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§1. Introduction. The Markov processes of the infinite lattice
spin systems were introduced relating to statistical mechanics and
many problems, such as construction of the processes, invariant
measures and ergodic theorems, have been studied by many authors
([2], [4]1, [6]1). In this paper we will present some results related
to these problems.

Let Z* be v-dimensional lattice space and E be the space of
all spin configurations on Z*, that is, each element & of E is a map
from Z* into {+1, —1}. E is compact in the product topology.
To each finite subset X of Z*, a real number @(X) corresponds

and satisfies the following conditions ;
(1.1) O(X)=0(X+x) for 'z Z*, 'X,
(1.2) 18l1=Z]0 (00 |<+oo.

Such a function is called “a potential function” and we denote by B
the family of all potential functions. Let @B and introduce a
function c(z; &) on Z*XE by

(1.3)  c@;OH=exp[L 0(X)ox(H)]  where 0x(§) =11 £(y).

The Markov process of the infinite spin system is defined on E and

its infinitesimal generator is given in the following form ;
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(1.4 Af(©) =x§v0(x s L) —f(O)]

where §,€E is defined by &.(y)=( &(y) if y>x
—&(@@) if y=x.

Further, let us introduce the following condition ;

(1.5) 2 #X)|0(X)|< +oo where #(X) stands for the cardinal
X0
number of X.

We denote by B, the family of all potential functions which satisfy
(1.5). If =B, a Markov process on E exists corresponding to
@, ([2], [6]). In the present paper we will consider only potentials
of B,, but we don’t assume that potentials are of finite range. In
§2 we will discuss some properties of this process. In particular it
is shown that every extremal Gibbsian measure (w. r. t. @) is a hmiting
distribution of the Markov process starting from each configuration of a
dense set of E. In §3 we will study the free energy and prove
under our assumption the remarkable results which were obtained by Holley
[4], in the case of finite range potentials. By these results we can
conclude that a Z*-invariant equilibrium state by the several defini-
tions in statistical mechanics is equivalent to a Z*-invariant station-
ary probability measure of the Markov process of the infinite

lattice spin system.

§2. The Markov processes of the infinite lattice spin system

Let us define some o-fields on E. For each subset V of Z*,
denote by &, the o-field generated by {£(z)}, €V and define
F and Z#. as follows;

(2. 1) .?zyzv Fo=1MN ?v:.

vz

#V)C+oo
For each subset V let E, be the spin configuration space on V.
Denote by & the family of all probability measures on (E, &) and
each element p of £ is called “state”. For each p and each finite

subset V of Z*, p, stands for the cylindrical measure on V, that is,
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o, () =p(S(V;7n)) for each nE,, where
S(WVip=§cE ; £E&x)=n() for every z&V}.

Every probability measure on E, can be regarded as a proba-
bility measure on (E, &%) by specifying a fixed configuration of
E,.;, outside of V. If we equip with the topology of the weak
convergence, then & is compact. Let C(E) be the Banach space
of all continuous functions on E with the supremum norm || « ||, and
denote by C,(E) the family of &#,-measurable functions of C(E).

Next we will define the Gibbsian measures. Let =B be fixed
and define f7 (p: &), gv.e(y) for each finite subset VC Z* and
n€Ey, £éEE by
(2.2) fip:&)=exp [ @(X)ax(y:&lv)]

X(Vaé
where &\, E, is the restriction of E€E on V and
n e &ly(x)=nk) if z€V, and &(z) if z€ V",

@2.3) g =fi(n: /5 FG:0.

Then gy..(+) is a probability measure on E, and gy,.(3) is Fy.-
measurable. gy () is called the Gibbsian measure on V with the
boundary condition & Since {gy,.(y)} satisfies a consistency condition,
the following definition is possible.

oe & is called a Lmiting Gibbsian measure w.r.t. @ if it satisfies
that for every finite subset VC Z* and every n=E,

2.4 pSV:n|Fv.) =gv.e(n) for almost all & of S(V: 7).

Denoting by %,=% the collection of all limiting Gibbsian measures,
% is a nonempty compact convex set and denote by #,, all the
extremal elements of #. Generally ¢,, is not finite. In fact
Dobrushin proved that ¢,., was infinite for a 3-dimensional Ising
potential. ([3]).

