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§1. Introduction

For a finite A-complex X, the classical Hopf theorem states
that the rational cohomology A*(X; Q) is isomorphic to A(xy,...,x7),
the exterior algebra over Q with deg x; odd. We call / the rank of X
and (deg x1,...,deg x;) the type of X.

In the present paper we will consider the homotopy type classifica-
tion for 1-connected, finite Z/-complexes of rank 2. In the case A4 (X; Z)
has no 2-torsion, the classification has been given by Hilton-Roitberg
[6] and Zabrodsky [21] as follows:

Theorem. T7/e complete list of homotopy types of l-connected,
2-torsion free, finite H-complexes of rank 2 is the following: S3X .S3,
SU@B), Ex (£=0,1,3,4,5), STX S7, where Ey is the principal S3-bundle

over S7 with the characteristic class ko Emy(BS3)=Z13, w a generator.

Thus our object is to classify A-spaces of rank 2 with 2-torsion.

Let X be a l-connected, finite H-complex of rank 2 such that
H*(X; Z) has 2-torsion. According to J. R. Hubbuck [7], H#*(X; Z5)
=H*(G2; Zs) as Hopf algebras, where G2 is the compact, exceptional
Lie group of rank 2.

Let f: 7,0—BS3 be the classifying map of Gy, ¢: Vq,9—V7,0\/ S
the suitable shrinking map, and a a generator of 711(BS3) suitably
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chosen. We denote by Ga,p the principal S3-bundle over 17,3 induced
by the composition (f\/ gp)op: Va,o—V7,2\/S11—BS3, where gy repre-
sents ba, 6=Z. (For details see §5).

Then our result is

Theorem 5.1. Let X be a l-connected, finite H-complex of rank

2 such that Hy(X;Z) has 2-torsion. Then X is homotopy equivalent
to Ga,p for some b. There are just 8 homotopy types of suck H-complexes:

G, for —2<7<5.

Then together with the result by Zabrodsky [21] we obtain

Main Theorem. T#ke complete list of homotopy types of 1-con-
nected, finite H-complexes of rank 2 is the following: S3x S3, SU(3),
Ey (£=0,1,3,4,5), S7xS7, Gai (—2<i<5).

The paper is organized as follows. The Hubbuck’s theorem is
introduced in §2. In §3 we determine the mod p homotopy types of
S3-bundles over S11.  Some results on homotopy, which will be needed
in §5, are prepared in §4. The classification of the homotopy types
of H-complexes of type (3,11) are discussed and thoroughly determined
in the section 5. Further, some additional properties of Gg,p is studied.
Namely Gg,» is homotopy equivalent to a loop space if and only if
14+8bs£0 mod 3 and 5 (Theorem 5.8).

Throughout the paper, we use the following notations. For two
complexes X and Y, X~V denotes that X is homotopy equivalent

to V; X~V denotes that X is p-equivalent to Y. (The direction
P

of a p-equivalence is irrelevant, since all complexes under consideration
are H-spaces mod 0, see [11]). X stands for the z-skeleton of X
and mi(X: p) the p-component of m(X). We denote by A, the mod p
Steenrod algebra.
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§2. H-spaces of rank 2 with 2-torsion

Let X be a simply connected, finite A-complex of rank 2 where
Hy(X;Z) has 2-torsion. Let G2 be the compact, exceptional Lie group
of rank 2.

Then the following theorem is due to J. R. Hubbuck [7].

Theorem 2.1. H*(X;Zs) is isomorphic as a Hopf algebra to
H*(Gz; Zs).

From this theorem we deduce some facts for later use.

Theorem 2.2.
(1) H*X;Z)=H*(Gz2;Zs) as As-algebras, in particular, SgASq2H?3
(X; Z2)=0.
(ii) H¥X,Zp)=H*(G2;Zyp) for any odd prime p.

Proof. (i) From Theorem 2.1 we have
HX(X; Zp)=2Zs[x5][+§] @ A(xs),

where deg x;=¢.

