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In  1941 G. Randers introduced first a  special Fins ler metric

cis =(g i i (x)dxidxj) 1 / 2 b i (x)dxi ,

i n  a  viewpoint o f  general relativity [1 2 ]* . Since then many physicists
have developed th e  general relativity based o n  this metric. (See Refer-
ences of [5]).

F rom  th e  standpoint o f  Finsle r  geometry itself Randers' metric is
very interesting, because its form is sim ple and properties o f the  Finsler
space equipped with this m etric m ust be described by th e  ones of the
R iem annian space equipped w ith th e  metric L(x, dx )=(g u (x )dx idx j)'/ 2

together with th e  1-form 13(x, dx)=b i(x )d x l. F o r  example the  curvature
tensors R h i i k , P h u ,  a n d  S„,i ,  o f  th e  Finsler space m u st b e  w ritten  in
term s o f  Riem annian tensors, that is ,  th e  curvature tensor, bi a n d  its
covariant derivatives with respect t o  th e  Riemannian connection. But
w e  have few papers concerned with th e  Finsler space in  viewpoint of
Finsler geom etry [4 ], [5 ], [10 ], [13 ]. T h is  s itu a tio n  seem s to  com e
from  th e  fa c t  th a t  w e  m u st h i t  a t  once  against insuperable difficulty
o f  exhausting  ca lcu la tions to  obta in  t h e  conc re te  fo rm  o f  Cartan's

T h e  purpose  o f  t h e  p re se n t  p a p e r  is  to  w r ite  the  to rsion  and
curvature tensors o f  t h e  R anders space ( th e  Finsler space equipped

*  Numbers in  brackets refer to the references at the end of the paper.
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w ith  R anders' m etric) i n  te rm s o f  R iem annian tensors. T h e  idea  to
overcom e exhausting  ca lcu la tions is  on ly  t h e  equation (1 .3), from
w hich  t h e  a lgeb ra ic  equa tions sa tisfied  by  t h e  differences o f  r y i k

from  Christoffel sym bols o f  t h e  Riem annian space a r e  derived easily
a n d  then Tyi k  a r e  com plete ly  found by  supply ing  ce rta in  algebraic
equations. The torsion and curvature tensors a re  found by m aking use
of those algebraic equations, not of the concrete form of Ty' k .

F rom  a  geometrical standpoint it seems to be more important that
a  R anders space is C-reducible [10] a n d  w e  show  in  the  th ird  section
th a t  the notion of C -reducibility proposes interesting special forms of
to rs io n  a n d  curvature  tensors o f  F insler space . T herefore  important
problems arise to study Finsler space with torsion and curvature tensors
of such special forms.

T he  terminology and  nota tions are  referred  to  th e  author's mono-
graph [8], which a re  a  little different from Cartan's ones.

§1 . Common quantities o f  Finsler spaces F "  and *F"

L e t  M "  b e  an n-dimensional differentiable m anifo ld  and  P  be  a
F in sle r space  equ ipped  w ith  a  fundam ental function L(x, y)(yi
on M .  I f  a  differential 1-form fi(x, dx)=b i(x)dxi is  given  o n  M",
then  w e obta in  another F insler space  *F n o n  M "  whose fundamental
function is defined by

(1.1) *L(x, y)=L(x, y)+ fl(x, y) .

Throughout th e  p a p e r  w e  assume that *L(x, y )  satisfies th e  ordinary
cond itions a s  fundam ental function. I f  L(x, y ) is R iem annian , then
*F " is  ca lled  a  R anders space. In  th e  f irs t tw o  sections we shall be
concerned w ith  a  generalization * F "  o f  a  R a n d e r s  space such that
L(x, y ) is  a  general Finsler metric.

It follows from (1.1) that

(1.2) *Li=Li+bi.

Throughout the paper we shall use the notations

L i =4 1L, L i i =6 .4  a n d  etc.
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Following E. Cartan w e  sh a ll d e n o te  b y  li the normalized supporting
elem ent yi 1 L .  T h e n  (1.2) gives th e  relation betw een the normalized
covariant supporting elements:

(1.2') *if = li + hi .

Next we obtain from (1.2)

(1.3) *Lii = LIU •

I f  w e  d e n o te  b y  g i i (x , y ) th e  fundam ental tensor 6 4 2 /2 and put

(1.4) hii =g i i —li li ,

then (1.3) is written in the form

(1.3') *hul*L = hu lL .

In virtue of (1.4) the equation (1.3') is rewritten as the relation between
the fundamental tensors :

(1.3") (t = *L/L) .

