An algebraic characterization of the affine plane

By
Masayoshi MiyanisiII
(Communicated by Prof. Nagata, March 16, 1974 ; Revised May 7, 1974)

1. Statements of results

C. P. Ramanujam [9] characterized the affine plane over the complex field as follows: Let X be a non-singular algebraic surface which is contractible and simply connected at infinity. Then X is isomorphic to the affine two space as an algebraic variety. The purpose of the present article is to prove the following algebraic characterizations of the affine plane.

Theorem 1. Let k be an algebraically closed field of arbitrary characteristic, let A be a finitely generated k-domain of dimension two and let X be the affine surface defined by A. Then X is isomorphic to the affine plane over k if and only if the following conditions are satisfied :
(i) A is a unique factorization domain.
(ii) The set A^{*} of all invertible elements of A coincides with $k^{*}=$ $k-(0)$.
(iii) There is a non-trivial action of the additive group scheme G_{a} on X defined over k.

Theorem 2. Let k be an algebraically closed field of characteristic zero, let A be a finitely generated, regular, rational k-domain of dimen-
sion two and let X be the affine surface defined by A.
If the conditions (i) and (ii) of Theorem 1 are satisfied, the condition (iii) is equivalent to the conditioit :
(iii)' There is an algebraic system F of closed curves on X parametrized by a rational curve such that a general member of F is an affine rational curve with only one place at infinity and that two distinct general members of F have no intersection on X.

Theorem 3. Let k be an algebraically closed field of characteristic zero and let X be an affine non-singular surface defined by an affine k-domain A. Assume that the following conditions are satisfied:
(1) A is a unique factorization domain and $A^{*}=k^{*}$.
(2) There exist non-singular irreducible closed curves C_{1} and C_{2} on X such that $C_{1} \cap C_{2}=\{v\}$, and C_{1} and C_{2} intersect transversally at v.
(3) C_{1} (resp. C_{2}) has only one place at infinity.
(4) Let a_{2} be a prime element of A defining the curve C_{2}. Then $a_{2}-\alpha$ is a prime element of A for all $\alpha \in k$.
(5) There is a non-singular complete surface V containing X such that the closure \bar{C}_{2} of C_{2} in V is non-singular and $\left(a_{2}\right)_{0}=\bar{C}_{2}$.

Then X is isomorphic to the affine plane \mathbf{A}^{2}.

2. Proof of Theorem 1.

Let k be a field, let A be a k-domain and let $X=\operatorname{Spec}(A)$. An action of the additive group scheme G_{a} on X defined over k can be described by means of a locally finite iterative higher derivation D on A. (For the definition and relevant results, see [3] or [4].)

Let A_{0} be the invariant subring of A with respect to the given G_{a}-action. Then we have

Lemma 1. Let k, A and A_{0} be as above. Then A_{0} is an inert subring of A. Namely, if $a=a_{1} a_{2}$ with $a \in A_{0}$ and $a_{1}, a_{2}, \in A$, then both a_{1} and a_{2} belong to A_{0}. In particular, if A is a unique factorization domain and if A_{0} is a noetherian ring, A_{0} is a unique factorization
domain.
For the proof, see [7].

It seems difficult in general to show or deny that given a finitely generated k-domain A and a non-trivial G_{a}-action on $\operatorname{Spec}(A)$, the invariant subring A_{0} is finitely generated over k. However we have

Lemma 2. Let k be an algebraically closed field, let A be a finitely generated, unique factorization domain defined over k of dimension two and with $A^{*}=k^{*}$. Assume that there is a non-trivial G_{a}-action on $\operatorname{Spec}(A)$ defined over k. Then the invariant subring A_{0} of A is a one-parameter polynomial ring over k.

Proof. Let K and K_{0} be the quotient fields of A and A_{0} respectively. It is known [7] that there are an element a of A_{0} and an element t of A such that $A\left[a^{-1}\right]=A_{0}\left[a^{-1}\right][t]$. Since $A\left[a^{-1}\right]$ is a unique factorization domain, $A_{0}\left[a^{-1}\right]$ is a unique factorization domain of dimension 1 and is finitely generated over k. Therefore $A_{0}\left[a^{-1}\right]$, (hence $A\left[a^{-1}\right]$), is rational over k. Namely $K_{0}=k(u)$ and $K=k(u, t)$.

We shall show that there is an element c of A_{0} such that $K_{0}=$ $k(c)$. Since $K_{0}=k(u)=Q\left(A_{0}\right)$ (where $Q()$ means the quotient field), there are elements a and b of A_{0} such that $u=a / b$. Consider a subring $A_{1}=k[a, b]$ of A_{0}, and let C be the normalization of A_{1} in $Q\left(A_{1}\right)=K_{0}$. Then C is finitely generated over k. Since the assumption that $A^{*}=k^{*}$ implies that $C^{*}=k^{*}, C$ is a oneparameter polynomial ring over k. Write $C=k[c]$ with $c \in A_{0}$. Then $K_{0}=k(c)$.

