On the classification of H-spaces of rank 2

By

Mamoru MIMURA, Goro NISHIDA and Hirosi TODA

(Received, January 11, 1973)

§1. Introduction

For a finite *H*-complex *X*, the classical Hopf theorem states that the rational cohomology $H^*(X; Q)$ is isomorphic to $\Lambda(x_1, \ldots, x_l)$, the exterior algebra over *Q* with deg x_i odd. We call *l* the rank of *X* and (deg $x_1, \ldots, \text{deg } x_l$) the type of *X*.

In the present paper we will consider the homotopy type classification for 1-connected, finite *H*-complexes of rank 2. In the case $H_*(X; Z)$ has no 2-torsion, the classification has been given by Hilton-Roitberg [6] and Zabrodsky [21] as follows:

Theorem. The complete list of homotopy types of 1-connected, 2-torsion free, finite H-complexes of rank 2 is the following: $S^3 \times S^3$, SU(3), E_k (k=0,1,3,4,5), $S^7 \times S^7$, where E_k is the principal S^3 -bundle over S^7 with the characteristic class $k\omega \in \pi_7(BS^3) \cong Z_{12}$, ω a generator.

Thus our object is to classify H-spaces of rank 2 with 2-torsion.

Let X be a 1-connected, finite H-complex of rank 2 such that $H^*(X; Z)$ has 2-torsion. According to J. R. Hubbuck [7], $H^*(X; Z_2) \cong H^*(G_2; Z_2)$ as Hopf algebras, where G_2 is the compact, exceptional Lie group of rank 2.

Let $f: V_{7,2} \rightarrow BS^3$ be the classifying map of G_2 , $\varphi: V_{7,2} \rightarrow V_{7,2} \lor S^{11}$ the suitable shrinking map, and a generator of $\pi_{11}(BS^3)$ suitably chosen. We denote by $G_{2,b}$ the principal S^3 -bundle over $V_{7,2}$ induced by the composition $(f \lor g_b) \circ \varphi$: $V_{7,2} \rightarrow V_{7,2} \lor S^{11} \rightarrow BS^3$, where g_b represents ba, $b \in \mathbb{Z}$. (For details see §5).

Then our result is

Theorem 5.1. Let X be a 1-connected, finite H-complex of rank 2 such that $H_*(X;Z)$ has 2-torsion. Then X is homotopy equivalent to $G_{2,b}$ for some b. There are just 8 homotopy types of such H-complexes: $G_{2,1}$ for $-2 \le i \le 5$.

Then together with the result by Zabrodsky [21] we obtain

Main Theorem. The complete list of homotopy types of 1-connected, finite H-complexes of rank 2 is the following: $S^3 \times S^3$, SU(3), E_k (k=0,1,3,4,5), $S^7 \times S^7$, $G_{2,i}$ ($-2 \le i \le 5$).

The paper is organized as follows. The Hubbuck's theorem is introduced in §2. In §3 we determine the mod p homotopy types of S^3 -bundles over S^{11} . Some results on homotopy, which will be needed in §5, are prepared in §4. The classification of the homotopy types of *H*-complexes of type (3,11) are discussed and thoroughly determined in the section 5. Further, some additional properties of $G_{2,b}$ is studied. Namely $G_{2,b}$ is homotopy equivalent to a loop space if and only if $1+8b \equiv 0 \mod 3$ and 5 (Theorem 5.8).

Throughout the paper, we use the following notations. For two complexes X and Y, $X \simeq Y$ denotes that X is homotopy equivalent to Y; $X \simeq Y$ denotes that X is *p*-equivalent to Y. (The direction of a *p*-equivalence is irrelevant, since all complexes under consideration are H-spaces mod 0, see [11]). $X^{(n)}$ stands for the *n*-skeleton of X and $\pi_i(X:p)$ the *p*-component of $\pi_i(X)$. We denote by \mathcal{A}_p the mod *p* Steenrod algebra.

§2. H-spaces of rank 2 with 2-torsion

Let X be a simply connected, finite H-complex of rank 2 where $H_*(X;Z)$ has 2-torsion. Let G_2 be the compact, exceptional Lie group of rank 2.

Then the following theorem is due to J. R. Hubbuck [7].

Theorem 2.1. $H^*(X;Z_2)$ is isomorphic as a Hopf algebra to $H^*(G_2;Z_2)$.

From this theorem we deduce some facts for later use.

Theorem 2.2.

- (i) $H^*(X;Z_2) \cong H^*(G_2;Z_2)$ as \mathcal{A}_2 -algebras, in particular, $Sq^4Sq^2H^3$ $(X;Z_2)=0.$
- (ii) $H^*(X;\mathbb{Z}_p)\cong H^*(G_2;\mathbb{Z}_p)$ for any odd prime p.

Proof. (i) From Theorem 2.1 we have

$$H^*(X;Z_2) \cong Z_2[x_3]/[x_3^4] \otimes \Lambda(x_5),$$

where deg $x_i = i$.

From the relation $x_3^2 = Sq^3x_3 = Sq^1Sq^2x_3$ it follows that $Sq^2x_3 = x_5$. Thus $H^*(X; Z_2) \cong H^*(G_2; Z_2)$ as \mathcal{A}_2 -algebras. The element $Sq^4Sq^2x_3$ is trivial, since it is primitive. (ii) By (i) X is of type (3,11). Then apparently $H^*(X; Z)$ has no p-torsions for p > 3 by Theorem 4.7 of [3]. Assume that X has 3-torsion. Then we can easily see again by Theorem 4.7 of [3] that

$$H^*(X;Z_3) \cong \Lambda(x_3, x'_3) \otimes Z_3[x_4]/[x_4^3]$$
 with $x_4 = \beta x_3$.