Lemma 2. 1. p of & isa limiting Gibbsian measure ifand only i f
(2.4) holds only for any one point set V={z}, x= Z".
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Now, we describe the Markov process generated by (l.4).
For each finite set VC Z*, define the operator AY on C(E) by

2.5 AfO =% c@; HIE) —fO].

Then A" generates a strongly continuous conservative Feller semi-
group {T)}, t=0 on C(E) since A" is a bounded operator on
C(E) because of

(2.6) e "li<Zc(x;€) =Ze'" for any x€ Z*, and any EEE.

The following theorem was proved by Dobrushin [2] and Liggett
[6].

Theorem 2.2. (i) For any O=B,, there exists a strongly continu-
ous conservative Feller semi-group {T,}, t=0 on C(E) which satisfies
(2.7)  for any increasing sequence of finite subsets {V.}, n=1 such

that extends to Z*
lim sup ||TV"f—T.f||=0 Jor Yfe C(E), Yt,>O0.

Vo 2V 051510

i) Let 9(4)=(f€CE); T supl f(€) —f(©)|<+o0) and define
Af by (1.4) for each f€ 2 (A). If we denote by (A, 2 (A)) the
infinitesimal generator of {T.}, t=0, then we have

(2.8) 2A)C2(A), Algw=A and moreover (a—A)[DA)] is
dense in C(E) for every a>0.

The Markov process induced by {Ti}, :=0 in Theorem 2.2 is
called the Markov process of the infinite lattice spin system corre-

sponding to @.

Theorem 2.3. For each finite set 'V, let us be given a system of
positive bounded continuous functions on E 5 {cy(x 5 §)}, and define A"
by Af(©) =3 @3 ) L(E) —f(©)]. Suppose that

2.9) lev (@5 »)|| is bounded in x, V
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and for each xE€ Z",li/m | ev(@s o) —cl(x; «)||=0.
v/zv

Then if we denote by {T!}, t=0 the strongly continuous conservative
Feller semi-group generated by A', we have

(2.10) 1i/rp sup || TV f—T.f||=0 Jor "fe C(E), "t,>0.

V/zv 0stst,

Let &,=¢ be the family of all stationary probability measures for
{T\}, t=0. Then, & is also a non-empty compact convex set.
For each pe %, {T.}, t=0 can be regarded as a strongly continuous
contraction semi-group of operators on L’(E, p).

In particular p of & is reversible if

2.11) (T.f 8 L2E, ) — s Tlg)zzuz.p) for all fand g of C(E).

We will denote by &, the family of all reversible stationary prob-
ability measures for {7T.}, :1=0. The following theorem was proved
by Dobrushin for finite range potentials ; however, we will give

the proof under our assumtion.

Theorem 2.4. %:=9.

(Proof) For every pof &, set cv(z; &) =[ov(§.1v)/0r (€l0) 1.
Then we can apply Theorem 2. 3 noting the definition of limiting
Gibbsian measures, and py -is a reversible stationary probability
measure for {7/} corresponding to {c,(x; €)}. Since p, converges

to p, Theorem 2. 3 implies p& Fs.
Conversely assume pE % Set ¢, (x; &) =pv (fly)_lg c;&p
v

SV

(dg) for each finite set VC Z’, then ¢, (x; &) =c¢v(z ; €|.v). Noting
2.11),

(2- 12) (Af; g) L2(E, ) — (f’ Ag) L2(E, #) for vf’ vge C" (E)'

By arranging (2.12), we can show

(2.13) o (@ p)p(m) =cv(x; 7.)pov (1) for 'n€E,, 'z V.
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Further, we can easily show ¢, (x5 §) converges'to c(z;§) as V
tends to Z*. If we divide the both hand sides of (2.13) by pv (%)
+pv(3.) and extend V to Z*, we obtain

2.14) c@@; Op[S@ : NIFopl=clx; E)plS@: —)|Fay.]
where S(x :j) ={é€E ; &) =j}, j=+1 or. —1.. .
Therefore p€ @ by Lemma 2. 1, since (2. 14) implies

(2.15) p[S@: NIFw d=cla; &) /[clxs &) +elxs £)]=gwm..({1})-

Next, we investigate {7}}-invariant functions in L*(E, p)-sense for
each p= @. Here we say f(¢) a {T.}-invariant function in L*(E, p)-
sense if f of L*(E, p) satisfies

(2.16) T.f=fin L*(E, p) for every t=0.

