On Tanaka's imbeddings of Siegel domains

By

Kazufumi Nakajima

(Received Nov. 2. 1973)

Introduction

Let D be a Siegel domain of the second kind in \mathbf{C}^{N}. In the case where D is homogeneous, Tanaka [7] showed that there exists an imbedding h of \mathbf{C}^{N} onto an open subset of a certain complex homogeneous space G_{c} / B such that every holomorphic transformation of D can be extended to a holomorphic transformation of G_{c} / B. One of the purposes of this paper is to obtain the same results as Tanaka's without the assumption of homogeneity of D, which is discussed in $\S 2$ and $\S 3$.

By using the imbedding h, we shall prove in $\S 4$ that every holomorphic transformation of D which leaves the Silov boundary of D invariant is an affine automorphism of D. This fact is stated in Pyatetski-Shapiro [5] in the case where D is of the first kind.

Finally, in $\S 5$, we shall see that D is a symmetric homogeneous domain if and only if the space G_{c} / B is compact.

The author expresses his thanks to Prof. N. Tanaka for valuable advices.

§ 1. The automorphisms of Siegel domains

1.1. Let R (resp. W) be a real (resp. complex) vector space of finite dimension. Denote by R_{c} the complexification of R. For every vector $z \in R_{c}$, we denote by $\operatorname{Re} z$ the real part of z and by $\operatorname{Im} z$ the imagi-
nary part of z. Let D be the Siegel domain of the second kind in $R_{c} \times W$ associated with a convex cone V in R and a V-hermitian form F on W ([5]). Denote by $A f f(D)$ (resp. by $G L(D)$) the closed subgroup of the complex affine transformation group $A f f\left(R_{c} \times W\right)$ (resp. of the general linear group $G L\left(R_{c} \times W\right)$) of $R_{c} \times W$ which consists of all elements of $\operatorname{Aff}\left(R_{c} \times W\right)$ (resp. of $G L\left(R_{c} \times W\right)$) leaving D invariant. Then $G L(D)$ is a closed subgroup of $A f f(D)$. An element f of $G L\left(R_{c} \times\right.$ $W)$ belongs to $G L(D)$ if and only if f has the form: $f(z, w)=(A z$, $B w)$, where $A \in G L(R), B \in G L(W), A V=V$ and $A F\left(w, w^{\prime}\right)=F\left(B w, B w^{\prime}\right)$ for all $w, w^{\prime} \in W$ ([5]). We denote by ρ (resp. by σ) the correspondence: $f \rightarrow \rho(f)=A$ (resp. $f \rightarrow \sigma(f)=B$). Then the mapping ρ (resp. σ) is a homomorphism of $G L(D)$ into $G L(R)$ (resp. into $G L(W)$). Let g^{a} be the Lie algebra of $\operatorname{Aff}(D)$. For every $a \in R$ (resp. for every $c \in W$) we denote by $s(a)$ (resp. by $s(c)$) the element of g^{a} induced by the following one parameter group (with parameter t):

$$
\begin{aligned}
(z, w) & \longrightarrow(z+t a, w) \\
(\operatorname{resp} .(z, w) & \longrightarrow(z+2 \sqrt{-1} F(w, t c)+\sqrt{-1} F(t c, t c), w+t c)) .
\end{aligned}
$$

Then the correspondence: $a+c \rightarrow s(a)+s(c)$ gives an injective linear mapping s of $R+W$ into \mathfrak{g}^{a} and the following equalities are easily verified:

1) $[s(a), s(b+c)]=0 \quad(a, b \in R, c \in W)$.
2) $\left[s(c), s\left(c^{\prime}\right)\right]=4 s\left(\operatorname{Im} F\left(c, c^{\prime}\right)\right) \quad\left(c, c^{\prime} \in W\right)$.

We denote by \mathfrak{g}^{0} the subalgebra of \mathfrak{g}^{a} corresponding to the subgroup $G L(D)$ of $A f f(D)$. Then the following equality holds:

$$
\begin{equation*}
[g, s(a+c)]=s\left(\rho_{*}(g) a+\sigma_{*}(g) c\right) \quad\left(g \in \mathfrak{g}^{0}, a \in R, c \in W\right) \tag{1.2}
\end{equation*}
$$

where $\rho_{*}\left(\right.$ resp. $\left.\sigma_{*}\right)$ is the homomorphism of \mathfrak{g}^{0} to $\mathfrak{g l}(R)$ (resp. to $\mathfrak{g l}(W)$) induced by ρ (resp. σ). Let E (resp. I) be the element of \mathfrak{g}^{0} induced by the following one parameter group in $G L(D)$:

$$
(z, w) \longrightarrow\left(e^{-2 t} z, e^{-t} w\right)
$$

$$
\left(\text { resp. }(z, w) \longrightarrow\left(z, e^{\sqrt{-1} t} w\right)\right) .
$$

Clearly E and I are in the center of \mathfrak{g}^{0} and the following equalities hold:

$$
\begin{align*}
& {[E, s(a)+s(c)]=-2 s(a)-s(c)} \tag{1.3}\\
& {[I, s(a)+s(c)]=s(\sqrt{-1} c) \quad(a \in R, c \in W)}
\end{align*}
$$

1.2. We denote by $\operatorname{Aut}(D)$ the automorphism group of D, i.e., the group of all holomorphic transformations of D. Let \mathfrak{g} be the Lie algebra of $\operatorname{Aut}(D)$. Then $\mathfrak{g}^{0}=\{X \in \mathfrak{g} ;[E, X]=0\}$. Moreover the following theorem is known:

Theorem 1.1 (Kaup-Matsushima-Ochiai [2]).
(1) $\mathfrak{g}=\mathfrak{g}^{-2}+\mathfrak{g}^{-1}+\mathfrak{g}^{0}+\mathfrak{g}^{1}+\mathfrak{g}^{2}$ as a graded Lie algebra where $\mathfrak{g}^{\lambda}=\{X \in \mathfrak{g} ;[E, X]=\lambda X\}$.
(2) $\mathfrak{g}^{a}=\mathfrak{g}^{-2}+\mathfrak{g}^{-1}+\mathfrak{g}^{0}, \mathfrak{g}^{-2}=\{s(a) ; a \in R\}$ and $\mathfrak{g}^{-1}=\{s(c) ; c \in W\}$.

Remark 1. In the earlier paper [4], the author showed that \mathfrak{g}^{1} and \mathfrak{g}^{2} are determined algebraically from \mathfrak{g}^{a}.

