Some remarks on the existence of independent solutions for homogeneous first order differential system

By
Haruki Ninomiya

(Received January 6, 1973)

§1. Introduction

In an open set U containing the origin in R^{n} we consider homogeneous first order partial differential operators

$$
L_{k}=\sum_{j=1}^{n} a_{k}^{j}(x) \frac{\partial}{\partial x_{j}} \quad(k=1, \ldots, m)
$$

with coefficients in $C^{1}(U)$. Let $A(x)=\left(a_{k}^{j}(x)\right)_{\substack{j=1, \cdots, n \\ k=1, \cdots, m}}$ be a (m, n)-matrix. Let an integer $r_{0}=n-\max _{x \in U}$ rank $A(x)$. In this note we investigate the condition for the existence of independent solutions of C^{2}-class for the system of differential equations $L_{k}(f)=0(k=1, \ldots, m)$ in a neighborhood of the origin contained in U; here r (at least C^{1}-class) functions $f_{1}(x), \ldots, f_{r}(x)$ are called, by definition, independent if $d f_{1 \wedge \ldots \wedge} d f_{r} \neq 0$ holds.

When the coefficients are real-valued in $C^{1}(U)$, we see that it is equivalent to say that there exists a regular change of coordinates around the origin in R^{n} by which all the operators L_{k} can be transformed into the operators in $n-r$ new coordinates variables with r real parameters, where r denotes the number of independent solutions for $L_{k}(f)=0$
$(k=1, \ldots, m)$.
To make our problem clear, let us consider the case of single equation $L(f)=\sum_{j=1}^{n} a_{j}(x) \frac{\partial f}{\partial x_{j}}=0$. Suppose all the $a_{j}(x)$ are real-valued in $C^{1}(U)$ otherwise they are analytic in U. We know that if one of them is not zero at the origin, there exist $n-1$ independent solutions of C^{2}-class for that in a neighborhood of the origin. Thus our problem is to investigate the condition for the existence of $r(r \leqq n-1)$ independent solutions of C^{2}-class in a neighborhood of the origin when $a_{j}(0)=0$ $(j=1, \ldots, n)$. We want to present a point of view to this problem.

Finally, I thank Prof. S. Mizohata for his kind helpful advice.

§2. A theorem

Firstly we state a lemma which is basic in later discussion:

Lemma. Let us assume that there exist $r(r \leqq n-1)$ independent solutions of C^{2}-class $f_{j}(x)(j=1, \ldots, r)$ for $L(f)=\sum_{j=1}^{n} a_{j}(x) \frac{\partial f}{\partial x_{j}}=0$ in a neighborhood of the origin contained in U, where $a_{j}(x)(j=1, \ldots$, $n)$ are $C^{1}(U)$. Then there exist $n-r$ homogeneous first order partial differential operators $P_{j}(j=1, \ldots, n-r)$, which can be determined only by those r independent solutions $f_{j}(x)(j=1, \ldots, r)$ in a neighborhood of the origin V, satisfying the following conditions:
(1) L is expressed as a linear combination of P_{j}; namely there exist functions $c_{j}(x)(j=1, \ldots, n-r)$ in $C^{1}(V)$ such that

$$
L=\sum_{j=1}^{n-r} c_{j}(x) P_{j} \text { in } V ;
$$

(2) $P_{j}\left(f_{\lambda}\right)=0$ for $j=1, \ldots, n-r, \lambda=1, \ldots, r$ in V; and furthermore
(3) $\left\{P_{j}\right\}_{j=1, \ldots, n-r}$ is Jacobi's system.

Proof. Relabelling the variables if necessary, we may suppose $D \equiv$
$\frac{\partial\left(f_{1}, \ldots, f_{r}\right)}{\partial\left(x_{1}, \ldots, x_{r}\right)} \neq 0$ in a neighborhood of the origin V contained in U. Then from the system of equations:

$$
\left\{\begin{array}{cccc}
a_{1} \frac{\partial f_{1}}{\partial x_{1}}+\ldots+a_{r} \frac{\partial f_{1}}{\partial x_{r}}= & -a_{r+1} \frac{\partial f_{1}}{\partial x_{r+1}}-\ldots-a_{n} \frac{\partial f_{1}}{\partial x_{n}}, \\
\cdot & \cdot & \ldots & \cdot \\
\cdot & \cdot & \cdots & \cdot \\
{ }^{2} & \cdot & \cdot & \cdot \\
a_{1} \frac{\partial f_{r}}{\partial x_{1}}+\ldots+a_{r} \frac{\partial f_{r}}{\partial x_{r}} & =-a_{r+1} \frac{\partial f_{r}}{\partial_{r+1}}-\ldots-a_{n} \frac{\partial f_{r}}{\partial x_{n}},
\end{array}\right.
$$