Now consider an Adem relation

(2.1)
$$\beta \mathcal{P}^2 = \mathcal{P}^2 \beta - \mathcal{P}^1 \beta \mathcal{P}^1$$

and an (unstable) secondary operation ϕ associated with (2.1). Then ϕ is well defined on x_4 , since $\beta x_4 = \beta \mathcal{P}^1 x_4 = 0$. So we can apply Theorem

1.1 of [22] and obtain an indecomposable element $\phi(x_4)$ in $H^{12}(X;Z_3)$, which is a contradiction. So $H^*(X;Z)$ has no 3-torsion.

q. e. d.

As a corollary we have

Corollary 2.3. Let Y be a simply connected, finite H-complex of rank 2. Then $H^*(Y;Z)$ has 2-torsion if and only if Y is of type (3,11).

§3. Homotopy type mod odd of S^3 -bundles over S^{11}

The notion "homotopy type mod p" means the classification by p-equivalences. Remark that the p-equivalence is an equivalence relation, since all spaces we shall consider are H-spaces mod 0 (see [11]).

Let us determine the homotopy types mod p, p odd, of S^3 -bundles over S^{11} . Such bundles are classified by $\pi_{11}(BSO(4))\cong\pi_{10}(SO(4))$. Since $SO(4)\cong SO(3)\times S^3$, we have

$$\pi_{10}(SO(4)) \cong \pi_{10}(SO(3)) \oplus \pi_{10}(S^3) \cong Z_{15} \oplus Z_{15}.$$

We represent an element of $\pi_{10}(SO(4))$ by a pair (n,m) with $n,m \in \mathbb{Z}_{15}$. We denote by B(n,m) the bundle corresponding to $(n,m) \in \pi_{10}(SO(4))$. Note that for any S³-bundle B over S¹¹, there exists a S³-bundle B' over S¹¹ with the characteristic class $\chi' \in \pi_{10}(SO(4):p)$ such that $B \simeq B'$.

Thus to determine the homotopy types mod p, it is enough to consider the bundles classified by $\pi_{10}(SO(4):p)$.

Before stating a theorem let us recall the result due to James-Whitehead. Consider a sequence:

$$\pi_{13}(S^{10}) \xrightarrow{(\pi_*\chi)_*} \to \pi_{13}(S^3) \xleftarrow{J} \pi_{10}(SO(3)) \xrightarrow{i_*} \to \pi_{10}(SO(4))$$

for $\chi \in \pi_{10}(SO(4))$, where $\pi: SO(4) \to S^3$ is the projection. Denote by $G(\chi)$ the subgroup $i_* \circ J^{-1} \circ (\pi_*\chi)_*(\pi_{13}(S^{10}))$ of $\pi_{10}(SO(4))$. For a subset S of $\pi_{10}(SO(4))$, $\{S\}_{\chi}$ means the coset of S modulo $G(\chi)$. Then the following is a special case of the James-Whitehead theorem [9].

615

Proposition 3.1. Let B_1 and B_2 be total spaces of S^3 bundles over S^{11} with characteristic classes χ_1 and χ_2 in $\pi_{10}(SO(4))$ respectively. Then $B_1 \simeq B_2$ if and only if $\pi_*\chi_1 = \pm \pi_*\chi_2$ and $\{\pm\chi_1\}_{\chi_1} = \{\pm\chi_2\}_{\chi_2}$.

The following is a main result in this section:

Theorem 3.2. The complete list of the homotopy types mod p of S^3 -bundles over S^{11} is the following

- (i) B(0,0) for any prime $p \ge 7$,
- (ii) B(0,0) and B(0,3) for p=5,
- (iii) B(0,0), B(0,5) and B(5,0) for p=3.

Further, all but B(5,0) are H-spaces mod p for the respective p.

Proof. First we show the last statement that all representatives except B(5,0) are *H*-spaces mod p. In fact $B(0,0)=S^3\times S^{11}$ is an *H*-space mod p for any odd prime p ([1]). Also by [10] we have $B(0,5) \underset{3}{\simeq} G_2$ and $B(0,3) \underset{5}{\simeq} G_2$, whence B(0,5) is an *H*-space mod 3 and B(0,3) is an *H*-space mod 5. Now we prove the theorem dividing it into three cases:

[Case i) $p \ge 7$]. Clearly the homotopy type mod p is unique, i.e., $B(0,0) = S^3 \times S^{11}$, since $\pi_{10}(SO(4):p) = 0$.

[Case ii) p=5]. An element of $\pi_{10}(SO(4):5) \cong Z_5 \oplus Z_5$ is represented by (n,m) with $n\equiv 0$ (3) and $m\equiv 0$ (3). If $m\not\equiv 0$ (15), there is an integer r with (r,5)=1 such that (n,m)=r(n',3). So $B(n,m) \cong B(n',3)$ for some n'. Now we apply Proposition 2.1. We get that (n,m)=0 for

some n'. Now we apply Proposition 3.1. We get that $(\pi_*\chi)_*=0$ for any $\chi \in \pi_{10}(SO(4):5)$, since $\pi_{13}(S^{10}:5)=0$, and hence

$$G(\chi) = i_*(Z_5) = \{(n,0) : n \equiv 0 \ (3)\}.$$

Therefore by Proposition 3.1 we obtain that $B(n,m) \simeq B(n',m)$ for any n and n'. So there are only two representatives: B(0,0) and B(0,3). But apparently B(0,0) is not 5-equivalent to B(0,3).

[Case iii) p=3]. By the same argument as in the Case ii), we can see

that the candidates for the representatives of the homotopy type mod 3 are B(0,0), B(0,5) and B(5,0). We shall show that they are actually of the distinct homotopy type mod 3. Clearly neither B(0,0) nor B(5,0) is 3-equivalent to B(0,5). For they are not 3-equivalent on the 11-skeleton. The following lemma then completes the proof.