From  (1.3") the relation between the covariant components of the fun-
damental tensors will be easily derived as follows :

(1.5) *gii + plili

where we put y = (Lb 2 + ,6)/(*Lr 2 ), b2  = b b  and bi =glib »

The equation (1.3) is  e ssen tia l to  d iscuss the Finsler space *F",
b e c a u s e  it  is  e q u iv a le n t  to  (1.1) an d  characterizes th e  fundamental
function *L of * F n . Further (1.3) shows that all common quantities to
F "  and *F " consist of L i ;  a n d  the ir successive derivatives with respect
to  x i and yi•

I n  particular L i a , L i i k ,  L i i k h  an d  e tc .  a re  com ponents o f  tensors
c o m m o n  to  F n  a n d  * F n . W e  have already show n L i i  = hu / L . We
next treat the common tensor

(1.6) *
L i i k = L i j k .
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From the equation

(1.7) Okhu —2Cijk L - 1 (1,h i k + 1 ill tk),

we obtain

(1.8) L iik=  21, - 1  Ciik— + h i k /, + hk i /i ) ,

where we put Cijk = ik g ij12 . Therefore (1.6) is rewritten as the relation

between C ijk  and *C i i k  :

(1.6')

where we put

(1.9)

* C i ik = tC i ik ± (h i iM k + h ik ln i+  hk1 m i )1(214 ,

It is noted that the vector mi i s  orthogonal to the supporting element.
Finally we deal with another common tensor

(1.10) *Lhijk= Lhijk •

From (1.7), (1.8) and i j /i = h i i /L we obtain easily

(1.11) L h iik = 2 & ‘C h iilL -2 (1 ryC ijk ± liC ry jk + liC h ik +  ik C h ii)IL 2

— (h k ih ik  h h ih k i+  h ryk h ij)/ L 3 + 2(hh iliik  hh jik li

hhklili hiilklh k 1 i 1Ii hialilh)11, 3 •

Thus (1.10) will be rewritten as the relation between i k *Ck i i  and i k Ck i i ,

which will be used later on.

§ 2 .  Cartan connection o f th e  space *Fn

Continuing the last section we shall consider the common quantities

(2.1) ak *L i f =ak L i i ,

which are not components o f a  tensor. We shall be concerned with
Cartan's connection of F n  and * F n . The connection parameters of the
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connection a r e  d e n o te d  b y  ( F  k , NI, C i ik ). T h a t  is, t h e  h -  a n d  v-

covariant derivatives X ,  X i l;  o f  a  c o v a r ia n t  vector fie ld  X i a r e  de-

fined by

where Nr; = F o ri  (=y k Fk ri)  and  C i r;  =gr k Ci o . Thus we obtain

Liiik= OkLif — L i i r Nrk — Lr i F i r  k— L i r F i r k •

In  virtue o f L ip „ =0 we obtain

(2.2) OkLi; =LifiN li+L riF i r k +LirF irk •

T he equation (2.1) serves the purpose to  find the re la tion between
Cartan connections of F n a n d  *Fn. For this purpose we put

(2.3) Dj
i

k
=* F

j
i

k
— F

j
i

k  •

T h e  difference D I, is obviously a  tensor o f  (1, 2)-type. I n  virtue of

(2.2) the  equation (2.1) is written in  the  tensorial form

(2.1') L urD 01,+L riD ir,+L irD ir, =O.

I n  o rd e r  to  f in d  th e  difference D  k ,  w e  have  to construct sup-
plementary equations to (2.1'). From (1.2) we obtain

(2.4) ai*Li

From L i u  =0 the  equation (2.4) is written in  the  form

*L i r *N r;  + *L r *F i ri  = LOT; +L r F i ri  + b i l i  + b r F i r;  ,

or, by means of (1.2), (1.3) and (2.3), in  the  tensorial form

(2.4') L irD ori+(/,.+ b r )D i r;  =b i u

T h e  difference tensor Di i, is  n o w  fo u n d  f ro m  (2.1') a n d  (2.4'),
namely,
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Proposition 1. T he Cartan connection o f  * F" is com pletely  deter-
m ined by  the equations (2.1') and (2 .4 ') in  term s of  the one of  P .

To prove this, we shall note the following fact:

Lemma. The system  of  algebraic equations

(2.5) ( 1 )  L i ,Ar =13 i , (2) (/ ,+  b„)A r =B,

h as  a unique solution (Ar) f o r given B  and B i such  that B i li =0.
It follows from (1.4) tha t (1) of (2.5) is written in the form

(2.6) girA r=L B i+li(l,A r).

Contraction of (2.6) by  b i gives

br A r=L B p + (13 I L)1,Ar ,

where a n d  in  th e  remainder o f  th e  paper w e  sha ll u se  th e  subscript
f i  to  d e n o te  the contraction b y  bi. T h e n  (2 )  o f  (2 .5 ) is  w ritten  as

(2.7) 1,A '= T- 1 (B-LBp).

Therefore (2.6) is written as

(2.6') Ai =L B i+ t -
 1 (B —  LB p )li ,

which is the concrete form of the solution of (2.5).
W e  a re  n o w  in  a  p o s itio n  to  s h o w  th e  p ro o f  of Proposition 1.

It is obvious that (2.4') is equivalent to the two equations

(2.8) LirDori+ L i r Do r 2 (1,-F b r)D ir i =2E 1i  ,

(2.9) LirD o r  — Li r Do ri =2F11,

where we put

(2.10) 2E1 =b11 + k w , 2F1 = b i u — b 11 .

On the other hand (2.1') is clearly equivalent to

(2.11) 24,Dirk  +L u „Do rk L• --A rpori — LkirD o r•
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Contraction of (2.8) by y i gives

(2.12) L 1,.D 0r0+ 2(1 r+ br)D ori= 2E 10 .

Similarly we obtain from (2.9) and (2.11) respectively

(2.13) LirDo r o = 2 FiO

(2.14) L irp o r i+ L irD o r i+ L iirp o r o  =0.