§2. Tanaka's imbeddings

2.1. Let $\mathfrak{g}=\sum_{\lambda=-2}^{2} \mathfrak{g}^{\lambda}$ be the graded Lie algebra given in Theorem 1.1 and let \mathfrak{g}_{c} be the complexification of \mathfrak{g}. We denote by G_{c} the adjoint group of \mathfrak{g}_{c}. Since \mathfrak{g} is centerless ([2]), we identify the Lie algebra of G_{c} with \mathfrak{g}_{c}. Define linear endomorphisms P and \bar{P} of \mathfrak{g}_{c}^{-1} by

$$
\begin{align*}
& P(X)=\frac{1}{2}(X-\sqrt{-1}[I, X]) \text { for } X \in \mathfrak{g}_{c}^{-1} \tag{2.1}\\
& \bar{P}(X)=\frac{1}{2}(X+\sqrt{-1}[I, X]) \text { for } X \in \mathfrak{g}_{c}^{-1}
\end{align*}
$$

It is easy to see the following equalities hold:

$$
\begin{align*}
& P([I, X])=\sqrt{-1} P(X), \tag{2.2}\\
& \bar{P}([I, X])=-\sqrt{-1} \bar{P}(X) .
\end{align*}
$$

Therefore $P\left(\mathfrak{g}_{c}^{-1}\right)=P\left(\mathfrak{g}^{-1}\right)$ and $\bar{P}\left(\mathfrak{g}_{c}^{-1}\right)=\bar{P}\left(\mathfrak{g}^{-1}\right)$. Both $P\left(\mathfrak{g}^{-1}\right)$ and $\bar{P}\left(\mathfrak{g}^{-1}\right)$ are complex subspaces of \mathfrak{g}_{c}^{-1} and $\mathfrak{g}_{c}^{-1}=P\left(\mathfrak{g}^{-1}\right)+\bar{P}\left(\mathfrak{g}^{-1}\right)$. We put

$$
\begin{align*}
& \mathfrak{n}=\mathfrak{g}_{c}^{-2}+P\left(\mathfrak{g}^{-1}\right) \tag{2.3}\\
& \mathfrak{b}=\bar{P}\left(\mathfrak{g}^{-1}\right)+\mathfrak{g}_{c}^{0}+\mathfrak{g}_{c}^{1}+\mathfrak{g}_{c}^{2} .
\end{align*}
$$

Lemma 2.1 (cf. [7]).
(1) $\mathfrak{g}_{c}=\mathfrak{n}+\mathfrak{b}$ (direct sum).
(2) nt is an abelian subalgebra of $\mathfrak{9}_{c}$.
(3) \mathfrak{b} is a subalgebra of \mathfrak{g}_{c}.

Proof. (1) is clear. Proof of (2) is the same as in [7]. We can also verify $\bar{P}\left(\mathfrak{g}^{-1}\right)$ is abelian. Since I is in the center of $\mathfrak{g}_{c}^{0}, \bar{P}\left(\mathfrak{g}^{-1}\right)$ is invariant by $a d \mathfrak{g}_{c}^{0}$. Thus we obtain (3). q.e.d.

Define a closed subgroup B of G_{c} by $B=\left\{a \in G_{c} ; a \mathfrak{b}=\mathfrak{b}\right\}$. Since \mathfrak{b} is a complex subalgebra, B is a complex Lie subgroup. It is not difficult to see that the Lie algebra of B coincides with \mathfrak{b} (cf. [7]). We denote by π the projection of G_{c} onto the homogeneous space G_{c} / B. Let us define a mapping h^{\prime} of n to G_{c} / B by

$$
h^{\prime}(X)=\pi \exp X \quad(X \in \mathfrak{n}) .
$$

Then h^{\prime} is a holomorphic imbedding of the complex vector space n onto an open set of the complex homogeneous space G_{c} / B ([7]).
2.2. Let $h^{\prime \prime}$ be the mapping of $R_{c} \times W$ onto n defined by

$$
h^{\prime \prime}(z, w)=s(z)+P(s(w)) \quad\left(z \in R_{c}, w \in W\right),
$$

where s is the mapping of $R+W$ onto $\mathfrak{g}^{-2}+\mathfrak{g}^{-1}$ given in $\S 1$ and is extended to a mapping of $R_{c}+W$ onto $\mathfrak{g}_{c}^{-2}+\mathfrak{g}^{-1}$ in a natural fashion. Since $P(s(\sqrt{-1} w))=P([I, s(w)])=\sqrt{-1} P(s(w))$ by (1.3) and (2.2), $h^{\prime \prime}$ is a biholomorphic mapping (linear isomorphism) of $R_{c} \times W$ onto n. Then the mapping $h=h^{\prime} \circ h^{\prime \prime}$ is a holomorphic imbedding of $R_{c} \times W$ onto an open set of G_{c} / B. The imbedding h was first introduced by Tanaka [7] in the case where D is homogeneous. We call it Tanaka's imbedding.

We denote by G (resp. by G_{a}) the identity component of $\operatorname{Aut}(D)$ (resp. of $A f f(D)$). For every $a \in G$, there exists a unique element $\tau(a)$ of G_{c} such that $\operatorname{AdaX}=\tau(a) X(X \in \mathfrak{g})$. Since G is centerless ([2]), the mapping τ is an injective homomorphism of G into G_{c}. Let $v \in V$ and let K be the isotropy subgroup of G at $(\sqrt{-1} v, 0)$. We denote by K^{0} the identity component of K and by the Lie algebra of K.

Lemma 2.2 (cf. [7]).
(1) $\tau(k) h(\sqrt{-1} v, 0)=h(\sqrt{-1 v}, 0) \quad\left(k \in K^{0}\right)$
(2) $\tau(t) h(\sqrt{-1} v, 0)=h(t(\sqrt{-1} v, 0)) \quad\left(t \in G_{a}\right)$.