Theorem 2.5, Let p€ % and fEL*(E, p). Then f isa {T.)}-
invariant function in L*(E, p)-sense if and only if fis F .-measurable.
In order to prove this theorem we prepare two lemmas.

Let us introduce a family of operators {U.,}, xz& Z* which are
defined as follows ;

2.17) U.f(&) =f(,.) for each measurable function f and for pE P,

 Uped s defined by (fOU0w@0) ={f)0w@e) for cvery
fof C(E).

Lemma 2.6. Let p€ 9. Then we have
(2.18) SBC(x 5 E)p(d5)=856(x s E0U.p(d€) for ‘BEF, 'z Z".

In particular p and U.p are absolutely continuous mutually for each
LISYAR '

(Proof) Let V be any finite subset of Z*, and f, g C,(E).
Then since (Af, g) 2. 0= (s Ag) 25,0, holds we have

@19 3 {e@sor@r@ean =g fcw: oee)r@o@e
=3 \e@s e) s @ U@,
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Hence (2.19) implies that for every finite subset V of Z*

(2. 20) Sac(x;E)p(d$)=gsc(x;5,)U,p(d$) for all BE F,

and we can attain (2,18). The latter half is trivial from (2, 6).
Lemma 2. 6 guarantees that U,f is well-defined as an element of
L*(E, p) for cach f of L*(E, p). Denote by @ (A : I*(E, p)) the
domain of the generator of {Ti}, t=0 operating on L*(E, p).

Lemma 2.7. Forall fand g of 2 (A :L*(E, p)) we have the
Jollowing representation ;
2.2)  — (45 820
= I, \e@: © UF®) —£0) Vg ® —g(©) p(@0).

e2zv

(Proof) 1°. Note 2(A)c 2(A)Cc 2(A:L*(E, p)) by Theorem
2. 2, and for all f and g of 2 (A)

2.2 —(@Af, D =T, |63 O () —f©)g(©p@d)
=5, {e@s &) © - €2 (€ Up@e)
=2, {e@: O (O ~£(€))g(e) (@),
In the last equality we used Lemma 2. 6. Averaging (2.22) we
get ‘
2.23) —(4f ) s | -
=5 Z.Je@i 90— @@ —g©)o@e.

F1344

2°. Next, let us introduce two Hilbert spaces.

Let H=(feL'(E, o) 3 T, | (U.f®) =f(®)*0@e) < +o0} and

F1=t44
define a bilinear functional &% on H®™.

@20 U o=y 3z fc@i o U@ -0 Us®

—8(E))pds) + (s 8) 12y  Jor “f, 'gEH®,
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Then it is easy to show that {H®, &%} is a Hilbert space.
Now, we will define another Hilbert space. Since —A is a self-
adjoint positive definite operator on L’(E, p) it has a spectral

representation.
(2.25) —A:Swl dE; where {E;}, 2=0 is a resolution of the identity.
0

So, we define a self-abjoint operator y—A4 by \/———_A=S“ﬁ dE, and
0

set
(2.26) H®=9(—A:LE, p))
&P s & = (‘/-_—;if’ \/jg) e e T fs & L2(E, )

for each f, g of H®.
Then we have

(2.27) éam(f) g):((I—A)f, g)Lz(B.P)
Jor VfE.@([i :L*(E, p)), 'g=H®.

3°. If we can show that {H®, &%} and {H®, &%} coincide,
the proof of Lemma 2. 7 is completed. Hence it suffices to show
that 2 (A) is dense in both Hibert spaces and & (f; g) = € (f,2)
for all f and g of 2 (4).