In fact, the lemma indicates that B(0,0) is not 3-equivalent to B(5,0), since B(0,0) is an H-space mod 3.

Lemma 3.3. B(5,0) admits no H-structures mod 3.

Proof. Assume that B(5,0) admits an *H*-structure mod 3. So by definition ([12]), there exists a map μ : $B(5,0) \times B(5,0) \rightarrow B(5,0)$ such that $f = \mu(, *) = \mu(*,)$: $B(5,0) \rightarrow B(5,0)$ is a 3-equivalence, where * is a base point of B(5,0). Then $\mu|B(5,0) \setminus B(5,0) = f \circ \pi$, where π : $B(5,0)\setminus B(5,0) \rightarrow B(5,0)$ is the canonical projection. Therefore $f_*[\alpha,\beta]$ =0 for $a \in \pi_n(B(5,0))$ and $\beta \in \pi_m(B(5,0))$, and hence the Whitehead product $[\alpha,\beta]$ is of order prime to 3. Since B(5,0) has a cross-section, we have $B(5,0)^{(11)} \simeq S^3 \bigvee S^{11}$ and $i_*: \pi_n(S^3) \rightarrow \pi_n(B(5,0))$ is a monomorphism, where i_* is factored as $\pi_n(S^3) \xrightarrow{i_{1*}} \to \pi_n(S^3 \setminus S^{11}) \xrightarrow{i_{2*}} \to \pi_n$ (B(5,0)). Let $\varphi \in \pi_{13}(B(5,0)^{(11)})$ be the attaching element of the top cell. Then by [8] we obtain $\varphi = ki_{1*} \circ f(a_2) + [\sigma_3, \sigma_{11}]$, where a_2 is a generator of $\pi_{10}(SO(3):3)$, $k \neq 0$ (3) and $\sigma_i: S^i \rightarrow S^3 \setminus S^{11}$ is the canonical inclusion (i=3,11). Since $i_{2*}\varphi=0$, we deduce that $ki_{*}J(a_2)=ki_{2*}i_{1*}$ $J(a_2) = -i_{2*}[\sigma_3, \sigma_{11}]$ is of order prime to 3. But this contradicts to the fact that α_2 is a generator of $\pi_{10}(SO(3):3)$, since i_* and J are monomorphisms on the 3-component and since $k \neq 0$ (3). q.e.d.

We end this section with

Corollary 3.4. Every principal S^3 -bundle over S^{11} is an H-space mod p, for any odd p.

§4. Some results on homotopy

The results in this section will be used in the next section. Let G_2

be the compact, exceptional Lie group of rank 2. Let $V_{7,2}=SO(7)/SO(5)$ be the Stiefel manifold. Then we have the principal bundle

$$(4.1) \qquad S^3 \to G_2 \xrightarrow{p} V_{7,2}$$

Denote by $M^n = S^{n-1} \bigcup e^n$ the mapping cone of a map: $S^{n-1} \rightarrow S^{n-1}$ of degree 2. We have cellular decompositions: $V_{7,2} = M^6 \cup e^{11}$, $G_2^{(9)} = p^{-1}$ $(M^6) = S^3 \cup e^5 \cup e^6 \cup e^8 \cup e^9$ the 9-skeleton of G_2 and $G_2 = G_2^{(9)} \cup e^{11} \cup e^{14}$. Let $S^{n-1} \xrightarrow{i} M^n \xrightarrow{q} S^n$ be the cofibering.

Lemma 4.1. Let $h: S^{10} \rightarrow M^9$ be a map such that $q \circ h: S^{10} \rightarrow S^9$ is essential, and let $K = M^9 \cup CM^{10}$ be the mapping cone of $h \circ q: M^{10} \rightarrow S^{10} \rightarrow M^9$. Then there exists a map $f: K \rightarrow G_2^{(9)}$ such that $f_*: \pi_i(K) \rightarrow \pi_i(G_2^{(9)})$ is a mod 2 isomorphism for 3 < i < 13. The inclusion $S^3 \rightarrow G_2^{(9)}$ is a *p*-equivalence for any odd prime *p*.

Proof. Let F be the 3-connective fibre space over $G_2^{(9)}$. Then we have a fibering:

$$F \xrightarrow{i} G_2^{(9)} \xrightarrow{\pi} K(Z,3).$$

Since $H^*(G_2^{(9)}; Z_2) = \{1, x_3, x_5 = Sq^2x_3, x_3^2, x_3x_5, x_3^3\}$, we have that π^* : $H^*(Z,3;Z_2) \rightarrow H^*(G_2^{(9)};Z_2)$ is an epimorphism with Ker $\pi^* = \sum_{i \ge 10} H^i(Z, 3;Z_2) + \{Sq^4Sq^2u\}$, u being the fundamental class. It follows that there exists a transgressive element a of $H^8(F;Z_2)$ whose transgression image is $\tau(a) = Sq^4Sq^2u$. Then $\tau(Sq^1a) = Sq^5Sq^2u = (Sq^2u)^2$ and $\tau(Sq^2Sq^1a) = Sq^2(Sq^2u)^2 = (Sq^3u)^2 = u^4$. Furthermore, a spectral sequence argument leads us to conclude $H^*(F;Z_2) = \{1, a, Sq^2a, b, Sq^2Sq^1a, c, ...\}$, where $b \in H^{10}(F;Z_2)$ with $\tau(b) = u^2Sq^2u$, $c \in H^{14}(F;Z_2)$ and ... denote higher dimensional elements $(d_4(1 \otimes c) = Sq^2u \otimes b)$. This follows from the fact that Ker π^* is generated by $\{Sq^4Sq^2u, (Sq^2u)^2, u^2Sq^2u, u^4, Sq^8Sq^4Sq^2u, ...\}$ as a right $H^*(Z,3;Z_2)$ -module and that the lowest dimensional relation is $(Sq^2u)^2u^2 = (u^2Sq^2u)Sq^2u$. Since $\tau(Sq^1b) = Sq^1(u^2Sq^2u) = u^2Sq^3u = u^4 = \tau(Sq^2Sq^1a)$ and since $\tau(Sq^2a) = Sq^2Sq^4Sq^2u = Sq^6Sq^2u + Sq^5Sq^3u = 0$, we have that $Sq^{1b} = Sq^2Sq^2a$ and $Sq^2a = 0$. Take a CW complex K' with minimum cells 2-equivalent to F, and so we may take $K' = M^9 \bigcup_g CM^{10} \bigcup_{e^{14}} \bigcup_{\cdots}$ Consider the attaching map $g: M^{10} \to M^9$. $g|S^9$ cannot cover the 9-cell of M^9 essentially. Then the relation Sq^2 a=0 shows that $g|S^9$ is homotopic to zero. Thus we may choose g as the composition $h \circ q: M^{10} \to S^{10} \to M^9$. Besides, the relation $Sq^2(Sq^1a) =$ Sq^1b shows that $q \circ h: S^{10} \to M^9 \to S^9$ is essential. Let K be the 11skeleton of K' and f the composition of the restriction of the 2-equivalence $K \to F$ and the inclusion $i:F \to G_2^{(9)}$. Then clearly $f_*: \pi_i(K) \to \pi_i(G_2^{(9)})$ is a mod 2 isomorphism for 3 < i < 13. The assertion of the second half follows from that $i^*: H^*(G_2^{(9)}; Z_p) \cong H^*(S^3; Z_p)$ for all odd prime p. q.e.d.

Lemma 4.2.

- (i) $[M^5, G_2^{(9)}] = [M^6, G_2^{(9)}] = 0;$ $[M^8, G_2^{(9)}] \cong Z_2$ generated by the class of $(f | S^8) \circ q;$ $[M^9, G_2^{(9)}] \cong Z_4$ generated by the class of $f | M^9.$
- (ii) $\pi_{10}(G_2^{(9)}) \cong Z_{120}$; there exists an exact sequence

 $0 \rightarrow \pi_{10}(S^3) \rightarrow \pi_{10}(G_2^{(9)}) \rightarrow \pi_{10}(M^6) \rightarrow 0;$

The image of the composition $[M^9, G_2^{(9)}] \otimes \pi_{10}(M^9) \rightarrow \pi_{10}(G_2^{(9)})$ is isomorphic to Z_4 .

Proof. (i) Since $[M^n, X]$ is a Z_4 -group, we deduce that f_* : $[M^n, K] \rightarrow [M^n, G_2^{(9)}]$ is an isomorphism for 4 < n < 13. Obviously $[M^n, M^9] \cong [M^n, K]$ for $n \le 8$, in particular $[M^8, K] \cong [M^8, M^9] \cong Z_2$ generated by $\{i \circ q\}$. We have an exact sequence $[M^9, M^{10}] \xrightarrow{(h \circ q)_*} \to [M^9, M^9] \rightarrow [M^9, K] \rightarrow [M^9, M^{11}] = 0$, where $[M^9, M^{10}] \cong Z_2$ is generated by the class $\{i \circ q\}$ and $[M^9, M^9] \cong Z_4$ by [13]. Then $(h \circ q)_* \{i \circ q\} = 0$, since q_* $\{i\} = \{q \circ i\} = 0$. So $[M^9, K] \cong [M^9, M^9] \cong Z_4$ generated by the class of the inclusion (identity). Thus (i) is proved.

(ii) By Lemma 4.1, the odd component of $\pi_{10}(G_2^{(9)})$ is isomorphic to $\pi_{10}(S^3) \cong Z_{15}$ and the 2-component of that is isomorphic to $\pi_{10}(K)$. It is a classical result of Barratt-Paechter that $\pi_{10}(M^9) \cong Z_4$ generated by

the class of h (for a proof see [13]). Since the top cell of K is attached to $K^{(10)} = M^9 \setminus S^{10}$ by the sum of h and the map of degree 2, we obtain that $\pi_{10}(K^{(10)}) \cong Z_8$ and it is generated by the class of the identity of S^{10} twice of which is the class of h. Thus $\pi_{10}(G_2^{(9)}) \cong Z_{120}$. Consider the exact sequence

$$\pi_{11}(M^6) \rightarrow \pi_{10}(S^3) \xrightarrow{i_*} \pi_{10}(G_2^{(9)}) \xrightarrow{\not p_*} \pi_{10}(M^6) \xrightarrow{\partial} \pi_9(S^3),$$

Since $H^*(M^6; Z_p)$ is trivial for all odd primes p, $\pi_{10}(M^6)$ has only 2-torsion. Since $\pi_{10}(S^3) \cong Z_{15}$ and $\pi_9(S^3) \cong Z_3$, ∂ is trivial. Since $\pi_{10}(G_2^{(9)}) \cong Z_{120}$, we obtain a short exact sequence in the lemma. The second half of (ii) is clear from (i). q.e.d.

Lemma 4.3.

- (i) $\pi_{10}(G_2) = \pi_{13}(G_2) = 0.$
- (ii) The attaching class of the 11-cell in $G_2^{(11)} = G_2^{(9)} \cup e^{11}$ is a generator ω of $\pi_{10}(G_2^{(9)}) \cong Z_{120}$.
- (iii) Let $\pi: G_2^{(9)} \to M^9 = G_2^{(9)}/G_2^{(6)}$ be the projection. Then $\pi_*(\omega) = \gamma$ a generator of $\pi_{10}(M^9) \cong Z_4$.