From the relation x3=S¢3x3=S¢1S¢%x3 it follows that S¢2x3=xs.
Thus A*(X; Zo)=H*(Gs;Z3) as As-algebras. The element S¢4Sg2x3
is trivial, since it is primitive. (ii) By (i) X is of type (3,11). Then
apparently *(X;Z) has no p-torsions for p>>3 by Theorem 4.7 of [3].
Assume that X has 3-torsion. Then we can easily see again by Theorem

4.7 of [3] that

H*(X; Zg)=A(xs, x3) Q Za[x4]/[x]] with xq=Prs.
Now consider an Adem relation
2.1) BPe=P2B— PIBPL

and an (unstable) secondary operation ¢ associated with (2.1). Then

¢ is well defined on x4, since Brg=BPlxy=0. So we can apply Theorem
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1.1 of [22] and obtain an indecomposable element ¢(xs) in H12(X; Z3),
which is a contradiction. So A*(X;Z) has no 3-torsion.

q.e.d.

As a corollary we have

Corollary 2.3. Let Y be a simply connected, finite H-complex
of rank 2. Then H*(Y;Z) has 2-torsion if and only if Y is of type
3,10).

§3. Homotopy type mod odd of S3-bundles over S11

The notion “homotopy type mod p”’ means the classification by
p-equivalences. Remark that the p-equivalence is an equivalence
relation, since all spaces we shall consider are A-spaces mod 0 (see [11]).

Let us determine the homotopy types mod p, p odd, of S3-bundles
over S11,  Such bundles are classified by m11(BSO@))=m10(SO4)).
Since SO(4)=S0(3)x S3, we have

m10(S O(4))=m10(S O(3)) @ m10(S3)=Z15 D Z15.

We represent an element of 719(S O(4)) by a pair (s,m) with n,m & Z15.
We denote by B(»,m) the bundle corresponding to (7, 7)Em10(SO04)).
Note that for any S3-bundle B over S11, there exists a S3-bundle B’
over S11 with the characteristic class y'€m0(SO4):p) such that B%’B’.

Thus to determine the homotopy types mod p, it is enough to consider
the bundles classified by m1(SO®4):p).
Before stating a theorem let us recall the result due to James-

Whitehead. Consider a sequence:

m15(S10) Ty 710(63) L 1 (SOB)) — - mo(SO@))

for yemo(SO4)), where m:S0(4)—S3 is the projection. Denote by G(x)
the subgroup zyo /=1o(mux)s(m13(S10)) of m10(SO4)). For a subset S of
m0(SO@4)), {S}y means the coset of S modulo G(x). Then the following

is a special case of the James-Whitehead theorem [9].
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Proposition 3.1. Let By and Bs be total spaces of S3 bundles
over SY with characteristic classes x1 and xa in mo(SO(4)) respectively.
Then B1~Bs if and only if me1=-tmexe and {Lxitv,={Fx2}1.

The following is a main result in this section:

Theorem 3.2. T/e complete list of the homotopy types mod p of
S8-bundles over S1 is the following

(i) B(,0) for any prime p>1,
(ii) B(0,0) and B(0,3) for p=5,
@iiiy B(0,0), B(0,5) and B(5,0) for p=3.

Further, all but B(5,0) are H-spaces mod p for the respective p.

Proof. First we show the last statement that all representatives
except B(5,0) are H-spaces mod p. In fact B(0,0)=S3x S is an
H-space mod p for any odd prime p ([1]). Also by [10] we have
B(O,S)"_3-’Gz and B(O,S)%“Gg, whence B(0,5) is an H-space mod 3 and

B(0,3) is an H-space mod 5. Now we prove the theorem dividing it
into three cases:

[Case i) p=>7]. Clearly the homotopy type mod p is unique, i.e., B(0,0)
=83x S11, since mo(SO@):p)=0.

[Case ii) p=5]. An element of mo(SO@):5)=Z5@PZ5 is represented
by (12,7) with =0 (3) and »=0 (3). If »=£0 (15), there is an integer
r with (,5)=1 such that (»,m)=r(»",3). So B(n,m)"_S’B(n',?)) for

some #'. Now we apply Proposition 3.1. We get that (m,x),=0 for
any yEmo(SO4):5), since m13(510:5)=0, and hence

G()=14(Z5)={(»,0): =0 (3)}.

Therefore by Proposition 3.1 we obtain that B(n, m)~B(n’', m) for any »
and #’'. So there are only two representatives: 8(0,0) and B(0,3). But
apparently B(0,0) is not 5-equivalent to B(0, 3).

