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§ O. Introduction and Notations

In  this paper, w e sha ll study sm ooth  actions of the rotation
group SO (3 )  on homotopy 7-spheres. O ur category is th e  smooth
category.

As for actions of SO (3 )  on the n-sphere S", th e re  a r e  several
works by D . Montgomery, H . Samelson and  R, W. Richardson [5],

[6 ]  e t c .  I n  [ 5 ] ,  M ontgom ery and  Samelson proved that every
smooth action of SO (3 )  on  the 7-sphere S 7  has an orb it o f  dimen-
sion less than three (Theorem  4 o f  [5 ] ) .  T he proof o f  this theo-
rem  uses only th e  differentiability an d  th e  homology properties, so
that it holds also fo r homotopy 7-spheres. O u r s tu d y  is  b ased  on
this result.

W e wish to classify all smooth SO(3)-actions o n  homotopy 7-

spheres. B ut in  this paper, only partial answ er w ill be g iven , that
is in  the case  w ith  2 o r 3 orbit types.

In  § 2  w e w ill co n stru c t o n e  ty p e  o f  SO(3) -actions on the
n-sphere S " for n > 7  w h ich  w ill b e  ca lled  t y p e  (A )  (Theorem I
a n d  I I ) .  I n  § 3  w e  o f f e r  m o re  tw o  ty p e s  o f  SO(3)-actions on
homotopy 7-spheres which w ill be called, typ e  (B )  a n d  ty p e  (C).

T he method o f these constructions is  th a t  o f  th e  o rb it triple
due to  W . C . Hsiang and  W . Y. Hsiang.

O ur m ain result w ill be stated in  §4  (Theorem I I I )  a n d  will
b e  p ro ved  i n  §5. From this theorem, it follows that our construc-
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tions cover all of smooth SO(3)-actions on homotopy 7-spheres with
two o r three orbit types.

T h e closed subgroups o f SO (3) are  k n o w n  ( [8 ])  an d  w e  use
the following notations

(Z ,)  : th e  conjugate class o f th e  cyclic group o f order k
( D )  : th e  conjugate class o f th e  dihedral group o f order 2k
(T  ) :  th e  conjugate class o f the  tetrahedral group
( 0 )  :  th e  conjugate class o f the  octahedral group
( I  )  :  th e  conjugate class of the icosahedral group
( N )  :  th e  conjugate class of the norm alizer of SO(2).

W ith respect to  th e  real representations o f SO (3 ), w e  use the
following notations ;

a  : the 3-dimensional irreducible representation
: the 5-dimensional irreducible representation

0 : the 1-dimensional trivial representation.
Finally, in  general w e denote by (M, ço) a smooth manifold M

with SO(3)-action
T he auther thanks Prof. M . A dach i and M r. K . Abe for their

valuable criticism.

§ 1. Preliminaries

In  this section, w e  reca ll a classification theorem  of G-mani-
folds with two orbit types due to  W . C . Hsiang an d  W . Y. Hsiang
[ 3 ] .  This w ill be often used later.

L et G  b e a com pact L ie group . Let H  and  K  be tw o closed
subgroups of G  such that H c K .  W e assume that th e  homogeneous
space K/H is diffeomorphic to the k-sphere Sk for some k .  Let X
b e  a paracom pact contractible manifold w ith  b o u n d ary  X. T h e n
there a re  smooth G-manifolds {M} such that
1) the orbit space M/G is X,
2) the isotropy subgroup typ es are  (H )  an d  (K )  and IntX  is the

im age of the orbits o f typ e  (G/H) and ax is the image of the
set o f the orbits o f typ e  (G/K)
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Let N (H )  and N (K )  b e  the norm alizer of H  a n d  K  respectively
in  G .  Let N (H ) n N (K )\ N (H ) b e  the right coset space.

Classification Theorem : The set o f  the equivariant diffeomor-
phism classes o f  the above G manifolds is in one to one correspondence
w ith  the set

Lax , N (H ) (IN  (K )\N (H )]/7 ,(N (H )/  H )
w here, [  ,  ]  denotes the set of the homotopy classes and a-0N  (H)/ H)
is  the group of the arc com ponents o f  N(H)/ H .  70(N(H) /H) acts
on [  ,  ]  b y  the right translation action of  N(H )/H on N(H) CIN(K)/
N ( H ) .  (See Bredon G . E . [2 ] V  5 , for example).