Moreover contraction of (2.12) gives

(2.15) (1r+ b r)D o r o  =E00 •

Now we shall first consider (2.13) and (2.15):

(1) L,Doro =2F 10 ,+  b r ) D o r o = Eo o •

W e can apply Lemma to (I) to obtain

(2.16) /rDoro =t -  I  (E 0  0  H S o ),

(2.17)D 0 1 0  =2LF 16 (E 0 0 2 L F  p o )li

where we pu t F f,=g iiF i o .

Secondly we add (2.9) and (2.14) to obtain

(2.18) LirDo r i  = Gij

where we put

(2.19) Gii=Fii — Lifrpor0/2.

The equation (2.12) is written in  the  form

(2.12') + b,.)D o r i  =G i ,

where we put

(2.20) G i= E ;0— L irD or0/2.

Substituting from (2.17) in  (2.19) we obtain
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(2.19')G 1  = F u  — LL u r Fro  + L u (E „ — 2LFf l0 )/(2*L).

In virtue of (2.13) G . a re  written as

(2.20') Gj =Eio — Fio .

Thus we have obtained the system of equations (2.18) and (2.12') :

L i r D o r;  — Gu , + br )D o r;  — G. ; •

Applying Lemma to (II) we obtain

(2.21) /rDor; = T- 1 ( G i  LG f l i ) ,

(2.22) Do i ;  =L Gi;  + ',GOP ,

where we put Gi
;  =9 i r Gri.

Finally we deal with (2.11) and (2.8):

(III) LirD i rk = H i j k ,O r +  b  j r  k  =  H  jk

where we put

(2.23)
H iik =  2-

1 (L id ) o r  i —  Lkir D o r  j —  L u rp o r

HJk = 2- '(L i r por k L k r p O r j )  •

In  virtue of (2.22) H i ik  and Hp ,  are  written in  term s o f known quan-
tities. Then, applying Lem m a to the system of equations (III) we can
find  the concrete representations o f I )  k a n d  th e  proof is completed.

§ 3 .  On C-reducible Finsler spaces

The remainder of the paper w e shall restrict our consideration to
the case where L (x , y )  is Riemannian, i.e., the space * F n  is  a Randers
space. Then (1.6 ') and (1.3') give

(3.1) *Cuk = *h u *M k + *hik *M i + *hki *M ;  ,

w here  w e  p u t *M i = m i / (2 * L ) . I n  a  p rev ious paper [10 ] th e  author
introduced a notion of C-reducibility of Finsler space :
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Definition. A  non-R iem annian Finsler space o f  d im ension  n  3
is called C-reducible if  the torsion tensor C  iik  is  of  the form

C iik = h iiM  k  h  jk M  + h k iM  j

I t is  rem ark ed  th a t th e  equation (3.2) holds good fo r  any 2-
dimensional Finsler space and M i C ii i l ( n + 1 ) .  It then follows from
(3.1) and (1.9) that a Randers space *F" (n_- 3) is C-reducible, provided
130 O.

In  th is section w e shall treat a  general C-reducible Finsler space
P i  and  consider components of the (v)hv-torsion tensor P , , ,  hv-curvature
tensor P hi j k ,  v-curvature tensor S hiik a n d  another important tensor

Thijk•

First components P h i j  a r e  equal to  C h o". H ence (3 .2) g ives im -
mediately

(3.2)

(3.3) Phii = hh iP  h i i P  h  h  i h P • (P = M  no) •

Secondly components P h i j k  are written in the two forms as follows :

P hijk  = C ijkih C h jk l i+ C h jr- P iik C  i j r P rhk

= P hjkl i +  ikrC C rhr  j h k r  i j  •

Therefore (3.2) or (3.3) gives the following form of I' hiik :

Phijk = h h jP ik  hijP h k  + h h k P ji h ilc P 'jh h

where we put

P ik = (M rP rk I i +  M

= (M rP r I2 )hik — (1 iP lc+  k P , ) /
P M kP i •

P;k =  — (M rP r I 2 )hik —  M ilk —  P iM k

=  ( M rP r I2 )hik — ( 1 k +  l k P  L  P P kM  f

1 3 4 =  P ik P k i = + 13 ;, i •

(3.4)

(3.5)
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Hence we have

(3.6) 13 ,1,+(1,1)1+1i Pk)IL=m k i i .

Thirdly components  S k ip, a re  given by

S — ChkrC i rC h p . 0  i r  k .

Hence (3.2) gives immediately

ShIlk  =  hhk ïtlII h hj M  ik+  h ijM hk -  h ik M  hj

where we p u t Mu  ( M r M"12)h i j +M 1M j .
Finally we consider the tensor

(3.8) Thi ik =  L C h iilk +  a • • 17 C hiki j +  C h jk l C ijklh •

W e were recently conscious of the im portance of this tensor [7], [11].
It was proved [10] that there exists a  scalar M such that

+(M i /i  + M i /i )/L

In  virtue of this and =MA we obtain easily

Thiik = LM(h.h•n t  p c +  
h hj il ki +  h hk

h i j )