Proof. (1) Let X be an element of \mathfrak{f}. We write $X=X^{-2}+X^{-1}+$ $X^{0}+X^{1}+X^{2}, X^{\lambda} \in \mathfrak{g}^{\lambda} \quad$ (cf. Theorem 1.1). Then from [2] we know $X^{-2}=\frac{1}{2}(a d s(v))^{2} X^{2}, X^{-1}=\operatorname{ad} I$ ads $s(v) X^{1}$ and $a d s(v) X^{0}=0$. It follows

$$
\begin{aligned}
& \operatorname{Ad}(\exp (-\sqrt{-1} s(v))) X \\
& =X^{-2}+X^{-1}+X^{0}+X^{1}+X^{2}-\sqrt{-1}\left(\left[s(v), X^{1}\right]+\left[s(v), X^{2}\right]\right) \\
& \quad-\frac{1}{2}(\operatorname{ad} s(v))^{2} X^{2} \\
& \equiv X^{-1}-\sqrt{-1}\left[s(v), X^{1}\right] \equiv 0 \quad(\bmod \mathfrak{b}),
\end{aligned}
$$

because $P\left(X^{-1}\right)=P\left(\sqrt{-1}\left[s(v), X^{1}\right]\right)$ holds. Then

$$
\begin{aligned}
& \tau(\exp X) h(\sqrt{-1} v, 0) \\
& \quad=\pi \exp X \cdot \exp (\sqrt{-1} s(v)) \\
& \quad=\pi \exp (\sqrt{-1} s(v)) \cdot \exp [\operatorname{Ad}(\exp (-\sqrt{-1} s(v))) X] \\
& \quad=\pi \exp (\sqrt{-1} s(v)) .
\end{aligned}
$$

Therefore we get Assertion (1). Proof of (2) is the same as [7]. q.e.d.
If we put $K_{a}=K \cap G_{a}$, then we have
Lemma 2.3. $G / K=G_{a} / K_{a}$.

Proof. It is known ([2]) that $\operatorname{dim} G-\operatorname{dim} K=\operatorname{dim} G_{a}-\operatorname{dim} K_{a}$. Therefore G_{a} / K_{a} is an open set of G / K. Being a submanifold of D, G / K has a Riemannian metric invariant by G and hence by G_{a}. As a result, the open orbit G_{a} / K_{a} of G_{a} coincides with G / K. q.e.d.

Next we verify the following

Lemma 2.4 (cf. [7]). For every $f \in G$ and for every $p \in D, h(f p)=$ $\tau(f) h(p)$.

Proof. For every $p \in D$, there exist $t \in G_{a}$ and $v \in V$ such that $t(\sqrt{-1} v, 0)=p$. Then by Lemma $2.2 h(p)=\tau(t) h(\sqrt{-1} v, 0)$. We can choose a neighbourhood \mathscr{U} of $e(=$ the unit element) in G having the property that every element of $\mathscr{U} \cap K$ can be expressed as $\exp X, X \in \mathcal{F}$. There exists a neighbourhood \mathscr{U}_{1} of e in G such that $t^{-1} \mathscr{U}_{1}^{-1} \mathscr{U}_{1} t \subset \mathscr{U}$. We put $\mathscr{U}_{a}=\mathscr{U}_{1} \cap G_{a}$, which is an open set of G_{a}. Then the subset \mathscr{U}_{2} of G defined by $\mathscr{U}_{2}=\left\{g \in \mathscr{U}_{1} ; g p \in \mathscr{U}_{a} p\right\}$ is open in G by Lemma 2.3. For every $f \in \mathscr{U}_{2}$, there exists $g \in \mathscr{U}_{a}$ such that $f p=g p$. Then $t^{-1} g^{-1} f t \in \mathscr{U} \cap K$ and by Lemma 2.2,

$$
\tau\left(t^{-1} g^{-1} f t\right) h(\sqrt{-1} v, 0)=h(\sqrt{-1} v, 0) .
$$

It follows

$$
\begin{aligned}
\tau(f) h(p) & =\tau(g p) h(\sqrt{-1} v, 0) \\
& =h(g t(\sqrt{-1} v, 0))=h(f p),
\end{aligned}
$$

because $g t \in G_{a}$. Thus the mapping: $f \rightarrow \tau(f) h(p)$ of G to G_{c} / B is real analytic and coincides on \mathscr{U}_{2} with the mapping: $f \rightarrow h(f p)$. Therefore we conclude $h(f p)=\tau(f) h(p)$ for all $f \in G$. q.e.d.

In what follows we identify the space $R_{c} \times W$ with an open submanifold of G_{c} / B by the imbedding h. We also identify the group G with a closed subgroup of G_{c} by the injective homomorphism τ.
2.3. We denote by o the origin of $R_{c} \times W$. Then the space $R_{c} \times W$ is the orbit of the group $\exp \left(\mathfrak{g}_{c}^{-2}+P\left(g^{-1}\right)\right)$ through o. Let T be the union of all singular orbits of $\exp \left(\mathfrak{g}_{c}^{-2}+P\left(\mathfrak{g}^{-1}\right)\right)$. Then T is a proper
analytic set of G_{c} / B which is locally defined by a single equation and $G_{c} / B-T=R_{c} \times W$ ([7]). For $X \in \mathfrak{g}_{c}$, denote by \tilde{X} the holomorphic vector field on G_{c} / B generated by X. It is easy to see that the correspondence: $X \rightarrow \tilde{X}$ of \mathfrak{g}_{c} into the space of all holomorphic vector fields on G_{c} / B is injective. We sometimes identify X with $\tilde{X} .{ }^{1)}$

Lemma 2.5. Let $p \in G_{c} / B$ and f be a holomorphic function defined on a connected neighbourhood U of p. Assume that there exists a neighbourhood \mathscr{U} of e in G such that f is constant on $U \cap \mathscr{U} p$. Then f is constant on the whole U.

Proof. We put $U_{1}=U \cap \mathscr{U} p$. Then $X f=0$ on U_{1} for all $X \in \mathfrak{g}$. Since f is holomorphic, $X f=0$ on U_{1} for all $X \in \mathfrak{g}_{c}{ }^{2}$) Therefore the first derivative of f is zero on U_{1}. The same argument shows that all derivatives of f vanish on U_{1} and hence f is constant on U. q.e.d.

Let S be the real submanifold of $R_{c} \times W$ defined by

$$
S=\left\{(z, w) \in R_{c} \times W ; \operatorname{Im} z-F(w, w)=0\right\}
$$

which is a subset of the boundary of D and is called the Silov boundary of D. It is easy to see that each element of $\operatorname{Aff}(D)$ leaves S invariant and that the group $\exp \left(\mathfrak{g}^{-2}+\mathfrak{g}^{-1}\right)$ acts simply transitively on S.

Lemma 2.6 ([7]). Let $a \in G$ and $p \in S$. If $a p \in R_{c} \times W$, then $a p \in S$.
Let M be the orbit of G through o, i.e., $M=G / G \cap B$. Since $\operatorname{dim} M=\operatorname{dim} \mathfrak{g}^{-2}+\operatorname{dim} \mathfrak{g}^{-1}, S$ is an open submanifold of M. Moreover we obtain

[^0]Proposition 2.7. M is a closed submanifold of G_{c} / B and $M=$ \bar{S}, where \bar{S} is the closure of S in G_{c} / B.