§ 2. A construction, type (A)

First, w e give a short description of the 5-dim ensional irredu-
c ib le  rea l rep resen ta tio n  o f  S O (3 ) w h ich  w e  h a v e  denoted by
p  in  §  0 .  L e t  u s  consider th e  sp ace  S  o f  all sym m etric 3  x 3
rea l m atrices o f trace  0 . N o te th at th is is  a  rea l vecto r space of
dim ension 5, i. e. S R 5 .  F or gE SO (3 )  an d  s S  d e fin e  13 (g) • s
=gsg-', w here th e  r ig h t  h a n d  s id e  is  t h e  m a tr ix  multiplication.
T hen  w e h av e  a  l in e a r  ac tio n  o f SO ( 3 )  o n  R 5  a n d  th is  is  p .
Define a  norm on S  by Is112=trace o f ss fo r s p S .  This norm is
SO (3)-invariant.

Now le t  (S4, 13) b e  the restriction of p on the un it sphere 54•

It has two isotropy subgroup types (D2) and  ( N ) .  T he orbit space
S4/S0(3) is  an  a rc  an d  th e  in terio r points of the arc correspond
to the orbits o f  typ e  (S 0 (3 )/ D 3 ) an d  th e  tw o  en d p o in ts to  the
orbits o f  ty p e  (S 0 (3 )/ N ) . Now by the c lassification  theorem  in
§1  we know that those S0(3)-manifolds a r e  classified by elements
o f th e  se t [S°, D4\0]/70(0/D2), w h ere  S ° denotes t h e  0-sphere
(w e  n o te  th a t N (DO = 0 , N  (N ) = N  an d  N  n o =D4). L et S 3
denote the symmetric group o f 3  letters. T hen  0/D 2 is isomorphic
to  S , a n d  D ,\O  is iso m o rp h ic  to  Z A S , a s  s e ts . N o w  w e  have

[50, D4\0]/Iro (0/D2)
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(Z2\S3) x (Z2\S2)/S2
where S3  acts on  (Z2\S2) x (Z2\S2) diagonally. Therefore the above
set consists o f two elements, the trivial one represen ted  by (1, 1)
(1E5'2 the unit) and nontrivial one rep resen ted  b y  (1 , g )  (some

g E S , o f order 3).

Lem m a 2 ,  1 :  ( S 4 ,  A) corresponds to  the nontrivial element.
Pro o f : L e t  (M , w ) b e  an  SO (3 )-m an ifo ld  corresponding to

the trivial elem ent. Then the fixed point set of D 2  in  M  consists
o f th ree disjoint 1-spheres. But the fix ed  poin t set o f D2 in  (S4,
A ) is  a  1-sphere. It fo llow s that (M , yo) * (S", p). Q . E . D .

Lem m a 2 ,  2 :  L et f  be an equivariant diffeomorphism o f  (S4, A)
such that the induced map of  the  orbit space is the identity . Then f  is
the identity map.

Proof : Let F(D 2) b e  the fixed point set of D2. F ( D 2 )  is a

1-sphere and contain exactly 6  points whose isotropy subgroups are

conjugate to N .  Let I  b e  an arc in F(D 2) such  that the isotropy
subgroups of the two endpoints are conjugate to  N  and those of
the interior points are 1 )2 . T h e n  1  is a cross section of (S4, A).
As f  is  equiyariant, f  fix  the two endpoints o f  1. B y  th e  assump-
tion, 1 must b e pointwise fixed  by f. S in ce  SO (3 )1=S4 , f is the

identity map. Q . E . D .

Now let X  b e  a  com act contractible manifold with boundary
X. W e  assume the dimension of X = n 4 .  T h e  boundary ax is a

Z-hom ology (n -1 ) -sphere . L e t  F" - '  b e  a  Z -h o m o lo gy  (n— 2 )-
sphere embedded in X .  L e t  R  and R +  denote the in terval ( — oo
+ co ) and the in te rv a l [ 0 ,  + co ) re sp ec tiv e ly . L e t F X R X R +  be
an open tubular neighborhood o f F  in  X  s u c h  th a t  F x 0 x 0=F
and F x R x R +  n a X = F x R  x 0 .

L e t (.fo, çoo) b e  a smooth SO (3)-m anifo ld  such that
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1) the orb it space f0/S0(3) is X — F ,

2) the principal isotropy subgroup ty p e  is ( D 2 )  and Int(X— F)
is the im age of the set of the principal orbits and

3) the singular isotropy subgroup typ e  is ( N )  a n d  (X — F) nax
is  the im age of the set o f the singular orbits.

