^{9}$ is homotopic to zero. Thus we may choose g as the composition $h \circ q: M^{10} \rightarrow S^{10} \rightarrow M^{9}$. Besides, the relation $S q^{2}\left(S q^{1} a\right)=$ $S q^{1} b$ shows that $q \circ h: S^{10} \rightarrow M^{9} \rightarrow S^{9}$ is essential. Let K be the 11skeleton of K^{\prime} and f the composition of the restriction of the 2-equivalence $K \rightarrow F$ and the inclusion $i: F \rightarrow G_{2}^{(9)}$. Then clearly $f_{*}: \pi_{i}(K) \rightarrow \pi_{i}\left(G_{2}^{(9)}\right)$ is a mod 2 isomorphism for $3<i<13$. The assertion of the second half follows from that $i^{*}: H^{*}\left(G_{2}^{(9)} ; Z_{p}\right) \cong H^{*}\left(S^{3} ; Z_{p}\right)$ for all odd prime p. q.e.d.

Lemma 4.2.

(i) $\left[M^{5}, G_{2}^{(9)}\right]=\left[M^{6}, G_{2}^{(9)}\right]=0$;
$\left[M^{8}, G_{2}^{(9)}\right] \cong Z_{2}$ generated by the class of $\left(f \mid S^{8}\right) \circ q$;
$\left[M^{9}, G_{2}^{(9)}\right] \cong Z_{4}$ generated by the class of $f \mid M^{9}$.
(ii) $\pi_{10}\left(G_{2}^{(9)}\right) \cong Z_{120}$; there exists an exact sequence

$$
0 \rightarrow \pi_{10}\left(S^{3}\right) \rightarrow \pi_{10}\left(G_{2}^{(9)}\right) \rightarrow \pi_{10}\left(M^{6}\right) \rightarrow 0 ;
$$

The image of the composition $\left[M^{9}, G_{2}^{(9)}\right] \otimes \pi_{10}\left(M^{9}\right) \rightarrow \pi_{10}\left(G_{2}^{(9)}\right)$ is isomorphic to Z_{4}.

Proof. (i) Since $\left[M^{n}, X\right]$ is a Z_{4}-group, we deduce that f_{*} : $\left[M^{n}, K\right] \rightarrow\left[M^{n}, G_{2}^{(9)}\right]$ is an isomorphism for $4<n<13$. Obviously $\left[M^{n}\right.$, $\left.M^{9}\right] \cong\left[M^{n}, K\right]$ for $n \leq 8$, in particular $\left[M^{8}, K\right] \cong\left[M^{8}, M^{9}\right] \cong Z_{2}$ generated by $\{i \circ q\}$. We have an exact sequence $\left[M^{9}, M^{10}\right] \xrightarrow{(h \circ q)_{*}}\left[M^{9}, M^{9}\right]$ $\rightarrow\left[M^{9}, K\right] \rightarrow\left[M^{9}, M^{11}\right]=0$, where $\left[M^{9}, M^{10}\right] \cong Z_{2}$ is generated by the class $\{i \circ q\}$ and $\left[M^{9}, M^{9}\right] \cong Z_{4}$ by [13]. Then $(h \circ q)_{*}\{i \circ q\}=0$, since q_{*} $\{i\}=\{q \circ i\}=0$. So $\left[M^{9}, K\right] \cong\left[M^{9}, M^{9}\right] \cong Z_{4}$ generated by the class of the inclusion (identity). Thus (i) is proved.
(ii) By Lemma 4.1, the odd component of $\pi_{10}\left(G_{2}^{(9)}\right)$ is isomorphic to $\pi_{10}\left(S^{3}\right) \cong Z_{15}$ and the 2 -component of that is isomorphic to $\pi_{10}(K)$. It is a classical result of Barratt-Paechter that $\pi_{10}\left(M^{9}\right) \cong Z_{4}$ generated by
the class of h (for a proof see [13]). Since the top cell of K is attached to $K^{(10)}=M^{9} \bigvee S^{10}$ by the sum of h and the map of degree 2 , we obtain that $\pi_{10}\left(K^{(10)}\right) \cong Z_{8}$ and it is generated by the class of the identity of S^{10} twice of which is the class of h. Thus $\pi_{10}\left(G_{2}^{(9)}\right) \cong Z_{120}$. Consider the exact sequence

