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§ 1 .  Introduction

F o r  a  finite H-complex X , th e classical H opf theorem states

that the rational cohomology H*(X ; Q) is isomorphic to A(xi,

the exterior algebra over Q with deg xi odd. W e call 1 the rank of X
and (deg ..., deg xi) the typ e of X.

In the present paper we will consider the homotopy type classifica-

tion for 1-connected, finite H-complexes of rank 2. In the case --1* (X ; Z)
has no 2-torsion, the classification has been given by Hilton-Roitberg

[6] and Zabrodsky [21] as follows:

T heorem . The c o m p le t e  l i s t  o f  homotopy types of 1-connected,
2-torsion free, f in i t e  H-complexes of rank  2 i s  the f o l l o w i n g :  S3 x  S 3 ,
SU(3), Ek (k=0,1,3 ,4 ,5 ), S 7 X S 7 , w h er e  Ek is  the p r in c ip a l S3 -bundle
o v er  S 7 w i th  the cha ra cteristic cla ss k w  E ir7(BS3 ) Z i 2 , w a gen era to r .

Thus our object is to classify H-spaces o f rank 2 with 2-torsion.

Let X  be a  1-connected, finite H-complex o f rank 2  such that

H*(X ; Z) has 2-torsion. According to J. R. Hubbuck [7], H*(X ; Z2)
---.-H*(G2; Z 2 ) as Hopf algebras, where 62 is the compact, exceptional

L ie  group o f rank 2.

Let f :  V7,2— >BS 3  be the classifying map of 6 2, ÇO: TA 7,2- 0 ' V7,2V-5 1 1

the suitable shrinking map, and a a generator o f  7rii(B53 )  suitably



612 M am oru  M im ura, G oro  N ish ida and H irosi T oda

chosen. We denote by G2,b the principal S 3-bundle over V 7,2 induced

by the composition ( f  V gb)oço: V 7,2V Sn--)-BS3, where gb repre-

sents b a ,  b E Z .  (For details see §5).

Then our result is

Theorem 5 .1 .  Let X  be a 1 -conn ected , fin ite H-com plex  of rank

2 su ch  th a t 11,0 (X ; Z ) ha s 2-torsion. T hen  X  i s  hom otopy  equ iva len t
to G2,b fo r  som e b . T h ere  a re  ju s t 8 homotopy types of su ch  H-complexes:
G2,1 f o r  — 2<i<5.

Then together with the result by Zabrodsky [21] we obtain

Main T h eorem . The c o m p le t e  l i s t  of homotopy types of 1-con-
n e c ted , fin ite  H-com plexes of rank  2  i s  the f o l l o w i n g :  S 3 x S3, S U(3),
E  k  (k=-- 0, 1, 3, 4, 5), S 7 x S 7 , G 2 ,1  ( - 2 < i  <5).

The paper is organized as follows. The Hubbuck's theorem is

introduced in  § 2 .  In  §3  we determine the mod p  homotopy types of

S 3 -bundles over S n .  Some results on homotopy, which will be needed

in § 5 , are prepared in  § 4 .  The classification of the homotopy types

of H-complexes of type (3,11) are discussed and thoroughly determined

in the section 5. Further, some additional properties of G2,b is studied.

Namely G2,1, is  homotopy equivalent to a loop space if and only if

1+8b -f 0  mod 3  and 5  (Theorem 5.8).
Throughout the paper, we use the following notations. For two

complexes X  and Y, X  Y  denotes that X  is homotopy equivalent

to  Y; X  Y  denotes that X  is p-equivalent t o  Y .  (The direction

of a fi-equivalence is irrelevant, since all complexes under consideration

are H-spaces mod 0 ,  see [11]). X (n )  stands for the n-skeleton of X
and iri(X :fi) the p-component of 7r1(X ) .  We denote by c_A p the mod p
Steenrod algebra.
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§ 2 .  H-spaces of rank 2 with 2-torsion

Let X  be a simply connected, finite H-complex of rank 2  where

H * (X  ; Z) has 2-torsion. Let G2 be the compact, exceptional Lie group

of rank 2.
Then the following theorem is due to J. R. Hubbuck [7].

Theorem 2 .1 .  H * (X ;Z 2 ) is  isom o rp h ic  a s  a  H o p f  a lg eb ra  to

H*(G2;Z2)•

From this theorem we deduce some facts for later use.

Theorem  2.2.