Suppose that & (f, g) =0 for some f€ H® and all g of 2(A).
Then,

@28 5 % fes & UAO) —£0) Ueg® —2©)p@d)

€2y

+ (s 8) 26,0y =0.
This relation implies
(2.29) (i U-A)®) 26,y =0  forall g of 2(A).

Since (I—A)[2(A)] is dense in C(E), it is so in L*(E, p).
Therefore f=0 and 2 (A4) is dense in H®.
If fis an element of the orthogonal complement of 2 (4) in

(H?, ¢®}, ¢°(f, &) =((I-A)g Nien=0 forall g of 2(4).
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Since (I—A)[2(A)]1=U—A)[D(A)] is dense in L*(E, p), f=0
and 2 (A) is dense in {H®, £®}. Finally noting (2.23), we can
conclude {H®, #®}={H®, &<}.

Proof of Theorem 2.5. If f is a [T,}-invariant function in
L*(E, p) sense, f€ 2 (A: L*(E, p)) and Af=0. Hence Lemma 2.7
implies that for almost all & (w.r. t. p) f(&) =U.f(&) for all z= Z".
From this fact it is immediate that f(&) is &.-measurable. Con-
versely, if fis Z.-measurable, then fe {H®, £} and & (f, g)
= (f; &) 12, for all ge H®.

Noting £ (f, ) = €2, g), (V—Af, V—Af) ,20s.0o=0 and we
can easily see f€ 2 (A : L*(E, p)) and Af=0. Therefore fis {T,}-

invariant in L*(E, p)-sense.

The following fact is well-konwn ([7], [8]).
Lemma 2.8. Let p 9. p belongs to %,, if and only if

Fw=1{¢, E} (mod. p).
Combining Theorem 2. 5 and Lemma 2. 8, we have

Corollary 2.9. Let p€ 4. Every {T,}-invariant function in
L*(E, p) sense is a constant function if and only if pE %.,.

Theorem 2.10. For every pE ¥,, there exists a dense subset E,
of E such that

2.30) O pE) =1,
@) 3lim 7.7 = f®p@d) for all f£CE) if ¢<E,.

(Proof) {T.}, t=0 is a symmetric conservative semi-group on
L*(E, p) because of pe ¥ =%, Hence it is known that for every
fof L*(E, p) T.f(§) converges to a ({T.}-invariant function in
L*(E, p)-sense f*(§) as t—>oco almost everywhere & (w.r. t.vp), c. f.
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[10]. Since f*(&) is constant because of pe ¥,, and Corollary
2. 9, we have f*(&)= f*:Sf(e‘)p(dé). Using the separability of
C(E) and the countability argument, there exists a subset E, of E
such that p(E,) =1 and Zlim T,f(&):gf(é-)p(dg) for all feC(E)
and ¢ E,. Moreover pe {é_»ios everywhere dense, so, E, is dense
in E.

Remark 2.11. If we denote by &.. the family of all the extremal
element of &, Theorem 2. 10 implies 4,.C &...

§3. Free energ‘y—Geheralization of Holley’s réSults |

" In the present section we will prove under our assumption the
results concerning the free energy, which were obtained by Holley
[6] for finite range potentials. Our method of the proof is essen-
tially similar to Holley’s one. However we need some technical
devices and it becomes rather complicated.

Throughout this section a potential function @ of B, is fixed.
Let {V,}, {V.}] be two sequences of the cubes of Z*, defined by

3.1 V,=[-2"+1, 2217, V,=[-2"+n+]1, 2"—n—1]"

The free energy per site of p of & is defined by

n—o0

(3.2 F(o)=lim|V.["[s(pr) = 2, o0, (DU ()]

_ _Ei |V~|_l,§s pv, (1) log exp [p:' 8‘7‘3 (m1]

where s(ov) = —ég Ov (7))‘ log ov (),
Ut =Us () =5 @(X)ox(n)-

For each p of &, p, & is defined as follows ;

(3.3) Sf(&)p, de) =ST, F(&)p@e)  for every f of C(E).
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Theorem 3.1. ; For any p of 2, F(p,) is non-decreasing in t=0.
The proof will be carried out in several lemmas.