We shall show that $A_{0}=k[c]$. Otherwise, take any element a of $A_{0}-k[c]$ and consider a subring $A_{2}=k[c, a]$ of A_{0}. Let C^{\prime} be the normalization of A_{2} in K_{0}. Then C^{\prime} is finitely generated over k and $C^{\prime *}=k^{*}$. Hence C^{\prime} is a one-parameter polynomial ring over k. Moreover, since $Q(C)=Q\left(C^{\prime}\right)=K_{0}$, we should have $C=C^{\prime}$. Then
$a \in k[c]$, and this is a contradiction.
q. e. d.

The key to prove the "if" part of Theorem 1 is

Lemma 3. Let k be an algebraically closed field of arbitrary characteristic and let A be a finitely generated k-domain of dimension two. Assume the following conditions:
(i) A is a unique factorization domain.
(ii) There is a non-trivial G_{a} action on $\operatorname{Spec}(A)$ defined over k.
(iii) The invariant subring A_{0} of A with respect to the G_{a}-action is finitely generated over k.
Then A is a one-parameter polynomial ring over A_{0}.

Proof. Our proof consists of several steps.
(1) Let $X=\operatorname{Spec}(A)$, let $Y=\operatorname{Spec}\left(A_{0}\right)$ and let $f: X \longrightarrow Y$ be the canonical morphism defined by the canonical injection $A_{0} \longrightarrow A$. Since A_{0} is a finitely generated, unique factorization domain over k, Y is isomorphic to the affine line which might be deleted a finitely many points. Hence there is an element a of A_{0} such that $A_{0}=k\left[a, h(a)^{-1}\right]$, where $h(a) \neq 0, \in k[a]$.
(2) Let $D=\left\{D_{0}, D_{1}, \ldots\right\}$ be the locally finite iterative higher derivation on A associated with the given G_{a}-action on $\operatorname{Spec}(A)$ and let $\varphi: A \longrightarrow A[u]$ (u being an indeterminate) be the k-algebra homomorphism defined by $\varphi(x)=\sum_{i \geq 0} D_{i}(x) u^{i}$ for every x of A. Define the length $l(x)$ of an element x of A by $l(x)=\operatorname{deg}_{4} \varphi(x)$. It is then easy to show that if $l(x) \neq 0$ and $l(x)$ is the shortest among the lengths of all elements of $A-A_{0}, D_{1}(x), \ldots, D_{l(s)}(x)$ are G_{a}-invariant (cf. [7], Appendix). Choose an element t in $A-A_{0}$ so that (i) $l(t)$ is the shortest and that (ii) if we write $D_{l(t)}(t)$ $=c a_{1}^{\alpha_{1}} \ldots a_{n}^{\alpha_{n}}$ with an invertible element c and mutually distinct prime elements a_{1}, \ldots, a_{n}, then $\sum_{1 \leq i \leq n} \alpha_{i}$ is minimal. Then for any α of $k, t-\alpha$ is a prime element of A. For, otherwise, $t-\alpha=t_{1} t_{2}$ with $t_{1}, t_{2} \in A$. Then either t_{1} or t_{2} has the same length as t, and
the other one is G_{a}-invariant. Assume that t_{2} is G_{a}-invariant, and let $a_{1}=D_{l\left(t_{1}\right)}\left(t_{1}\right)$. Then $D_{l(t)}(t)=a_{1} t_{2}$, which is contrary to the choice of t since t_{2} is not invertible.
(3) Let $B=A_{0}[t]$ and let $Z=\operatorname{Spec}(B)$. Then, by the canonical inclusions $A_{0} \longleftrightarrow B \xrightarrow{\phi} A, Z$ is a Y-scheme (with the projection g : $Z \longrightarrow Y$), and we have a Y-morphism $\rho: X \longrightarrow Z$ such that $f=g \circ \rho$. ρ is birational since there is an element c of A_{0} such that $A\left[c^{-1}\right]$ $=A_{0}\left[c^{-1}\right][t]$ (cf. [7], Appendix or the proof of Lemma 2). G_{a} acts on Z via the restriction of the locally finite iterative higher derivation D on B, and ρ commutes with the G_{a}-actions on X and Z. On the other hand, each fibre of f is irreducible since $a-\alpha$ (which defines the fibre of f at the point $y: a=\alpha$) is a prime element in A for every element α of k with $h(\alpha) \neq 0$ (cf. Lemma 1). We shall show that f is surjective and that for every $y \in Y$, the restriction ρ, of ρ onto $f^{-1}(y)$ is a generically surjective morphism from $f^{-1}(y)$ to $g^{-1}(y)$. For this purpose it suffices to show that for any $\alpha \in k$ such that $h(\alpha) \neq 0, \bar{\psi}: B /(a-\alpha) B \longrightarrow A /(a-\alpha) A$ is injective, where $\bar{\psi}$ is induced from ψ. Since $B /(a-\alpha) B \cong k[t]$, assume that $\bar{\psi}(q(t))=0$ for some $q(t) \neq 0, \in k[t]$. Since $q(t)=$ $\beta \prod_{1 \leq i \leq m}\left(t-\gamma_{i}\right)$ with β and γ_{i}^{\prime} in $k, \prod_{1 \leq i \leq m}\left(t-\gamma_{i}\right) \in(a-\alpha) A$. Since $a-\alpha$ is a prime element of A, there are an integer $i(1 \leq i \leq m)$ and an element h^{\prime} of A such that $t-\gamma_{i}=(a-\alpha) h^{\prime}$. Since $D_{t(t)}(t)=(a-\alpha)$ $D_{l\left(h^{\prime}\right)}\left(h^{\prime}\right)$ and $l(t)=l\left(h^{\prime}\right)$, this contradicts to the choice of t. Therefore $\bar{\psi}$ is injective, and it is easy to see that ρ is quasi-finite since each fibre of f (or g) has dimension 1.
(4) Since ρ is a birational quasi-finite morphism and since X and Z are normal, ρ is an open immersion by the Main Theorem of Zariski (cf. [1]). The image $\rho(X)$ is an affine open set. Since G_{a} acts on Z and ρ commutes with the G_{a}-actions on X and Z, it is easy to see that $\rho(X)$ has the complement of codimension two in Z. Then $\rho(X)=Z$. Hence $A=A_{0}[t]$.