$$
\pi_{11}\left(M^{6}\right) \rightarrow \pi_{10}\left(S^{3}\right) \xrightarrow{i_{*}} \pi_{10}\left(G_{2}^{(9)}\right)^{p_{*}} \pi_{10}\left(M^{6}\right) \xrightarrow{\partial} \pi_{9}\left(S^{3}\right),
$$

Since $H^{*}\left(M^{6} ; Z_{p}\right)$ is trivial for all odd primes $p, \pi_{10}\left(M^{6}\right)$ has only 2-torsion. Since $\pi_{10}\left(S^{3}\right) \cong Z_{15}$ and $\pi_{9}\left(S^{3}\right) \cong Z_{3}, \partial$ is trivial. Since $\pi_{10}\left(G_{2}^{(9)}\right) \cong Z_{120}$, we obtain a short exact sequence in the lemma. The second half of (ii) is clear from (i). q.e.d.

Lemma 4.3.

(i) $\quad \pi_{10}\left(G_{2}\right)=\pi_{13}\left(G_{2}\right)=0$.
(ii) The attaching class of the 11-cell in $G_{2}^{(11)}=G_{2}^{(9)} \cup e^{11}$ is a generator ω of $\pi_{10}\left(G_{2}^{(9)}\right) \cong Z_{120}$.
(iii) Let $\pi: G_{2}^{(9)} \rightarrow M^{9}=G_{2}^{(9)} / G_{2}^{(6)}$ be the projection. Then $\pi_{*}(\omega)=\gamma$ a generator of $\pi_{10}\left(M^{9}\right) \cong Z_{4}$.

Proof. (i) is computed in [10]. Then (ii) follows easily from the exact sequence

$$
\pi_{11}\left(G_{2}^{(11)}, G_{2}^{(9)}\right) \rightarrow \pi_{10}\left(G_{2}^{(9)}\right) \rightarrow \pi_{10}\left(G_{2}^{(11)}\right)
$$

where $\pi_{10}\left(G_{2}^{(11)}\right)=\pi_{10}\left(G_{2}\right)=0$.
(iii) follows easily from Lemma 4.2. q.e.d.

Remark 4.4. The above lemma implies that the cokernel of the Hurewicz homomorphism: $\pi_{11}\left(G_{2}\right) \rightarrow H_{11}\left(G_{2} ; Z\right)$ is isomorphic to Z_{120}.

§5. Classification of \mathbf{H}-spaces of type (3,11)

Let $\mathrm{f}: V_{7,2} \rightarrow B S^{3}$ be the classifying map of G_{2}. Let $\varphi: V_{7,2} \rightarrow V_{7,2}$ $\bigvee S^{11}$ be the map pinching the equator $S^{10} \times \frac{1}{2}$ in $V_{7,2}=M^{6} \cup C S^{10}$. Let α be a generator of $\pi_{11}\left(B S^{3}\right) \cong \pi_{10}\left(S^{3}\right)$ which corresponds to 8ω
under the monomorphism: $\pi_{10}\left(S^{3}\right) \rightarrow \pi_{10}\left(G_{2}^{(9)}\right) \cong Z_{120}$ (see Lemma 4.2). For each integer b, let $g_{b}: S^{11} \rightarrow B S^{3}$ represent $b a$ and let $G_{2, b}$ be the principal S^{3}-bundle over $V_{7,2}$ induced by the composition

$$
f_{b}=\left(f \bigvee g_{b}\right) \circ \varphi: V_{7,2} \rightarrow V_{7,2} \bigvee S^{11} \rightarrow B S^{3}
$$

