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§1. Introduction.

In this article, we study some topological subgroups of the group
of diffeomorphisms of a manifold.

Our main result is that the topological group of foliation preserv-
ing diffeomorphisms of S* with respect to the Reeb foliation has the
homotopy type of a torus S' xS

~ Authors are grateful to Professor N.Shimada and Professor

M. Adachi for giving them nice advices.

§2. Spaces of foliation preserving diffeomorphisms and leaf
preserving diffeomorphisms.

Let M be a smooth manifold of dimension n with a smooth
foliation of codimension gq.

Definition. A diffeomorphism f: M—M is called a foliation
preserving diffeomorphism (resp. a leaf preserving diffeomorphism) if
for each point £ of M, the leaf through x is mapped into the leaf
through f(z) (resp. z), that is, f(L,) =L, (resp. f(L.) =L,), where
L, is the leaf that contains z. Equivalently, if there is a homeomor-
phism f (resp. id) of the leaf space M/#, such that the diagram

commutes, where vertical arrows are canonical projections (see Reeb

[7D.
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M/ F ! M/F M/F —i_>M/g¢7

Let FDiff (M, &) (resp. LDiff (M, %)) denote the space of
all foliation (resp. leaf) preserving diffeomorphisms of M with respect
to &F.

It is clear that LDiff (M, #)CFDiff (M, &) c Diff (M).
Topologies of the spaces are induced by a relevant C~-topology of
Diff (M). Clearly there is an exact sequence of topological groups:

0——LDiff (M, #)—FDiff (M, #)——sHomeo(M/%),

where the second arrow is the inclusion map and the map = is
defined as in the definition of the foliation preserving diffeomor-

phisms, 7 : f——f.

Remark. In many important cases as foliations constructed by
geometric manners, the homotopy types of the spaces of foliation
preserving diffeomorphisms are not trivial. For example, =, (FDiff
(S%, #.)) has non trivial element, where %, is the codimension

1 foliation constructed by Lawson [2].

§3. Reeb foliation %.;.

Let a be a C”-function a : [0, 1)——R, such that « (0) =0,
o' (t) >0 for all te (0, 1), a*’(0) =0, llmll a®(t) =oco for all k.

a defines a homeomorphism of [0, 1) —(;nto [0, ), and «a restricted
to (0, 1) is a diffeomorphism (0, 1) = (0, o). Let f=a™": [0, o)
—[0, 1).

Three dimensional sphere can be decomposed into two solid
tori, S*=D*xS'U, S'xD? where 2 is a diffeomorphism 2 : dD*x S*
—S8'xoD* defined by h(z, y) =(z,y). Let X=D*xS'CS® be one of
the components. X can be considered as the quotient space IxS'
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xS'/~, where S'=R/Z, I=[0, 1], the equivalence relation is
defined by (0, z, y) ~ (0, 2/, y). Express a point p of X as p=
(t z, 9), (4 x)EeD’, ye S, t is the radius and z is the polar angle
mod 1.

Define a foliation in X as follows: for two points p,= (t, i,
Y1)s pe=(to 2o ) of X, L,,=L,, if and only if t,=t,=1 or a(t)
—yi=a(t;) —y:(mod 1). Introduce the same foliation in the other
component, then these together define a foliation in S° This
foliation is called the Reeb foliation. Let us denote (S° %#,) or
simply % .

Let g: intX——S' be a map defined by u(4 z, y) =a(t) —y
(mod 1). Then g induces a diffeomorphism g: intX/ (Fg|inx) —
S, so that the following diagram commutes,

intX —L—>Sl

4

intX/ (?x |1mx) .

§4. Lemmas.

Lemma 1. There is a splitting exact sequence :

0——LDiff (S, Fx)—FDiffy (S, Fo) 8" x S'—0),
where FDiff,(S°, F:) is the identity component of FDiff(S%, Z.),
LDiff (S°, F:) is the space of leaf preserving diffeomorphisms in FDiff
(8% Fr), S'xS' is the subgroup of standard rotations SO (2) x SO (2)
in Homeo (S°/F:), and the global section<is the natural lifting of
standard rotations.

Proof. It is clear that the image of = contains the standard
rotations S' X S'. Let us prove that the image of « is contained in
§'xS'.  Suppose for some f in FDiff,(F,), nf €S0 (2) x SO (2).
We shall deduce a contradiction from this supposition.

We may assume that the foliation preserving diffeomorphism

restricted to the component X induces a homeomorphism f: S'—
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S' by

mtX———»intX
A

St ————> §!

such that £ &S50(2).

We may assume f(0) =0 and f#id, eventually by composing
some standard rotation.

Let us regard the unit interval I=[0, 1] as embedded in X
by identifying ISt<—— (¢ 0, 0,)X. Then f(I) and 0X are trans-
versal at f(1), le IC X, because I and 06X are transversal at 1=
(1, 0, 0), and fis a diffeomorphism.