Proof. (i) is computed in [10]. Then (ii) follows easily from the exact sequence

$$\pi_{11}(G_2^{(11)}, G_2^{(9)}) \rightarrow \pi_{10}(G_2^{(9)}) \rightarrow \pi_{10}(G_2^{(11)}),$$

where $\pi_{10}(G_2^{(11)}) = \pi_{10}(G_2) = 0.$ (iii) follows easily from Lemma 4.2.

Remark 4.4. The above lemma implies that the cohernel of the Hurewicz homomorphism: $\pi_{11}(G_2) \rightarrow H_{11}(G_2;Z)$ is isomorphic to Z_{120} .

q.e.d.

§5. Classification of H-spaces of type (3,11)

Let f: $V_{7,2} \rightarrow BS^3$ be the classifying map of G_2 . Let $\varphi: V_{7,2} \rightarrow V_{7,2}$ $\bigvee S^{11}$ be the map pinching the equator $S^{10} \times \frac{1}{2}$ in $V_{7,2} = M^6 \cup CS^{10}$. Let a be a generator of $\pi_{11}(BS^3) \cong \pi_{10}(S^3)$ which corresponds to 8ω under the monomorphism: $\pi_{10}(S^3) \rightarrow \pi_{10}(G_2^{(9)}) \cong Z_{120}$ (see Lemma 4.2). For each integer *b*, let $g_b: S^{11} \rightarrow BS^3$ represent *ba* and let $G_{2,b}$ be the principal S^3 -bundle over $V_{7,2}$ induced by the composition

$$f_b = (f \lor g_b) \circ \varphi \colon V_{7,2} \to V_{7,2} \lor S^{11} \to BS^3.$$

For example, $G_2 = G_{2,0}$.

One of the main results of this section is the following:

Theorem 5.1. (i) Each 1-connected H-complex of type (3, 11) has the homotopy type of $G_{2,b}$ for some b. (ii) $G_{2,b}$ and $G_{2,b'}$ are homotopy equivalent if and only if $b\equiv b'$ (15) or $b+b'\equiv 11$ (15).

(iii) There are just 8 homotopy types of such H-complexes: $G_{2,4}$ for -2 < i < 5.

Before proving the theorem we prepare the following five lemmas. In the following we assume by Corollary 2.3 that every 1-connected H-complex of type (3, 11) has a cell structure

$$X \simeq S^3 \cup e^5 \cup e^6 \cup e^8 \cup e^9 \cup e^{11} \cup e^{14}.$$

Lemma 5.2. Let X be a 1-connected H-complex of type (3, 11). Then $X^{(9)}$ is homotopy equivalent to $G_2^{(9)}$, and hence $X^{(11)}$ is homotopy equivalent to $H_k = G_2^{(9)} \bigcup_{\substack{k \neq 0 \\ k \neq 0}} e^{11}$ for some odd integer k.

Proof. Let $j: S^3 \rightarrow G_2^{(9)}$ be the inclusion. The obstructions to extending j over $X^{(9)}$ lie in $[M^5, G_2^{(9)}]$ and $[M^8, G_2^{(9)}]$. We obtain an extension $\overline{j}: X^{(6)} \rightarrow G_2^{(9)}$, since $[M^5, G_2^{(9)}] = 0$ by Lemma 4.2. Next consider the Puppe sequence:

$$[X^{(9)}, G_2^{(9)}] \xrightarrow{i^*} [X^{(6)}, G_2^{(9)}] \xrightarrow{\varphi^*} [M^8, G_2^{(9)}]$$

associated with the cofibration

$$M^8 \xrightarrow{\varphi} X^{(6)} \xrightarrow{i} X^{(9)}$$

where φ is the attaching map and *i* is the inclusion. To extend \bar{j} over $X^{(9)}$, it suffices to show $\varphi^*(\bar{j})=0$. Assume that $\varphi^*(\bar{j})\neq 0$. Then by Lemma $4.2 \varphi^*(\bar{j})=(f|S^8)\circ q$. It is not so difficult to see that $Sq^4Sq^2x_3$ is non-trivial in $H^*(X^{(9)}; Z_2)$, which contradicts to Theorem 2.2. Thus j has an extension over $X^{(9)}$ which is clearly a homotopy equivalence from the structure of the cohomology. Therefore $X^{(11)}=G_2^{(9)} \bigcup e^{11}$ for some integer k. The assertion that k is odd follows easily from the Z_2 -cohomology structure.

Lemma 5.3. $(G_{2,b})^{(11)} \simeq H_{1+8b}$.

Proof. From the construction of the bundle $G_{2,b}$ we have a commutative diagram:

$$\begin{array}{ccc} G_2^{(9)} \longrightarrow G_{2,b} \xrightarrow{\varphi} G_2 \cup B_{b\alpha} \\ \downarrow & \downarrow & \downarrow \\ M^6 \longrightarrow V_{7,2} \xrightarrow{\varphi} V_{7,2} \bigvee S^{11} \xrightarrow{f \lor g_b} BS_3 \end{array}$$

where $B_{b\alpha}$ is the S^3 -bundle over S^{11} induced by $b\alpha$, $G_2 \cup B_{b\alpha}$ is the bundle induced by $f \bigvee g_b$ so that $G_2 \cap B_{b\alpha} = S^3$ and two maps in the upper horizontal sequence are the inclusions. Remark that $(G_{2,b})^{(9)} = (G_2 \cup B_{\alpha})^{(9)} = G_2^{(9)}$. Therefore we obtain a commutative diagram:

where ∂ and ∂' are the boundary homomorphisms and $\pi_{11}(G_{2,b}, G_2^{(9)}) \cong \pi_{11}(V_{7,2}, M^6) \cong Z$ and $\pi_{11}(G_2 \cup B_{b\alpha}, G_2^{(9)}) \cong \pi_{11}(V_{7,2} \vee S^{11}, M^6) \cong Z \oplus Z$. So for the generator $\iota \in \pi_{11}(G_{2,b}, G_2^{(9)})$, which is the class of the characteristic map of the ll-dimensional cell in $G_{2,b}$, we have that

$$\partial \iota = \partial' \bar{\varphi}_*(\iota) = \omega + ba = (1 + 8b)\omega,$$

since $\bar{\varphi}^*$ is the map of type (1,1).

q.e.d.