These sim ple forms (3.3), (3.4), (3.7) and (3 .9) of im portant tensors
le a d  u s  to  som e in teresting  p rob lem s o f  F in s le r  geom etry . I n  fact
these  tensors a r e  a l l  e q u a l  to  z e r o  i f  th e  space is R iem annian and
Phu = P h i j ,  = 0  if the  space is locally Minkowskian. Thus some important
problem s arose from  this situation, for exam ple, to consider a Finsler
space with Sh ip, =0 (Brickell's theorem [2]), o r  Phu =0 (Landsberg.space
[5 ]) , o r  Thi jk = 0  [7 ] ;  those  correspond o n ly  to  the  tr iv ia l problem of
Riem annian geom etry to consider a  Riemannian space with vanishing
curva tu re . S o  f a r  a s  th e  author knows, interesting special forms (00)
o f  th e se  ten so rs  d o n 't b e  k n o w n  y e t ex cep t L 2 Sh i i k =S(h h i h,—  h,h i i )
noticed by th e  a u th o r  [9 ] . W e  n o w  o b ta in  m ore interesting problems
of F insler geometry, fo r  example, to consider a  F insle r space with the

(3.7)

(3.9)
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(v)hv-torsion tensor Ph i i  o f  t h e  spec ia l fo rm  (3 .3 ). It is  no ted  tha t the
author gave another C-reducible space in  th e  paper [10]. It is rem ark-
able  that the  tensor h i .; p lay s  an im portant ro le  in  those special form s.

§ 4 .  The v-curvature tensor of a Randers space

W e  s h a ll  r e tu r n  to  t h e  consideration o f  a  R a n d e r s  space  *F".
Then (1.6') reduces to

(4.1) * C  =(h u m, + h i k mi + h k i mi )/(2L).

In  virtue of (1.5) we obtain easily

(4.2) *Ciik=(hmk+hikmi+hikmi)1(2*L)

— (42*L 2 )(2m i mk
 4_ (1) 2 13211, 2)h i k )i1

from  w hich  w e  ob ta in Ci =(n+l)m i l(2*L ), o r ,  i n  v ir tu e  of (1 .2 ')
and (1.9)

(4.3) ilog(*g)' / 2 =(n+1)(1) ; —(/3/*L)*/ i )/(2L),

w here  *g=det*g t .i . T h is  equation verifies D eicke's theorem  [3] such
t h a t  *C.; = 0  is  n e c e ssa ry  a n d  sufficient f o r  * F "  to  be R iem annian,
because  /3= 0  is im m edia te ly  ob ta ined  from  van ish ing  o f  t h e  right-
hand side of (4.3).

W e see from (4.1) and (4.2)

(4.4) *Cii,.*C hr k  = (M  2 h iih h k  2h i i men k +2h kk nt i m i +h ih m i mk

haMirrlh hihriliMOML*Lo)

where we p u t m 2 =m im i .
N ow  w e sha ll consider the v-curvature tensor *5 _ * C = * C ii,. * Ch r k —

* C ikr* C h r  j• It follows from (4.4) that

Proposition 2. T h e  v -curv ature tensor *S h i f t  o f  a  R an d e rs  space
* F n i s  of  the form

(4.5) *L 2  * Shiik = h k 1 1 1  —  h  h iM ik + h 11 ikM hi
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where we put

(4.6) mu =(r/4)((m 2 /2)hu +

T he  form  (4.5) o f  *Sh u k  has been  know n from  (3 .7 ), b u t  it gives
*S te rm s  o f Riemannian tensors.

I n  virtue o f  (1 .5 )  th e  R icci tensor *S ik =*ghi*S h i ik  i s  o f  th e  form

(4.7) *L2*Sik = — — 1 ) m 2 14Trh i k
 — ((n - 3 )14 )mimk •

Hence we have

Theorem 1. I n  a R an d e rs  space  of  d im ension tt. - 4  there ex ists
a  sc alar H  s u c h  th at  t h e  m atrix  II * L 2 * S i k + 1 1 * h i k l l  i s  o f  rank  less
than two.

I t  is  w e ll k n o w n  th a t * S h iik  o f  any two-dimensional Finsler space
vanishes. A s  t o  a  th ree-d im ensional F insle r space  it is  show n [9 ]
that *S h u k  is alw ays of the  form

(4.8) * L 2 *  Shiik = * S ( * hhi * hik —  * hhk * h ij)

which implies *L 2 *S i k  =*S*h i k . I f  a  F in s le r  space * F n of dim ension
m ore th an  th ree  is  su ch  th a t *Sh u k  i s  o f  th e  form (4.8), we shall call
*F " S3 -like. W e consider an S3-like R anders space. It then fo llow s
from (4.8), (4.5) and (1.3') that

S(hh i h,— hhk hu ) h= _oink + hhkini; — hikmo — hhimik

where we pu t S = *S-c2 . Contraction by ghi gives

S(n-2)h,= — (n-3)m ,— (m h i ghi)h ik .

Moreover contraction b y  gik gives S (n -1 )= -2 m h i ghi, hence we obtain
(S/2)h i k  =  m,k ,  from  w hich  a n d  th e  definition o f  mu  it  fo llo w s  th a t
mi =0, i.e., )3 =0 from (1.9). Thus

Theorem 2. A  R anders space  is  S3-like if  an d  on ly  if  f3 = 0 , that
is, the space is R iem annian.

The following theorem will be easily verified from (4.5):
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Theorem 3. T h e  v -cu rv atu re  tensor *S h i p , o f  a  R a n d e rs  space
vanishes if  and  only  if  13 = 0 , th at is, the space is R iem annian.

