Some remarks on the existence of independent solutions for homogeneous first order differential system

By

Haruki NINOMIYA

(Received January 6, 1973)

§1. Introduction

In an open set U containing the origin in \mathbb{R}^n we consider homogeneous first order partial differential operators

$$L_k = \sum_{j=1}^n a_k^j(x) \cdot \frac{\partial}{\partial x_j} \qquad (k = 1, ..., m)$$

with coefficients in $C^1(U)$. Let $A(x) = (a_k^j(x))_{\substack{j=1,\dots,n \\ k=1,\dots,m}}$ be a (m, n)-matrix. Let an integer $r_0 = n - \max_{x \in U}$ rank A(x). In this note we investigate the condition for the existence of independent solutions of C^2 -class for the system of differential equations $L_k(f) = 0$ $(k=1,\dots,m)$ in a neighborhood of the origin contained in U; here r (at least C^1 -class) functions $f_1(x), \dots, f_r(x)$ are called, by definition, independent if $df_1 \wedge \dots \wedge df_r \neq 0$ holds.

When the coefficients are real-valued in $C^{1}(U)$, we see that it is equivalent to say that there exists a regular change of coordinates around the origin in \mathbb{R}^{n} by which all the operators L_{k} can be transformed into the operators in n-r new coordinates variables with r real parameters, where r denotes the number of independent solutions for $L_{k}(f)=0$ (k=1, ..., m).

To make our problem clear, let us consider the case of single equation $L(f) = \sum_{j=1}^{n} a_j(x) \frac{\partial f}{\partial x_j} = 0$. Suppose all the $a_j(x)$ are real-valued in $C^1(U)$ otherwise they are analytic in U. We know that if one of them is not zero at the origin, there exist n-1 independent solutions of C^2 -class for that in a neighborhood of the origin. Thus our problem is to investigate the condition for the existence of $r(r \le n-1)$ independent solutions of C^2 -class in a neighborhood of the origin when $a_j(0)=0$ (j=1,...,n). We want to present a point of view to this problem.

Finally, I thank Prof. S. Mizohata for his kind helpful advice.

§2. A theorem

Firstly we state a lemma which is basic in later discussion:

Lemma. Let us assume that there exist $r (r \leq n-1)$ independent solutions of C^2 -class $f_j(x)$ (j=1,...,r) for $L(f) = \sum_{j=1}^n a_j(x) \frac{\partial f}{\partial x_j} = 0$ in a neighborhood of the origin contained in U, where $a_j(x)$ (j=1,...,n) are $C^1(U)$. Then there exist n-r homogeneous first order partial differential operators P_j (j=1,...,n-r), which can be determined only by those r independent solutions $f_j(x)$ (j=1,...,r) in a neighborhood of the origin the following conditions:

(1) L is expressed as a linear combination of P_j ; namely there exist functions $c_j(x)$ (j=1,...,n-r) in $C^1(V)$ such that

$$L = \sum_{j=1}^{n-r} c_j(x) P_j \text{ in } V;$$

(2) $P_j(f_{\lambda})=0$ for $j=1, ..., n-r, \lambda=1, ..., r$ in V; and furthermore

(3) $\{P_j\}_{j=1,\dots,n-r}$ is Jacobi's system.

Proof. Relabelling the variables if necessary, we may suppose $D \equiv$

606

 $\frac{\partial(f_1, \dots, f_r)}{\partial(x_1, \dots, x_r)} \neq 0$ in a neighborhood of the origin V contained in U. Then from the system of equations:

$$\left(\begin{array}{ccc}a_{1}\frac{\partial f_{1}}{\partial x_{1}}+\ldots+a_{r}\frac{\partial f_{1}}{\partial x_{r}}=-a_{r+1}\frac{\partial f_{1}}{\partial x_{r+1}}-\ldots-a_{n}\frac{\partial f_{1}}{\partial x_{n}},\\ & \ddots\\ & \ddots\\ & \ddots\\ & \ddots\\ & \ddots\\ & \ddots\\ & a_{1}\frac{\partial f_{r}}{\partial x_{1}}+\ldots+a_{r}\frac{\partial f_{r}}{\partial x_{r}}=-a_{r+1}\frac{\partial f_{r}}{\partial r+1}-\ldots-a_{n}\frac{\partial f_{r}}{\partial x_{n}},\end{array}\right)$$