We can assume f(1) =1, eventually by composing a leaf pre-
serving diffeomorphism induced by a vector field on X (extended
near 0X). Moreover, eventually by composing a leaf preserving
diffeomorphism which is the identity outside a sufficiently small
neighbourhood of 1, induced by a smooth vector field tangent to
the leaves, we assume that for some small ¢ >0, f maps (1 —¢, 1]
diffeomorphically onto (1—4, 1]. Let ¢=to f|I : [—>I, where ¢
is the radius function ¢t: X——1I. This continuous map restricted
to some neighbourhood of 1 is a diffeomorphism.

Let > =1{0, (1), B(2),...., Bk),....}C1, and 3 .= {B(n), B
(n+D,..... }c 3. Note that LobnI=73,. Then ¢ induces a map
G=0¢|Dn: Dla— 2, for sufficiently large numbers n,, 7. @ can
be expressed as @(B(k)) =B(k+p) for some integer p.

Again by composing a leaf preserving diffeomorphism which
is of the form (¢, x,y)—— ((¢), z, y) in some small tubular neigh-
bourhood of dX and is the identity in the complement of some
tubular neighbourhood of 06X, induced by a vector field of 90X
rotating dX —p times, mapping a neighbourhood of 1 in I into a
neighbourhood of 1in I, we may assume $=id),,. Now recall the

following diagram (g is not defined on 9X),
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I X St
¢ f f
I—f x—*% g
Consider a universal covering:
: ~ ,
intD’x R'—> R
P l

intX=intD*xR'/Z——>S'=R"'/ Z,
where horizontal arrows are canonical profections R'——S'=R/Z,
and i is defined by i(t, z, 3) =a () =3, (¢, z)D’ y=R' ¢t is the
radius. Let f be the lifting of f:

R!———>R!

Sl'__._f___..>.Sll.
Getting together the diagrams above, and defining the maps prop-
erly,

I_ {l}é‘—lntDz XRI._L_> Rl

N

I— ({1} —->1ntD2><R’

mtX

l
1
mtX /
it is easy to check that ¢(t) =8 o fo 87'(¢) for te (1 —¢, 1), and ¢(1)
=1. Consider the derived function ¢'() :_iligti (t). leI is the

cluster point of Y and ¢ is the identity on },, hence ¢’(1) must
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be equal to 1.
On the other hand, in (1—¢, 1), ¢'(t) =(B o fo B () =B (f
) o /&) /B (v), where y=87'(¢). We shall now deduce that ¢'(z)

is not continuous at 1. This contradiction will complete our proof
of lemma 1.

Note that f(0)=0. Let f,=F£|[0, 1] : [0, 1]—[O, 1].
Then f;(0)=0, f;(1)=1, and f; is a diffeomorphism of the unit
interval. From the assumption, f,#id, hence there is y,& I that
satisfies following 1) or 2) :

D y=fi(y) and fi(y) <1,

2) »=fi(y) and fi(y) >1.
By the way, lim a”(¢#) = 4+ oo, hence in some neighbourhood of 1
in I, a"(t) >(;:’l Differentiating the formula « o B=id twice, we get
a’(B) » (B)*+a’(B) » B"=0. Therefore there is a sufficiently large
number N, such that for any y=N,, g’ (y) <0.
Let y,=y,+n. When y, satisfies the condition 1), then for any
sufficiently large number n, ¢’ (8(3.)) =1 (3.) * B (F(3.))/F (3.
<F(3) <1 (for, f'(y)<0, hence ' (F(y.)) /8 (»)<1).
Hence ¢’(B(y.)) cannot converge to 1. But S(y,) converge to I.
These lead to a contradiction. Analogously, when y, satisfies the
condition 2), ¢’ (B(y.)) =F (30) >1. Q.E.D.

Let LDiff,(&,) denote the space of leaf preserving diffeomor-
phisms of S* with respect to %, such that in some tubular neigh-
bourhood N of T=0X, the following diagram commutes:

SIN-

N————> 85— {t=0}

lflTyl

T ———— 1,

where {¢=0} is the axes of two solid tori diffeomorphic to two copies
of the circle S, and the vertical arrows are projections which are

expressed in each component as (¢, z, y)—>(z, y).
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Lemma 2. The inclusion map
LDiff, (¥ :)——LDiff ($*, %)

is a weak homotopy equivalence.

Proof Let K be any compact set and let ¥ : K—— LDiff (S’
ZF:) be a continuous map. We will make a homotopy ¥. such
that ¥,=¥, ¥, (k) c LDiff,(%;). Let x:[0, 1]]—R be a smooth
function such that y(z) =0 for z=[1, l—%ru], x(@x)=1 for ze[1—

%v, 1], and ¥’ (x) >0 forze (1 —%v, 1—_;’—»), where v is a pro-

perly chosen positive number.
Let 4, : [0, 1]—>[0, 1] be a family of smooth maps defined by
() =t+z 3@ » (1—t) for 7, t [0, 1].
Let f €Im (¥) c LDiff(S°, &;). Define a homotopy f.(¢ 2,
M =BG, 2, 9) = f, 2, ) +a(filt, 2, 3))), L) 2, 9), f
(A4.(t), z, y)), where f,, f., f, are components of f, i.e.,
fts x 9) =(fi(t x5 )5 fo(t 25 )5 fr(t 25 9))-
Choosing v small enough, they define a homotopy ¥.. Q.E.D.
Remark. LDiff;(#,;) and LDiff(%,) are Fréchet manifolds,
hence they have homotopy types of CW-complexes ([3], [4], [5],
[61). Therefore the inclusion map is also a homotopy equivalence.
LDiff, (&) is included in FDiff,(S% %.), hence the restric-
tions to T belong to the identity component Diff, (T) of Diff(T).
Let r : LDiff, (%) ——Diff,(T) be the restriction map, i.e., r (f) =

fIT.
Lemma 3. There is an exact sequence :

0

s+ F ——>LDiff; (F 5) —— Diffy (T) —0,

where S is the kernel of r, and r is a locally trivial fibration.