we can express $a_{1}(x), \ldots, a_{r}(x)$ as the linear combinations of $a_{r+1}(x), \ldots$, $a_{n}(x)$ with coefficients in $C_{1}(V)$, say, $a_{j}(x)=\sum_{i=r+1}^{n} a_{j}(x) c_{j}^{i}(x) \quad(j=1$, $\ldots, r)$; more precisely:

$$
\begin{aligned}
&\left.c_{j}^{\lambda}(x)=-\frac{1}{D} \frac{\partial\left(f_{1}, \ldots, f_{\lambda-1}, f_{\lambda}, f_{\lambda+1}, \ldots, f_{r}\right)}{\partial\left(x_{1}, \ldots,\right.} x_{\lambda-1}, x_{j}, x_{\lambda+1}, \ldots, x_{r}\right) \\
& j=r+1, \ldots, n ; \lambda=1, \ldots, r .
\end{aligned}
$$

Consequently, we have

$$
\begin{aligned}
& L=a_{r+1}(x)\left(\frac{\partial}{\partial x_{r+1}}+\sum_{i=1}^{r} c_{r+1}^{i} \frac{\partial}{\partial x_{i}}\right)+\ldots+a_{n}(x)\left(\frac{\partial}{\partial x_{n}}+\right. \\
& \left.+\sum_{i=1}^{r} c_{n}^{i} \frac{\partial}{\partial x_{i}}\right) . \quad \text { Set } H_{j} \equiv \frac{\partial}{\partial x_{j}}+\sum_{i=1}^{r} c_{j}^{i}(x) \frac{\partial}{\partial x_{i}} \\
& \text { for } j=r+1, \ldots, n .
\end{aligned}
$$

And denote $P_{k} \equiv H_{k+r}(k=1, \ldots, n-r)$. Then there remains to prove (2) and (3) for these $P_{k}(k=1, \ldots, n-r)$. Firstly we can easily verify that for $j=r+1, \ldots, n$

$$
P_{j-r}(f)=H_{j}(f)=\frac{1}{D}\left|\begin{array}{ccc}
\frac{\partial f}{\partial x_{j}}, & \frac{\partial f}{\partial x_{1}}, \ldots, & \frac{\partial f}{\partial x_{r}} \\
\frac{\partial f_{1}}{\partial x_{j}}, & \frac{\partial f_{1}}{\partial x_{1}}, \ldots, & \frac{\partial f_{1}}{\partial x_{r}} \\
\cdot & . & \ldots \\
\dot{c}_{r} \\
\frac{\partial f_{r}}{\partial x_{j}}, & \frac{\partial f_{r}}{\partial x_{1}}, \ldots, & \frac{\partial f_{r}}{\partial x_{r}}
\end{array}\right|,
$$

which show that (2) holds. On the other hand, P_{1}, \ldots, P_{n-r} are clearly linearly independent in V. Since they have r independent solutions $f_{j}(x)(j=1, \ldots, r),\left\{P_{j}\right\}_{j=1, \ldots, n-r}$ is Jacobi's system. q.e.d.

Now, let r be a positive integer such that $r \leqq r_{0}$. Then, from this lemma we have the following

Theorem Let $L_{k}(k=1, \ldots, m)$ be homogeneous first order partial differential operators

$$
L_{k}=\sum_{j=1}^{n} a_{k}^{j}(x)-\frac{\partial}{\partial x_{j}}
$$

where the coefficients are real-valued in $C^{1}(U)$, otherwise they are analytic in $U(k=1, \ldots, m ; j=1, \ldots, n)$. Then there exist r independent solutions of C^{2}-class for the system of differential equations $L_{k}(f)=0(k=1, \ldots, m)$ in a neighborhood of the origin when and only when there exist $n-r$ homogeneous first order partial differential operators $P_{j}(j=1, \ldots, n-r)$ with real-valued coefficients of C^{1}-class, otherwise with complex-valued ones analytic in a neighborhood of the origin respectively satisfying the following:
(1) $L_{k}(k=1, \ldots, m)$ are expressed as the linear combinations of $P_{j}(j=1, \ldots, n-r)$; namely in a neighborhood of the origin it holds that

$$
L_{k}=\sum_{j=1}^{n-r} c_{k}^{j}(x) P_{j},
$$

where the coefficients are real-valued functions of C^{1}-class, otherwise complex-valued ones analytic;
and moreover
(2) $\left\{P_{j}\right\}_{j=1, \ldots, n-r}$ is Jacobi's system.