Proof. We shall show that for any point p of G_{c} / B there exists an R-valued real analytic function f defined on a neighbourhood U of p such that $M \cap U=\{q \in U ; f(q)=0\}$. If $p \in R_{c} \times W$. Then we can take $\operatorname{Im} z-F(w, w)$ as f, because $M \cap R_{c} \times W=S$ by Lemma 2.6. Next we consider the case where $p \in T$. We assert that there exists an $a \in G$ such that $a p \in R_{c} \times W$. In fact, suppose $G p \subset T$. Let $f^{\prime}=0$ be a local equation of T at p. Then by Lemma $2.5 f^{\prime}=0$ on a neighbourhood of p. This contradicts the fact that T is a proper analytic set, proving our assertion. We choose a neighbourhood U of p such that $a U \subset$ $R_{c} \times W$. Then the function $(\operatorname{Im} z-F(w, w)) \circ a$ defined on U has the desired property by Lemma 2.6. As a consequence M is closed. By Lemma 2.6 $M-S \subset T$. Let $f^{\prime}=0$ be a local equation of T. Then the restriction of the equation $f^{\prime}=0$ to M defines the subset $M-S$. Clearly there is no open set U^{\prime} of M such that f^{\prime} vanishes on U^{\prime} by Lemma 2.5. It follows immediately that S is an open dense subset of M.
q.e.d.

§ 3. Equivalence of Siegel domains

3.1. Let D be the Siegel domain of the second kind in $R_{c} \times W$ associated with a convex cone V in R and a V-hermitian form F on W. We use the notations given in $\S 1$ and $\S 2$.

Let D^{\prime} be another Siegel domain of the second kind. For an object A such as a space, a group, etc., with respect to the domain D, we denote by A^{\prime} the corresponding object with respect to the domain D^{\prime}. We now assume that the two domains D and D^{\prime} are holomorphically equivalent, i.e., there exists a biholomorphic mapping φ of D onto D^{\prime}. The mapping φ induces an isomorphism Φ of G_{c} onto G_{c}^{\prime} in a natural manner. Clearly

$$
\Phi(a)=\varphi a \varphi^{-1} \quad(a \in G)
$$

For each $q \in G_{c} / B$, we put

$$
\mathfrak{h}_{q}=\left\{X \in \mathfrak{y}_{c} ; \tilde{X}_{q}=0\right\} .
$$

Let $p \in D$ and $p^{\prime}=\varphi(p) \in D^{\prime}$. We assert that the following equality holds:

$$
\mathfrak{l}_{p^{\prime}}^{\prime}=\Phi_{*} \mathfrak{h}_{p}
$$

Indeed, $\left(\Phi_{*} X\right)_{p^{\prime}}=\varphi_{*} X_{p}$ for $X \in g$. (We can regard $\varphi_{*} X$ as a holomorphic vector field on $G_{c}^{\prime} / B^{\prime}$.) Since the mapping Φ_{*} and φ_{*} are complex linear, our assertion is clear. We can choose $a \in G_{c}$ (resp. $a^{\prime} \in G_{c}^{\prime}$) such that $a o=p$ (resp. $\left.a^{\prime} o^{\prime}=p^{\prime}\right)$. We put $\hat{\Phi}(c)=a^{\prime-1} \Phi\left(a c a^{-1}\right) a^{\prime}$ for each $c \in G_{c}$. Then the mapping $\hat{\Phi}$ is an isomorphism of G_{c} onto G_{c}^{\prime}. Since $A d a \mathfrak{b}=A d a \mathfrak{h}_{o}=\mathfrak{h}_{p}$ and $A d a^{\prime} \mathfrak{b}^{\prime}=A d a^{\prime} \mathfrak{h}_{0^{\prime}}^{\prime}=\mathfrak{h}_{p^{\prime}}^{\prime}$, we get $\hat{\Phi}_{*} \mathfrak{b}=$ $A d a^{\prime-1} \Phi_{*} A d a b=\mathfrak{b}^{\prime}$. Therefore $\hat{\Phi}(B)$ is a closed subgroup of G_{c}^{\prime} with Lie algebra \mathfrak{b}^{\prime}, and hence $\hat{\Phi}(B) \subset B^{\prime}$. By considering the inverse of φ we conclude $\hat{\Phi}(B)=B^{\prime}$. As a result, there exists a biholomorphic mapping $\hat{\varphi}$ of G_{c} / B onto $G_{c}^{\prime} / B^{\prime}$ such that $\hat{\varphi} \circ \pi=\pi^{\prime} \circ \hat{\Phi}$. For any $x=c p$ $(c \in G)$, we get $\varphi(x)=\Phi(c) \varphi(a o)=a^{\prime} \hat{\Phi}\left(a^{-1} c a\right) o^{\prime}=\pi^{\prime} a^{\prime} \hat{\Phi}\left(a^{-1}\right) \hat{\Phi}(c a)=a^{\prime}$ $\hat{\Phi}\left(a^{-1}\right) \hat{\varphi}(x)$. Thus the biholomorphic mapping $\tilde{\rho}=a^{\prime} \circ \hat{\Phi}\left(a^{-1}\right) \circ \hat{\varphi}$ of G_{c} / B onto $G_{c}^{\prime} / B^{\prime}$ coincides with φ on the orbit of G through p. By using Lemma 2.5 , we can easily verify that $\tilde{\rho}$ coincides with φ on the whole D. Thus we have proved

Proposition 3.1 (cf. [7]). Every biholomorphic mapping of D onto D^{\prime} can be extended to a biholomorphic mapping of G_{c} / B onto $G_{c}^{\prime} / B^{\prime}$. Let φ be a biholomorphic mapping of D onto D^{\prime}. Denote by the same letter φ the extended biholomorphic mapping of G_{c} / B onto $G_{c}^{\prime} / B^{\prime}$. It is easy to see that $\varphi(c x)=\Phi(c) \varphi(x)$ for all $c \in G_{c}$ and $x \in G_{c} / B$. We now verify the following theorem. The proof is almost similar to the one in [7].

Theorem 3.2 (cf. [2], [7]). Let D (resp. D') be the Siegel domain of the second kind associated with a convex cone $V\left(\right.$ resp. $\left.V^{\prime}\right)$ in R (resp. in R^{\prime}) and a V - (resp. V^{\prime}-) hermitian form F (resp. F^{\prime}) on W (resp. on W^{\prime}). Assume that there exists a biholomorphic mapping φ of D onto D^{\prime}. Then
(1) $\operatorname{dim} R=\operatorname{dim} R^{\prime}$ and $\operatorname{dim} W=\operatorname{dim} W^{\prime}$.
(2) φ can be written as $\varphi=c^{\prime} \psi c$, where $c \in G_{a}, c^{\prime} \in G^{\prime}$ and ψ is a complex linear isomorphism of $R_{c} \times W$ to $R_{c}^{\prime} \times W^{\prime}$ satisfying the followings: $\psi(R)=R^{\prime}, \psi(W)=W^{\prime}, \psi(V)=V^{\prime} \quad$ and $\quad \psi(F(u, w))=F^{\prime}(\psi(u), \psi(w))$ for all $u, w \in W$.