For example, $G_{2}=G_{2,0}$.
One of the main results of this section is the following:

Theorem 5.1. (i) Each l-connected H-complex of type (3, 11) has the homotopy type of $G_{2, b}$ for some b.
(ii) $G_{2, b}$ and $G_{2, b^{\prime}}$ are homotopy equivalent if and only if $b \equiv b^{\prime}(15)$ or $b+b^{\prime} \equiv 11$ (15).
(iii) There are just 8 homotopy types of such H-complexes: $G_{2, i}$ for $-2 \leq i \leq 5$.

Before proving the theorem we prepare the following five lemmas. In the following we assume by Corollary 2.3 that every l-connected H-complex of type $(3,11)$ has a cell structure

$$
X \simeq S^{3} \cup e^{5} \cup e^{6} \cup e^{8} \cup e^{9} \cup e^{11} \cup e^{14}
$$

Lemma 5.2. Let X be a 1-connected H-complex of type (3,11). Then $X^{(9)}$ is homotopy equivalent to $G_{2}^{(9)}$, and hence $X^{(11)}$ is homotopy equivalent to $H_{k}=G_{2}^{(9)} \bigcup_{k \omega} e^{11}$ for some odd integer k.

Proof. Let $j: S^{3} \rightarrow G_{2}^{(9)}$ be the inclusion. The obstructions to extending j over $X^{(9)}$ lie in $\left[M^{5}, G_{2}^{(9)}\right]$ and $\left[M^{8}, G_{2}^{(9)}\right]$. We obtain an extension $\bar{j}: X^{(6)} \rightarrow G_{2}^{(9)}$, since $\left[M^{5}, G_{2}^{(9)}\right]=0$ by Lemma 4.2. Next consider the Puppe sequence:

$$
\left[X^{(9)}, G_{2}^{(9)}\right] \xrightarrow{i^{*}}\left[X^{(6)}, G_{2}^{(9)}\right] \xrightarrow{\varphi^{*}}\left[M^{8}, G_{2}^{(9)}\right]
$$

associated with the cofibration

$$
M^{8} \xrightarrow{\varphi} X^{(6)} \xrightarrow{i} X^{(9)}
$$

where φ is the attaching map and i is the inclusion. To extend \bar{j} over $X^{(9)}$, it suffices to show $\varphi^{*}(\bar{j})=0$. Assume that $\varphi^{*}(\bar{j}) \neq 0$. Then by Lemma $4.2 \varphi^{*}(\bar{j})=\left(f \mid S^{8}\right) \circ q$. It is not so difficult to see that $S q^{4} S q^{2} x_{3}$ is non-trivial in $H^{*}\left(X^{(9)} ; Z_{2}\right)$, which contradicts to Theorem 2.2. Thus j has an extension over $X^{(9)}$ which is clearly a homotopy equivalence from the structure of the cohomology. Therefore $X^{(11)}=G_{2}^{(9)} \bigcup_{k \omega} e^{11}$ for some integer k. The assertion that k is odd follows easily from the Z_{2}-cohomology structure.
q.e.d.

Lemma 5.3. $\left(G_{2, b}\right)^{(11)} \simeq H_{1+8 b}$.

Proof. From the construction of the bundle $G_{2, b}$ we have a commutative diagram:

where $B_{b_{\alpha}}$ is the S^{3}-bundle over S^{11} induced by $\mathrm{b} \alpha, G_{2} \cup B_{b \alpha}$ is the bundle induced by $f \bigvee g_{b}$ so that $G_{2} \cap B_{b \alpha}=S^{3}$ and two maps in the upper horizontal sequence are the inclusions. Remark that $\left(G_{2, b}\right)^{(9)}$ $=\left(G_{2} \cup B_{\alpha}\right)^{(9)}=G_{2}^{(9)}$. Therefore we obtain a commutative diagram:

where ∂ and ∂^{\prime} are the boundary homomorphisms and $\pi_{11}\left(G_{2}, b, G_{2}^{(9)}\right)$ $\cong \pi_{11}\left(V_{7,2}, M^{6}\right) \cong Z$ and $\pi_{11}\left(G_{2} \cup B_{b_{\alpha}}, G_{2}^{(9)}\right) \cong \pi_{11}\left(V_{7,2} \backslash S^{11}, M^{6}\right) \cong Z \oplus Z$. So for the generator $\iota \in \pi_{11}\left(G_{2}, b, G_{2}^{(9)}\right)$, which is the class of the characteristic map of the 11-dimensional cell in $G_{2, b}$, we have that

$$
\partial_{\imath}=\partial^{\prime} \bar{\varphi}_{*}(\iota)=\omega+b \alpha=(1+8 b) \omega,
$$

since $\bar{\varphi}^{*}$ is the map of type (1,1).
q.e.d.

Lemma 5.4. Let k and k^{\prime} be odd. Then $H_{k} \simeq H_{k^{\prime}}$ if and only if $k \equiv \pm k^{\prime}(\bmod 30)$.

Proof. To begin with we show
(5.1) every self homotopy equivalence of $G_{2}^{(9)}$ is homotopic to one of the following 8 maps:

$$
\begin{aligned}
& f_{t}: G_{2}^{(9)} \xrightarrow{\varphi} G_{2}^{(9)} \bigvee M^{9} \xrightarrow{1 \vee t \beta} G_{2}^{(9)}, \quad t=0,1,2,3 ; \\
& \bar{f}_{t}: G_{2}^{(9)} \xrightarrow{\varphi} G_{2}^{(9)} \bigvee M^{9} \xrightarrow{\varepsilon \vee t \beta} G_{2}^{(9)}, \quad t=0,1,2,3,
\end{aligned}
$$

where $\varphi: G_{2}^{(9)} \rightarrow G_{2}^{(9)} \bigvee M^{9}$ is the map shrinking $M^{8} \times \frac{1}{2}$ in $G_{2}^{(9)}=G_{2}^{(6)}$ $\cup C M^{8}, 1$ is the indentity of $G_{2}^{(9)}, \varepsilon$ is an extension of the map of degree $-1: S^{3} \rightarrow S^{3} \subset G_{2}^{(9)}$ and β is a generator of $\left[M^{9}, G_{2}^{(9)}\right] \cong Z_{4}$.

The existence of ε is proved similarly to that of Lemma 5.2. The 8 maps in the above induce isomorphisms of the integral cohomology ring, since $\beta^{*}\left(x_{3} x_{5}\right)=\beta^{*}\left(x_{3}\right) \beta^{*}\left(x_{5}\right)=0$ and $\beta^{*}\left(x_{3}^{3}\right)=0$ for $\beta^{*}: H^{*}\left(G_{2}^{(9)} ; Z_{2}\right)$ $\rightarrow H^{*}\left(M^{9} ; Z_{2}\right)$. Thus these maps are homotopy equivalences. Consider the Puppe exact sequence:

$$
\left[M^{9}, G_{2}^{(9)}\right] \xrightarrow{\pi^{*}}\left[G_{2}^{(9)}, G_{2}^{(9)}\right] \xrightarrow{i^{*}}\left[G_{2}^{(6)}, G_{2}^{(9)}\right]
$$