( i ) H*(X ;Z2)- - -11*(G2;Z2) a s ,A 2-algebras, in  p a rticu la r , Sq4 Sq2 H 3

(X ;Z 2)=0.
( i i )  H * ( X ;Z p )--- --H*(G2;Z p ) f o r  a n y  od d  p r im e p .

P r o o f .  ( i)  From Theorem 2.1 we have

H* (X ;Z2)-:=1---__.' Z2[x311[4 0  A (x 5 ) ,

where deg xi=-i.
From the relation x i=S q 3 x3=-Sq 1 Sq 2 x3 it follows that Sq 2 x3=-x5.

Thus H*(X; Z2).-- --H*(G2; Z2) as Lk-algebras. The element Sq4 Sq 2 x3
is trivial, since it is prim itive. (ii) By (i) X  is of type (3 ,1 1 ) .  Then
apparently H *(X ;Z ) has no p-torsions for p > 3 by Theorem 4.7 of [3].
Assume that X  has 3-torsion. Then we can easily see again by Theorem

4.7 of [3] that

H* (X  ;Z3)-- -- A (x3 , .x;) Z3 [X4]1 [X i] with x4=f3x3.

Now consider an Adem relation

(2.1) P O  TV — Oflg'l

and an (unstable) secondary operation 0  associated with (2.1). Then
0 is well defined on x4, since flx4= 130x4= 0 . So we can apply Theorem



614 M a m o ru  M im ura , G oro  N ish ida  and H irosi T oda

1.1 of [22] and obtain an indecomposable element 0(x4) in I/ 12 (X; Za),
which is a contradiction. So H * (X ;Z ) has no 3-torsion.

q. e. d.

As a corollary we have

Corollary 2 .3 . L e t Y  b e  a s im p ly  c o n n e c t e d ,  f in i t e  H - co m p lex
of ra nk  2. T h en  H * (Y ;Z ) h a s  2-torsion i f  and o n ly  i f  Y  i s  of ty p e
(3,11).

§3. Hom otopy type mod odd of S3-bundles over

The notion "homotopy type mod p "  means the classification by

fi-equivalences. R em a rk  th a t the p-equivalence is  an  equivalence

relation, since all spaces we shall consider are H-spaces mod 0 (see [11]).

Let us determine the homotopy types mod p , p  odd, of S 3 -bundles

over Sn. Such bundles are classified by 77-n(BS0(4))--- ---_710(S0(4)).

Since SO(4)- - --S0(3 )xS 3 ,  we have

7Ti0(S0(4))------71-10(S 0(3)) C) C) Z15.

We represent an element of irio(S0(4)) by a pair (n ,m )w ith  n , m Z15.

We denote by B (n m) the bundle corresponding to (n m) E 7710(S 0 (4)) .

Note that for any S 3 -bundle B  over Sll, there exists a S 3 -bundle B'
over S1 1  with the characteristic class x'E7rio(S0(4) :p )  such that 132._- B' .

Thus to determine the homotopy types mod p , it is enough to consider

the bundles classified by 710(S0(4) :fi).

Before stating a  theorem let us recall the result due to James-

Whitehead. Consider a sequence:

71-13(S1° ) 
( i

*x ) *--> 77-13(S3) -1" irio(S0(3)) —> 7r1o(S0(4))

for xE7rio(S0(4)), where 7r:S0(4)—)-S3 is the projection. Denote by G(x)
the subgroup j l o ( i * x) * (77.13(sio)) of 7710(S0(4)). For a subset S  of- ,

irio(S0(4)), {S} x means the coset of S modulo G (x ) . Then the following

is a special case of the James-Whitehead theorem [9].
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Proposition 3 .1 .  Let B 1  and B 2  b e  total sp a ce s  o f S 3  b u n d le s
o v e r  S l l  w ith  ch a ra cte r is t ic  classes xi and x2 in  ir1o(S0(4)) resp ectiv e ly .
T h en  B1". - B 2  i f  and o n l y  i f  7 r* X 1 =  + 7 r*X 2 and {+Xil xi= {1X2} x2.

The following is a main result in this section:

Theorem  3.2. The com p lete  lis t of the h om o to p y  types m od  p of

S 3 -b u n d le s  o v e r  S l l  i s  th e  fo l low in g

(i) B(0, 0) fo r  any prime p>7,
(ii) B(0,0) and B(0, 3) f o r  p= 5,
(iii) B (0 , 0 ), B(0,5) and  B(5,0) fo r  p=3.

F urth er, a ll but B (5 ,0 ) are H -spaces mod p f o r  the respective p .