Now the "if" part of Theorem 1 follows easily from Lemmas

2 and 3. The "only if" part is obvious. Thus, Theorem 1 is completely proved.

Remarks. (1) Lemma 3 is false if A is not a unique factorization domain, as is shown in the following example : Let k be an algebraically closed field of characteristic $\neq 2$. Let $A=k[t, X, Y] /$ $\left(Y^{2}-t X-1\right)$. A is a rational, regular k-domain, but A is not a unique factorization domain. In fact, A is the affine ring of an affine surface of the form : $\mathbf{P}^{1} \times \mathbf{P}^{1}-($ an ample irreducible curve). Define a G_{a}-action on $\operatorname{Spec}(A)$ by a k-homomorphism $\varphi: A \longrightarrow$ $A[u] ; \varphi(t)=t, \varphi(X)=X+2 Y u+t u^{2}$ and $\varphi(Y)=Y+t u$. Then the invariant subring of A is $k[t]$. Hence A is not a polynomial ring over $k[t]$.
(2) Let k be an algebraically closed field and let A be a finitely generated normal k-domain. Then A^{*} is isomorphic to a direct product of k^{*} and a torsion-free \mathbf{Z}-module of finite rank.

Proof. Let X be the affine variety defined by A and let V be a complete normal variety which contains X as a dense open set. Let Y be the complement of X in V. Then Y has pure codimension 1. Let Y_{1}, \ldots, Y_{n} be irreducible components of Y. If f is an invertible element of A, then $(f)=\sum_{1 \leq i \leq n} m_{i} Y_{i}$. Define a mapping $\nu: A^{*} \longrightarrow \underset{1 \leq i \leq n}{\oplus} \mathbf{Z}$ by $\nu(f)=\left(m_{1}, \ldots, m_{n}\right)$. Then ν is a homomorphism of abelian groups and $\operatorname{Ker} \nu=k^{*}$. Therefore A^{*} / k^{*} is a \mathbf{Z}-submodule of $\underset{1 \leq i \leq n}{\oplus} \mathbf{Z}$, hence A^{*} / k^{*} is a torsion-free \mathbf{Z}-module of finite rank. It is then obvious to see that A^{*} is a direct product of k^{*} and a free \mathbf{Z}-module A^{*} / k^{*} of finite rank.

3. Proof of Theorem 2

First of all, we shall treat the implication (iii) ${ }^{\prime} \Longrightarrow$ (iii) of Theorem 2. Let k be an algebraically closed field of characteristic zero and let A be a finitely generated, regular, rational k-domain of dimension two. Assume that A is a unique factorization domain
and that $A^{*}=k^{*}$. Let X be the affine surface defined by A. Then there is a non-singular projective surface V containing X as an open set.

We shall summarize rather elementary results in the following two Lemmas.

Lemma 4. Let A, X and V be as above. If $V-X$ is irreducible, then V is isomorphic to the projective plane \mathbf{P}^{2} and $V-X$ is isomorphic to a hyperplane.

Proof. V dominates a relatively minimal rational projective surface V_{0}, which is isomorphic to \mathbf{P}^{2} or F_{n} with $n \geq 0$ and $n \neq 1$, (cf. [8]). V is obtained from V_{0} by repeating local quadratic transformations with non-singular centers $; V=V_{r} \longrightarrow V_{r-1} \longrightarrow \ldots \longrightarrow V_{0}$. Then $\operatorname{Pic}(V)$ is a direct sum of $\operatorname{Pic}\left(V_{0}\right)$ and a free \mathbf{Z}-module of rank r. The facts that $\operatorname{Pic}\left(V_{0}\right) \cong \mathbf{Z}\left(\right.$ if $\left.V_{0} \cong \mathbf{P}^{2}\right)$ or $\operatorname{Pic}\left(V_{0}\right) \cong \mathbf{Z} \oplus \mathbf{Z}$ (if $V_{0} \cong F_{n}$) and that $\operatorname{Pic}(X)=(0)$ imply that $V=V_{0} \cong \mathbf{P}^{2}$ if $V-X$ is irreducible. If $V=\mathbf{P}^{2}$ and $V-X$ is irreducible, it is easy to see that $V-X$ is a hyperplane.