If f and g of $\left[G_{2}^{(9)}, G_{2}^{(9)}\right]$ satisfy $i^{*} f=i^{*} g$, then there exists an element $t \beta \in\left[M^{9}, G_{2}^{(9)}\right]$ such that $f=(g \bigvee t \beta) \circ \varphi$. A similar statement holds in the sequence:

$$
\left[M^{6}, G_{2}^{(9)}\right] \xrightarrow{\pi_{0}^{*}}\left[G_{2}^{(6)}, G_{2}^{(9)}\right] \xrightarrow{i_{0}^{*}}\left[S^{3}, G_{2}^{(9)}\right]
$$

where i_{0}^{*} is injective, since $\left[M^{6}, G_{2}^{(9)}\right]=0$ by Lemma 4.2. Now let g be 1 or ε according as $i_{0}^{*} i^{*} f=i_{0}^{*} i^{*} l$ or $i_{0}^{*} i^{*} f=i_{0}^{*} i^{*} \varepsilon$. Then it follows that $f=(g \bigvee t \beta) \circ \varphi=f_{t}$ or \bar{f}_{t}. Thus the proof of (5.1) is completed.

By taking inverse for each element, we obtain a self homotopy equivalence of G_{2} such that it is of degree -1 on S^{3}. Then we may choose ε as a cellular approximation of this map.

We have

$$
\begin{equation*}
H_{k} \simeq H_{k}^{\prime} \text { if and only if } f_{t *} k \omega= \pm k^{\prime} \omega \text { or } \bar{f}_{t *} k \omega= \pm k^{\prime} \omega . \tag{5.2}
\end{equation*}
$$

In fact, the restriction of every homotopy equivalence on $G_{2}^{(9)}$ is either f_{t} or \bar{f}_{t} for some t.

Here we recall a result due to Whitehead [20]:
$\pi_{10}\left(G_{2}^{(9)} \bigvee M^{9}\right) \cong \pi_{10}\left(G_{2}^{(9)}\right) \oplus \pi_{10}\left(M^{9}\right) \oplus \partial \pi_{11}\left(G_{2}^{(9)} \times M^{9}, G_{2}^{(9)} \bigvee M^{9}\right)$.
So we have

$$
\begin{aligned}
f_{t_{*}}(k \omega) & =(1 \bigvee t \beta)_{*^{\circ}} \varphi_{*}(k \omega) \\
& =(1 \bigvee t \beta)_{*}\left(k \omega+k \gamma+k x\left[\iota_{3}, \iota_{8}\right]\right) \\
& =k \omega+k t \beta_{*}(\gamma)+k t x\left[\iota_{3}, \beta \iota_{8}\right] .
\end{aligned}
$$

Here $\beta_{*}(\gamma)= \pm 30 \omega$ by Lemma 4.3. Further we have $\left[\iota_{3}, \beta \iota_{8}\right]=0$. In fact, $p_{*}\left[\iota_{3}, \beta \iota_{8}\right]=0$ for $p_{*}: \pi_{10}\left(G_{2}^{(9)}\right) \rightarrow \pi_{10}\left(M^{6}\right)$ and hence $\left[\iota_{3}, \beta \iota_{8}\right]$ is of odd order, since $\pi_{10}\left(S^{3}\right) \cong Z_{15}$, while $\left[\iota_{3}, \beta_{\iota}\right]$ is of order 2 , as $2 \iota_{8}=0$. Thus we have $f_{t *}(k \omega)=k(1 \pm 30 t) \omega$, whence $k^{\prime} \equiv k(1 \pm 30 t)(\bmod 120)$. Similarly one can obtain that $k^{\prime} \equiv k(-1 \pm 30 t)(\bmod 120)$. Since k and k^{\prime} are odd, we can deduce that H_{k} is homotopy equivalent to $H_{k^{\prime}}$ if and only if $k \equiv \pm k^{\prime}(\bmod 30)$.

Lemma 5.5. Every $G_{2, b}$ is an H-space of type (3,11).