P roo f. F irs t w e  show the last statement that all representatives

except B (5,0) are H-spaces mod p .  In  fact B(0,0)=S 3 x 51 1  i s  an

H-space mod p  fo r any odd prime p  ([1 ]). Also by [10] w e have

B(0,5) - G2 and B(0,3) G2, whence B(0,5) is an H-space mod 3  and
3 5

B(0,3) is an H-space mod 5. Now we prove the theorem dividing it
into three cases:

[Case i) p > 7 ] .  Clearly the homotopy type mod p is unique, i.e., B(0,0)
= S 3 x S 1-1 ,  since irio(S0(4):fi)=0.
[Case ii) p = 5 ]. An  element o f Trio(S0(4):5)- Z5C)Z5 is represented
by (n ,m ) with n=0 (3) and m = 0  (3 ) . If m-/-0 (15), there is an integer

r  with (r, 5 )= 1  such that (n , m)= r(n' ,3). So B (n  , 3 )  for
5

some n'. Now we apply Proposition 3 .1 .  We get that (77- x) = 0  for

any xE vio(S0(4): 5), since 771.3(S":5)=0, and hence

G(x)=-4(Z5)={(n , 0) : n 0 (3 )1.

Therefore by Proposition 3.1 we obtain that B (n , B (n' , m) for any n
and n'. So there are only two representatives: B(0,0) and B (0 ,3 ) .  But

apparently B(0,0) is not 5-equivalent to B(0,3).
[Case iii) p = 3 ].  By the same argument as in the Case ii), we can see
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that the candidates for the representatives of the homotopy type mod

3 are B(0,0), B(0,5) and B(5,0 ). We shall show that they are actually

of the distinct homotopy type mod 3. Clearly neither B(0,0) nor B(5,0)
is 3-equivalent to B (0 ,5 ). For they are not 3-equivalent on the 11-
skeleton. The following lemma then completes the proof.

In fact, the lemma indicates that B(0,0) is not 3-equivalent to

B(5,0), since B(0,0) is an H-space mod 3.

Lemma 3 .3 .  B(5, 0) a d m it s  n o  H -stru ctu r es  mod 3.

P ro o f. Assum e that B(5,0) admits an H-structure mod 3 .  So by

definition ([121), there exists a map ,a: B(5,0) x B(5, 0)—*B(5,0) such

that f = t (  ,*)=p.,(*, ): B(5,0)-4-.8(5,0) is a  3-equivalence, where *

is a base point of B(5,0). Then p,IB(5,0)VB(5,0)=f ov, where

B(5,0)VB(5, 0)-0-B(5, 0) is the canonical projection. Therefore f  * [a, /3]

= 0  for a E7ri i (B(5, 0)) and /3 .77.m (B(5,0)), and hence the Whitehead

product [a, p] is of order prime to 3. Since B(5,0) has a cross-section,

we have B(5, 0)(1 1 )____- --S3 VSll and i * : n (S 3 )—)-7rn (B(5 ,0)) is a monomor-

phism, where i *  is  factored  as 7r,(S3)   77.n(S3VS11)  i 2 *

(B (5 ,0 )). Let çoET-13(B(5,0)(3 1 )) be the attaching element of the top

cell. Then by [8] we obtain w = k i 1 * . / ( a 2 ) - H c f 3 , 0 ' 1 1 ] ,  where a2 is a

generator of 7710(S0(3):3), k7L0 (3) and ai: S1-->S3 VSu is the canonical

inclusion ( i= 3 ,1 1 ) .  Since i2* w =0 , we deduce that kil*Aa2)=ki24, 1.1*

Aa2) =  — 4 24 0 '3, an] is of order prime to 3. But this contradicts to the

fact that a2 is a generator of vio(S0(3): 3), since i *  and J  are monomor-
phisms on the 3-component and since k  /   0 (3). q . e . d .

W e end this section with

Corollary 3.4. E very  p r in c ip a l S 3 -bundle o v e r  S 11  i s  an  H-space
mod fi, f o r  a n y  o d d  p.

§ 4 .  Some results on homotopy

The results in this section will be used in the next section. Let G2
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be the compact, exceptional Lie group of rank 2. Let V7,2 =S 0(7)IS 0(5)
be the Stiefel manifold. Then we have the principal bundle

(4.1) S3 —> G2 —> V7,2.