Proof. This is easy. The necessity is an immediate consequence of the above lemma. In fact, let $f_{1}(x), \ldots, f_{r}(x)$ be a system of independent solutions for $L_{k}(f)=0(k=1, \ldots, m)$. Then it suffices to apply the lemma to each $L_{k}(f)=0$, taking account of the fact that P_{j} are de-
termined only by $f_{i}(x)(i=1, \ldots, r)$.
The sufficiency is shown as follows: Since $P_{f}(f)=0(j=1, \ldots$, $n-r)$ is Jacobi's system, this system has r independent solutions $f_{1}(x), \ldots$, $f_{r}(x)$ of C^{2}-class in a neighborhood of the origin. These $f_{j}(x)$ are the solutions of $L_{k}(f)=0(k=1, \ldots, m)$. q.e.d.

§3. Remarks

1. We can restate the theorem as follows: Under the same assumptions and notations as the theoerm, there exist r independent solutions for $L_{k}(f)=0(k=1, \ldots, m)$ in a neighborhood of the origin if and only if there exist $\left\{j_{1}, \ldots, j_{r}\right\} \subset\{1, \ldots, n\}$ and real-valued functions $b_{j}^{j} s(x)$ of C^{1}-class in a neighborhood of the origin or complex-valued ones analytic respectively according as the coefficients are real-valued ones of C^{1-} class or complex-valued ones analytic $\left(s=1, \ldots, r ; j \in\{1, \ldots, n\}-\left\{j_{1}\right.\right.$, $\left.\left.\ldots, j_{r}\right\} \equiv \mathrm{I}\right)$ such that

$$
\begin{align*}
& a_{k}^{\lambda}(x)=\sum_{j \in I} a_{k}^{j}(x) b_{k}^{\lambda}(x) \text { for } \lambda \notin I \text { and } k=1, \ldots, m ; \tag{1.1}\\
& \frac{\partial b_{j}^{\mu}}{\partial x_{i}}+\sum_{\lambda \notin I} b_{i}^{\lambda} \frac{\partial b_{j}^{\mu}}{\partial x_{\lambda}}=\frac{\partial b_{i}^{\mu}}{\partial x_{j}}+\sum_{\lambda \notin I} b_{i}^{\lambda} \frac{\partial b_{i}^{\mu}}{\partial x_{\lambda}} i, j \in I, \mu \notin I .
\end{align*}
$$

2. When $a_{k}^{j}(x)$ are complex-valued in $C^{1}(U)$ and not always analytic, the condition stated in the theorem remains a necessary one in order that there exist r independent solutions of C^{2}-class for $L_{k}(f)=0 \quad(k=$ $1, \ldots, m$) in a neighborhood of the origin. In the actual case we do not know any satisfactory sufficient condition. But, under the conditions (1) and (2) of the theorem, the analyticity in the r suitable variables assures the existence of r independent solutions of C^{2}-class for $L_{k}(f)=0(k=1, \ldots, m)$; for this, we refer to A. Andreotti and C. D. Hill [l].
3. Let us consider the case $n=2$. Namely we consider the operators $L_{k}=a_{k}^{1}(x) \frac{\partial}{\partial x_{1}}+a_{k}^{2}(x) \frac{\partial}{\partial x_{2}} \quad(k=1, \ldots, m)$ with real-valued coefficients in $C^{1}(U)$, otherwise with complex-valued ones analytic in U. The theorem states that there exists a solution of C^{2}-class for $L_{k}(f)=0$
$(k=1, \ldots, m)$ such that $\operatorname{grad} f(0) \neq 0$ in a neighborhood of the origin when and only when there exist a C^{1}-class or analytic function $b(x)$ $(c(x))$ in a neighborhood of the origin according as the coefficients are real-valued functions in $C^{1}(U)$, or complex-valued ones analytic in U, satisfying the following:

$$
a_{k}^{1}(x)=b(x) a_{k}^{2}(x)\left(\text { or } a_{k}^{2}(x)=c(x) a_{k}^{1}(x)\right) k=1, \ldots, m .
$$

In other words the functions:

$$
a_{k}^{1}(x) / a_{k}^{2}(x) \text { or }\left(a_{k}^{2}(x) / a_{k}^{1}(x)\right) k=1, \ldots, m
$$

defined where $a_{k}^{2}(x) \neq 0$ (or $a_{k}^{1}(x) \neq 0$) for $k=1, \ldots, m$ are the restrictions of the function which is in C^{1} or analytic in a neighborhood of the origin to the places where $a_{k}^{2}(x) \neq 0$ (or $a_{k}^{1}(x) \neq 0$).

Department of Mathemtics, Kyoto University

Reference

[1] A. Andreotti and C. D. Hill, Complex characteristic coordinates and tangential CauchyRiemann equations, Annali della Scuola Norm. Sup. di Pisa, 1972 (26) 299-324.