It is noticed that Brickell's theorem  [2] can not be directly applied
t o  a Randers space, because the fundamental function *L(x, y )  is not
symmetric.

§ 5 .  The tensor T h i ik  o f  a  Ramiers space

W e sha ll trea t the tensor T hijk  given by (3.8) of a Randers space
* F " .  In  virtue o f (1.11), (4.1), (1.2') and  (1 .9) the equation (1.10) for
* F n is w ritten  in the form

(5.1) — — (hh in hhinik+  hhknii+  hiinhk+  hiknhi+  hkinhi)/(2L 2 )

+ ( f3 12 L 3 ) (h h ih jk +  h h jh k i h h k h ij) ,

w h e re  w e  p u t  n i i =l i m i +l i m i . T h ere fo re  w e  o b ta in  fro m  (4 .4 )  and
(5.1)

(5.2) *Chi.; = — (hhi* nik+hki * nki+hhk * nti+hii * nhk

+ hi k *nh i +h ik *nh i ) —(T/4L 3 *L)(h h i hi k

hh jhk i+  hhkhij),

where we put * n  =*  I i m i  + *l i m i an d  T= 
L 2  b 2  + 1 3 2  + 2 4 .

Consequently we obtain *Th u k  o f a  R anders space * F"  as follows:

Proposition 3. T h e  ten sor *Th i i k  o f  a  R a n d e rs  space is w ritten
in the form

(5.3) *Thijk= — ( 7 74 1- 3 ) ( h h ih ik + h h ih k i+ h u l l i i ) ,

w here T-=L 2 b 2 +132 + 2 4 .
W e conside r *T h u k  = O . B e c a u se  T = 0  reduces easily  /3= 0 , w e

obtain

Theorem 4. T he tensor *Th i i k  o f  a R an d e rs  space v anishes if  and
only  if  /3= 0 , th at is, the  space is R iem annian.
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§ 6 .  The (v)hv-torsion tensor and hv-curvature tensor of
a Randers space

In  virtue of (1.8) the tensor G.  of a Randers space * F n given by
(2.19') is written as

(6.1) Gi1 =F 1i + (1iP 10 l iF io ) / L

w h ere  w e  put G---(E 0 0 -2 L F f lo )/(2L *L ). Differentiation of (2.13) and
(2.15) by y i  leads us respectively to

LaiDor0= 2 Fii — Lifrpo r o,

(l r + br) i i Do ro =2E 10  Lirporo

The right-hand sides o f th e  above equations are e q u a l to  2Gi1 and

2G1 respectively, hence Lemma and the system of equations (II) of the

second section yield

(6.2) iiporo —2D0 r 1

W e are next concerned with the difference ■k Do ii —Di ik ,  which are

nothing but the components of the (v)/w-torsion tensor * P i k , because
of the definition

*P i
 k = ik * N ij — * F j i k

and (2.3). Since */ i *Pii k  =*I i *C i ik i o  =0, we obtain from (1.3")

*Phik = *LLh r
( kDo r i  D i r  k) •

It follows from (2.18) that

LH A D  O r  j = ikGhj — L h k r p  j

which and (2.11) yield

*  
hjk ==.*L ( k G h j — L hkrp Or  j H h j k ) ,

or, we obtain in virtue of (6.2)
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*Phik-=—(*L12)(L D 0 r0  Lik r po r h Lhkr po r  j L h j r D O r k ) •

C onsequently , by  m eans o f  (1.11), (2.13), (2.16), (2.20') a n d  (6 .1) we
obtain

Proposition 4. T he  (v)ho-torsion tensor *P h i l,  o f  a R an d e rs  space
is w ritten in the form

(6.3) *
P h jk  = h h j P k  h j k P h  h k h P j

where we put

(6.4) 2p; =(*L/L 2 )Fi o  + E ; 0 / L  F p i —pli —Gm i ,

and G =(E 0 0 -2L F")1(2L *L ), p=-42G+F p o l*L).
W e now  find  a  cond ition  fo r a  R anders space * F" such  that the

torsion *Ph i k  vanishes, nam ely , * F" i s  a  L andsberg s p ac e . It follows
easily  from  (6.3) th a t  *Ph i ), = 0 is  equ iva len t to  p ;  = O. W e  sh a ll f ir s t
treat the  weaker condition pp =p i bi = 0 .  From  (6.4) we obtain

(6.5) 4*LL3Pfi = [A6 L2 F0 + 2L 2 Ep0 f i E 0 0 ) — L2  b2 E0 o]

+ 2L[(L 2  +$ 2  + L 2 b2 )Fpo + L 2 Epo  — fiE00]

T h e  te rm  in  th e  first (resp. second) brackets o f  th e  right-hand side of
(6.5) i s  a  po lynom ia l o f the  fourth  (resp. th ird ) o rder w ith  respect to
yi• T h e re fo re  pp =0  is equivalent to

(6.6) /3(6L2Fp0 + 2L2 Ep 0  — /3 E0 o) L 2 b2 Eo o = 0  ,

(6.7) (L2 + $ 2  + L2 b2)Fao 2
- I- -E l l o  — flE00 =0.