Proof. We can easily verify that there exists a point $p \in S$ such that $\varphi(p) \in S^{\prime}([7])$. Choose $c \in G_{a}$ and $c^{\prime} \in G_{a}^{\prime}$ such that $c o=p$ and $c^{\prime} o^{\prime}=\varphi(p)$. By considering $c^{\prime-1} \circ \varphi \circ c$ instead of φ, we may assume $\varphi(o)=o^{\prime}$. Since $\varphi(a o)=\Phi(a) \varphi(o)=\Phi(a) o^{\prime}$ for any $a \in G_{c}$, we have $\varphi(M)$ $=M^{\prime}$. Furthermore $\Phi(B)=B^{\prime}$, because $\Phi(b) o^{\prime}=\Phi(b) \varphi(o)=\varphi(b o)=o^{\prime}$ for every $b \in B$. Therefore we get $\varphi \circ \pi=\pi^{\prime} \circ \Phi$. Clearly $\mathfrak{g}^{0}+\mathfrak{g}^{1}+\mathfrak{g}^{2}$ (resp. $\mathfrak{g}^{\prime 0}+\mathfrak{g}^{\prime 1}+\mathfrak{g}^{\prime 2}$) is the Lie algebra of $G \cap B$ (resp. of $G^{\prime} \cap B^{\prime}$). It follows

1) $\Phi_{*}\left(\mathfrak{g}^{0}+\mathfrak{g}^{1}+\mathfrak{g}^{2}\right)=\mathfrak{g}^{\prime 0}+\mathfrak{g}^{\prime 1}+\mathfrak{g}^{\prime 2}$.

Since $\pi_{*}\left(\mathrm{~g}^{-1}\right)_{e}=T_{o}(M) \cap J T_{o}(M)$, where J is the complex structure of G_{c} / B, and $\pi^{\prime}{ }_{*}\left(\mathfrak{g}^{\prime-1}\right)_{e^{\prime}}=T_{o^{\prime}}\left(M^{\prime}\right) \cap J^{\prime} T_{o^{\prime}}\left(M^{\prime}\right)$, we have
2) $\Phi_{*} \mathfrak{g}^{-1} \equiv \mathfrak{g}^{\prime-1}\left(\bmod \mathfrak{g}^{\prime 0}+\mathfrak{g}^{\prime 1}+\mathfrak{g}^{\prime 2}\right)$.

For any $s(c) \in \mathfrak{g}^{-1}(c \in W), \varphi_{*} \pi_{*}[I, s(c)]_{e}=\varphi_{*} \pi_{*} s(\sqrt{-1} c)_{e}=J^{\prime} \varphi_{*} \pi_{*} s(c)_{e}=$ $J^{\prime} \pi_{*}^{\prime}\left(\Phi_{*} s(c)\right)_{e^{\prime}}=\pi_{*}^{\prime}\left(\left[I^{\prime}, \Phi_{*} s(c)\right]\right)_{e^{\prime}}$. On the other hand, $\varphi_{*} \pi_{*}[I, s(c)]_{e}=$ $\pi_{*}^{\prime}\left(\Phi_{*}[I, s(c)]\right)_{e^{\prime}}$. Thus we get
3) $\Phi_{*}[I, X] \equiv\left[I^{\prime}, \Phi_{*} X\right] \quad\left(\bmod g^{\prime 0}+\mathfrak{g}^{\prime 1}+\mathfrak{g}^{\prime 2}\right)$
for all $X \in \mathfrak{g}^{-1}$.

From 1) and 2), we obtain $\Phi_{*} E \equiv E^{\prime}\left(\bmod \mathfrak{g}^{1}+\mathfrak{g}^{\prime 2}\right)$ ([7]). Hence we can write $\Phi_{*} E \equiv E^{\prime}+X^{1}\left(\bmod \mathfrak{g}^{\prime 2}\right), X^{1} \in \mathfrak{g}^{\prime 1}$. Then $\operatorname{Ad}\left(\exp X^{1}\right) \Phi_{*} E=E^{\prime}$ $\left(\bmod \mathfrak{g}^{\prime 2}\right)$. Therefore there exists $X^{2} \in \mathfrak{g}^{\prime 2}$ such that $\operatorname{Ad}\left(\exp X^{1}\right) \Phi_{*} E=$ $E^{\prime}+2 X^{2}$. It follows $\operatorname{Ad}\left(\exp X^{2}\right) \operatorname{Ad}\left(\exp X^{1}\right) \Phi_{*} E=E^{\prime}$. We put $\psi=$ $\exp X^{2}{ }^{\circ} \exp X^{1} \circ \varphi$. And denote by Ψ the induced isomorphism of G_{c} onto G_{c}^{\prime}. Then it is clear $\Psi_{*} E=E^{\prime}$ and hence $\Psi_{*} \mathfrak{g}^{\lambda}=\mathfrak{g}^{\prime \lambda}(-2 \leqq \lambda \leqq 2)$. Therefore $\operatorname{dim} R=\operatorname{dim} R^{\prime}$ and $\operatorname{dim} W=\operatorname{dim} W^{\prime}$. By considering the equality: $\Psi_{*} \mathrm{~g}^{-1}=\mathfrak{g}^{\prime-1}$, we get from 3)

$$
\Psi_{*}[I, X]=\left[I^{\prime}, \Psi_{*} X\right] \quad \text { for } \quad X \in \mathfrak{g}^{-1}
$$

As a result, $\Psi_{*} P(X)=P^{\prime}\left(\Psi_{*} X\right)$ for $X \in \mathfrak{g}^{-1}$. Recalling the definition of Tanaka's imbeddings, we get

$$
\begin{aligned}
\psi(z, w) & =\psi(\exp [s(z)+P(s(w))] o) \\
& =\Psi(\exp [s(z)+P(s(w))]) o^{\prime} \\
& =\exp \left[\Psi_{*} s(z)+P\left(\Psi_{*} s(w)\right)\right] o^{\prime} .
\end{aligned}
$$

The above equality shows that there exist linear isomorphisms A_{1} of R onto R^{\prime} and A_{2} of W onto W^{\prime} such that $\psi(z, w)=\left(A_{1} z, A_{2} w\right)$. Clearly $A_{1} V=V^{\prime}$. And by a simple calculation, we get $A_{1} F(u, w)=$ $F^{\prime}\left(A_{2} u, A_{2} w\right)$.
q.e.d.