B y the classification theorem in  § 1 ,  those SO (3)-m anifo lds are
classified by elements of the set

[ax—F, DAO]/70 (0/D2).
Now by the A lexander duality , ax—F consists o f  two connected
components. Under the restriction the above set coincides with the
set

[F x (R —0) x 0, D4\0]/70 (0/D2) = [S% D4 \O]//to (0/D2).
As was shown before, this set consists o f two elements. W e assume
that (To, çoo) corresponds to  the nontrivial element. T h e n  b y  the
orbit structure and Lemma 2, 1 and the covering homotopy proper-
t y  ( [ 2 ] ,  I I , 7 ) , w e see that th e  p a r t  o f  fo  over (F x R x11±—F)
is equ ivarian tly d iffeom orph ic to x  x  R  F x  (R5 —0) where
S O (3 )  acts on S4 and R5 —0 by j3 and  trivially on F  and R.

Now le t F x R5 b e  the SO(3) -m an ifo ld  such  that SO (3 ) acts
on R5 by iS and  triv ia lly  on F .  Then we m ay patch together To
and F x R5 b y  an equivariant diffeom orphism  of F x (R5 —0) over
(F xR xR + — F ). B u t by L em m a 2 , 2 , such  an equivariant diffeo-
morphism must b e  the identity m ap . Therefore we obtain a unique
equivariant diffeomorphism class of SO(3)-manifold  s o ) .

Theorem I: L e t  n > 4  be an integer. L e t (E"-", be a n  (n  +3)-
dim ensional S 0(3) -m anifoldsuch that
1) the isotropy subgroup types are ( D 2 ) ,  (N) and (S O (3))
2) the orbit space f /S 0  ( 3 )  i s  a  com pa ct contractible m anifold w ith

boundary  and the boundary  corresponds to  the singular orbits and
3) the f ix ed point set F  is a  Z -hom ology  (n-2)-sphere.
T hen the set of the equivariant diffeomorphism classes o f  su c h  S O (3 )-
m anifolds is in one to  one correspondence with the set of the diffeomorph-
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ism  classes of the pairs (X, F )  such that
1) X  is an n-dimensional compact contractible manifold w ith boundary

and

2) F  is an  (n —2)-dimensional Z-homology sphere em bedded in the
boundary o f X .

The correspondencee is given by  tak ing the orbit space of the given SO(3)-
manifold.

Proo f : As above, we have constructed o n e  class o f  S O(3)-
manifold fo r  a  given p a ir  (X, F ) .  Now conversely l e t  (I , b e
an  SO(3)-manifold satisfying th e  a b o v e  condition. T h e n  b y  it s
isotropy subgroup structure, w e see that the slice representation of
SO (3 )  a t  a  fixed point is 13C) (n —2) 0 . H en ce  b y  the condition of
the orbit space, there is a n  equivariant tubular neighborhood of F
w hich is equivariantly diffeomorphic t o  F X R5, w h ere  SO ( 3 )  acts
on R5 by IS and  trivially on F . Now I  — F has two orbit types and
b y  the classification theorem in  §1, it fo llow s that (E, ço) coincides
w ith a m anifold constructed as above. Q .  E .  D.

W e note that i f  (X, F )  i s  (D", S " ) ,  th en  th e  corresponding
SO (3)-manifold i s  (S ', A C1)(n —1)60.

N ow we denote by s i  t h e  s e t  o f  t h e  S0 (3)-manifolds in

Theorem I.

Lemma 2, 3 : :  I f  (E, ço) is  in  d ,  th e n  I  is  a homotopy sphere.

Proo f : W e decompose X  in to  th re e  p a rts  Xo, X ,  a n d  X ,  as
follows,
X 0: a  closed neighborhood o f  F  in  X

which is a trivial half 2-disc bundle
over F,
X i: a  closed neighborhood o f  ax—x-0

in  X — X , w h ich  is  a  half 1-disc



On SO (3) -a c t io n s  o n  homotopy 7 -sph eres 155

bundle over ax—xo and  X2: —  X o u  X,.
Let p : b e  th e  orb it m a p .  T hen  w e h ave  1 )  P-1 (X0)

F x  D5, 2 )  p-' (x i )  is hom otopically equivalent to (ax — x0)
(ax x  (aX — F x I) x 13 ', w here P2 = SO (3) /N  denotes the

rea l projective p lane and I  the interval [0 ,  1 ]  and 3 )  p -1  (X ,)  X,
x  (SO (3) /D2) = SO (3)/D , since X  is contractible.

Now we denote I , ' u  X ,)  b y  Y . T h e n  th e  M ayer-V ietoris

sequence (w ith integer coefficients)
• • —›11,(p-' (Xi)) (DH, (p-1 (X),)—>11, (Y ) H ,  ( p - 1  (Xi n x2) ) -> • • •
shows that Ili(Y  ; Z ) = Z  and  H, (Y ; Z ) = 0  for i

T h e M ayer-V ietoris sequence (w ith integer coefficients)

---> H , (Y )10H , (p-i (x0)) (z) n p- (x0)) —>•••
shows that X  is a  homology sphere.