Assuming /3 0  ( 6 .6 )  shows th a t f l m ust b e  a  f a c to r  o f  E0 0 ,  so that
there  ex ists a  c o v a ria n t vector ci( x )  su c h  th a t  2Ei ;  = bi c;  + bi ci . Then
(6.6) reduces to  L2 (6F103 + ficp )— /Pc °  = 0 , which yields c o =0 (c i =0) and

= 0 .  N ow  (6.6) reduces only  to  Fp o  =0  (F  F r o m  E1 =0  a n d
Fp ;  =0 the  equation (6.7) becom es trivial. It is noted that this condition
is equivalent to G = O.

W e  n o w  re tu rn  to  the  condition  p ;  = 0 , w hich reduces to  F 0 =0
(Fi ;  =0) o n ly .  A s a  consequence we have
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Theorem 5. A  R anders space *F" is a L andsberg space (*Ph i k =0)
i f  an d  o n ly  if  the  cov ariant vector f ie ld  bi i s  p a ra l le l  w i th  respect
to  the R iem annian connection of  the R iem annian space P.

This i s  a  generalization of Theorem 1' o f  th e  paper [ 5 ] ,  in  which
w e referred  to  iso therm al coord inates. Further it is know n [1 0 ] that
the Randers space stated in  Theorem 5  i s  Berwald's affinely-connected
space.

If a Randers space * F "  i s  a Landsberg space (Landsberg - Randers
space), th en  w e  o b ta in  D i i, = 0  fro m  Proposition 1 , s o  th a t  *Fi ik a re
n o th in g  b u t  Christoffel sym bols constructed  from  g i f (x). T h e n  the
h-curvature tensor  * R i

 * F"  is  of the form

* Rh i jk  = R h i ik-E * Ch i
r R o r  ik

w here Rh i i k  are  components of the Riemannian curvature tensor. The
Ricci identities lead us to

bilkli= rb R i r jk = Rfliik  = 0 .

Paying attention to this w e obtain in  virtue of (1.3") and (4.1)

(6.8)
 

* Rhiik="CRhijk-1-(M hRolik — M iR oh ik V 2 L ).

W e shall consider a condition for a Landsberg-Randers space *F"

t o  b e  of  scalar curv ature in  Berwald's sense [ 1 ] .  Since the condition
is * R o1ok =" * L 2 * hik , we obtain from (6.8) and (1.3')

(6.9) R 0 i0 k = " * L 2  h ik  •

Because R ook0 i0 k  i s  a polynomial of the second order w ith respect to  y i
an d  * L  = L -0 , it  is  e a s ily  se e n  th a t  * R  i s  n o t  a constant, provided
$ 0 .  I f  w e  p u t RL 2  =*R*L 2 a n d  differentiate (6 .9 ) b y  y i ,  then we
obtain

R im +  R o IA= L 2 hi/A i R +2RLh ik li -

Subtraction  from  th is th e  equation obtained by interchanging indices
j  and k  yields
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(6.10) 3R  o =  hik T.; — hiiTk,

w h ere  w e  put T j =L 2 i f R+3RLI J . D ifferentiating (6 .10) b y  y h  and
making use of R h i i , + R i k i k  = 0 we obtain R =constant, so that F "  is  of
constant curvature R .  Consequently we have

Theorem 6. A  L andsberg-R anders s p a c e  i s  o f  scalar curv ature
* R  i f  an d  o n ly  i f  F "  i s  of  constant curvature R , w here *R = R L 2I*L 2 .

T he sp ace  is  o f  constant curv ature i f  an d  o n ly  i f  # = 0 and  F "  i s  of
constant curvature.

W e return  to  the consideration o f  a  general Randers space and
find components o f th e  hv-curvature tensor P* -  h i jk •  It is well known
that these are derived from * Phjk as

* Phiik=iii * Piik — i i * Pkik+ * Phjr * Ci rk— * Pijr * Ch rk •

Thus, from (6.3) and (4.2), we have

Proposition 6. T he  h v - c u r v a t u r e  tensor *P h u k  o f  a  R an d e rs  space
*F "  is w ritten in the form

(6.11) *PHA = h h j P i k
-

h i jP h k +  h h k
P

j i -
h ik P  jh

(1 ) (1 ) (2 ) (2 )

— h ik P h
( 3 )

where we put

P u  p p h u l(4*L)— (l ip i + li p,)/L— + m 1p 11(2*L),
( i )

(6.12) (2 )
p1mi/(2*L),

P u = P u — p u =— P u +.13
.“  •

(3 ) (1 ) (1 ) (2 ) (2 )

§ 7 .  The (v)h-torsion tensor and h-curvature tensor of a
Randers space.

We shall consider the (v)h-curvature tensor *Rii k  defined by

*RI Ok*Nii— ai*Ni— *Nrk6,.*Nii+*Nri6r*IVI,
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w hich  is th e  contracted tensor * R i
t h e  h-curvature tensor *R h i i k .

Paying attention to (2.3) and  Pi» , =0 we obtain

(7.1) * R iik = R 0 iik -F D o i i ik — D o ik i i— D o rk irD o i i+ D o rA .D o ik ,

w here R o l i k  i s  th e  contracted tensor o f  th e  curvature tensor R„i i k  o f
F " .  I n  v irtue  o f  (1 .3 " )  th e  c o v a ria n t components R*  h i k  a r e  written
in  the  form

(7.2) *Rhik =TR O hjk+ *LL D.( i — D i  — D r ( I Dht. 0  jlk 0  k Ij 0 k-r— O i j

± i i r D o i  k ) .