Lemma 5. Let A, X and V be as above. If X has an algebraic system F of closed curves which satisfies the condition (iii)' of Theorem 2, there is a linear pencil L of divisors on V such that a general member of L is irreducible and of multiplicity 1 and that for a general member C of $L, C \cap X$ is a member of F.

Proof. By the condition (iii)' there is a rational curve T and an irreducible subvariety W of $X \times T$ such that if we denote by p and q the canonical projections of W onto X and T respectively, then for any point $t \in T, W_{t}=q^{-1}(t)$ is a member of F, identifying W_{t} with $p\left(W_{t}\right)$ by p. Replacing T by an affine open set $(\neq \phi)$ of T, we may assume that T is an affine open set of \mathbf{A}^{1}, i. e., $T=$ $\operatorname{Spec}\left(k\left[u, g(u)^{-1}\right]\right)$ with $g(u) \neq 0$ and $g(u) \in k[u]$. Let $R=k\left[u, g(u)^{-1}\right]$.

Then the affine algebra $k[W]$ of W is of the form $k[W]=A \otimes R / I$, where I is a prime ideal of $A \otimes R$. The condition (iii)' implies that the canonical homomorphism $\rho: A \longrightarrow A \otimes R \longrightarrow k[W] \quad(a \longmapsto a \otimes 1$ $(\bmod I))$ yields an isomorphism $\rho: k(X) \xrightarrow{\sim} k(W)$. Namely we have a commutative diagram,

We shall identify A with a subalgebra $\rho(A)$ of $k[W]$ and $k(X)$ with $k(W)$ by ρ. Since A is a unique factorization domain and $k[W]$ is finitely generated over A, there exists a set of prime elements $\left(b_{1}, \ldots, b_{r}\right)$ of A such that

$$
A \longleftrightarrow k[W] \longleftrightarrow A\left[1 / b_{1}, \ldots, 1 / b_{r}\right] .
$$

Let $\bar{u}=1 \otimes u(\bmod I)$ and write $\bar{u}=a_{1} / a_{0}$, where $a_{0}, a_{1} \in A$, $\left(a_{0}, a_{1}\right)=1$ and $a_{0}=b_{1}{ }^{{ }^{1}} \ldots b_{r}{ }^{\prime}$ with non-negative integers e_{1}, \ldots, e_{r}. Then for any point $\alpha \in T(k) \subset k,(\bar{u}-\alpha) A\left[1 / b_{1}, \ldots, 1 / b_{r}\right]=\left(a_{1}-\alpha_{0} a\right)$ $A\left[1 / b_{1}, \ldots, 1 / b_{r}\right]$. This implies that the curve on X defined by $a_{1}-\alpha a_{0}$ has support in the union of $p\left(W_{a}\right)$ and the curves defined by $b_{i}(i=1, \ldots, r)$. Therefore, for any point $(\beta, \gamma) \in \mathbf{P}^{1}$ the divisor $\left(a_{1} \beta-a_{0} \gamma\right)$ on V can be written in the form ; $\left(a_{1} \beta-a_{0} \gamma\right)=C_{a}+D_{0}$ $+D_{1}-D_{2}$, where the following conditions are satisfied:
(1) $\alpha=\gamma / \beta$.
(2) $\quad C_{a}, D_{2}>0 ; \quad D_{0}, \quad D_{1} \geq 0 ; \quad \operatorname{Supp}\left(D_{1}\right) \cup \operatorname{Supp}\left(D_{2}\right) \subset V-X$;

Supp (D_{0}) is contained in the union of the closures in V of the curves on X defined by $b_{i}=0$ for $i=1, \ldots, r ; D_{0}, D_{1}$ and D_{2} are fixed divisors (independent of α).
(3) For a general point α of \mathbf{P}^{1}, C_{a} is irreducible and $C_{a} \cap X$ $=p\left(W_{a}\right)$.

Then the divisors $\left\{C_{\alpha}\right\}_{a \in \mathrm{P}^{1}}$ form a linear pencil L. From the construction of L, a general member of L is irreducible and of multiplicity 1 . q. e. d.