‘ Lemma 3. 2.

d | Ly
3.4 %(éﬂ(p’)“ (1) log exp (I?t)lnff?()ﬂ)] )

1€Ey, 1€V, |: Ss(v,.:ﬂ,'

@3 9)p(dd) ‘
¥
— SS(V”:ﬂ)c(x; &) p: (d&‘)] exp(ll:)‘lvi](:z,])] .

If o)y, (n) =0 %(p,)“(y»o‘ for some p&Ey, (3.4) holds in the
sense of —oo=—o0, and otherwise the both hand sides are finite
and (3. 4) holds. R

Lemma 3.3. Let p€ &, n=2.

3.5 3 z;\,[g@ ; £)0(de)

€Ly

| S CDY (d")]bg exp - o Ol

=2e" e+ 2]|9]) () (27— 1) =0 (|V.]).

The proof is similar to Lemma 2. 5 in Holley [4].

Let us introduce some functions :

3.6) oz n) =exp [%}v O(X)ox(p)] for z€V, p€E,,

XDx
3.7 F@ =(u—ulgu—-1  for u>0,

—1 for u=1,
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3.8) F(o,V, 7 9n)= F(pv(m)

IO ov (s v,)z)pv(v) if oy () >0,

— 00 if Ov (v) =O, Ov (ﬂs)>03
0 if Ov (77) =0, Ov (0:) =0’
for each finite set V, n€E,, pE £.

Lemma 3.4. Let p= #, n=2.

6.9 5 3,[0,.c@00@-{

yEE,

)c(x H E)p(dé)]x

i

v, (7)
o P = U ()]

=2 2, Flo V., n 7)8,(=; .) /ev, (@ 5 70)* +o(IV|),

')EEV e?,

where ¢ (z; 1) = I o0 () Sm)c (x; &) p(dE) if py () >0,

a@sn) if er(n) =0,

(Proof) First, assume py,(y) >0 for every e E,,. By (8.8)
we can easily derive the following relation.

(3.10) ” Z F(P’ /0 7.) &, (T3 W:)/Cvn(x s 01)2

1€E, €V,

=vZe:EV §V,[Ss(v,:q,)c (3 &pds) —SS(VM)C (x 3 f)P(df)] X

ev. (1) .
8 exp [ U, ()]

+2 Z ov, (p) &, (x5 9.) — ZE IRC EACEEON

1€Ey, €V, 7€ eV, Cy (.’E 77)2
=I1+Iz+13.
Ln=% (@i —on@in)e@s
1€Ey  s€Vp)sWpn0)

+Z Z pv, (D) cv, (5 7)°pv, () X

2€E, i€V,

st ) (er,(@ s ) —clx;8))pdd).
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In the last relation we used ¢v,(z; %.) =cv,(x; ) 7"
Therefore we can conclude I,+1,=0(|V,]) by means of the

following estimates,

BAD fen (s n) —c@; O] <e' M exp T (00| ~1] if &lr,=7,

X&€By—1
where B.={zeZ"; |z|=n},
(3.12) e 1ol <, (x5 9) Zelol,

If pv,(9) =0, and py,(3,)>0 for some ycE,, and some z&V,
(3.9) holds in the sense of —co=—oco. And if py,() =0 pv, (%)
=0 for some y€E,, and all z&V,, such 5 can be omitted in ]

=
of (3.9).
Now, the proof of Theorem 3.1 is obvious from the above lemmas,
noting F(p, V., 7, 7.) <0.
Next, we will detail Z*-invariant states by means of the free
energy. For each é€E and aeZ’, define ¢“°€E by &9(@)=
§(x+a). pP is called a Z’-invariant state if

(3.13) S f(é)p(d$)=g FEYp(de)  for allac Z* and fe C(E).

Denote by .# the family of all Z’-invariant states.

It is easy to see that if p .#, then p,=T,pc # for all :=0.
Functionals {H,} on .# are defined by the first term of the right
hand side of (8.9) in Lemma 3,4, that is,

3.149) H,(p)= f; ,§V.F (0 Vs 15 p.) 80, (x5 9:) ey, (x5 )2

We want to discuss the limit of |V,|'H,(p). So, let us introduce
another functionals {4,} on 4 which approximate {H,}.