I n  order to  d iscuss a  cond ition  fo r * F "  t o  b e  o f  scalar curvature
o r o f constan t curvature in Berwald's sense [1 ]  i t  is sufficient to find
moreover contracted tensor * R h o h •  From  (2.18) w e obtain

L h i( 1 ) 0 1 j lk D Oi kij).Y j  — GhOlk —  G
i/k1 0 9

o r from (6.1)

= 2 Fh0 Pk —  Fhki0 — ( 1hFk010+ lkFh0 GjOhhk •

In  virtue o f  Bianchi identities we obtain the  symmetric form a s  follows:

(7.3) L h i(D O  i jj k DO i k = Fh0 ik ±Fk01k (IhFk010

lkFh010)IL  G 10 hhk

Next it follows from (2.18) that

L ry i(D O r k ir D p i j DO r  A D O i k)yi =  rk 1 '- l6 rG h  J -D o ra rG h  k •

In virtue of (2.22) and (6.1) we have

Do r kYM,Grd= — LG2hhk +Fry0FRO/L —  LF r hPi, — F r o Fro lh lkIL

— 2 G( 1
hFko+IkFho) — ( 1hfl+ IkP )Fro •

From (2.17) we obtain
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Do r o i r Ghk =2Lh hk PAG+4FhoFkolL-2G(1hFko+IkFho)

—2(1hPi+lkPh)Fro •

Therefore we obtain

(7.4) L k i (D o rk 6,.D o  —  D or JO ,D o f
 k ) y = —L(G 2 +2Froi,E)hhk

—Fr o POlh lkIL—LFr h F7,— 3Fh o Fk o lL + (l h F rk + lkFrh)F ro

Consequently substitution from (7.3) and (7.4) in  (7.2) yields

Proposition 6. The components *R i o ;  o f  the  contracted (v )h -to rs ion

tensor o r th e  contracted h-curvature tensor o f  a R an d e rs  space *F"

are  written in the form

(7.5) *R = tR o i o i d-*LLG'h u +L 2 K i i —L(l i K i o + l i K i 0 )+ K o o l i l i ,

where R o io j is the contracted curvature tensor of  F "  and we put

(7.6) G' =G 2  +2Fro i r G — G L ,

(7.7) K ii=L(Fioli+Fioli+LF,iFri+3Fi0FiolL )1*L2

N o w , accord ing  to  th e  definition o f  Berw ald [1], th e  space *F"

is  of  scalar curvature *R  if  th e  equation *R i o ;  = *R*L 2 *h i ;  holds good.
I f  t h e  sca la r * R  i s  constant, th e n  * F "  i s  c a l le d  to  b e  of constant
curv ature *R . I n  v irtue  o f  (1.3') th e  equation  is w ritten  a s  *R i o . ;  =
*R*L 3 h u lL.

Lemma. I f  t h e  R iem annian space F "  is such that there ex ists
a  scalar R  satisfy ing the equation R 0 0 ; =RL 2 h i p  then F "  is of constant
curvature R.

Proof. Differentiating the given equation by yk and y "  and referring
to  the identities satisfied by Rhiik we obtain

3Rk i k ;  = 3R(h kk li u  — Lhki(1k6iR — 1i 6kR)

— h k i (L/AR + 3R /i lk) + hhaLliOiR + 3R11)
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hij(L 2 6h6kR ±2L1h6kR +LIA R ± R11,113

— h ik (L 2
 h i J R +2L1h 6 J R+ Ll i i h R± R lh l i ) .

Thus the identity R„ i k ; + R i h k ; = 0 is written in the form

2Lh h i (i k i i R — /A R ) + hu Rh k  + hhiR ik  h ikR  hi hhkRii =  0,

w h e re  w e  p u t  R i i  =L 2 6Ai R + L(l i i i R + /i i i R)— 2R/ 1li . Contraction by
g h i  gives immediately /k i i R — /A R  = 0 ,  so  th a t 6i R =0. Therefore the
proof is completed.

From Lemma we can show immediately

Theorem 7 .  A ssum e t h a t  th e  c o v arian t  v ector b i satis f ie s  the
equation K i i  = Kg i f . T h e n  the R anders space *Fn is of  scalar curvature
* R  i f  an d  only  i f  th e  R iem annian space F "  is  of  constant curvature
R , and  *R=(*LL 2 R-E*LL 2 G'-EL 3 K)i*L 3 .