Now we shall prove the implication (iii) \Longrightarrow (iii) of Theorem 2. By the second theorem of Bertini, a general member C of the linear pencil L constructed in Lemma 5 has no singular points outside base points of L. Therefore, $C \cap X$ is isomorphic to the affine line \mathbf{A}^{1}, and L has at most one base point which will be situated on $V-X$ if it exists. Let $f: V \longrightarrow \mathbf{P}^{1}$ be the rational mapping defined by L, which is regular outside a base point. If L has a base point $P(\in V-X)$, there exists a succession of locally quadratic transformations $T: V^{*} \longrightarrow V$ with centers P and its infinitely near base points of L such that the linear system L^{*} on V^{*}, which is the total transform of L by T deleted all fixed components, has no base points. Let $f^{*}: V^{*} \longrightarrow \mathbf{P}^{1}$ be the morphism defined by L^{*}. Then it is not hard to show that for a general member C^{*} of $L^{*}, C^{*} \cap X$ is a member of the algebraic system F on X fixed in the condition (iii)' of Theorem 2 and that the restriction of f^{*} onto $X\left(\subset V^{*}\right)$ is identical with the restriction of f onto X.

Replacing V, L and f by V^{*}, L^{*} and f^{*} respectively, we may assume that L has no base points. Then a general member C of L is non-singular and rational. Hence C is isomorphic to \mathbf{P}^{1}. Since $C \cap X$ is isomorphic to \mathbf{A}^{1}, C cuts an irreducible component E of $V-X$ at only one point. Since the characteristic of k is zero, the restriction of f onto E yields a birational mapping $\left.f\right|_{E}: E \longrightarrow \mathbf{P}^{1}$. This implies, in particular, that a general member C of L cuts E transversally at only one point. Then there is an affine open set $U(\neq \phi)$ of \mathbf{P}^{1} such that $f^{-1}(U)$ is a trivial \mathbf{P}^{1}-bundle and that $E \cap f^{-1}(U)$ is a section of $f^{-1}(U)$ (cf. [2], Theorem 1.8). Then $f^{-1}(U) \cap X=f^{-1}(U)-E \cap f^{-1}(U)$ is a trivial \mathbf{A}^{1}-bundle over U.

On the other hand, $X-f^{-1}(U) \cap X$ consists of a finitely many (mutually distinct) irreducible curves G_{1}, \ldots, G which are defined
by prime elements a_{1}, \ldots, a, of A respectively. Then $f^{-1}(U) \cap X$ $=\operatorname{Spec}\left(A\left[a^{-1}\right]\right)$ where $a=a_{1} \ldots a_{r}$. Let $U=\operatorname{Spec}(B)$. Then B is a subring of $A\left[a^{-1}\right]$, and there exists an element t of A such that $A\left[a^{-1}\right]=B[t]$ ($=$ a polynomial ring over B). Since $A^{*}=k^{*}$ and A is a unique factorization domain, $\left(A\left[a^{-1}\right]\right)^{*} / k^{*}=$ a free \mathbf{Z}-module of rank r generated by a_{1}, \ldots, a_{r}. Since $A\left[a^{-1}\right]=B[t]$, we have $\left(A\left[a^{-1}\right]\right)^{*}=B^{*}$. If we write B in the form: $B=k\left[u, g(u)^{-1}\right]$ with $u \in B$ and $g(u)=\prod_{1 \leq i \leq ;}\left(u-\alpha_{i}\right) \in k[u]\left(\alpha_{1}, \ldots, \alpha_{\text {a }}\right.$ being mutually distinct elements of k), we have that $r=s$.

We shall show that $f(X)$ is an affine open set of \mathbf{P}^{1}. Assume the contrary : $f(X)=\mathbf{P}^{1}$. Here we may assume that $V-X$ has more than two irreducible components. In fact, if $V-X$ is irreducible, Lemma 4 says that V is isomorphic to \mathbf{P}^{2} and $V-X$ is isomorphic to a hyperplane. Therefore X is isomorphic to \mathbf{A}^{2}, and we have nothing to prove. Now since L has no base point and a general member of L cuts $V-X$ transversally at only one point of the irreducible component E of $V-X$, the irreducible components of $V-X$ other than E correspond to a finite number of points Q_{1}, \ldots, Q_{m} of \mathbf{P}^{1} by f, i. e., $f(V-X \cup E)=\left\{Q_{1}, \ldots, Q_{m}\right\}$. Then the assumption that $f(X)=\mathbf{P}^{1}$ implies that for every $i(1 \leq i \leq m), f^{-1}\left(Q_{\mathbf{i}}\right) \cap X$ is not empty and consists of a finite number of irreducible curves of X which belong to $\left\{G_{1}, \ldots, G_{r}\right\}$. We may assume that
$\underset{1 \leq i \leq m}{\cup}\left(f^{-i}\left(Q_{i}\right) \cap \dot{X}\right)=G_{1} \cup \ldots \cup G_{r^{\prime}}$, with $r^{\prime} \leq r$. Let $f\left(G_{r^{\prime+1}} \cup \ldots \cup G_{r}\right)=$ $\left\{Q_{m+1}, \ldots, Q_{0}\right\}$. Then $s^{\prime}=s+1$ since U is obtained from \mathbf{P}^{1} deleting the points $u=\alpha_{1}, \ldots, u=\alpha$, and the point of infinity $u=\infty$, and $s^{\prime} \leq r$ since all irreducible curves of $X-f^{-1}(U) \cap X$ are sent onto the points $Q_{1}, \ldots, Q_{s^{\prime}}$, by f. However, this is absurd since $r=s$. Therefore $f(X)$ is an affine open set of \mathbf{P}^{1}.