I t  re m a in s  to  show  th a t E  is  s im p ly  co n n ec ted . F irs t  w e
ca lcu la te  771 (p- (X oU X i)). B y  th e  van -K am pen 's th eo rem  and
th e  above observation 1 ) ,  2 )  and  3),

i r i ( p ( X o U  X I) )  = (ax))
= 771 (Zo X P ) * ,

w h e re  ax= zo uFx IU  Z i, Z , n F x  ,a z , =F  x i  for i= 0, 1, Zo n zi
= 0  and  *  denotes th e  am algam ated product. N o w  th e  fac to r ri
(1)2) in  7r, (F x i x  P2 )  is m a p p e d  isom orphically onto the facto r 771
( P ')  in  7r, (Z, x Fr") for i = 0 , 1  a n d  trivially into 7 :'( F ) .  Hence we
m ay cansel r, (P2) in  th e  above product. Then,

7ri (p -(x ou  x i) )  =  171 (Z0)*„1(F 71 (F)* „(F. xi) 71 (Z )  = 7Z-, ( X )

by the van-K am pen's theorem. Now
71(f) =7ri (p-' (x0 u xi))*,(,-1(zeuxon,-10,2» 7t1 (p-' (X 2))

= it, (aX )* r i(d X ) x  .1 (2  0 (3)/D 2) 771 (SO (3) /DO ,
where ri ( a x )  x  (SO (3) /D z) is m a p p e d  o n to  ri ( a x )  a n d  r, (SO
(3)/D2) b y  the pro jection  onto th e  f ir s t  an d  th e  seco n d  fac to r
respectively. H ence this product is trivial. Q. E. D.

x 0 x P2) i1 (F) * .,(F xlx PI) t1 (Z , x  P')

Theorem I I  :  L e t  n >7  be an  in t e g e r .  I f  (X " , ço) i s  in  a, then
X" i s  the stan da rd  n -sphere  S ". If  (S ", ço ) i s  in d ,  t h e n  t h e r e  i s  s o m e
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ço) i n  d  such that (S ", y o) can be equiv ariantly  em bedded in
(S"+1, ço.). I f  n 8, (S "±1, (a) m ay  be chosen so that it is equiv ariantly

em bedded in (S"-", 8 (n —2)O).

P ro o f : L e t  ( X " - ',  F - 5 )  b e  the orb it p a ir  o f  ( s " ,  0 ) .  L e t  I
b e  th e  closed unit in ie rva l [0 , 1 ]. T hen X x I  is an  (n -2 )-d im e n -
sional contractible m an ifo ld . N ow  w e can  find  a n  em bedding f :
ax---o(x x 1) such that
f (1x ) n Xx (1/2 ) =F x  0 /2 1  and f(X )  intersects transversally with
X  x  (1 /2 ). L et P be f ( a X ) .  Then th e  p a ir  (X x I ,  P ) satisfy  the
coditions o f  T h eo rem  I  and  we obtain a n  SO(3)-manifold

)  in  d .  Iden tify ing  (X , .14') w ith  (X x {1/2 },  F x  (1/ 2 ) )  we see
th a t (I", ço ) can  b e  equivariantly em bedded in ( X " ' , ). Now
by Lem m a 2 ,  3 ,  , r a n d  f ' a r e  b o th  homotopy spheres. H ence
I "  is  the standard sphere S". T h e  sam e procedure a s  above for
th e  p a ir  (X x I , P )  gives u s  a  p a i r  (X x 1x1 , 2 X )  w h ere  2x ,a

xI) is  the double of X .  But ri(a(X x  Ix  /))  = 1  = 7 ,(2 X ) hence
b y  Smale's h-cobordism th eo rem  w e  see  th a t X x I x  I D " '

i f  n > 8 .  Therefore if  n.>.-8, (S"-", 0 ) ,  ( I ' , -0) can be
embedded in  (S"-", 730(n —2)0). Q. E. D .

B y M azur's resu lt ( [ 4 ] ) ,  th e re  a r e  in fin ite ly  m any compact
contractible manifolds which a re  not diffeomorphic to  /Y . H ence
we obtain infinitely m any distinct SO (3)-actions on  the standard
7-sphere 57• W e  ca ll th e se  actions as of type (A).

§ 3 .  M ore tw o  co n stru c tio n s, typ e  (B )  a n d  ty p e  (C)

In  this section, w e state  tw o  m ore types o f SO(3)-actions on
homotopy 7-spheres.