Proof. Since $V_{7.2}$ is p-equivalent to S^{11} for all odd primes $p, G_{2, b}$ is p-equivalent to a principal S^{3}-bundle over S^{11}, and hence $G_{2, b}$ is an H-space $\bmod p$ by Corollary 3.4. For $p=2$, consider a complex $V=M_{15 \sigma}^{6} \cup e^{11}$, where σ is the attaching map of e^{11} in $V_{7,2}$. Apparently there is a 2-equivalence $h: V \rightarrow V_{7,2}$, which has degree 15 on the ll-dimensional cell. Let $\varphi^{\prime}: V \rightarrow V \bigvee S^{11}$ be the shrinking map similar to φ. Thus by commutativity of the diagram:

and by the fact that $15 \alpha=0$, we obtain that $G_{2, b}$ is 2 -equivalent to G_{2}. Therefore $G_{2, b}$ is an H-space by Theorem 7.1 of [12]. q.e.d.

Lemma 5.6. Let X and Y be l-connected H-complexes of type $(3,11)$. Then $X \simeq Y$ if and only if $X^{(11)} \simeq Y^{(11)}$.

Proof. The necessity is clear. We show the sufficiency. First we prove for the case that $Y=G_{2, b}$. Let $r^{\prime}: X^{(11)} \rightarrow G_{2, b}^{(11)}$ be a homotopy equivalence. If we obtain an extension $r: X \rightarrow G_{2}, b$, it is easily checked to be a homotopy equivalence from the cohomology ring structures of X and $G_{2, b}$.

As is shown in the proof of Lemma 5.5, $G_{2, b} \underset{2}{\sim} G_{2}$ and $G_{2, b}$ is p-equivalent to a principal S^{3}-bundle over S^{11} for odd p. Then by Theorem 3.2 and Lemma 5.3, we have $\pi_{13}\left(G_{2, b}: p\right)=0$ for $p \neq 3$, and if $\pi_{13}\left(G_{2, b}\right)$ is non-trivial, it is isomorphic to Z_{3} and $G_{2, b} \frac{\sim}{3} S^{3} \times S^{11}$. If $\pi_{13}\left(G_{2}, b\right)=0$, clearly we have an extension $r: X \rightarrow G_{2, b}$. Hence we assume $\pi_{13}\left(G_{2}, b\right)=Z_{3}$. Then X is also 3 -equivalent to $S^{3} \times S^{11}$. For $X^{(11)} \simeq G_{2, b}^{(11)}$ and X is an H-space. So the attaching element δ of e^{14} in X satisfies that $q \delta=q^{\prime} f_{*}\left[\iota_{3}, \iota_{11}\right]$ for some integers q, q^{\prime} with $q q^{\prime} \not \equiv 0$ (3) and for some 3-equivalence $f: S^{3} \bigvee S^{11} \rightarrow X^{(11)}$. Since $G_{2, b}$ is an H-space, we have that $r_{*}^{\prime}(q \delta)=r_{*}^{\prime}\left(q^{\prime} f_{*}\left[\iota_{3}, \iota_{11}\right]\right)=0$ in $\pi_{13}\left(G_{2, b}\right)=Z_{3}$ and hence $r_{*}^{\prime} \delta=0$ in $\pi_{13}\left(G_{2, b}\right)$. That is, there is an extension $r: X \rightarrow G_{2, b}$.

Now for general Y, we have that $Y^{(11)} \simeq H_{k}$ for some odd k with $1 \leq k \leq 15$ by Lemma 5.2 and Lemma 5.4. Since either k or $-k$ is expressed as $1+8 b$, we have $Y^{(11)} \simeq G_{2 . b}^{(11)}$ by Lemma 5.3. Thus $Y \simeq G_{2, b}$ by the above argument. This completes the proof. q.e.d.
(Proof of Theorem 5.1.) (i) Let X be a l-connected H-complex of type $(3,11)$. Then $X^{(11)} \simeq H_{k}$ for some odd integer k with $1 \leq k \leq 15$ by Lemmas 5.2 and 5.4. Since either k or $-k$ is expressed as $1+8 b$ with $-2 \leq b \leq 5$, we can see by virtue of Lemmas 5.3 and 5.4 that $X^{(11)} \simeq G_{2, b}^{(\mathrm{I} 1)}$ for some $b,-2 \leq b \leq 5$. Then by Lemmas 5.5 and 5.6 we obtain (i).
(ii) By Lemmas 5.4 and 5.6, $G_{2, b} \simeq G_{2, b^{\prime}}$ if and only if $H_{1+8 b} \simeq H_{1+8 b^{\prime}}$ if and only if $1+8 b \equiv \pm\left(1+8 b^{\prime}\right)(30)$ if and only if $b \equiv b^{\prime}$ (15) or $\mathrm{b}+\mathrm{b}^{\prime} \equiv 11$ (15).
(iii) follows directly from (ii) and Lemma 5.5. q.e.d.