Let $f(X)=\operatorname{Spec}\left(A_{0}\right)$. Then A_{0} is a subring of A. Moreover, there is an element a_{0} of A_{0} such that $U=\operatorname{Spec}\left(A_{0}\left[a_{0}{ }^{-1}\right]\right)$, $f^{-1}(U) \cap X=\operatorname{Spec}\left(A\left[a_{0}^{-1}\right]\right)$ and that $A\left[a_{0}^{-1}\right]=A\left[a_{0}^{-1}\right][t]=$ a polynomial ring over $A_{0}\left[a_{0}{ }^{-1}\right]$ with $t \in A$. Now define a locally finite iterative higher derivation $D=\left\{D_{0}=i d ., D_{1}, \ldots\right\}$ by setting $D_{i}=(1 / i!) D_{1}^{i}$,
$D_{1}(b)=0$ for any element b of A_{0} and $D_{1}(t)=a_{0}^{\alpha}$ with sufficiently large integer α, (cf. [7], Theorem 2.9 and its proof, or Appendix). Therefore there is a non-trivial G_{a}-action on X. We have thus proved the implication (iii) ${ }^{\prime} \Longrightarrow$ (iii) in Theorem 2.

Conversely, assume the condition (iii). Let $\sigma: G_{a} \times X \longrightarrow X$ be the given G_{a}-action on X. Let $\Phi=\left(\sigma, p_{2}\right): G_{a} \times X \longrightarrow X \times X, p_{2}$ being the projection of $G_{a} \times X$ to X. Let $\Gamma=\Phi\left(G_{a} \times X\right)$ and let $\bar{\Gamma}$ be the closure of Γ in $X \times X$. We know by ([3], Theorems 2.1 and 2.3) that there exists a G_{a}-stable open set $U(\neq \phi)$ of X such that there exists a quotient variety Y (in the sense of [3]) of U by the induced action of G_{a}. Then since the projection $p: U \longrightarrow Y$ is faithfully flat and U is rational, Y is isomorphic to the affine line deleted a finitely many points, (if $Y=\mathbf{P}^{1}$, replace U by ${ }^{1} U-p^{-1}$ (a point)). Then U is a G_{a}-homogeneous space over Y (cf. [5]). Therefore U / Y has a section T^{\prime} (cf. Théorème 4.13, ibid.). Let T be the closure of T^{\prime} in X. Then T meets (transversally) with a general G_{a}-orbit at only one point. Let $\tilde{F}=(X \times T) \cap \bar{\Gamma}$. Then \tilde{F} gives rise to a required algebraic system F on X satisfying the condition (iii), shrinking T to a smaller open set of T if necessary. This completes the proof of Theorem 2.

4. Proof of Theorem3

We shall start with a less restrictive situation and add the conditions of Theorem 3 step by step.

Let k be an algebraically closed field of characteristic zero and let X be an affine non-singular surface defined by an affine k domain A such that A is a unique factorization domain and $A^{*}=k^{*}$. Assume that there exists a maximal ideal m of A which is generated by two elements: $\mathrm{mt}=a_{1} A+a_{2} A$ with $a_{1}, a_{2} \in A$. Let C_{1} and C_{2} be curves defined by a_{1} and a_{2} respectively. We may assume without loss of generality that C_{1} and C_{2} are irreducible. Let v be the point of X corresponding to mt . Then $C_{1} \cap C_{2}=\{v\}, C_{1}$ and C_{2}
intersect transversally at v, and v is a non-singular point on C_{1} and C_{2}.

Lemma 6. Under the above situation assume moreover that C_{1} is non-singular and has only one place at infinity. Then C_{1} is rational. For any element α of k, denote by C_{2}^{a} the curve on X defined by $a_{2}-\alpha$. Then for almost all α of k, C_{2}^{α} is irreducible, $C_{1} \cap C_{2}^{\alpha}=$ $\left\{v_{a}\right\}$ and C_{1} and C_{2}^{a} intersect transversally at v_{a}.

Proof. Put $d=a_{2}\left(\right.$ modulo $\left.a_{1} A\right)$. Then d is a regular function on C_{1}. Let \bar{C}_{1} be a non-singular irreducible complete curve containing C_{1} and let $P_{\infty}=\bar{C}_{1}-C_{1}$. Denote by w the normalized discrete valuation corresponding to P_{∞}. Then $(d)=v+w(d) P_{\infty}$. Hence $w(d)=-1$. For any element α of $k, w(d-\alpha)=w\left(d\left(1-\alpha d^{-1}\right)\right)=$ $w(d)=-1$. Hence $(d-\alpha)=v_{\alpha}-P_{\infty}$, where $C_{1} \cap C_{2}^{\alpha}=\left\{v_{a}\right\} . \quad C_{1}$ and C_{2}^{α} intersect transversally at v_{α}. Since $(d)=v-P_{\infty}, C_{1}$ must be rational.
q. e.d.