Lemma 5.4. Let k and k' be odd. Then $H_k \simeq H_{k'}$ if and only if $k \equiv \pm k' \pmod{30}$.

Proof. To begin with we show

(5.1) every self homotopy equivalence of $G_2^{(9)}$ is homotopic to one of the following 8 maps:

$$f_t: G_2^{(9)} \xrightarrow{\varphi} G_2^{(9)} \bigvee M^9 \xrightarrow{1 \lor t\beta} G_2^{(9)}, \quad t = 0, 1, 2, 3;$$

$$\bar{f}_t: G_2^{(9)} \xrightarrow{\varphi} G_2^{(9)} \bigvee M^9 \xrightarrow{\varepsilon \lor t\beta} G_2^{(9)}, \quad t = 0, 1, 2, 3,$$

where $\varphi: G_2^{(9)} \to G_2^{(9)} \setminus M^9$ is the map shrinking $M^8 \times \frac{1}{2}$ in $G_2^{(9)} = G_2^{(6)}$ $\cup CM^8$, 1 is the indentity of $G_2^{(9)}$, ε is an extension of the map of degree $-1: S^3 \to S^3 \subset G_2^{(9)}$ and β is a generator of $[M^9, G_2^{(9)}] \cong Z_4$.

The existence of ε is proved similarly to that of Lemma 5.2. The 8 maps in the above induce isomorphisms of the integral cohomology ring, since $\beta^*(x_3x_5) = \beta^*(x_3)\beta^*(x_5) = 0$ and $\beta^*(x_3^3) = 0$ for $\beta^*: H^*(G_2^{(9)}; Z_2) \rightarrow H^*(M^9; Z_2)$. Thus these maps are homotopy equivalences. Consider the Puppe exact sequence:

$$[\mathcal{M}^{9}, \, G_{2}^{(9)}] \xrightarrow{\pi^{*}} [G_{2}^{(9)}, \, G_{2}^{(9)}] \xrightarrow{i^{*}} [G_{2}^{(6)}, \, G_{2}^{(9)}].$$

If f and g of $[G_2^{(9)}, G_2^{(9)}]$ satisfy $i^*f = i^*g$, then there exists an element $t\beta \in [M^9, G_2^{(9)}]$ such that $f = (g \setminus t\beta) \circ \varphi$. A similar statement holds in the sequence:

$$[M^{6}, G_{2}^{(9)}] \xrightarrow{\pi_{0}^{*}} [G_{2}^{(6)}, G_{2}^{(9)}] \xrightarrow{i_{0}^{*}} [S^{3}, G_{2}^{(9)}],$$

where i_0^* is injective, since $[M^6, G_2^{(9)}] = 0$ by Lemma 4.2. Now let g be 1 or ε according as $i_0^* i^* f = i_0^* i^* 1$ or $i_0^* i^* f = i_0^* i^* \varepsilon$. Then it follows that $f = (g \bigvee t\beta) \circ \varphi = f_t$ or \bar{f}_t . Thus the proof of (5.1) is completed.

By taking inverse for each element, we obtain a self homotopy equivalence of G_2 such that it is of degree -1 on S^3 . Then we may choose ε as a cellular approximation of this map.

We have

(5.2) $H_k \simeq H_k'$ if and only if $f_{t*}k\omega = \pm k'\omega$ or $\bar{f}_{t*}k\omega = \pm k'\omega$.

In fact, the restriction of every homotopy equivalence on $G_2^{(9)}$ is either f_t or \bar{f}_t for some t.

Here we recall a result due to Whitehead [20]:

$$\pi_{10}(G_2^{(9)} \vee M^9) \cong \pi_{10}(G_2^{(9)}) \oplus \pi_{10}(M^9) \oplus \partial \pi_{11}(G_2^{(9)} \times M^9, G_2^{(9)} \vee M^9).$$

So we have

$$f_{t*}(k\omega) = (1 \lor t\beta)_* \circ \varphi_*(k\omega)$$

= $(1 \lor t\beta)_*(k\omega + k\gamma + kx[\iota_3, \iota_8])$
= $k\omega + kt\beta_*(\gamma) + ktx[\iota_3, \beta\iota_8].$

Here $\beta_*(\gamma) = \pm 30\omega$ by Lemma 4.3. Further we have $[\iota_3, \beta\iota_8] = 0$. In fact, $p_*[\iota_3, \beta\iota_8] = 0$ for $p_*: \pi_{10}(G_2^{(9)}) \rightarrow \pi_{10}(M^6)$ and hence $[\iota_3, \beta\iota_8]$ is of odd order, since $\pi_{10}(S^3) \cong Z_{15}$, while $[\iota_3, \beta\iota_8]$ is of order 2, as $2\beta\iota_8 = 0$. Thus we have $f_{t*}(k\omega) = k(1\pm 30t)\omega$, whence $k' \equiv k(1\pm 30t) \pmod{120}$. Similarly one can obtain that $k' \equiv k(-1\pm 30t) \pmod{120}$. Since k and k' are odd, we can deduce that H_k is homotopy equivalent to $H_{k'}$ if and only if $k \equiv \pm k' \pmod{30}$.