Denote by Mn—Sn - 1 U en  the mapping cone of a map: Sn - 1 —>Sn- 1 - of
2

degree 2. We have cellular decompositions: V7,2= M6 u e ll , q9 )_p -1

(m6) = s3 u e 5 u e 6 u e 8 u e9 the 9-skeleton of G2 and G2=-G9)U e ll u e l4 .

Let Sn - i- —i —> Mn J—> S n be the cofibering.

Lemma 4.1. L et h: Sm—>M2 b e  a  m a p  su ch  th a t q. h:S11:1—S3

is  essen tia l, a n d  le t K = M 3  U C MI-0 b e  th e m app in g con e o f  ho g : A p o ,

POE--).M 3  . Then there exists a map f:K—>Gp ) such thatf,: 7ri(K)--->rri(G?))
i s  a  m od  2  isom orph ism  f o r  3 < i< 1 3 .  T he in clu sion  S 3 —*  i s  a
p-equivalence f o r  an y odd  p r im e p .

P r o o f .  Let F  be the 3-connective fibre space over G? ) . T h e n

we have a fibering:

F K(Z, 3).

Since H*(G? ) ; Z2)= {1, x5-= Sq 2 x3, xi, x3 x5 , xg} , w e have that 7r* :

H*(Z ,3 ; Z2)—>H*(G? ) ; Z2) is an epimorphism with Ker 77*
*

 =  E Hi (Z,

3; Z2)+ {Sq4 Sq2 u} , u being the fundamental class. It follows that there

exists a transgressive element a of H 8 (F; Z2) whose transgression image
is 7-(a)=Sq4 Sq2 u .  Then r(Sql-a)=sosq 2 u=(sou ) 2 and r(Sq2 Sql-a)=
s q 2(s ou )2_ (s gsu ) 2=  u4. Furthermore, a spectral sequence argument

leads us to conclude H* (F; Z2) -= {1, a, Sq2 a, b, Sq2 Sql a, c,...}, where

bEH 10 (F; 2'2) with r(b)_=u 2sq 2u, e E H14(F ;
 Z2) and ... denote higher

dimensional elements (d4(10c)=Sq 2 u 0 b ).  This follows from the fact
that Ker 7r* is generated by {SO S et e , (S .  q2u )2 u2Sq2u , u4 , Sq8Sq4Sq2u ,

...I as a right H*(Z, 3 ; Z2)-module and that the lowest dimensional
relation is  (Sq2u)2 u 2 = (u 2 s ou ) s q2 u . Since r(Sql-b)=s0.(u 2 sq2 u)_u 2

s ou =  u 4 = 7 -(s os e a )  and since r (So a ) = s o s e s o u -=_soso u + S q 5

Sq3 u=0 , w e have that Sql-b= Sq2 Sqla and Sq2 a = 0 . Take a  CW
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complex K ' with minimum cells 2-equivalent to F , and so we may take
= m 9 u c m 1 0 u e l 4 u . . . .  Consider the attaching map g:m10_,A 19.

gl S9 cannot cover the 9-cell o f M 9 essentially. Then the relation Sq 2

a = 0  shows that g S 9 is homotopic to z e ro . Thus we may choose g as

the composition h0  B e s i d e s ,  the relation Sq 2 (Sql-a)=
S q lb  shows that q oh : S 1 0 -3 M 9 --3S 9 i s  essential. L e t  K  be th e  11-

skeleton of K '  and !  the composition of the restriction of the 2-equivalence

K-->F and the inclusion i:F --> q 9 ) . Then clearly f , :n i(K )— > ir i(q 9 ) )
is a mod 2 isomorphism for 3 < i< 1 3 .  The assertion of the second half
follows from that i * :H * ( q 9 ) ; Z  *  ( S 3  ; Z p )  for all odd prime p.

q.e.d.

Lemma 4.2.

( i ) [ M 6 , G? ) ] = [M 6 , G? )] =0 ;
[21/8 , G 9 ) ]-----Z2 generated by the class of ( f 1S8 ). q;
[M 9g e n e r a t e d  b y  the class off 1M 9 .

( i i ) 7 1 0 (q 9 ) )=---4.20; there exists an exact sequence

0—>710(.53)-->771.o(G?)--->m.o(M 6)—>0;

The image of the composition [ M 9 , G 9 ] 077-10(M 9)—>ino(GM is isomor-

phic to Z4.