Construction, type (B) : L e t  X  b e  a  5-dim ensional compact
contractible m an ifo ld  w ith  b o u n d a ry  X. L e t  TY  b e  the unit
3 -d isc . Let SO (3) ac t on Xx.D3 su ch  a s  triv ially on  X  an d  b y  a
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o n  133. T h e n  b y  t h e  h-cobordism theorem , a (X x lY )  is the

standa rd  7-sphere  S' a n d  w e h a v e  a n  SO(3)-action on S ' .  I f  X

is  t h e  5 -d isc  D '  then  th e  a c t io n  is a (958 . T h ere  a r e  infinitely
m a n y  c o m p a c t  contractiple 5 -m an ifo ld s su ch  th a t  (ax) *1.
H ence w e have  infinitely m any distinct SO(3)-actions on S '.

W e call these SO(3)-actions a s  o f  ty p e  (B).

C onstruction , type  (C)
F irs t , w e  co n s id e r  t h e  5 -s p h e re  w ith  SO(3)-action aC)a,

(S2, aC)a). It has two isotropy subgroup ty p e s  (1 ) a n d  (SO (2)) .
T h e  orbit space is th e  2-disc D ' whose boundary S i  i s  th e  im age

o f  th e  S ' orb its. N ow  by the  c lassification theorem  i n  §1 , those
SO(3)-manifolds a r e  classified by elements o f th e  se t

[S ', N\SO(3)]/70 (SO(3))
= [S', P2] = (S i ; Z2) =Z2,

where P ' denotes th e  rea l projective plane.

Lemma 3, 1: (S', aC)a) correspond s t o  the n o n t r iv ia l  e l em en t  o f

Hi (Si ; Z2) =- Z2.

P ro o f:  L e t  M  be an  50(3)-manifold corresponding to th e  non-
triv ia l e lem ent. T hen  th e  fixed p o in t  s e t  o f  SO ( 2 )  i n  M  consists
o f  two disjo int 1-spheres. B u t  th a t  o f  (S ', aC )a ) i s  a  1-sphere.
H ence M * (S5 , aC)a). Q . E . D .

Now le t  X  b e  a  co m p ac t contractible 4-m anifold with bounda-
r y  X. L e t  S i  b e  a  1-sphere em bedded i n  ax. W e  a ssu m e  that
th e  d o u b le  cover o f  ax branched at S i is  a  Z-homology 3-sphere.
L e t R  a n d  R +  b e  th e  in terval ( — + oo) a n d  [0, + co) respec-
tively . L e t  S' R +  b e  a n  o p e n  tubular neighborhood o f  S i  in
X  s u c h  th a t  S' x O x 0=S' a n d  S' R+ fl ax=sixwxo is  an
o p e n  tubular neighborhood o f  S' in X .

L e t  (IL  ço,) b e  a  7-dimensional SO(3)-manifold such that
1) th e  orbit space is X — Si ,
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2) there a re  two isotropy subgroup ty p e s  ( 1 )  a n d  (S O (2 ))  and
aX -  S ' is th e  im ag e  o f  th e  S 2  orbits.
B y the classification theorem in  §  1 , those SO (3)-m anifolds are

classified by elements of the  se t
[ax—S1, N \S O (3) Fro (SO (3) ) = [ax—st, p2].

Lemma 3,2 [ax—si, p2] =H ' (ax—si; zo =Z2.
P ro o f: Since ax—y is  a n  o p e n  3-m anifold, it has a homotopy

type  o f a  2 -com plex , K .  L e t  P "  b e  t h e  in f in ite  re a l projective
space which is K ( Z ,  1 ) .  It suffices to  show  that th e  map induced
b y  the inclusion P2OEP-, i [K ,  P 2 ]- - > [K ,  P " ]  is  bijective. A s K
is  a 2-com plex, i  is  surjec tive . L et K1 b e t h e  1-skeleton o f  K . By
th e  following com m utative diagram containing th e  P u p p e  sequence
associated to the  cofibration : K'->K->V S2,

[S K ', P l — >[\/  S 2 ,  P l >[ IC, P2] > [K ' P2]
I I

El<", P"]

it suffices to show  th a t [SK ', P2 ] — [V  S 2 ,S 2, P2] is o n to . A s  K 1 is
co n n ected , w e h a v e  [S K ', P2]-=[S K ', S 2] a n d  [V  S2, P2]=[\/ S2,
S2]. T h e  su r je c t iv ity  fo llow s from  t h e  fo llow ing commutative
diagram

[S K ', P2] [V S ',  P l

[SK1, S2] >[\/S2, S ']->[K , S 2] =H2 (K  ; Z) =0.

W e  n o te  t h a t  H2 (K  ;Z ) ,H2 (ax— S i  ;  Z) = 0  b y  the A lexander

duality. Q . E. D .