Lemma 5.5. Every $G_{2,b}$ is an H-space of type (3,11).

Proof. Since $V_{7.2}$ is p-equivalent to S^{11} for all odd primes p, $G_{2,b}$ is *p*-equivalent to a principal S^3 -bundle over S^{11} , and hence $G_{2,b}$ is an *H*-space mod p by Corollary 3.4. For p=2, consider a complex $V=M^6 \cup e^{11}$, where σ is the attaching map of e^{11} in $V_{7,2}$. Apparently there is a 2-equivalence $h: V \rightarrow V_{7,2}$, which has degree 15 on the 11-dimensional cell. Let $\varphi': V \rightarrow V \setminus S^{11}$ be the shrinking map similar to φ . Thus by commutativity of the diagram:

$$V \xrightarrow{\varphi} V \bigvee S^{11}$$

$$\downarrow \qquad \qquad \downarrow k \lor 15\iota_{11}$$

$$V_{7,2} \xrightarrow{\varphi} V_{7,2} \bigvee S^{11} \xrightarrow{f \lor g_b} BS^3$$

and by the fact that $15\alpha=0$, we obtain that $G_{2,b}$ is 2-equivalent to G_2 . Therefore $G_{2,b}$ is an *H*-space by Theorem 7.1 of [12]. q.e.d. 624 Mamoru Mimura, Goro Nishida and Hirosi Toda

Lemma 5.6. Let X and Y be 1-connected H-complexes of type (3, 11). Then $X \simeq Y$ if and only if $X^{(11)} \simeq Y^{(11)}$.

Proof. The necessity is clear. We show the sufficiency. First we prove for the case that $Y=G_{2,b}$. Let $r': X^{(11)} \rightarrow G_{2,b}^{(11)}$ be a homotopy equivalence. If we obtain an extension $r: X \rightarrow G_{2,b}$, it is easily checked to be a homotopy equivalence from the cohomology ring structures of X and $G_{2,b}$.

As is shown in the proof of Lemma 5.5, $G_{2,b} \simeq G_2$ and $G_{2,b}$ is *p*-equivalent to a principal S³-bundle over S¹¹ for odd *p*. Then by Theorem 3.2 and Lemma 5.3, we have $\pi_{13}(G_{2,b};p)=0$ for $p\neq 3$, and if $\pi_{13}(G_{2,b})$ is non-trivial, it is isomorphic to Z_3 and $G_{2,b} \simeq S^3 \times S^{11}$. If

 $\pi_{13}(G_{2,b})=0$, clearly we have an extension $r: X \rightarrow G_{2,b}$. Hence we assume $\pi_{13}(G_{2,b})=Z_3$. Then X is also 3-equivalent to $S^3 \times S^{11}$. For $X^{(11)} \simeq G_{2,b}^{(11)}$ and X is an H-space. So the attaching element δ of e^{14} in X satisfies that $q\delta = q'f_*[\iota_3, \iota_{11}]$ for some integers q,q' with $qq' \neq 0$ (3) and for some 3-equivalence $f: S^3 \setminus S^{11} \rightarrow X^{(11)}$. Since $G_{2,b}$ is an H-space, we have that $r'_*(q\delta) = r'_*(q'f_*[\iota_3, \iota_{11}]) = 0$ in $\pi_{13}(G_{2,b}) = Z_3$ and hence $r'_*\delta = 0$ in $\pi_{13}(G_{2,b})$. That is, there is an extension $r: X \rightarrow G_{2,b}$.

Now for general Y, we have that $Y^{(11)} \simeq H_k$ for some odd k with $1 \le k \le 15$ by Lemma 5.2 and Lemma 5.4. Since either k or -k is expressed as 1+8b, we have $Y^{(11)} \simeq G_{2,b}^{(11)}$ by Lemma 5.3. Thus $Y \simeq G_{2,b}$ by the above argument. This completes the proof. q.e.d.

(Proof of Theorem 5.1.) (i) Let X be a 1-connected H-complex of type (3,11). Then $X^{(11)} \simeq H_k$ for some odd integer k with $1 \le k \le 15$ by Lemmas 5.2 and 5.4. Since either k or -k is expressed as 1+8b with $-2 \le b \le 5$, we can see by virtue of Lemmas 5.3 and 5.4 that $X^{(11)} \simeq G_{2,b}^{(11)}$ for some $b, -2 \le b \le 5$. Then by Lemmas 5.5 and 5.6 we obtain (i).

(ii) By Lemmas 5.4 and 5.6, $G_{2,b} \simeq G_{2,b'}$ if and only if $H_{1+8b} \simeq H_{1+8b'}$ if and only if $1+8b \equiv \pm (1+8b')$ (30) if and only if $b \equiv b'$ (15) or $b+b' \equiv 11$ (15). (iii) follows directly from (ii) and Lemma 5.5.As a corollary of the proof of Theorem 5.1 we have

Corollary 5.7. Let X be a 1-connected H-complex of type (3, 11). Then

- (i) $X \simeq G_2$ for any prime p with $p \neq 3$ or 5.
- (ii) $X \simeq G_2 \text{ or } \simeq S^3 \times S^{11} \text{ according as } \mathcal{P}^1 x_3 \neq 0 \text{ or } \mathcal{P}^1 x_3 = 0 \text{ in } H^*$ $(X; Z_n)$
- (iii) X ≈ G₂ or ≈ S³×S¹¹ according as φx₃≠0 or φx₃=0 in H*(X;Z_p), where φ is a secondary operation considered in §2. (φ is known to detect a generator of π₁₀(S³:3)≈Z₃.) The proof is left to the reader.