I t  is rather complicated to discuss a condition for *F n to  b e  of
scalar curvature or even of constant curvature [ 6 ] .  I f  *Fn is  of con-
stant curvature *R , then (7.5) is written in the form

L 3 4 1 ) + L 2 A9 ) = (B (5 ) LB(4))(L2 g 1 i  _ y i y i )

where and .13(r) are polynomials of the order r  with respect to  y'
defined by

(7 .8 )  AW -=L 2 K 9 ) —y 1K (
;

2
0

) —y i K 2 ) +F r 0Fr0Y1.Y; + (L 2  + 3fi 2 )Roiop

(7.9) AW = L 4  K9 ) — L2 y — L2 y i n )
) + (3L 2 +  $ 3 )R 0 1 0 ,

(7.10) K9) —L2 Fr i Fri  + 3F10 F J o , K 9 ) =F i o u + F J o

(7.11) B(5) =*R(5L 4 fi + 10L2 fl3
 + /3 )— L2  G( 3 )  — fiG( 4 )  ,

(7.12) B(4) ----*R(L4  + 10L2 
$ 2  + 5/34 )— G(4 ) — fiG(3 ) ,

G( 3 ) = — 3E0 0 Ff lo  + 2L 2 F, fiFro — Eo oio/2  + fi(3E,.0 Fro

+ Fr o  0  br +FroPo)
(7.13)

G(4) = (3/4)(E0 0 ) 2 +3L 2 (Fp0 )2  + L 2 (3Er0 Fro + Fro  lo  br

±FroF ro)+ fi(2 1 , 2 FrpFro E 0 010/2) .
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It is observed that 1 0 1  and  G(r)  a r e  also polynomials o f the order r
with respect to y'. Therefore we obtain

(7.14)
{

L 2 A(
i 4) =B ( 4 ) (L 2 g i ;  - yiy;) ,

L 2 A (13)  =B ( 5 ) (L 2 gi i  - YiY;) •

H ence it is obvious that L 2 m u s t b e  a  fac to r o f B(4 )  and Bo).
This reduces to

(7.15) *R/34 — (3/4)(E0 0 ) 2 + fiEoolo/2 =L2D(2)

(7.16) 4*R133 — fl(3E,. 0 Fro  + Frolo b' + Fr o P o ) +E0 0 1 0 /2

+ 3E0 oFijo =__L2D(1)

where D(r) i s  a polynom ial of the order r  with respect to  yi. Then
(7.14) reduces to

B(2)(L2go — y iy ; ),
(7.17)

,4(i3) =B( 3 )(L 2 gu — yiy i ),

where B ( r )  i s  a polynom ial of the order r  with respect to  yi. Sum-
marizing the above we obtain

Theorem 8 . A  R an d e rs  s p ac e  * F "  is  o f  c o n s tan t curvature *R
if  and  only  if  (7.15), (7.16) and (7.17) are  satisfied.

The condition K i i ----Kg i ;  o f  Theorem 7  is im posed on the skew-
symmetric parts of b , 1 . W e shall now  consider the condition imposed
on the symmetric parts of bi l i ; Eu ----Eg u ,  that is , bi is supposed to be
conformally Killing. It then follows from (7.15) easily that

Theorem 9 . A ssum e t h a t  the  cov arian t v ector b i is conf orm ally
K illin g . I f  th e  R an d e rs  sp ac e  * F" is  o f  constant curv ature, the  cur-
vature vanishes.

INSTITUTE OF MATHEMATICS,
YOSHIDA COLLEGE,
KYOTO UNIVERSITY



498 M akoto Matsumoto

References

[ 1 ] Berwald, L . :  'Ober Finslersche und Cartansche Geometrie. IV. Projektiv-
kriimmung allgemeiner affiner Rdume und Finslerscher Rdume skalarer Krilm-
m ung. A nn. M ath . (2 ) 48 (1947), 755-781.

[ 2 ] Brickell, F . :  A  theorem on  homogeneous functions. J .  L ondon M ath. S oc. 42
(1967), 325-329.

[ 3 ] Deicke, A .: 'O b er die Finsler-Rdume mit A 5 =0. A rc h . M ath . 4 (1953), 45-51.
[ 4 ] Eliopoulos, H .  A . :  A  generalized metric space for electro-magnetic theory.

A cad. R oy . B elg. B ull. C l. S ci. (5 ) 51 (1965), 986-995.
[ 5 ] Hashiguchi, M ., S . H 6j6  and M . Matsumoto: On Landsberg spaces o f  two

dimensions w ith  (a, p )-m e tr ic . J. K orean M ath. S oc. 10 (1973), 17-26.
[ 6 ] Ingarden, R. S .:  O n  th e  geometrically absolute representation in  th e  electron

microscope. T ray . S oc. S ci. L ett. W roclaw, B  45 (1957), 60 pp.
[ 7 ] Kawaguchi, H .: O n  F insler spaces with the vanishing second curvature tensor.

T ensor, N . S . 26 (1972), 250-254.
[ 8 1 Matsumoto, M . :  T h e  theory of Finsler connections. Publ. Study Group Geo-

metry 5 (1970), 214 pp. Department o f M ath ., College o f  Liberal Arts and
Sciences, Okayama University.

[ 9 ] Matsumoto, M .: O n  F in s le r  spaces with curvaturre tensors o f  some special
form s. Tensor, N . S . 22 (1971), 201-204.

[10] Matsumoto, M. On C-reducible Finsler spaces. T ensor, N . S . 24 (1972), 29-37.
[11] Matsumoto, M.: V-transformations of Finsler spaces I. Definition, infinitesimal

transformations and isometrics. J .  M ath. K y oto Univ . 12 (1972), 479-512.
[12] Randers, G.: On an asymmetrical metric in the four-space of general relativity.

Phy s. R ev . (2) 59 (1941), 195-199.
[13] Yasuda, H . :  O n  extended L ie  system s, III (F insler spaces). Tensor, N . S .

23 (1972), 115-130.