[Case iii) p=3]. By the same argument as in the Case ii), we can see
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that the candidates for the representatives of the homotopy type mod
3 are B(0,0), B(0,5) and B(5,0). We shall show that they are actually
of the distinct homotopy type mod 3. Clearly neither B(0,0) nor B(5,0)
is 3-equivalent to B(0,5). For they are not 3-equivalent on the 11-
skeleton. The following lemma then completes the proof.

In fact, the lemma indicates that B(0,0) is not 3-equivalent to
B(5,0), since B(0,0) is an H-space mod 3.

Lemma 3.3. B(5,0) admits no H-structures mod 3.

Proof. Assume that B(5,0) admits an H-structure mod 3. So by
definition ([12]), there exists a map u: B(5,0) X B(5,0)—B(5,0) such
that f=u( *)=p(, ): B(5,00>B(5,0) is a 3-equivalence, where *
is a base point of B(5,0). Then n|B(5,0)\/B(5,0)=fom, where =:
B(5,0)\/ B(5,0)—B(5,0) is the canonical projection. Therefore f4[a,f]
=0 for aEmy(B(5,0)) and Bemn(B(5,0)), and hence the Whitehead
product [a,B] is of order prime to 3. Since B(5,0) has a cross-section,
we have B(5,0)AD~S8\/S11 and 7, 74(S3)—>7x(B(5,0)) is a monomor-
phism, where 7, is factored as w,(S%) TSR mp(S3\/S11) e, Tn
(B(5,0)). Let p=m3(B(5,0)d) be the attaching element of the top
cell. Then by [8] we obtain p==4z1,0 [(ag)+[o3,011], where ag is a
generator of m19(SO(3):3), £5£0 (3) and oy: St—S53\/ S is the canonical
inclusion (7=3,11). Since 7240=0, we deduce that £7,, /(a2)=~FAia.i14
J(ag)=—1r24[03,011] is of order prime to 3. But this contradicts to the
fact that ag is a generator of m19(SO(3):3), since 7, and / are monomor-
phisms on the 3-component and since £3£0 (3). q.e.d.

We end this section with

Corollary 3.4. Every principal S3-bundle over S11 is an H-space
mod p, for any odd p.

§4. Some results on homotopy

The results in this section will be used in the next section. Let Gg
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be the compact, exceptional Lie group of rank 2. Let V7,5=S0(7)/SO(5)
be the Stiefel manifold. Then we have the principal bundle

(4.1) S3 G2 V3,0

Denote by M?=S8m-1 ¢" the mapping cone of a map: S*~1—-S57-1 of
degree 2. We have celzlular decompositions: Vz,e=M0Uell, GP=p"1
(M&=S3UebUebUeBUed the 9-skeleton of Gg and Go=G{P U el U 14
Let S7-1 % /7 25 S7 be the cofibering.

Lemma 4.1. Let 4:S10—M9 be a map such that goh:S10—>S9
is essential, and let K=M9%J CMW0 be the mapping cone of hog: MO0—
SV MO, Then there exists amap f:K—GP such thatfy: mi( K)—>mi(GP)
is @ mod 2 isomorphism for 3<i<13. The inclusion S3—G§ is a
p-equivalence for any odd prime p.

Proof. Let F be the 3-connective fibre space over G§. Then

we have a fibering:
FisGP T K(Z,3).

Since H*(G$; Zo)={1,x3, x5=Sq¢2x3, x4, x3x5,48}, we have that =*:

H*(Z,3;Zy)—>H*(GP; Zy) is an epimorphism with Ker n*= 3 Ht(Z,
210

3;Z2)+{S¢4Sq2u}, u being the fundamental class. It follows that there
exists a transgressive element @ of A8(F; Z;) whose transgression image
is 7(@)=S¢4S¢?u. Then 1(S¢la)=S¢5Sq2u=(S¢?x)? and 7(S5¢2S¢la)=
S¢2(Sq?u)2=(Sg3u)2=u*. Furthermore, a spectral sequence argument
leads us to conclude A *(F;Z)={l, a, S¢2a, b, S¢25¢1a, c,...}, where
b HW(F; Z) with 7(6)=u2Sq?u, cc H14(F;Z3) and ... denote higher
dimensional elements (d4(1Qc)=S¢?#@4&). This follows from the fact
that Ker #* is generated by {S¢4S¢2x, (Sq%u)?, 12Sq2u, ut, Sq8S¢4Sq%u,
...} as a right A#*(Z,3;Zs)-module and that the lowest dimensional
relation is (S¢2u)%22=(u25¢24)Sq?u. Since 7(Sql6)=Sq (u2Sq2u)=u?
S@Pu=ut=1(5¢25¢%) and since 7(S¢2a)=S5¢25¢45¢%u=S¢5S¢%u-+ Sqb
S¢®»«=0, we have that S¢l6=S542S¢la and Sg22=0. Take a CW
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complex K’ with minimum cells 2-equivalent to #, and so we may take
K'=M9JCMWOYety---. Consider the attaching map g: M10— /9,
9

£1S9 cannot cover the 9-cell of M9 essentially. Then the relation Sg¢2
a=0 shows that ¢|S® is homotopic to zero. Thus we may choose g as
the composition hog: M10—S10 179, Besides, the relation S¢2(Sgla)=
Sq¢16 shows that go/: S105M/9—>S9 is essential. Let K be the 11-
skeleton of K’ and f the composition of the restriction of the 2-equivalence
K—F and the inclusion :F—>G§. Then clearly fy:my(K)—>mi(GS
is a mod 2 isomorphism for 3<(7<(13. The assertion of the second half
follows from that 7%: H*(G®; Z p)=H*(S3; Z,) for all odd prime p.
q.ed.

Lemma 4.2.
(i) [5,G)= (315, G)=0;
[M8,GCP=Z, generated by the class of (f|S8)og;
[MO,GP=Z4 generated by the class of f|MP.

(ii) mo(CP)=Z100; there exists an exact sequence
0—-m10(S3)>m(GP)—>m10(M8)—0;

The image of the composition [M®, G| Q mo(M)—>m1o(GSP) is isomor-
phic to Zy.

Proof. (i) Since [M™ X] is a Zs-group, we deduce that f,:
[M7, K]-[M™", GP] is an isomorphism for 4<#<13. Obviously [M",
MO)=[M™, K] for <8, in particular [M8, K]=[M8, M9 =2, generated
by {Zog}. We have an exact sequence [M%, M19] (og)x_, [, M9]
—[MO K|—-[M® M11=0, where [M9 M10)=Z, is generated by the
class {7og} and [M9, M9 =Z4 by [13]. Then (%og)4{iog} =0, since gy
{i}={go2}=0. So[M?® K]=[M? M9=Z, generated by the class of
the inclusion (identity). Thus (i) is proved.

(ii) By Lemma 4.1, the odd component of 719(G§”) is isomorphic to
m10(S3)=Z15 and the 2-component of that is isomorphic to mp(K). It
is a classical result of Barratt-Paechter that mo(#/9)=Z4 generated by
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the class of 4 (for a proof see [13]). Since the top cell of X is attached
to K10 = A79\/ 510 by the sum of %4 and the map of degree 2, we obtain
that 19 (K10)=Z3 and it is generated by the class of the identity of S10
twice of which is the class of 4. Thus m(G§)=Z120. Consider the

exact sequence
(MO —>m10(S3) s m1o(GP) 2 mio(M6) 2> mo(SP),

Since H*(M$;Z,) is trivial for all odd primes p, m1o(M6) has only
2-torsion.  Since 10(S3)=Z15 and mg(53) =73, 0 is trivial. Since
mo(G§$)=Z120, we obtain a short exact sequence in the lemma. The

second half of (ii) is clear from (i). q.e.d.

Lemma 4.3.

(1) mo(Ge)=m3(G2)=0. ‘

(ii) The attacking class of the 11-cell in GFP =GP Ul is a generator
w of mo(G)=Z190.

(ili) Let m:GP—>MI=GCGP|GP® be the projection. Then my(w)=y a
generator of mo(M9)=Z,.

Proof. (i) is computed in [10]. Then (ii) follows easily from the

exact sequence
(G, GP)—>mo(GP)—>mio(GEY),

where 710(G§P)=m10(G2)=0.
(iii) follows easily from Lemma 4.2. q.ed.