Lemma 7. Let A be an affine k-domain and let a be an element of $A-k$. Assume the following conditions:
(1) A is a unique factorization domain.
(2) For any $\alpha \in k, a-\alpha$ is a prime element of A.
(3) $A^{*}=k^{*}$.

Let $S=k[a]-0$ and let $A^{\prime}=S^{-1} A$. Then we have :
(i) A^{\prime} is a unique factorization domain.
(ii) $A^{\prime *}=K^{*}$ where $K=k(a)$.
(iii) The quotient field $Q\left(A^{\prime}\right)$ of A^{\prime} is a regeular extension of K. Therefore A^{\prime} defines an affine variety defined over K with dimension one less than the dimension of the variety defined by A over k.

Proof. The assertion (i) is well-known. If $A^{\prime *} \neq K^{*}$, there exist elements x and y of $A-k[a]$ such that $x y=\varphi(a) \neq 0, \in k[a]$.

Since A is a unique factorization domain and $a-\alpha$ is a prime element of A for all α of k, x and $y \in k[a]$. This is a contradiction, and the assertion (ii) is proved. As for the assertion (iii), we have only to show that K is algebraically closed in $Q\left(A^{\prime}\right)$ since $\operatorname{char}(k)=0$. Assume that f / g is algebraic over K, f and g being elements of A such that $(f, g)=1$. Then there exist $\varphi_{0}, \ldots, \varphi_{n}$ of $k[a]$ such that the greatest common divisor of $\varphi_{0}, \ldots, \varphi_{n}$ is 1 and that

$$
\varphi_{0}(f / g)^{n}+\varphi_{1}(f / g)^{n-1}+\ldots+\varphi_{n}=0
$$

Then it is easy to see that f and g divide φ_{n} and φ_{0} respectively. Hence f and $g \in k[a]$. Thus $f / g \in K$. q. e.d.

Lemma 8. Besides the assumptions of Lemma 6, assume the following additional conditions:
(1) C_{2} has only one place at infinity.
(2) There exists a non-singular complete surface V containing X, on which the closure \bar{C}_{2} of C_{2} is non-singular and $\left(a_{2}\right)_{0}=\bar{C}_{2}$.
(3) For any element α of $k, a_{2}-\alpha$ is a prime element of A. Then for almost all element α of k, C_{2}^{α} is rational and has only one place at infinity.

Proof. Our proof consists of several steps.
(I) For a general element $\alpha \in k$, the principal divisor $\left(a_{2}-\alpha\right)$ on V is of the form ; $\left(a_{2}-\alpha\right)=\bar{C}_{2}^{\alpha}+D-$ (the polar divisor), where $D \geq 0$ is contained in $V-X$ and independent of α. Specializing α to 0 , we have : $\left(a_{2}\right)=\bar{C}_{2}-$ (the polar divisor) by the last condition of the assumption (2). Hence $D=0$. It is then easy to show that there exists a linear pencil L of divisors on V such that \bar{C}_{2} is a member of L and the closure \bar{C}_{2}^{α} of C_{2}^{α} is a member of L for almost all α of k. If L has a base point (which is the unique base point), by repeating the blowings-up with center at the base point and its appropriate infinitely near points, we have a non-singular complete
surface \tilde{V} containing X and a linear pencil \tilde{L} of divisors on \tilde{V}, which is obtained from the total transform of L deleting the fixed components, such that:
(i) \hat{L} has no base points.
(ii) The closure \widetilde{C}_{2} of C_{2} and the closure $\widetilde{C}_{2}^{\alpha}$ of C_{2}^{α} (for almost all α of k) in \tilde{V} are members of \tilde{L}.
(iii) The closure \widetilde{C}_{1} of C_{1} does not pass through the point $\widetilde{C}_{2}-C_{2}$.