P r o o f .  (i) S in ce [Mn, X ]  is  a  Z4-group, we deduce that f , :
[Mn ,K]— >[Mn ,q 9 ) ] is an isomorphism for 4 < n < 1 3 . Obviously [Mn,
M 9 ] - --, [M n ,K ]  for n<8, in particular [M 8 , K ]= [M 8 , M 9]: --_-Z2 generated

(h °0 *,b y  f i o q l .  We have an exact sequence [M 9 , M '° ]  [ms, M 9 ]

-->[M 9 , K ]— [M 9 , M il]= 0  , where [M 9 , M 1 9 ]---Z 2  is generated by the

class l i o q l  and [M 9 , M 9 ]-=-Z4 by [13]. Then (h .q )„{ ioq}  =0, since q ,
{i} = { q = 0  .  So [M 9 , K ] [ M 9 , M 9 ] Z 4 generated by the class of

the inclusion (identity). Thus (i) is proved.

(ii) By Lemma 4.1, the odd component of 77-10(G?) is isomorphic to
ri o (S 3) 4,5 and the 2-component of that is isomorphic to 710(K). It

is a classical result of Barratt-Paechter that 77-10(M 9)- -Z4 generated by



O n the  c la s s i fica t io n  o f  H -spaces o f  ra n k  2 619

the class of h  (for a proof see [13]). Since the top cell of K  is attached

to K('o) = m9vsio by the sum of h  and the map of degree 2, we obtain

that 71-10(K('°)).----.Z8 and it is generated by the class of the identity of Slo

twice of which is the class o f h .  Thus Trio(q9 ) )=- 4.2o. Consider the

exact sequence

vii.(1116)--).-710(S3 ) i*( 9  P * a
77.10(G

»
2  ) 7710(1116) 7r9(S3),

Since H *(M 6 ;Z p )  is trivial for all odd primes p ,  irio(M 6)  has only

2-torsion. Since 1r1o(S3)_-- Z15 and 77-9(S3) =- Z3, a is  trivial. Since

irio(GS9 ) )=- 420, we obtain a short exact sequence in the lem m a. The

second half of (ii) is clear from (i). q . e . d .

Lemma 4.3.

( i ) 7710(G2)=7113(G2)=0.
(ii) The a tta ch in g  c la ss  of  the 11-cell in G 11 = q 9 ) U en is  a g en era to r

co  of 77.10(G 9 )c-----  Zno.
(iii) L e t 7T : G ?) 1119  G ? ) 1q 6 ) b e  the projection. T hen  77-* (co)=y  a

g en e r a to r  of  7rio(M 9 ) - --Z4.

P r o o f .  ( i)  is computed in [101. Then (ii) follows easily from the

exact sequence

7111(G Gr)—>irio(G? ) )—>/rio(G sm),

where 71-10(G P ) ) = Trio(G2) = O.
(iii) follows easily from Lemma 4.2. q.e.d.

R em ark  4 .4 . T he a b ov e lem m a  im p lies  th a t the cok ernel of  the
Hurew icz  hom om orphism : 711(G2)—›-Hii(G2:Z) i s  i s o m o rp h ic  t o  Z120.

§ 5 .  Classification of H-spaces of type (3,11)

Let f: V7,2 - >B S 3  be the classifying map o f G2.
1 .V S " b e  the map pinching the equator SI-0 x  2 in

Let w: V7,2- > V7,2

V7,2 M 6  U CS 1 6 .

L e t a  be a  generator of 7rii(BS 3)=- 710(S3)  which corresponds to 80)
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under the monomorphism: 7rio(S 3 ) —>77.10(q 9 ) ). - Z120 (see Lemma 4.2).
For each integer b , let g b :S 11--9BS 3 represent ba  and let G2,b be the
principal S3 -bundle over V7,2 induced by the composition

fb —(iV  gb). ço : V7,2 —  V7,2 V S 1 1 — >B S 3 .

For example, G2= G2,0.

One of the main results o f this section is the following:

Theorem 5 .1 .  (  i ) E a ch  1 -con n ected  H -com p lex  of typ e (3, 11)
h a s  the h om o top y  t y p e  o f G2,b fo r  s o m e  b .
(ii) G2,b and G2,b , are hom otopy eq u iva len t if and on ly  if b b' (15) or
b + b '  .11 (15).
(iii) T h er e  are j u s t  8 hom otop y types of su ch  H-complexes: G 2 ,  fo r
— 2<i<5.

Before proving the theorem we prepare the following five lemmas.
In the following we assume by Corollary 2.3 that every 1-connected

H-complex of type (3, 11) has a cell structure

JI'  S3  U e5 U e6 U e8 U e 8  U en  U e1 4 .