Remark 4.4. 7he above lemma implies that the cokernel of the
Hurewicz homomorphism: m1(Ge)—~>H11(Ge; Z) is isomorphic to Zis.

§5. Classification of H-spaces of type (3,11)
Let f: 77,5853 be the classifying map of Ga. Let ¢: Vy,0—> V7,2
\/S1! be the map pinching the equator S10x % in Va,e=M6 CS1,

Let o be a generator of m3(B.S3)=m10(S3) which corresponds to 8w
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under the monomorphism: m(S3)— 710(G )= Z120 (see Lemma 4.2).
For each integer 4, let gp:S11—>BS3 represent da and let Ga,p; be the
principal S3-bundle over V7, induced by the composition

Jo=(f\ gv)op: Va,o—>V3,2\/S11—BS3.

For example, Ga=Goa,.

One of the main results of this section is the following:

Theorem 5.1. (i) Eack l-connected H-complex of type (3,11)
has the homotopy type of Ga,p for some b.
(ii) Gao,p and G, are homotopy equivalent if and only if b=4" (15) or
b+46'=11 (15).
(iii) There are just 8 homotopy types of such H-complexes: Ga,q for
—2< <5,

Before proving the theorem we prepare the following five lemmas.
In the following we assume by Corollary 2.3 that every l-connected

H-complex of type (3,11) has a cell structure

X>=S3UeSUebUeBUeU el U el4,

Lemma 5.2. Let X be a l-connected H-complex of type (3, 11).
Then X® is homotopy equivalent to G, and hence XV is homotopy
equivalent to Hr=G$ U el for some odd integer k.

ko

Proof. Let j:S3—G§ be the inclusion. The obstructions to
extending ;j over X lie in [M5 GP] and [M8,G§]. We obtain an
extension ;j: XO—GP, since [M5 GP]=0 by Lemma 4.2. Next

consider the Puppe sequence:
[X®, GP] 2L 1X0, GP-2 s [ M8, G
associated with the cofibration

M8 L X©® 5 X0
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where ¢ is the attaching map and 7 is the inclusion. To extend ; over
X, it suffices to show ¢*(;)=0. Assume that ¢*(7)50. Then by
Lemma4.2 o*(7)=(f|S8)og. It is not so difficult to see that Sg4S¢2x3
is non-trivial in A *(X®; Z,), which contradicts to Theorem 2.2. Thus
7 has an extension over X® which is clearly a homotopy equivalence

from the structure of the cohomology. Therefore XAD=G$ |Jell for
kw

some integer 2. The assertion that £ is odd follows easily from the

Zs-cohomology structure. q.e.d.
Lemma 5.3. (Gz,b)(u):HH.Sb.
Proof. From the construction of the bundle Gg,, we have a

commutative diagram:

GP — Go,p £~ G2U Boa

ool

M& —> Va2 o= Va2V SH

ngb_’ BSa

where Bp, is the S3-bundle over S11 induced by ba, Ga2U Bp, is the
bundle induced by f\/g» so that G2 Bp,=S® and two maps in the
upper horizontal sequence are the inclusions. Remark that (Gg,p)®

=(GaU B )W =G. Therefore we obtain a commutative diagram:

m(Ge,p, G P s 111(G2U Boa, G

N2 v/
N v
m10(G )

where d and 9’ are the boundary homomorphisms and m1(G2,5, G$P)
%7711( V7,2, MG)EZ and 7711(62 U Bba, Gg’))zﬂu( V7,2\/Su, MG)%Z@Z
So for the generator t=m1(Ge,b, G§), which is the class of the charac-

teristic map of the 11-dimensional cell in Gg,», we have that
=09, ()=w+ba=(14+8b)w,

since §* is the map of type (1,1). q.e.d.
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Lemma 5.4. Let k and k' be odd. Then Hy~Hy if and only
if A=+4% (mod 30).

Proof. To begin with we show
(5.1) every self homotopy equivalence of G§’ is homotopic to one of

the following 8 maps:

fo: GP s GOV MO VL G® 10,12, 3;
Fi: GP s GPN/ MO eV GP, t=0,1,2,3,

where ¢: G —GP\/M? is the map shrinking Msx—é— in GP =GP
U CM3, 1 is the indentity of G§P, ¢ is an extension of the map of degree
—1:53>S3C G and B is a generator of [M9, GPl=2Z,.