Proof First we show r is surjective. For any ¢ in Diff,(T),
take a smooth path ¢, from identity to ¢ in Diff,(T), ¢,=id:, ¢
=¢. Consider a vector field defined by -aagg'—on TxI in $xI.

Take small tubular neighbourhoods N;, N; of TXI in $*xI, N,D
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N., extend the vector field on S*x I so that it vanishes outside N;,
tangent to the leaves, and that in N, it commutes with the differen-
tial map of the projection to T, next, modify the s-component of
the vector field to be the unit vector field%. Then integrating
the vector field, we obtain an element of LDiff;(%#,) which is
mapped to ¢ by the restriction r.

Next, define a local section as follows. Let 6 LDiff.(%%),
§=r(0). Note that a neighbourhood of # in LDiff (S% ) is
homeomorphic to a neighbourhood of the zero section of the space
of smooth sections of t%;, the sub-bundle of the tangent bundle
consisting of tangent planes of leaves, and that the neighbourhood
of 8 in Diff,(T) is homeomorphic to that of ¢(T), tangent bundle
of the torus, which is canonically embedded in 7%, Extend the
sections of 7(T) to sections of 7%, so that it commutes with the
projection to T in some tubular neighbourhood of T.

We can give such extensions simultaneously, hence it gives a con-
tinuous local section of r. Q.E.D.

Let ﬁTf-f(Sz, D%) denote the space of diffeomorphisms of the
two dimensional sphere S°, which fix some neighbourhood of the
north hemisphere D%. Let L"(/l?if/f(S’, D)) denote the space of
differentiable loops in DiIf (S D).

Lemma 4. There is a splitting exact sequence :
0——L¢ (DT (S, %)) L (DL (S, D%))— S 2@ Z——0,
where p is defined as in the proof of lemma 1 in each component, Z is
the group of integers.
Proof The global section is given for (o, p.) €Z@Z, by inte-
grating a vector field on S°x I associated to the standard rotation
of (o, p.) times, as in the proof of the surjectivity of r in lemma 3.

The kernel of this map p@p is the space of leaf preserving
diffeomorphisms which fix some neighbourhood of T. The restric-
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tion on each leaf may be regarded as an element of ]r)i\ff(Sz, D).

Hence the kernel is homeomorphic to L‘(]SFF(S’, Dﬁ,))@L‘(%
(8% D)). ' Q.E.D.
Lemma 5. The inclusion map:
Diff (82, D%)———Diff (S, D)
is a homotopy equivalence, where DIff (S?, D3) denotes the space of
diffeomorphisms of S* which fix D:.

Proof Let g, be a smooth path in the space of diffeomorphisms
of &% such that g,=id, and ¢, shifts the equator towards the north
pole. Define a homotopy ¢/ : Diff (S°, D%)——Diff(S* D%.) by g
(f) =gi* o fog,. Then gf: Diff (S, D%)——DIf(S, D%) defines a
homotopy inverse of the inclusion map. Q.E.D.

§5. Theorem.

Theorem. The space FDiff,(S%, #.) has the homotopy type of a
torus S'x S
Proof By a result of S.Smale [8], Diff ($% D3%) is contractible.
—~~ ~
By lemma 5, Diff (S? D%) is also contractible. Therefore L?(Diff
(8, D))@L*(DIf(S?, D.)) is contractible. By lemma 4, & is
homotopy equivalent to ZZ. Consider the homotopy exact sequence
of the fibration r in Lemma 3,

oo, (Diffy (T) ) ——m, (F ) ——m, (LDIf {7 (F2))
——m, (Diff, (T)) ——m (F) —— 7, (LDiff; (F ) )—0.

Taking in considerations that Diff () has the homotopy type of a

torus [9], and that LDiff;(%,) is connected, we can deduce that all

the homotopy groups of LDiff; (%) vanish. By lemma 2, all the

homotopy groups of LDiff (S°, #;) vanish (i. e., contractible). Hence
by lemma 1, FDiff,(S°, &) is homotopy equivalent to S'x S

Q.E.D.

Corollary. Let (S° F ) be the codimension one foliation defined
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as follows. Decompose S°=S'xD*US'xS'x IUD*x.S', and introduce
the Reeb foliation in two solid tori, and the bundle foliation induced
by the submersion onto I defined by the projection in S'XxS'X 1. Then
FDiff,(S°, F+&) has the homotopy type of a torus S'x S
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