we can express $a_1(x), ..., a_r(x)$ as the linear combinations of $a_{r+1}(x), ..., a_n(x)$ with coefficients in $C_1(V)$, say, $a_j(x) = \sum_{i=r+1}^n a_j(x) c_j^i(x)$ (j=1, ..., r); more precisely:

$$c_{j}^{\lambda}(x) = -\frac{1}{D} \frac{\partial(f_{1}, \dots, f_{\lambda-1}, f_{\lambda}, f_{\lambda+1}, \dots, f_{r})}{\partial(x_{1}, \dots, x_{\lambda-1}, x_{j}, x_{\lambda+1}, \dots, x_{r})}$$

$$j = r + 1, \dots, n; \ \lambda = 1, \dots, r.$$

Consequently, we have

$$L = a_{r+1}(x) \left(\frac{\partial}{\partial x_{r+1}} + \sum_{i=1}^{r} c_{r+1}^{i} \frac{\partial}{\partial x_{i}} \right) + \dots + a_{n}(x) \left(\frac{\partial}{\partial x_{n}} + \sum_{i=1}^{r} c_{n}^{i} \frac{\partial}{\partial x_{i}} \right).$$
 Set $H_{j} \equiv \frac{\partial}{\partial x_{j}} + \sum_{i=1}^{r} c_{j}^{i}(x) \frac{\partial}{\partial x_{i}}$ for $j = r+1, \dots, n$.

And denote $P_k \equiv H_{k+r}$ (k=1, ..., n-r). Then there remains to prove (2) and (3) for these P_k (k=1, ..., n-r). Firstly we can easily verify that for j=r+1, ..., n

$$P_{j-r}(f) = H_{j}(f) = \frac{1}{D} \begin{bmatrix} \frac{\partial f}{\partial x_{j}}, & \frac{\partial f}{\partial x_{1}}, & \dots, & \frac{\partial f}{\partial x_{r}} \\ \frac{\partial f_{1}}{\partial x_{j}}, & \frac{\partial f_{1}}{\partial x_{1}}, & \dots, & \frac{\partial f_{1}}{\partial x_{r}} \\ \vdots & \vdots & \dots & \vdots \\ \frac{\partial f_{r}}{\partial x_{j}}, & \frac{\partial f_{r}}{\partial x_{1}}, & \dots, & \frac{\partial f_{r}}{\partial x_{r}} \end{bmatrix}$$

which show that (2) holds. On the other hand, P_1, \ldots, P_{n-r} are clearly linearly independent in V. Since they have r independent solutions $f_j(x)$ $(j=1,\ldots,r)$, $\{P_j\}_{j=1,\ldots,n-r}$ is Jacobi's system. q.e.d.

Now, let r be a positive integer such that $r \leq r_0$. Then, from this lemma we have the following

Theorem Let L_k (k=1, ..., m) be homogeneous first order partial differential operators

$$L_k = \sum_{j=1}^n a_k^j(x) \frac{\partial}{\partial x_j}$$

where the coefficients are real-valued in $C^1(U)$, otherwise they are analytic in U (k=1,...,m; j=1,...,n). Then there exist r independent solutions of C^2 -class for the system of differential equations $L_k(f)=0$ (k=1,...,m) in a neighborhood of the origin when and only when there exist n-r homogeneous first order partial differential operators $P_j(j=1,...,n-r)$ with real-valued coefficients of C^1 -class, otherwise with complex-valued ones analytic in a neighborhood of the origin respectively satisfying the following:

(1) L_k (k=1, ..., m) are expressed as the linear combinations of P_j (j=1, ..., n-r); namely in a neighborhood of the origin it holds that

$$L_k = \sum_{j=1}^{n-r} c_k^j(x) P_j$$

where the coefficients are real-valued functions of C^1 -class, otherwise complex-valued ones analytic;

and moreover

(2) $\{P_j\}_{j=1,\dots,n-r}$ is Jacobi's system.