The existence of ¢ is proved similarly to that of Lemma 5.2. The
8 maps in the above induce isomorphisms of the integral cohomology
ring, since B*(x3x5)=B*(x3)B*(x5)=0 and B*(28)=0 for B*: H*(GP; Zs)
—H*(M?;Z5). Thus these maps are homotopy equivalences. Consider

the Puppe exact sequence:
(M9, GP]-——[GP, G —>[G‘6) GP].

If f and g of [G§, GP] satisfy i¥f=7*g, then there exists an element
BE[M9, GP] such that f=(g\/#B)op. A similar statement holds in

the sequence:
(M6, GP] - —>[G(6) G“’)]——>[S3 G9,

where 7§ is injective, since [M6, GP]=0 by Lemma 4.2. Now let g
be 1 or ¢ according as #§i*f=:§i*1 or i§7*f=idi*e. Then it follows
that f=(g\/#B)op=F; or f;. Thus the proof of (5.1) is completed.
By taking inverse for each element, we obtain a self homotopy
equivalence of G such that it is of degree —1 on S8 Then we may
choose ¢ as a cellular approximation of this map.
We have

(5.2) Hi~Hy if and only if frxhw=4Ew or fruhw=+Fw.
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In fact, the restriction of every homotopy equivalence on G$ is
either f; or f; for some ¢

Here we recall a result due to Whitehead [20]:

mo(GP\ M9 =m10(GCP)Dmio(MO)Dm(CP X M9, G\ M.

So we have

fts()=(1\/2B) 4o 0y (fw)
=(1\/2B) 4 (kw+ AT+ hx[is.15])
= hor+ k2B, (1) + ktx[i3, Bis).

Here B4(y)=430w by Lemma 4.3. Further we have [i3,Bi5]=0. In
fact, py[is, Big] =0 for p:mo(G§)—>m0(M6) and hence [i3,Big] is of odd
order, since m19(S3)=Z15, while [i3, Big] is of order 2, as 28:i3=0. Thus
we have fi,(hw)=/4(14+30¢)w, whence £'=£4£(1430¢) (mod 120). Simila-
rly one can obtain that £2'=4(—1430%) (mod 120). Since £ and £ are
odd, we can deduce that Ay is homotopy equivalent to Ay if and only
if A=44" (mod 30). q.e.d.

Lemma 5.5. Every Go,p is an H-space of type (3,11).

Proof. Since V7.2 is p-equivalent to S11 for all odd primes p, Ga,p
is p-equivalent to a principal S3-bundle over S, and hence Ga,p is
an H-space mod p by Corollary 3.4. For p=2, consider a complex

V=M6U e, where o is the attaching map of ¢!1 in I7,5. Apparently
150

there is a 2-equivalence /4:V— 7,9, which has degree 15 on the
11-dimensional cell. Let ¢': V—F"\/S! be the shrinking map similar
to . Thus by commutativity of the diagram:

y V\/Su -

l l AV 150,

V7,2 —?’_) V7’2\/511W BS'?'

and by the fact that 15a=0, we obtain that Ga,p is 2-equivalent to Go.
Therefore Go,p is an H-space by Theorem 7.1 of [12]. q.e.d.



624 Mamoru Mimura, Goro Nishida and Hirosi Toda

Lemma 5.6. Let X and YV be l-connected H-complexes of type
(3,11). Then XY if and only if XAD~Yyal),

Proof. The necessity is clear. We show the sufficiency. First
we prove for the case that ¥Y=Go,p. Let #: XAD—>G P be a homotopy
equivalence. If we obtain an extension »: X—Ga,p, it is easily checked
to be a homotopy equivalence from the cohomology ring structures of

X and Ga,p.