S(Vigy

if ov() >0,
l —oo  if pv(n) =0, pv(1.) >0,
0 if ov(m) =0, pv(n.) =0,
for each finite subset VC Z* and y€E,.

(3.15) flo, Vs m, n.) = fpo(pv(,?)—lg c(@38)%@E)pe ()
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B.16) () =Z, I, f( Ve 5 1) Car @3 )

where B,(x)=B,+x={yeZ"; |y—x|=n}.

Lemma 3.5. Let pes.

3.17) Slim | V.|, (0) = — co.

If we denote by H(p) this limit, H(p) is upper semi-continuous.
(Proof) First, we will show the following inequality.

(3.18) ha(0) 2h.-1(p) exp [ = Z 12(X)]].

XCBy-1,X&By—2

Leta=(—-2""4+1, —2"'+1, ..., =2+ 1)e Z",

o= (01, 3+, 7,), D,=V,..—a -« g,

where 6,=4+1, —1 anda s o=(,(—=2"""+1),+, 0,(—2"""+1).
Particularly we write ¢=(1, I, ..., 1) and D=D,.

Because of f(p, V., », 7.) =0, we have,

(3.19) h@)gg 2 2 flos Vas 9y m) a0 (@5 1),

sE€EDs nEE,

Hence it suffices to show

(B.20) T % o Voo 1 7)Corin (@ 0)

<hu-s(p) exp [~ 1001,

XCBg—1
X&By-2

Set W,=V,.,—a=[0, 2"—2}" and ¢=9|vyw., {=7|w, for p€E,,.
Obviously we have for zr&D

(B.21)  Coryio @3 90) =60, 2100 @3 0) Zasin @3 D exp[ = 3 10011,

XCBy—1
XEBy—2

Copyenr (@ 3 ) =Coy_pisar @ +a 3 £,

cxs EI) =c(z+a; ).
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Making use of the concavity of F,(u), Z’-invariance of p and
(8.21), we get

(3.22) X flp, Vi g8, ¢2)

$EEy /Wy

SEon @7 @3 ©%ED)pn O
—-f(ﬂ, n-1s C(a)’ C:(ri)a .

3.23) X X flp, Vay 0:)Cap_yinr (X 5 1)

2D ”EEV,,

<Z 2 ou flo, Vi 98 L) s, po (x5 0)

E D E
w, *€P ¢€Ey 1w,

xexp[— T [0(0]]
XCBy—1
XEBy~2

< Z Z f(P, n—=1) C(a)’ C:‘Qa)cbn-z(x) (x ; C)

E €D
W¥a

xexp [~ 1001

XCBy—1,X&By—2

Noting D+a=V,,, and E,,_,=(Ey), the right hand side of
(3.23) is equal to A,_,(p)exp [—Z}0 [2(X)]|].
X5

XCBy—1,X&Bp-2

I weset G = [ (35700, 600 @7 =D~ (expl g, 1001]

XCBp-1
is non-increasing in » and we define H(p) by

(3.24) lim G() 2" =D "R (o) exp [T [P(X)|]=e"*" « H(p).

H(p) is a monotone non-increasing limit of upper semi-continuous
functions because {h,(p)} are upper semi-continuous in p.
Therefore H(p) =lim |V,|™" « h,(p) is upper semi-continuous.

Lemma 3. 6.

(3.25) =lim [V,[™ « H,(0) =H(p) (2 —o0).
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(Proof) If py, () =0 py,(1.) >0 for some z& V,, H, (p) =h. (o)
= —oo for Ym=n. Therefore lim |V,|™' « H,(p) =lim |V,|™ « A,(p) =

—oo. Since 3, such as p,,(9) =0 py,(.) =0 for YzeV,, does not

contribute to >} of (3.14), we may assume p,, () >0 for all

1€y,

peE,,. Then, H,(p) and A,(p) are finite for each =.

(3.26) H.(o)—h.(0)=% X (F(p, Vay 0 9)&, (x5 p)cv, (x5 9)°

ﬂEEV” eV,

&, (@ 5 9:) v, ()
)C(x 5 6)0(d8)

—fos Vs 1, 72)
SWars

&, (& 5 1) pv, (1)
{ . “)c(x HINICH)

+2 2 flo, Vo 7.)