N o w  w e  assum e  t h a t  (27„ g)0) corresponds to  the non-trivial
element o f  H 1 (ax—si; Z 2 ) . U n d er the  inclusion  ( S I X (R2 - 0))

 >(dx—si), the non-trivial element of H ' (ax—si ;Z2) corresponds
to  the  non-triv ia l element o f  H' (le - 0 ; ZOCIP(S' x (R2 - 0) ; Z2).
H ence by th e  orbit s tru c tu re  a n d  Lemma 3 ,  1  a n d  t h e  covering
hom otopy  p ro p erty  ( [ 2 ] )  w e  se e  th a t  the  part o f (21 , ço0) over
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(S l x x R  —S') i s  equ ivarian tly  d iffeom orph ic  t o  (.5' x x R,
1 x (aC)a) x 1), w here 1 denotes the triv ia l action . H ence we m ay

patch together (Yo, çoo) a n d  (S1 x 1  x  ( a C )a ) )  b y  a n  equivari-

a n t  d iffeom orph ism  f  o f  S ' x  ( R 6 - 0 )  o v e r  (S1 x R2 X 11+ — S').
Then we obtain an  SO(3) -manifold
(27, , ço) = (EL çoo) f (S1 X 11,6, 1 x (crea)).

Theorem I' : Let M  be a 7-dimensional SO (3)-manifoldsuch that

1) the isotropy subgroup ty pes are  (1 ), (S O (2)) and  (S 0 (3)),
2) the orbit space X  is a com pact contractible 4-m anifold with boundary

a X  and the boundary is the im age of  the set o f  the singular orbits, and
3) the fixed point set is  a  1-sphere S ' and  the  doub le  cover o f  ax

branched at S ' is a Z -hom ology  3-sphere.
Then M  is equivalent to one o f  (E7f, ça) constructed as above and it

is a hom otopy  sphere.

Proof: B y the isotropy subgroup structu re  o f M , w e see  th at
the slice representation o f S O (3 ) a t  a  fixed  point is aC ) a . Hence
b y  the condition of the orbit space, there is an  equivarian t tubular
neighborborhood o f  S '  w h ic h  is  equ iva rian tly  d iffeom orph ic  to
(5 ' x l x (aC )a )) .  M — S' h a s  tw o  o r b i t  t y p e s  a n d  b y  the
classification theorem in  §  1, it follows that M  is equivalent to one
o f  t(f7f ,  0 1 . Now let 0  ( 3 )  b e  the orthogonal group. According
to G . E . B re d o n  ( [2 ] , V  Theorem 11, 5 ,  a n d  V I  Theorem  7 , 2 )
fo r  a  p a ir  (X , S ') ,  we can construct a un ique hom otopy 7-sphere
E  with 0 (3 )-a c tio n  such that
1) it h a s  th ree  iso tro p y  su b g ro u p  t y p e s  ( 0 ( 1 ) ) ,  ( 0 ( 2 ) )  and

(0 (3 )) ,
2) th e  orbit space is X  and  aX is  th e  im a g e  o f  th e  singular set

and
3) th e  fixed point set is  S '.
N ow  w e restrict th e 0(3) -action o n  E  t o  50 (3). T h i s  5 0 (3 ) -
manifold is one of those constructed as  above by th e  above argu-
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m en t. If  we remove a  tubular neighborhood o f th e  fixed point set
which is equivariantly diffeomorphic t o  (5 ' x 116, 1 x ( a C ) a ) )  and
reattach  it by an  SO ( 3 )  equivariant diffeomorphism o ver Si x (11'
—0) x it+ , w e see  th at any (21„ ço) w ith  o rb it sp ace  (X , S ' )  can
be obtained in  th is  w a y .  T h e  reattach ing  does no t change the
fundamental group an d  th e  homology properties of the total space.
H ence 2'; is  a  homotopy sphere. Q .  E .  D.

Remark : T h e  d o u b le  co ver o f  ax branched at S l  i s  the
submanifold o f  (r i ,  ç o )  fixed  by SO(2).

W e  c a l l  t h e  above SO (3)-actions o n  homotopy 7-spheres as
o f typ e  (C ).

§ 4. On SO(3) - actions on homotopy 7- spheres

In  § 4 and  § 5, we denote SO ( 3 )  b y  G . L e t  (X ', ço) b e  an
SO(3) -action o n  a  homotopy 7 -s p h e re  Y . F o r  a  closed subgroup
H  of G, F  (H ) denotes th e  fixed point set of H . F  (H ) is a  smooth
submanifold o f  X ' a n d  i f  K D H  th e n  F ( K ) c F ( H ) .  F ( G )  is
denoted simply by F.