Lemma 5 .2 .  Let X  b e a1 -con n ected  H -com p lex  o f typ e  (3, 11).
Then X( 6 ) is hom otopy equ iva len t to  G i9 ) , and h en ce  X (n ) is  h om o top y
equivalent to H k=G S 9 ) U en fo r som e odd  in teger k .

kw

P roo f. L e t  j :  S 3-+G 9  b e  the inclusion. The obstructions to

extending j  over X( 9 ) lie in [M 5 , Gr ]  and  [M 8 , G? ) ]. We obtain an

extension 3: x(6),q9), since [M 5 , q 9 ) ] = 0  by Lem m a 4.2. Next
consider the Puppe sequence:

[X(9 ) , G ? ] i '2 --)- [X( 8 ), G N ç'''' -*  [M 8 , G? ) ]

associated with the cofibration

M 8  ç2__>. X(6) j__). X(9)
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where w is the attaching map and i is the inclusion. To extend j  over
X (>, it suffices to show w * ( j)= 0 . Assume that w*(j) 0. Then by
Lemma 4.2 w * ()=(f 1 S 8 ).q. It is not so difficult to see that Sq4 Sq2 x3
is non-trivial in H*(X ( 9 ); Z2), which contradicts to Theorem 2 .2 .  Thus
j  has an extension over X( 9 ) which is clearly a  homotopy equivalence
from the structure of the cohomology. Therefore X(3-1 )=GS9 ) U en  fo r

kw

some integer k. The assertion that k  is odd follows easily from the
Z2-cohomology structure. q.e.d.

Lemma 5 .3 .  ( G 2 ,0 1 1 ) M +8b .

P ro o f .  From the construction of the bundle G 2,b  we have a

commutative diagram:

Gr ----+ G2, b - F - - + G2 U B ba

M 6 V7,2 ,2V  S 11
 f veb-÷ BS3

where B b a  is  the S 3 -bundle over Su induced by b a , G2 1.J B b a  is  the
bundle induced by f  V  gb so that G2 n Bba = S3  and two maps in the

upper horizontal sequence are the inclusions. Remark that (G2,0 9 )

= (G2 U B a )(9 )= .  Therefore we obtain a commutative diagram:

Gr) " L k , 7rii(G2 U Bba , Gs9))
\a at /

7710(G r)

where a and at are the boundary homoniorphisms and 1ri1(G2,b, G ) )
V7,2, and irn(G2U B b a , GS9 ) ):-: ---"m 1( V7,2VS 1 1 , M 6 )-- ZC)Z.

So for the generator t E 7 T n ( G 2 , b ,  G r ) ,  which is the class of the charac-
teristic map of the 11-dimensional cell in G 2 , b ,  we have that

3,=0'0,,,(,)=.,--Eba= (1 -1-8b)co,

since 0* is the map of type (1,1). q.e.d.
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Lem m a 5 .4 .  L et k and k' b e  o d d .  T h e n  Hic : Hk , i f  an d  o n ly

i f  k = ± k ' (mod 30).

P r o o f .  To begin with we show

(5.1) every self homotopy equivalence of q 9 ) is homotopic to one of

the following 8 maps:

f t :  G 9  A
° G S 9 ) V M 9 1 " 3 ) GS9 ) , t= 0 , 1 , 2 , 3 ;

l t : G r 1 _,G9vm 9  evis  G r , t= 0 ,1 , 2, 3,

1 
where ço: GS9 ) —+G ir V M 9 is the map shrinking M 8 x  2  n  GS9 ) = G ?

U CM 8 , 1 is the indentity of GS9 ) , s is an extension of the map of degree

—1: S3--)-S3 c  G r  and /3 is a generator o f [M 9 , GS9 )]--, ----Z4.
The existence of e is proved similarly to that of Lemma 5 .2 .  The

8 maps in the above induce isomorphisms of the integral cohomology
ring, since f3*(x3x5)=P*(x3)/3*(x5)=0 and P*(x3)= 0  for /3*:H*(GS9 ) ; Z2)
--).I/*(M 9 ; 2'2 ) . Thus these maps are homotopy equivalences. Consider

the Puppe exact sequence:

[M 9 , [ G ,  G r ]  —›- [GT ) , G? ) ].