Applying Theorem 3.2 to the special case where $D^{\prime}=D$, we get

Corollary 3.3. $\operatorname{Aut}(D)=G \cdot G L(D)$.

Proof. Let $\varphi \in \operatorname{Aut}(D)$. Then by Theorem 3.2, we can write $\varphi=$ $c^{\prime} \psi c$, where $c, c^{\prime} \in G$ and $\psi \in G L(D)$. It follows $\varphi=c^{\prime} \psi c \psi^{-1} \psi$ and clearly $\psi c \psi^{-1} \in G$.
q.e.d.

§4. The Silov boundary S and the group $\operatorname{Aff}(D)$

4.1. Let D be the Siegel domain of the second associated with a convex cone V in R and a V-hermitian form F on W. And let D_{1} be the associated Siegel domain of the first kind, i.e., $D_{1}=\left\{x \in R_{c}\right.$; $\operatorname{Im} z \in V\}$. We denote by \mathfrak{g} (resp. by \mathfrak{t}) the Lie algebra of $\operatorname{Aut}(D)$ (resp. $\operatorname{Aut}\left(D_{1}\right)$). Then by Theorem 1.1, $\mathfrak{g}=\mathfrak{g}^{-2}+\mathfrak{g}^{-1}+\mathfrak{g}^{0}+\mathfrak{g}^{1}+\mathfrak{g}^{2}$ and $\mathrm{t}=$ $\mathrm{t}^{-2}+\mathrm{t}^{0}+\mathrm{t}^{2}$. Since $\mathrm{g}^{-2}+\mathrm{g}^{0}+\mathrm{g}^{2}$ is the subalgebra corresponding to the subgroup $\left\{f \in \operatorname{Aut}(D) ; f\right.$ leaves $D_{1} \times(0)$ invariant $\}$ ([2]), there exists a homomorphism $\alpha: \mathfrak{g}^{-2}+\mathfrak{g}^{0}+\mathfrak{g}^{2} \rightarrow \mathrm{t}^{-2}+\mathrm{t}^{0}+\mathrm{t}^{2}$ (as graded Lie algebras).

Lemma 4.1. The homomorphism α is injective on $\mathfrak{g}^{-2}+\mathfrak{g}^{2}$.
Proof. Clearly α is an isomorphism on \mathfrak{g}^{-2}. Let $X \in \mathfrak{g}^{2}$ be such
that $\alpha(X)=0$. Then for any $Y \in \mathfrak{g}^{-2}, \alpha([Y,[Y, X]])=0$. Since $\quad[Y$, $[Y, X]] \in \mathfrak{g}^{-2}$, we get $[Y,[Y, X]]=0$. This implies $X=0$ ([4], [8]),
q.e.d.

Lemma 4.2. Let $X \in \mathfrak{g}^{1}$. If $[[I, X], X]=0$. Then $X=0$.

Proof. By a direct calculation we have

$$
\begin{gathered}
0=[Y,[Y,[[I, X], X]]]=2[[I,[Y, X]],[Y, X]] \\
\text { for } Y \in \mathfrak{g}^{-2} .
\end{gathered}
$$

Since $[Y, X] \in \mathfrak{g}^{-1}$, we have $[Y, X]=0$ for all $Y \in \mathfrak{g}^{-2} .{ }^{3)}$ Therefore we get $X=0([4],[8])$.
q.e.d.
4.2. Let H be the subgroup of $\operatorname{Aut}(D)$ which consists of all elements f of $\operatorname{Aut}(D)$ leaving the Silov boundary S invariant, where f should be regarded as a holomorphic transformation of G_{c} / B. Clearly H contains $\operatorname{Aff}(D)$. Since each element of $\operatorname{Aut}(D)$ leaves M invariant (cf. Proof of Theorem 3.2) and since S is open dense subset of M, H is a closed subgroup of $\operatorname{Aut}(D)$.

Lemma 4.3. The Lie algebra of H coincides with the Lie algebra of $A f f(D)$.

Proof. Denote by \mathfrak{h} the Lie algebra of H. Since \mathfrak{b} contains the element E, \mathfrak{h} is a graded subalgebra of \mathfrak{g}, i.e.,

$$
\mathfrak{h}=\mathfrak{h}^{-2}+\mathfrak{b}^{-1}+\mathfrak{b}^{0}+\mathfrak{b}^{1}+\mathfrak{b}^{2}, \mathfrak{h}^{\lambda}=\mathfrak{b} \cap \mathfrak{g}^{\lambda} .
$$

Let $X \in \mathfrak{h}^{2}$. Then $\exp \alpha(X)$ leaves the Silov boundary of D_{1} invariant. It is known in [5] that a holomorphic transformation of a Siegel domain of the first kind which leaves the Silov boundary invariant is an affine transformation. Therefore we get $\alpha(X)=0$ and hence $X=0$ by Lemma 4.1. It follows $\mathfrak{h}^{2}=0$ and hence $\mathfrak{h}^{1}=0$ by Lemma 4.2. q.e.d.

[^1]Theorem 4.4. The group H coincides with $\operatorname{Aff}(D)$.
Proof. Let $f \in H$. Then $f o \in S$ and hence there exists $c \in G_{a}$ such that $c f o=o$. We put $\varphi=c f$ and denote by Φ the induced isomorphism of G_{c} by φ. Then $\Phi_{*}\left(\mathfrak{g}^{0}+\mathfrak{g}^{1}+\mathfrak{g}^{2}\right)=\mathfrak{g}^{0}+\mathfrak{g}^{1}+\mathfrak{g}^{2}$. We recall that $\Phi(a)=$ $\varphi a \varphi^{-1}$. Since $\varphi \in H$, we get $\Phi_{*}\left(\mathfrak{g}^{-2}+\mathfrak{g}^{-1}+\mathfrak{g}^{0}\right)=A d \varphi\left(\mathfrak{g}^{-2}+\mathfrak{g}^{-1}+\mathfrak{g}^{0}\right)$ $=\mathfrak{g}^{-2}+\mathfrak{g}^{-1}+\mathfrak{g}^{0}$ by Lemma 4.3. It follows $\Phi_{*} \mathfrak{g}^{0}=\mathfrak{g}^{0}$. By considering the equation $\Phi_{*} E \equiv E\left(\bmod \mathfrak{g}^{1}+\mathfrak{g}^{2}\right)$, we conclude $\Phi_{*} E=E$ and hence $\Phi_{*} g^{\lambda}=$ \mathfrak{g}^{λ}. Now from the Proof of Theorem 3.2, it is clear that φ is an element of $G L(D)$. q.e.d.