Now F (Z ,) and  F (D ,) a r e  bo th  Z,-homology sp h e re s  b y  P.
A . Sm ith 's  th eo rem  (P I I I I ) .  S ince a ll th e  elem ents o f  o rd er 2
in  G  a re  mutually conjugate, it follows from a  theorem of A. Borel

p 175), that
7 — dim. (1%) =3 dim. F (4) — 3dim. F (D 2) •

Therefore w e have dim. F(Z2) =5 and dim. F(D,) =4 or dim. F(Z2)
=3  and dim. F(D,) =1.

W e separate our study into four cases
Case I :  dim . F(Z,) =5, dim. F(D,) =4 and F(D,) # F(N),
Case 2 :  dim . F(Z2) =5, dim. F(D2) =4 and  F(D2) =F (N)
Case 3 :  dim . F(Z,) =3, dim. F(D2) =1 and  F(D2) = F (S 0 (2 ) ) ,
Case 4 :  dim . F(Z,) =3, dim. F(132) =1 and  F (D ,)# F  (SO (2)) .
The linear m odel o f each case is as follows, C ase  1 : ie(D30, Case
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2 : a 5 0 ,  Case 3 :  2a1020 and Case 4 :  a(D,S, r(DB, w here r i s  the
7-dimensional irreducible real representation o f SO(3).

Theorem III: L e t  ( I ' ,  ço) be a  smooth SO (3)-action on a
homo topy 7-sphere. Then
in  Case 1, ( I ' ,  w ) is equivalent to one of  type (A )
in C ase 2, (I', çû) is equiv alent to one of  ty pe  (B)
in C ase 3, (/ ',  w )  is equivalent to one of  ty pe (C)
and in C ase 4, ( I ', g o )  h as  more than three orbit types.

This theorem  will be proved in  th e  next section §5.

Corollary :  I f  (2'7, w) has tw o o r three orbit ty pes and  I ' i s  an
exotic sphere, then ( I ' ,  w) is  o f  ty pe (C).

Proof : This is  an  immediate consequence of the above theorem
and  Theorem II  in  § 2.

§ 5. Proof o f  Theorem III

F irst w e note th at th e  orbit space X=E7/G is simply
connected. This is  a  consequence o f the  fact
ri(f7) =1 =71-0(G) (Bredon [2], p . 91, Corollary 6, 3).

C ase 1
By theorem 4 of M ontgomery and Samelson [5], F (SO (2)) is

not em pty (this theorem  is proved for the standard  sp h ere  S ' in
[5], but as was noted in  § 0, it holds also for homotopy 7-spheres).

Lemma 5 ,1  :  L e t  (P )  be the principal isotropy subgroup type, then
(P ) m ust b e  (D 2,) f o r some k an d  if  k..>-2, then F=0.

P ro o f : T here a re  exactly three subgroups o f SO(3), N , N , and
N2 which contain D2 an d  are  o f in fin ite  o rder. N , N ,  a n d  N 2  are
mutually conjugate. H e n c e  dim. F (N ) = dim. F (N J )  = dim. F (NO
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< 3 by th e  assumption. Let x  be a point of F(D2) — (F(N) U F(Ni)
U F(N2)). T hen the isotropy subgroup o f  x ,  G „ is a  finite sub-
group containing D ,.  S i n c e  the normalizer of 13,, N(D2) = 0 ,  is
fin ite, there a re  at most finitely many elements g  o f G  such that
g D 2 g 'c G „  H e n c e  G x  n F(132) consists o f  f in it e  points. A s
dim.G= 3 and dim. (F(132) — (F(N) U F(Ni) U F(N2))) =4, w e  have
dim.GF(D2) =7. H en ce  GF (DO = a n d  it f o l lo w s  th a t  (P)
(D,). T h e r e f o r e  (P) =  (D .) o r  (T ) o r  (0 ) o r  ( I ) .  N ow i f  F  is
not em pty, we h ave  a  slice representation o f  G  a t  a  f ix ed  point.
But the principal isotropy subgroup typ e  o f 7 -d im en s io n a l real
representation of G  is  (1 ) o r  (D 2 ) . H ence i f  (P) # (DO ,  th en  F
must be em pty. B u t if  (P) = (T ) o r  (0 ) o r (I ) , th en  F (SO(2)) =
F  and  this is impossible. H ence (P) = (D2k)• Q .  E. D.

Now th e  natural representation of N : N - - - - S O (3 )h a s  a  2 -
dim ensional invariant subspace a n d  th is induces a 2-dimensional
representation ô: N--->0 (2).

L em m a 5, 2 :  F ( N )  is a  connected 3-manifold. and for each point
x  o f  2 ' ,  (G,) = (D2h) = (P) o r (G.) (N).