Proof. This is easy. The necessity is an immediate consequence of the above lemma. In fact, let $f_1(x), \ldots, f_r(x)$ be a system of independent solutions for $L_k(f)=0$ $(k=1, \ldots, m)$. Then it suffices to apply the lemma to each $L_k(f)=0$, taking account of the fact that P_j are de-

termined only by $f_i(x)$ (i=1,...,r).

The sufficiency is shown as follows: Since $P_j(f)=0$ (j=1,..., n-r) is Jacobi's system, this system has r independent solutions $f_1(x),..., f_r(x)$ of C²-class in a neighborhood of the origin. These $f_j(x)$ are the solutions of $L_k(f)=0$ (k=1,...,m). q.e.d.

§3. Remarks

1. We can restate the theorem as follows: Under the same assumptions and notations as the theorem, there exist r independent solutions for $L_k(f)=0$ (k=1,...,m) in a neighborhood of the origin if and only if there exist $\{j_1,...,j_r\} \subset \{1,...,n\}$ and real-valued functions $b_j^{j_s}(x)$ of C^1 -class in a neighborhood of the origin or complex-valued ones analytic respectively according as the coefficients are real-valued ones of C^1 -class or complex-valued ones analytic $(s=1,...,r; j\in\{1,...,n\}-\{j_1,...,j_r\}\equiv I)$ such that

(1.1)
$$a_k^{\lambda}(x) = \sum_{j \in I} a_k^j(x) b_k^{\lambda}(x) \text{ for } \lambda \notin I \text{ and } k=1, ..., m;$$

(1.2)
$$\frac{\partial b_j^{\mu}}{\partial x_i} + \sum_{\lambda \notin I} b_i^{\lambda} \frac{\partial b_j^{\mu}}{\partial x_{\lambda}} = \frac{\partial b_i^{\mu}}{\partial x_j} + \sum_{\lambda \notin I} b_i^{\lambda} \frac{\partial b_i^{\mu}}{\partial x_{\lambda}} \quad i, j \in I, \ \mu \notin I.$$

2. When $a_k^j(x)$ are complex-valued in $C^1(U)$ and not always analytic, the condition stated in the theorem remains a necessary one in order that there exist r independent solutions of C^2 -class for $L_k(f)=0$ (k=1, ..., m) in a neighborhood of the origin. In the actual case we do not know any satisfactory sufficient condition. But, under the conditions (1) and (2) of the theorem, the analyticity in the r suitable variables assures the existence of r independent solutions of C^2 -class for $L_k(f)=0$ (k=1, ..., m); for this, we refer to A. Andreotti and C. D. Hill [1].

3. Let us consider the case n=2. Namely we consider the operators $L_k = a_k^1(x) \frac{\partial}{\partial x_1} + a_k^2(x) \frac{\partial}{\partial x_2}$ (k=1, ..., m) with real-valued coefficients in $C^1(U)$, otherwise with complex-valued ones analytic in U. The theorem states that there exists a solution of C^2 -class for $L_k(f)=0$

609

(k=1, ..., m) such that grad $f(0) \neq 0$ in a neighborhood of the origin when and only when there exist a C^1 -class or analytic function b(x)(c(x)) in a neighborhood of the origin according as the coefficients are real-valued functions in $C^1(U)$, or complex-valued ones analytic in U, satisfying the following:

$$a_k^1(x) = b(x)a_k^2(x)$$
 (or $a_k^2(x) = c(x)a_k^1(x)$) $k = 1, ..., m$.

In other words the functions:

$$a_k^1(x)/a_k^2(x)$$
 or $(a_k^2(x)/a_k^1(x))$ $k=1, ..., m$

defined where $a_k^2(x) \neq 0$ (or $a_k^1(x) \neq 0$) for k=1, ..., m are the restrictions of the function which is in C^1 or analytic in a neighborhood of the origin to the places where $a_k^2(x) \neq 0$ (or $a_k^1(x) \neq 0$).

DEPARTMENT OF MATHEMTICS, KYOTO UNIVERSITY

Reference

 A. Andreotti and C. D. Hill, Complex characteristic coordinates and tangential Cauchy-Riemann equations, Annali della Scuola Norm. Sup. di Pisa, 1972 (26) 299-324.