As a corollary of the proof of Theorem 5.1 we have

Corollary 5.7. Let X be a l-connected H-complex of type $(3,11)$. Then
(i) $X \underset{p}{\sim} G_{2}$ for any prime p with $p \neq 3$ or 5 .
(ii) $X \underset{5}{\simeq} G_{2}$ or $\underset{5}{\simeq} S^{3} \times S^{11}$ according as $\mathscr{P}^{1} x_{3} \neq 0$ or $\mathscr{P}^{1} x_{3}=0$ in H^{*} $\left(X ; Z_{p}\right)$
(iii) $\quad X \underset{3}{\simeq} G_{2}$ or $\underset{3}{\sim} S^{3} \times S^{11}$ according as $\phi x_{3} \neq 0$ or $\phi x_{3}=0$ in $H^{*}\left(X ; Z_{p}\right)$, where ϕ is a secondary operation considered in §2. (ϕ is known to detect a generator of $\pi_{10}\left(S^{3}: 3\right) \cong Z_{3}$.)
The proof is left to the reader.

Theorem 5.8. $G_{2, b}$ has the homotopy type of a loop space if and only if $1+8 b \neq 0(p)$ for $p=3$ and 5 , i.e., $b=-1,0,2,5$.

Proof. By Theorem 7.1 of [12], $G_{2, b}$ has the homotopy type of a loop space if and only if $\left(G_{2, b}\right)_{(p)}$ does for any prime p. Clearly $\left(G_{2, b}\right)_{(p)}$ is a loop space for $p \neq 3$ or 5 , since $G_{2, b} \frac{\simeq}{p} G_{2}$ by Lemma 5.5 and Corollary 5.7. Note that $\left(S^{3} \times S^{11}\right)_{(p)}$, for $p=3$ and 5 , is not of the homotopy type of a loop space. In fact, if so, there exists the classifying space $B\left(S^{3} \times S^{11}\right)_{(p)}$, and hence the \mathcal{A}_{p}-algebra structure of $H^{*}\left(B\left(S^{3} \times S^{11}\right)_{(p)} ; Z_{p}\right) \cong Z_{p}\left[u_{4}, u_{12}\right]$ induces a contradiction. Therefore $\left(G_{2}, b\right)_{(p)}$ is a loop space if and only if $\left(H_{1+8 b}\right)_{(p)}$ is a loop space if and only if

$$
H^{*}\left(H_{1+8 b} ; Z_{p}\right) \cong \begin{cases}\Lambda\left(x_{3}, \phi x_{3}\right) & p=3 \\ \Lambda\left(x_{3}, \mathscr{P}^{1} x_{3}\right) & p=5\end{cases}
$$

if and only if $1+8 b \neq 0 \bmod 3$ and 5 . q.e.d.