Corollary 4.5. Let $f \in \operatorname{Aut}(D)$. Assume that f and f^{-1} are continuous in \bar{D}, where \bar{D} is the closure of D in $R_{c} \times W$. Then $f \in \operatorname{Aff}(D)$.

Proof. By Lemma 2.6 and by Corollary 3.3, we know $f \in H$.
q.e.d.

§5. The compactness of $\boldsymbol{C}_{\boldsymbol{c}} / \boldsymbol{B}$

5.1. Let D be the Siegel domain of the second kind as in $\S 1$. Assume that D is a symmetric homogeneous domain. Then it is well known that the Lie algebra \mathfrak{g} is semi-simple. Therefore $\mathfrak{g}_{\boldsymbol{c}}$ is semisimple. We also define linear endomorphisms P and \bar{P} of \mathfrak{g}_{c}^{1} in the same way as in (2.1), i.e.,

$$
\begin{aligned}
& P(X)=\frac{1}{2}(X-\sqrt{-1}[I, X]), \\
& \bar{P}(X)=\frac{1}{2}(X+\sqrt{-1}[I, X]) \quad \text { for } X \in \mathfrak{g}_{c}^{1} .
\end{aligned}
$$

We put $\mathfrak{s}^{-1}=\mathfrak{g}_{c}^{-2}+P\left(\mathfrak{g}^{-1}\right), \mathfrak{s}^{0}=\bar{P}\left(\mathfrak{g}^{-1}\right)+\mathfrak{g}_{c}^{0}+P\left(\mathfrak{g}^{1}\right)$ and $\mathfrak{s}^{1}=\bar{P}\left(\mathfrak{g}^{1}\right)+\mathfrak{g}_{c}^{2}$. It is easy to see that $\mathfrak{g}_{c}=\mathfrak{s}^{-1}+\mathfrak{s}^{0}+\mathfrak{s}^{1}$ is a graded Lie algebra. According to [6] there exists an involutive automorphism θ of \mathfrak{g}_{c} (as a real Lie algebra) associated with a certain Cartan decomposition of \mathfrak{g}_{c} such that $\theta\left(\mathfrak{s}^{-1}\right)=\mathfrak{s}^{1}$ and $\theta\left(\mathfrak{s}^{0}\right)=\mathfrak{s}^{0}$. Let G_{θ} be the Lie subgroup of G_{c} corresponding to the subalgebra $\left\{X \in \mathfrak{g}_{c} ; \theta(X)=X\right\}$. Clearly the orbit of
G_{θ} through the origin o is open and compact in G_{c} / B and hence coincides with G_{c} / B. As a result G_{c} / B is compact.

The purpose of this section is to prove the following

Theorem 5.1. Let D be a Siegel domain of the second and let G_{c} / B and $G / G \cap B$ be homogeneous spaces constructed in $\S 2$. Then the following conditions are equivalent:
(1) D is symmetric.
(2) G_{c} / B is compact.
(3) $G / G \cap B$ is compact.
5.2. We put $\tilde{\mathfrak{b}}=\mathfrak{g}^{0}+\mathfrak{g}^{1}+\mathfrak{g}^{2}$. Let $m=\operatorname{dim} \mathfrak{g}$ and $n=\operatorname{dim} \tilde{\mathfrak{b}}$. Denote by $Q(m, n ; \mathbf{R})$ the grassmann manifold of all n-dimensional subspaces of the m-dimensional real vector space g. Since the subgroup $G \cap B$ of G leaves $\tilde{\mathfrak{b}}$ invariant, we can define a mapping η of $G o=$ $G / G \cap B$ to $Q(m, n ; \mathbf{R})$ by

$$
\eta(a o)=A d a \tilde{\mathrm{~b}} \quad(a \in G) .
$$

Lemma 5.2. Let $v \in V$ and let $\mathfrak{f}_{v}^{0}=\left\{X \in \mathfrak{g}^{0} ;[s(v), X]=0\right\}$. Then we have

$$
\lim _{t \rightarrow \infty} \eta(\exp t s(v) o)=\mathfrak{F}_{v}^{0}+[s(v), \tilde{b}] \quad(\text { in } Q(m, n ; \mathbf{R})) .
$$

Proof. We put $n_{1}=\operatorname{dim} \mathfrak{g}^{1}$ and $n_{2}=\operatorname{dim} \mathfrak{g}^{0}+\mathfrak{g}^{2}$. Let $X^{1} \in \mathfrak{g}^{1}$. Then

$$
A d(\exp t s(v)) X^{1}=X^{1}+t\left[s(v), X^{1}\right] .
$$

Since the mapping: $X^{1} \rightarrow\left[s(v), X^{1}\right]$ of \mathfrak{g}^{1} to \mathfrak{g}^{-1} is injective (cf. [8]), we have

$$
\lim _{t \rightarrow \infty} \operatorname{Ad}(\exp t s(v)) \mathfrak{g}^{1}=\left[s(v), \mathfrak{g}^{1}\right] \quad\left(\text { in } Q\left(m, n_{1} ; \mathbf{R}\right)\right) .^{4)}
$$

4) Let $X_{1}, \ldots, X_{n_{1}}$ be a base of g^{1}. Put $Y_{g}=\left[s(v), X_{j}\right]$. Then $Y_{1}, \ldots, Y_{n_{1}}$ are linearindependent. Thus the subspace $\operatorname{Ad}(\exp t s(v)) g^{1}$ is generated by $\frac{1}{t} X_{1}+Y_{1}, \ldots$, $\frac{1}{t} X_{n_{1}}+Y_{n_{1}}$.

Let $X^{2} \in \mathfrak{g}^{2}$ and $X^{0} \in \mathfrak{g}^{0}$. Then

$$
\begin{aligned}
& A d(\exp t s(v)) X^{2}=X^{2}+t\left[s(v), X^{2}\right]+\frac{t^{2}}{2}\left[s(v),\left[s(v), X^{2}\right]\right] \\
& A d(\exp t s(v)) X^{0}=X^{0}+t\left[s(v), X^{0}\right] .
\end{aligned}
$$

If we put $Y^{0}=\frac{t}{2}\left[s(v), X^{2}\right]$, then

$$
A d(\exp t s(v)) X^{2}=X^{2}+\frac{t}{2}\left[s(v), X^{2}\right]+A d(\exp t s(v)) Y^{0} .
$$

Therefore

$$
\begin{aligned}
A d & (\exp t s(v))\left(\mathfrak{g}^{2}+\mathfrak{g}^{0}\right) \\
= & \left\{X^{2}+\frac{t}{2}\left[s(v), X^{2}\right] ; X^{2} \in \mathfrak{g}^{2}\right\} \\
& +\left\{X^{0}+t\left[s(v), X^{0}\right] ; X^{0} \in \mathfrak{g}^{0}\right\} .
\end{aligned}
$$

Since the mapping: $X^{2} \rightarrow\left[s(v),\left[s(v), X^{2}\right]\right]$ of \mathfrak{g}^{2} to \mathfrak{g}^{-2} is injective (cf. [8]), we know $\left[s(v), \mathfrak{g}^{2}\right] \cap \mathfrak{f}_{v}^{0}=(0)$ and hence

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} \operatorname{Ad}(\exp t s(v))\left(\mathfrak{g}^{2}+\mathfrak{g}^{0}\right) \\
& \quad=\left[s(v), \mathfrak{g}^{2}+\mathfrak{g}^{0}\right]+\mathfrak{f}_{v}^{0} \quad\left(\text { in } Q\left(m, n_{2} ; \mathbf{R}\right)\right) .
\end{aligned}
$$

q.e.d.