Theorem 5.8. $G_{2,b}$ has the homotopy type of a loop space if and only if $1+8b \neq 0$ (p) for p=3 and 5, i.e., b=-1,0,2,5.

Proof. By Theorem 7.1 of [12], $G_{2,b}$ has the homotopy type of a loop space if and only if $(G_{2,b})_{(p)}$ does for any prime p. Clearly $(G_{2,b})_{(p)}$ is a loop space for $p \neq 3$ or 5, since $G_{2,b} \simeq G_2$ by Lemma 5.5 and Corollary 5.7. Note that $(S^3 \times S^{11})_{(p)}$, for p=3 and 5, is not of the homotopy type of a loop space. In fact, if so, there exists the classifying space $B(S^3 \times S^{11})_{(p)}$, and hence the \mathcal{A}_p -algebra structure of $H^*(B(S^3 \times S^{11})_{(p)}; Z_p) \simeq Z_p[u_4, u_{12}]$ induces a contradiction. Therefore $(G_{2,b})_{(p)}$ is a loop space if and only if $(H_{1+8b})_{(p)}$ is a loop space if and only if

$$H^*(H_{1+8b}; \mathbb{Z}_p) \cong \begin{cases} \Lambda(x_3, \phi x_3) & p = 3\\ \Lambda(x_3, \mathcal{P}^1 x_3) & p = 5 \end{cases}$$

if and only if $1+8b \neq 0 \mod 3$ and 5.

q.e.d.

§6. Appendix

For convenience, we list the following table for $G_{2,b}$, $-2 \le b \le 5$

	3-type	5-type	<i>p</i> -type (<i>p</i> ≠3,5)	
$^{-2}$	$S^{3} \times S^{11}$	$S^3 \times S^{11}$	G_2	not loop
$^{-1}$	G_2	G_2	G_2	loop
0	G_2	G_2	G_2	loop
1	$S^3 imes S^{11}$	G_2	G_2	not loop
2	G_2	G_2	G_2	loop
3	G_2	$S^3 imes S^{11}$	G_2	not loop
4	$S^3 imes S^{11}$	G_2	G_2	not loop
5	G_2	G_2	G_2	loop

According to L. Smith [14], the type of a 1-connected, associative H-space of rank 2 is either (3, 3), (3, 5), (3, 7) or (3, 11). Then, using Theorem 7.1 of [12] together with Theorem 5.8 and the results of [15], [21], we obtain the following

Theorem 6.1. A 1-connected, finite, associative H-complex of rank 2 is homotopy equivalent to one of the following: $S^3 \times S^3$, SU(3), $E_1=Sp(2)$, E_5 , $G_{2,0}=G_2$, $G_{2,-1}$, $G_{2,2}$, $G_{2,5}$.

KYOTO UNIVERSITY

References

- J. F. Adams: The sphere, considered as an H-space mod p, Quart. J. Math., Oxford 12 (1961), 52-60.
- [2] W. Browder: Torsion in H-spaces, Ann. Math., 74 (1961), 24-51.
- [3] W. Browder: On differential Hopf algebras, Trans. A. M. S., 107 (1963), 153-176.
- [4] W. Browder: Higher torsion in H-spaces, Trans. A. M. S., 108 (1963), 353-375.
- [5] W. Browder: Surgery and the theory of the differentiable transformation groups, Proc. of the conference on transformation groups.
- [6] P. J. Hilton and J. Roitberg: On the classification problem for H-spaces of rank 2, Comm. Math. Helv., 46 (1971), 506-516.
- [7] J. R. Hubbuck: Simply connected H-spaces of rank 2 with 2-torsion, (to appear).
- [8] I. M. James and J. H. C. Whitehead: The homotopy theory of sphere bundles over spheres, I, Proc. London Math. Soc. 4 (1954), 196-218.
- [9] I. M. James and J. H. C. Whitehead: The homotopy theory of sphere bundles over spheres, II, Proc. London Math. Soc., 5 (1955), 148-166.
- [10] M. Mimura: The homotopy groups of Lie groups of low rank, J. Math. Kyoto Univ., 6 (1967), 131-176.
- [11] M. Mimura and H. Toda: On p-equivalences and p-universal spaces, Comm. Math. Helv., 46 (1971), 87–97.
- [12] M. Mimura, G. Nishida and H. Toda: Localization of CW complexes and its applications, J. Math. Soc. Japan 23 (1971), 593-624.

- [13] J. Mukai: Stable homotopy of some elementary complexes, Mem. Fac. Sci. Kyushu Univ., XX(1966), 266-282.
- [14] L. Smith: On the type of an associative H-space of rank two, Tohoku Math. J. 20 (1968), 511-515.
- [15] J. D. Stasheff.: Manifolds of the homotopy type of (non-Lie) groups, Bull, A. M. S., 75 (1969), 998-1000.
- [16] T. Sugawara and H. Toda: Squaring operations in truncated polynomial algebras, Japanese J. Math., XXXVIII (1969), 39-50.
- [17] E. Thomas: Steenrod squares and H-spaces: I, Ann. Math., 77 (1964), 306-317.
- [18] E. Thomas: Steenrod squares and H-spaces: II, Ann. Math., 81 (1965), 473-495.
- [19] H. Toda: Composition methods in homotopy groups of spheres, Ann. Math. Studies, No. 49 (1962).
- [20] G. W. Whitehead: A generalization of the Hopf invariant, Ann. Math., 51 (1950), 192-237.
- [21] A. Zabrodsky: The classification of simply connected H-spaces with 3-cells, I. II., Math. Scand. 30 (1972), 193-210; 211-222.
- [22] A. Zabrodsky: Secondary cohomology operations in the module of indecomposables, Proc. Advanced Study Inst. on Algebraic Topology, (1970), 657-672.