As is shown in the proof of Lemma 5.5, G2,,~G2 and Ga,p is
2

p-equivalent to a principal S3-bundle over S11 for odd p. Then by

Theorem 3.2 and Lemma 5.3, we have m3(G,p:p)=0 for ps£3, and

if m3(Ga,p) is non-trivial, it is isomorphic to Z3 and Ga,p=S3x S11. If
3

m3(Ge,p)=0, clearly we have an extension »: X—Gas,p. Hence we
assume m13(G2,5)=2Z3. Then X is also 3-equivalent to S3x S. For
XA~GEID and X is an H-space. So the attaching element § of
14 in X satisfies that ¢8=g¢'f[i3,u1] for some integers g¢,¢° with
77’540 (3) and for some 3-equivalence f: S3\/S11— XA, Since Go,p is
an H-space, we have that 7,(¢8)=r%(¢ f[t3,u1])=0 in m3(Ge,p)=23
and hence »,6=0 in m13(Gs,p). That is, there is an extension 7: X—Gg,p.
Now for general ¥V, we have that YAD~H} for some odd £ with
1<A<15 by Lemma 5.2 and Lemma 5.4. Since either £ or —£ is
expressed as 1486, we have YUD~GJD by Lemma 5.3. Thus ¥ ~Gg,p
by the above argument. This completes the proof. q.e.d.
(Proof of Theorem 5.1.) (i) Let X be a l-connected H-complex
of type (3,11). Then XUD~H} for some odd integer £ with 1<{A<15
by Lemmas 5.2 and 5.4. Since either £ or —£ is expressed as 1485
with —2<6<(5, we can see by virtue of Lemmas 5.3 and 5.4 that
XUD~GID for some b, —2<6<5. Then by Lemmas 55 and 5.6
we obtain (i).
(ii) By Lemmas 5.4 and 5.6, Gs,s~~Ga,p if and only if H14sp™=H14sp
if and only if 14-86=-4(1+84") (30) if and only if 6=4" (15) or
b+b'=11 (15).
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(iii) follows directly from (ii) and Lemma 5.5. q.e.d.
As a corollary of the proof of Theorem 5.1 we have

Corollary 5.7. Let X be a 1-connected H-complex of type (3,11).
Then
(i) X==Gz for any prime p with p£3 or 5.
»

(ii) X=Gp or =~ S3X S according as Plas%0 or Plag=0 in H*
5 5

(X;Zp)
(i) X=~G3 or =53 SY according as ¢x3#0 or dx3=0 in H*(X;Zp),
3 3

where ¢ is a secondary operation considered in §2. (¢ is known
to detect a generator of mio(S3:3)=Z23.)
The proof is left to the reader.

Theorem 5.8. G p has the homotopy type of a loop space if and
only if 1486540 (p) for p=3 and 5, i.e., 6=—1,0,2,5.

Proof. By Theorem 7.1 of [12], Gg,p has the homotopy type of

a loop space if and only if (Gg,b)(p) does for any prime p. Clearly

(Ga,p)(p) is a loop space for p=£3 or 5, since Go,p~G2 by Lemma 5.5
»

and Corollary 5.7. Note that (§3x S1),, for p=3 and 5, is not of
the homotopy type of a loop space. In fact, if so, there exists the
classifying space B(S3Xx S1)), and hence the Ajp-algebra structure
of H*(B(S8 X S1)(y);Z p)=Z p[ua, 112] induces a contradiction. Therefore
(Ga,b)(p) is a loop space if and only if (H1+85)(p) is a loop space if and
only if

A(xs, dxg) =3
A(xs, Plxg) p=5

if and only if 1+4+86=£0 mod 3 and 5. q.ed.

H*(Hyv8p; Zp)= {

§6. Appendix

For convenience, we list the following table for Gg,» —2<6<5
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3-type 5-type (‘;gi g)
-2 S3x.su S3xSsu e not loop
-1 Gs G2 G loop
0 Gs G2 Ga loop
1 S3x .51 Ge Ga not loop
2 Ga Ga Ga loop
3 G S3x.Ss1 G2 not loop
4 S3x . S11 Ge Ga not loop
5 Ga G2 Ge loop

According to L. Smith [14], the type of a 1-connected, associative

H-space of rank 2 is either (3, 3), 3,5), (3,7) or (3, 11). Then, using
Theorem 7.1 of [12] together with Theorem 5.8 and the results of
[15],[21], we obtain the following

Theorem 6.1. A l-connected, finite, associative H-complex of

rank 2 is homotopy equivalent to ome of the following: S3XS3,
SUB), E1=35p(2), Es, G20=02, Ga,1, G2, G
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