§6. Appendix

For convenience, we list the following table for $G_{2, b},-2 \leq b \leq 5$

	3-type	5-type	p-type $(p \neq 3,5)$	
-2	$S^{3} \times S^{\mathbf{1 1}}$	$S^{\mathbf{3}} \times S^{\mathbf{1 1}}$	G_{2}	not loop
-1	G_{2}	G_{2}	G_{2}	loop
0	G_{2}	G_{2}	G_{2}	loop
1	$S^{3} \times S^{\mathbf{1 1}}$	G_{2}	G_{2}	not loop
2	G_{2}	G_{2}	G_{2}	loop
3	G_{2}	$S^{\mathbf{3}} \times S^{\mathbf{1 1}}$	G_{2}	not loop
4	$S^{3} \times S^{\mathbf{1 1}}$	G_{2}	G_{2}	not loop
5	G_{2}	G_{2}	G_{2}	loop

According to L. Smith [14], the type of a l-connected, associative H-space of rank 2 is either $(3,3),(3,5),(3,7)$ or $(3,11)$. Then, using Theorem 7.1 of [12] together with Theorem 5.8 and the results of [15], [21], we obtain the following

Theorem 6.1. A l-connected, finite, associative H-complex of rank 2 is homotopy equivalent to one of the following: $S^{3} \times S^{3}$, $S U(3), E_{1}=S p(2), E_{5}, G_{2,0}=G_{2}, G_{2,-1}, G_{2,2}, G_{2,5}$.

Kyoto University

References

[1] J. F. Adams: The sphere, considered as an H-space mod p, Quart. J. Math., Oxford 12 (1961), 52-60.
[2] W. Browder: Torsion in H-spaces, Ann. Math., 74 (1961), 24-51.
[3] W. Browder: On differential Hopf algebras, Trans. A. M. S., 107 (1963), 153-176.
[4] W. Browder: Higher torsion in H-spaces, Trans. A. M. S., 108 (1963), 353-375.
[5] W. Browder: Surgery and the theory of the differentiable transformation groups, Proc. of the conference on transformation groups.
[6] P. J. Hilton and J. Roitberg: On the classification problem for H-spaces of rank 2, Comm. Math. Helv., 46 (1971), 506-516.
[7] J. R. Hubbuck: Simply connected H-spaces of rank 2 with 2 -torsion, (to appear).
[8] I. M. James and J. H. C. Whitehead: The homotopy theory of sphere bundles over spheres, I, Proc. London Math. Soc. 4 (1954), 196-218.
[9] I. M. James and J. H. C. Whitehead: The homotopy theory of sphere bundles over spheres, II, Proc. London Math. Soc., 5 (1955), 148-166.
[10] M. Mimura: The homotopy groups of Lie groups of low rank, J. Math. Kyoto Univ., 6 (1967), 131-176.
[11] M. Mimura and H. Toda: On p-equivalences and p-universal spaces, Comm. Math. Helv., 46 (1971), 87-97.
[12] M. Mimura, G. Nishida and H. Toda: Localization of CW complexes and its applications, J. Math. Soc. Japan 23 (1971), 593-624.
[13] J. Mukai: Stable homotopy of some elementary complexes, Mem. Fac. Sci. Kyushu Univ., XX(1966), 266-282.
[14] L. Smith: On the type of an associative H-space of rank two, Tohoku Math. J. 20 (1968), 511-515.
[15] J. D. Stasheff.: Manifolds of the homotopy type of (non-Lie) groups, Bull, A. M.S., 75 (1969), 998-1000.
[16] T. Sugawara and H. Toda: Squaring operations in truncated polynomial algebras, Japanese J. Math., XXXVIII (1969), 39-50.
[17] E. Thomas: Steenrod squares and H-spaces: I, Ann. Math., 77 (1964), 306-317.
[18] E. Thomas: Steenrod squares and H-spaces: II, Ann. Math., 81 (1965), 473-495.
[19] H. Toda: Composition methods in homotopy groups of spheres, Ann. Math. Studies, No. 49 (1962).
[20] G. W. Whitehead: A generalization of the Hopf invariant, Ann. Math., 51 (1950), 192-237.
[21] A. Zabrodsky: The classification of simply connected H -spaces with 3-cells, I. II., Math. Scand. 30 (1972), 193-210; 211-222.
[22] A. Zabrodsky: Secondary cohomology operations in the module of indecomposables, Proc. Advanced Study Inst. on Algebraic Topology, (1970), 657-672.