1€E, s&V,
(Vy:

o @ p)} =I+]II

3.27) |1 I%Z 2 1ov, () log (ov, () ™ v, () ev, (x5 7) ") v, (2 5 1)

—p @ 7 g o | s @)

SVpin

+3 T @i )en s )’

_ . &, 1) 00, (7.)

ov, (1)
S o %)

=2 X on(0)en (s 77,)( log pv,(v.)"gswm)%%g—)

+ §J PHACLACE 7)cv, (X3 9)°X

(=[oe ., ST

el < 23 (X)) « |V +e™?" (exp (2% 12CO]]

X&By—1 X&Bp-1

—1) o [Vu|=0(V.]).
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Next in order to estimate II we use the following.

(3.28) exp[-% (001 "Ei) - <expy j00ON,

4 x5
XQB,,_. By— l(x)( H s) X&E,, .

exp[-2 3 001 |~ c@3eE)

pra () Jecvans ea, o @5 70)"

<exp[23 19(X)]1.

X&Bpn—1

Hence we can estimate II as follows,

(3.29) II<Z 25 (o, Vay 0y 9:)€pms0 (@ 577) (exp [— 32 [2(X)|]1-D

xca,,..

=h.(p) (exp [-3 3, [2(X)[1-1D)

X&By—1
and
ITzh,(p) (exp [3 X [2(X)[1-1).
§§:n'—l
Thus we get

(3.30) h.(p)(exp [3 Z 12O [1=D +o(IV.]) =H, (p) = (p)

XE&Bp—1

=h.(p) (exp [ 3 35 [@(X)[1=1) +o(IV.D.

X&By—1

Therefore (3.25) holds from (3.30) and Lemma 3.5, that is, if
H(p) > —o0, lim |V,|™" « H,(p) =H(p), and if H(p) = —oo the limit

is, also, —oco.

By the above lemmas we can show easily the following lemma.
Lemma 3.7. For each p.€ 5

(3.31) F(p) —F(p = | —Ho)ds.

Lemma 3.8. Let pc#. If H(p) =0, then p= %.
(Proof) Noting the monotone convergence of (3,24) .in the
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proof of Lemma 3.5 and A,(p) <0, we have
(3.32) h.(p) =0 for all n=2.

Further it is impossible that p,,(y) =0 and py,(9.) >0 for some
zeV,, for otherwise k,(p) = —co. Hence py,() =0 implies py, (7.)
=0 for all z&V,.

Next we show py, () >0 for all yeE,, and n=2. Suppose,
v, (7) =0 for some y€E,, and n. If we choose m such as V, DV,
then we have p,,(¢7) =0 for any ¢&Ep,y, and py,(p7.) =0 for
any zeV,cV,. This fact implies py,({) =0 for all {€E,,. But
it is absurd. Noting (3. 32), we get

(3.33) py_(ﬂ)"g (o3 &)@ =1 for all 7y, and n.

S(Vyip

It is not difficult to show

3,34 lim 2 CElv) s ey
( ) "1_21 pv"(s‘lv”) C(x ’ 5;) 3

(3.85) p(S@: )| F o) =lim p(S@: )| Fv,pe)
=lim oy, (§lv,) /Lov, (§lv,) +pv, (€:lv) ]
=c@; &)/ [elx; §)°+1]
=g (7)) fora. e EES@:)).

Therefore the proof of Lemma 3.8 is completed by Lemma 2. I.
Combining the above lemmas, we have the following.
Theorem 3.9. Let p.€ % and p.& 9. Then there exists a weakly

open set G,, containing p, and €, 6 >0 such that if v &G, and 0<s=¢,
then

(8. 36) F(v,) —F(v,) =0s.

Corollary 3.10. (i) Let po€ F and suppose that t,—>co and
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that p,, converges to p. Then pE 9.

(ii)
(iif)

FNSIL=%NSL.
Let pc . p€ % if and only if

(3.37) F(p) = su}) F(v).
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