We can now prove Theorem 5.1. Suppose that G_{c} / B is compact. Then by Proposition $2.7, G / G \cap B$ is compact. Thus we have only to verify that (3) implies (1). Suppose that $G / G \cap B$ is compact. Then $\eta(G / G \cap B)$ is compact. Therefore by Lemma 5.2, there exists $a \in G$ such that $\operatorname{Ad} a \tilde{\mathrm{~b}}=[s(v), \tilde{\mathrm{b}}]+\mathfrak{f}_{v}^{0}$. Clearly $\quad[E, \operatorname{Ad} a \tilde{\mathrm{~b}}] \subset \operatorname{Ad} a \tilde{\mathrm{~b}}$. Then $\left[A d a^{-1} E, \tilde{\mathfrak{b}}\right] \subset \tilde{\mathfrak{b}}$. If we write $A d a^{-1} E \equiv X^{-2}+X^{-1}(\bmod \tilde{\mathfrak{b}}), X^{-2} \in \mathfrak{g}^{-2}$ and $X^{-1} \in \mathfrak{g}^{-1}$. Then $\left[A d a^{-1} E, E\right] \equiv 2 X^{-2}+X^{-1} \equiv 0(\bmod \tilde{\mathfrak{b}})$. Therefore $X^{-2}=X^{-1}=0$ and hence $A d a^{-1} E \in \tilde{\mathrm{~b}}$. As a result $E \in A d a \tilde{\mathrm{~b}}$. Thus we can write $E=Y+Z\left(Y \in \mathfrak{f}_{v}^{0}, Z \in[s(v), \tilde{b}]\right)$. We denote by $\operatorname{Tr} \operatorname{adX}(X \in \mathfrak{g})$
the trace of the linear endomorphism $a d X$ of \mathfrak{g}. Since \mathfrak{f}_{v}^{0} is compact, $\operatorname{Tr} a d Y=0$. Clearly $\operatorname{Tr} a d Z=0$. And hence $\operatorname{Tr} a d E=0$. This implies $\operatorname{dim} \mathfrak{g}^{-2}=\operatorname{dim} \mathfrak{g}^{2}$ and $\operatorname{dim} \mathfrak{g}^{-1}=\operatorname{dim} \mathfrak{g}^{1}$. Therefore $\mathfrak{g}^{-2}=(\operatorname{ad} s(v))^{2} \mathfrak{g}^{2}$ and hence the domain D is homogeneous (cf. [8]). On the other hand, from [2] we know \mathfrak{g} is semi-simple. Then by Borel [1] or Koszul [3] we can conclude that D is symmetric.

Kyoto University

References

[1] A. Borel, Kaehlerian coset spaces of semi-simple Lie groups, Proc. Nat. Acad. Sci., 40 (1954) 1147-1151.
[2] W. Kaup, Y. Matsushima and T. Ochiai, On the automorphisms and equivalences of generalized Siegel domains, Amer. J. Math., 92 (1970) 475-497.
[3] J. L. Koszul, Sur la forme hermitienne canonique des espaces homogènes complexes, Canad. J. Math., 7 (1955) 562-576.
[4] K. Nakajima, Some studies on Siegel domains, to appear in J. Math. Soc. Japan, 27 (1975).
[5] I.I. Pyatetski-Shapiro, Geometry of classical domains and theory of automorphic functions, Fizmatgiz, Moscow, 1961. French translation, Paris, 1966.
[6] N. Tanaka, On the equivalence problems associated with a certain class of homogeneous spaces, J. Math. Soc. Japan, 17 (1965) 103-139.
[7] N. Tanaka, On infinitesimal automrophisms of Siegel domains, J. Math. Soc. Japan, 22 (1970) 180-212.
[8] J. Vey, Sur la division des domains de Siegel, Ann. Sci. École Norm. Sup., 4 Série, 3 (1971) 479-506.

[^0]: 1) We consider g_{c} as the Lie algebra of left invariant vector fields on G_{c}. Thus $[\widetilde{X, Y}]=-[\tilde{X}, \tilde{Y}]$.
 2) Considering $g_{c}=g+J(g)$, where J is the complex structure of G_{c} / B, we have only to show that $X f=0$ implies $(J X) f=0(X \in g)$. Let z_{1}, \ldots, z_{n} be a local coordinate system $\left(z_{j}=x_{j}+\sqrt{-1} y_{j}\right)$. For any vector $X=\sum_{j} a^{j} \frac{\partial}{\partial x_{j}}+\sum_{j} b^{j} \frac{\partial}{\partial y_{j}}$ (a^{j}, $\left.b^{j} \in \mathbf{R}\right), J X=\sum_{j} a^{j} \frac{\partial}{\partial y_{j}}-\sum_{j} b^{j} \frac{\partial}{\partial x_{j}}$. Then $X f=0(f=u+\sqrt{-1} v)$ implies $\sum a^{j}, \frac{\partial v}{\partial x_{j}}+\sum_{j} b^{j}$ $\frac{\partial u}{\partial y_{j}}=0$ and $\sum_{j} a^{j} \frac{\partial v}{\partial x_{j}}+\sum_{j} b^{j} \frac{\partial v}{\partial y_{j}}=0$. Since f is holomorphic, $\frac{\partial u}{\partial x_{j}}=\frac{\partial v}{\partial y_{j}}$ and $\frac{\partial u}{\partial y_{j}}=-\frac{\partial v}{\partial x_{j}}$. Thus by a direct calculation we have $(J X) f=0$.
[^1]: 3) Identifying $g_{c}^{-8}+g^{-1}$ with $R_{c} \times W$ by the map s, we have from (1.1) and (1.3) $[[I, Z], Z]=4 F(Z, Z) \quad$ for $Z \in g^{-1}$.