Let $p: \tilde{V} \longrightarrow P$ be the morphism defined by \tilde{L}, and let $y_{0}=p\left(\widetilde{C}_{2}\right)$. Then there exists an open neighbourhood Y of y_{0} in \mathbf{P}^{1} such that \widetilde{C}_{1} intersects transversally with each fibre $p^{-1}(y)$ for all $y \in Y$. Then by [2, p. 3], $\widetilde{C}_{1} \cap p^{-1}(Y)$ is p-ample, and $p: W=p^{-1}(Y) \longrightarrow Y$ is flat. Restricting Y to a smaller open neighbourhood of y_{0} if necessary, we may assume that $p: W \longrightarrow Y$ is smooth. The curve $\widetilde{C}_{1} \cap W$ gives rise to a section s of p.
(II) Since $p: W \longrightarrow Y$ is a smooth projective morphism whose fibres are geometrically integral curves, the Picard scheme $\mathrm{Pic}_{w / Y}$ is representable and $\mathrm{Pic}_{W / Y}^{0}$ is a smooth group scheme over Y. Moreover, for any Y-scheme $T, \operatorname{Pic}(W \times T)=\operatorname{Pic}_{W / Y}(T) \times \operatorname{Pic}(T) \quad$ (a direct product) since p has a section s. Therefore $\operatorname{Pic}_{W / Y} \times T=\operatorname{Pic}_{W_{X \times T / T}}$ for any Y-scheme T. In particular $\left(\operatorname{Pic}_{w / Y}\right)_{y_{0}} \cong \operatorname{Pic}_{c_{2} / h} \cong \mathbf{Z}$. Since $\mathrm{Pic}_{W / Y}^{0}$ is smooth and connected, $\mathrm{Pic}_{W / Y}^{0}=0$. Let K be the function field of Y and let $W_{K}=W \times \underset{Y}{ } \operatorname{Spec}(K)$. Then $\operatorname{Pic}_{W_{K / K}}^{0}=0$. This implies that the arithmetic genus of W_{K} is zero.
(III) W_{K} is in fact the non-singular complete model of the affine curve C defined by $A^{\prime}=S^{-1} A$ over $K=k\left(a_{2}\right)$, where $S=K\left[a_{2}\right]-0$ (cf. Lemma 2). C has a K-rational point P which is provided by the sectional curve $\widetilde{C}_{1} \cap W$. Since the arithmetic genus of W_{K} is zero and W_{k} has a K-rational point P, W_{κ} is K-isomorphic to \mathbf{P}^{1}. (IV) Since $C\left(\subset W_{K}\right)$ is defined over $K, W_{K}-C$ consists of a finite number of K-rational prime cycles. Introduce a homogenneous coordinate $\left(x_{0}, x_{1}\right)$ in \mathbf{P}_{κ}^{1} such that $P=(1,0)$ and let $x=$ x_{0} / x_{1}. Then there exist irreducible polynomials f_{1}, \ldots, f_{n} of $K[x]$
such that the affine ring of $C-P$ is $K\left[x, f_{1}^{-1}, \ldots, f_{n}^{-1}\right]$. Then ($K[x$, $\left.\left.f_{1}^{-1}, \ldots, f_{n}^{-1}\right]\right)^{*} \cong K^{*} \times \mathbf{Z}^{n}$. However since the affine ring A^{\prime} of C is a unique factorization domain and $A^{*}=K^{*}$, we must have $\mathrm{n}=1$. This means that $W_{K}-C$ consists of only one K-rational prime cycle. On the other hand, P is linearly equivalent to the K-rational prime cycle $W_{K}-C$ with an appropriate multiplicity. This implies that $W_{k}-C$ consists of only one K-rational point. Hence C is K-isomorphic to the affine line \mathbf{A}^{1}. This implies that for almost all α of k, the curve C_{2}^{α} defined by $\alpha_{2}-\alpha$ is isomorphic to \mathbf{A}^{1} and that C_{2}^{α} has therefore only one place at infinity. This completes the proof of Lemma 8.

Lemma 8 says that X is rational and has a rational pencil of curves $\left\{C_{2}^{\alpha} ; \alpha \in k\right\}$ satisfying the condition (iii)' of Theorem 2. Thus we have proved our Theorem 3, applying Theorem 2. Finally we shall remark that if X is isomorphic to the affine plane all conditions of our Theorem 3 are satisfied.

Department of Mathematics
 OSAKA University
 Toyonaka, Osaka 560, Japan.

References

[1] A. Grothendieck et J. Dieudonné, Éléments de Géométrie Algébrique, Inst. Hautes Etudes Sci. Publ. Math., 11 (1961), Paris.
[2] H. Hironaka, Smoothing of algebraic cycles of small dimensions, Amer. J. Math., 90 (1968), 1-54.
[3] M. Miyanishi, Some remarks on the actions of the additive group schemes, J. Math. Kyoto Univ., 10 (1970), 189-205.
[4] M. Miyanishi, Ga-action of the affine plane, Nagoya Math. J., 41 (1971), 97-100.
[5] M. Miyanishi, Introduction à la théorie des sites et son application à la construction des préschémas quotients, Sém. Math. Sup., 1970, Univ. Montreal, Canada.
[6] M. Miyanishi, Some remarks on polynomial rings, Osaka J. Math., 10 (1973), 617 -624.
[7] M. Miyanishi and Y. Nakai, Some remarks on strongly invariant rings, Osaka J. Math., 12, (1975). 1-17
[8] M. Nagata, On rational surfaces I. Irreducible curves of arithmetic genus 0 or 1, Mem. Coll. Sci. Univ. of Kyoto, 32 (1960), 351-370.
[9] C. P. Ramanujam, A topological characterization of the affine plane as an algebraic variety, Ann. Math., 94 (1971), 69-88.