If f  and g  of [G 9 ,  G 9 1  satisfy i* f= i* g ,  then there exists an element

tf3E [M 9 , GP ) ] such that f= (gV tg )< T . A  similar statement holds in

the sequence:

77:_,.[G 6 , Ge)] , [ S e ,

where i  i s  injective, since [M 6 , GS9 )]= 0  by Lemma 4.2. Now let g

be 1 or s  according as ili* f= i6K i*1 or i6Ki*f---i6ki*s. Then it follows

that f=---(gVt/3).go=ft or J. Thus the proof o f (5.1) is completed.
By taking inverse for each element, we obtain a  self homotopy

equivalence of G2 such that it is of degree —1 on S. Then we m ay

choose s  as a cellular approximation of this map.

W e have

(5 .2 )  Hic2-_H k ' i f  an d  o n l y  i f  ft,,,k(0=±k'w or fg*kw=+k' w.
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In fact, the restriction of every homotopy equivalence on G? ) is
either f t  or f t fo r  some t.

Here we recall a  result due to Whitehead [20]:

vio (G r VM 3 )-_- :—.:7710(G?)) Ovio(M 9 )103711.1(q 9 ) X M 9 , G? ) V M 9 ).

So we have

f  t.(kco)=( 1 V 49)..T .(k w )
—(1V ti(3)* (kco+ kr kx[L3, t8])

=kco+ktP,k(r)+ktx[t3,11 8]•

Here /3* (y)=- +30w by Lemma 4.3. Further we have [t3,/18]=0. In

fact, p * I- t3,flt81 = 0  for p * :710(G? ) )-0-7rio(M 6 )  and hence [c3,118] is of odd

order, since 7710(S3) ---- =4.5, while [Ls, gts] is of order 2, as 2/ 8 = 0 .  Thus

we have f t* (kw)= k(1+30t)co , whence k' k (1 + 3 0 t) (mod 120). Simila-
rly one can obtain that k' k ( -1 + 3 0 t )  (mod 120). Since k and k' are

odd, we can deduce that H  k  is homotopy equivalent to H k ,  if and only

if (mod 30). q . e . d .

Lemma 5 .5 .  E v e r y  G2,b i s  an H-space of t y p e  (3,11).

P roo f. S in c e  V 7.2  is p-equivalent to Sn for all odd primes p , G2,b

is p-equivalent to a principal S 3 -bundle over Sn, and hence G 2 ,b  is

an H-space mod p  by Corollary 3.4. For p = 2 ,  consider a complex
v =  ms u en, where a  is the attaching map of ell in V7,2. Apparently

15a

there is a  2-equivalence h :  V  V 7 ,2 , which has degree 15 on the

11-dimensional cell. Let go': V—>- V V S 1 1 be the shrinking map similar

to 99. Thus by commutativity of the diagram:

V  So' 
 

V  V  S ll

Ii V 15Ln

V7,2 V, , 2 V  S l l f  v eb  BS3

and by the fact that 15a=0, we obtain that G 2,b  is 2-equivalent to G2.

Therefore G 2 ,b  is an H-space by Theorem 7.1 of [12]. q.e.d.
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Lemma 5 .6 .  L et X  an d  Y  b e 1 -conn ected  H -com plex es of  typ e
(3,11). T hen  X Y  i f  an d  o n ly  i f  X (1-1-), - -, y ( l) .

P r o o f .  The necessity is c lear. We show the sufficiency. First

we prove for the case that Y =G 2,b . Let r' x(n),G  (11)2,6 be a homotopy
equivalence. If we obtain an extension r: X—>G2,b, it is easily checked
to be a homotopy equivalence from the cohomology ring structures of

X  and G2,b•

As is shown in the proof o f Lemma 5 .5 , G2,b_'-'L" G2 and G2,b
2

p-equivalent to  a principal S 3 -bundle over S n  for odd p .  Then by

Theorem 3.2 and Lemma 5.3, we have 7113(G2,b:p)=0 for p 3,  and

if 71-13(G2,b) is non-trivial, it is isomorphic to Z3 and G2,b:-_-S3 x  S n .  I f
3

v i3 ( G 2 ,b ) = - 0 ,  clearly we have an extension r : X—/-G2,b. Hence we

assume 7r13(G2,b)=Z3. Then X  is also 3-equivalent to S 3  x  S n .  For

and X  is  an H -sp ace . So the attaching element 8  of

e1 4  in  X  satisfies that q8= q7[1 ,3, till for some integers q ,q ' with

q q '   (3) and for some 3-equivalence f  : S 3 v s n .„.x (1 ) .  Since G 2,b  is
an H-space, we have that r(q8)=-r',,(q'f[c3,141])=.0 in 7713(G2,b)=Z3
and hence 1-4,8=0 in 7r13(G2,b). That is, there is an extension r:

Now for general Y, we have that Y(n) ----Hk for some odd k  with

1< k< 15 by Lemma 5 .2  and Lemma 5.4. Since either k  or — k is
expressed as 1+8b, we have Y(1 1 )-- --G ii ) by Lemma 5 .3 .  Thus

by the above argument. This completes the proof. q.e.d.

(P ro o f o f  T heorem  5.1.) ( i )  Let X  be a 1-connected H-complex

of type (3 ,1 1 ) . Then X(n)_- ---Hk for some odd integer k with 1<k<15
by Lemmas 5.2 and 5.4. Since either k  or — k is expressed as 1+86
with —2<6< 5 , we can see by virtue o f Lemmas 5 .3  and 5 .4  that
x(n).--GN) for some b ,  —2<6< 5 .  Then by Lemmas 5 .5  and 5.6
we obtain (i).

(ii) By Lem m as 5.4 and 5.6, G2,62"--' G2,b , if and only if H 1 +8 r= 111+8b'

if and  only i f  1+ 8b= ± (1+ 86') (30) if an d  only if (15 ) or

(15).

is
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(iii) follows directly from (ii) and Lemma 5.5. q.e.d.
As a  corollary of the proof o f Theorem 5.1 we have

Corollary 5.7. Let X  be a1-connected H -com p lex  o f  typ e (3, 11).
Then
(i) X --G 2  f o r  a n y  p r im e  p  w ith o r  5.

(ii) X - --G2 o r S 3 x S u  a c c o r d in g  a s  2 1 x3 0 o r  O x 3 = 0  in  H *
5 5

(X ; Z )
(iii) X G2 o r  S 3 x S n  a cco rd in g  as 0.x3 0 or 4 2 = 0  in H * (X ;Z r ),

3 3

w h er e  0 i s  a  s e con d a ry  o p era tion  con s id er ed  in  § 2. (irk is known
to  d e t e c t  a  g e n e r a to r  o f  irio(S3 :

The proof is left to the reader.

Theorem 5 .8 .  G 2,b ha s th e  homotopy ty p e  o f a  lo o p  sp a ce  i f and
on ly  i f  1+86-/-0 (p) f o r  p=3 a n d  5, i .e . ,  6= -1 ,0 ,2 ,5 .

P r o o f .  By Theorem 7.1 o f [12], G2,b has the homotopy type of
a loop space if and only if (G2,b)(p) does fo r any prime p . Clearly

(G2,b)(P) is a loop space for p 3  or 5, since G2,b_ G 2 by Lemma 5.5

and Corollary 5.7. Note that (S3 x Su)(p ), for p=3 and 5, is not of
the homotopy type of a loop space. In  fact, if so, there exists the

classifying space B(S 3 x S1 1 )(p ), and hence the ..A-algebra structure

of H *(B (S 3 x sn\ ( p )) ;Z p ) Z p [u4, u12] induces a contradiction. Therefore

(G2,b)(p) is  a loop space if and only if (H1-F8b)(p) is a loop space if and
only if

A (x3,0x3) PH*(H1+8b A(x3, 21X3) = 3

if and only if 1+86  /   0 mod 3 and 5. q.e.d.

§ 6 .  Appendix

For convenience, we list the following table fo r G 2 , b , - 2 < b < 5
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3-type 5-type PtYPe
(p 3 ,5 )

—2 S3 x S 1 1 53 x 5 1 1 G2 not loop

—1 G2 G2 G2 loop

0 G2 G2 G2 loop

1 Sa X 51 1 G2 G2 not loop
2 G2 G2 G2 loop

3 G2 S3 X S i l G2 not loop

4 53 x Sn G2 G2 not loop

5 G2 G2 G2 loop

According to L. Smith [14], the type of a 1-connected, associative

H-space of rank 2 is either (3, 3), (3, 5), (3, 7) or (3, 11). Then, using

Theorem 7.1 o f [12] together with Theorem 5 .8  and the results of

[15], [21], we obtain the following

Theorem 6 .1 .  A  1 -co n n e c ted , f in it e , associative H -com p lex  of
r a n k  2  i s  hom otopy  e q u iv a le n t  t o  one of the f o l l o w i n g :  S 3 x S 3 ,
S U(3), E1=-S p(2), E5, G2,0=G2, G2,-1, G2,2, G2,5.
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