Proof : A s (P) = (D2k), w e  h a v e  F (SO (2)) = F (N ) and GF(N)
is  the singular s e t . A s F (N ) F (D 2), d im .F (N ) <  3 . If dim.F(N) <
2 , then dim. GF(N) < 4  a n d  (P)  m ust b e  ( 1 )  b y  t h e o r e m  2  of
M ontgom ery and Sam elson [5] (this theorem holds also for homo-
topy spheres in  th e  same reason as theorem  4 o f  [ 5 ] ) .  H ence we
have dim .F(N ) =3. As F(S 0(2)) =F(N ), it is a Z-homology sphere
b y  P . A  Smith's theorem, hence connected.

Now a 4-d im ensional rea l rep resen tation  o f  G  h as  a t le a s t
1-dimensional trivial subspace, hence we see dim .F  T h e r e f o r e
F F ( N ) .  L e t y  b e  a  p o in t o f  F(N ) — F . A s (D 2h ) i s  principal
and d im .F (N ) = 3, the slice representation of N  at y  is of the form
k )3 0 , w h ere  S. is  g iven  by the homomorphism N—>N/Z2,
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(2). F ro m  th is  fa c t it  fo llo w s  th a t if p  2k and p' 3  for an
integer s and a prim e p , then F ( N )  is  a  connected component of
F (Z „ , )  (w e  n o te  th a t  F ( Z , )  n GF(N) = F ( N ) ) .  B u t  F ( Z ,  )  is
a  Z ,-hom ology sphere a n d  dim.F(Z,,, ) > d im . F ( N )  = 3 , h en ce  F
(Z p . ) is c o n n e c te d  a n d  F (Z , ) =  F  (N ). N ow let x  b e  a point
o f Y .  I f  (G 0 -  (D ,)  =  (P ) ,  then g G , g--1 D2/, for some g 2 G . We
can  ch o o se  a n  in teger s  an d  a  p r im e  p  such that Zp, c g
a n d  Z,, D 2 ,, (h en ce 2 k )  and p 3 .  T h e n  w e  h av e  F(g

= F (N ) and (N). Q . E . D .

Lem m a 5, 3 : F  is not empty.

Proo f : Let us assum e that F  is  em p ty . T h en  G F(N ) =F (N ) x
P2, w here P ' denotes th e  r e a l p ro je c tiv e  p lan e . T h e  orbit space
X  is  a com pact 4-manifold with boundary a x ,F (N ). z — G F (N )
is  a  f ib re  bundle over In tX  w ith f ib re  G / D ,  and structure group
N (D2k)/D2k (th is is  fin ite ) b y L em m a 5 ,  2 .  A s X  is sim ply con-
n ected , 21 —GF(N) =IntXx (G /D ,h). By th e  Alexander-duality we
have

H, ( In t  X x (G/D2k) ; Z) =Hs (F (N ) x1)'; Z).
T he first group is isomorphic to Z 2  C ) Z , an d  th e  seco n d  to Z 2 *

This is  a  cotradiction. Q . E . D .

By Lem m a 5, 1 , 5 , 2  an d  5, 3, we see that the principal isotropy
subgroup typ e  (P )=  (DO. Now the slice representation o f G  a t  a
f ix e d  point must b e  13(1)20. H ence each com ponent o f  F  is 2-
dimensional and  there  a re  three isotropy subgroup typ es (DO, (N)
an d  (G ).  T he o rb it sp ace  X  is a  4-dim ensional m anifold with
boundary corresponding to GF(N). — G F ( N )  i s  a  f ib r e  bundle
o v e r I n t X  w ith  f ib re  G / D ,  an d  s tru c tu re  g ro u p  0 /D , =S3, the
symmetric group o f 3  le tters. As X  is simply connected

— G F (N ) IntX x (G/D2)•
In  th e  proof o f th e  next two lemmas, homology and cohomolo-

g y  groups have always integer coefficients.
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Lemma 5 , 4 :  X  is acyclic, hence contractibl.

Proof: I t su ff ices  to  show  th a t  II2 (X )=H 3(X )=0  a n d  hence
to show  th a t  H, (IntX  x  (G /D O ) - ( I n t X  x  (G/D2)) = 0 .  By the
A lexander-duality  H, (IntX x (G/D2)) =H6-1 (GF (N )). S in c e  F
(N) =-F (SO ( 2 ) )  is a  Z-homology 3-sphere, w e h ave  fl° (GF (N))
= 0 .  Now G F (N ) / G  =F (N ). A s 111 (P2) =H' (point) = IP (F (N )) =
0 ,  w e  h av e  111(GF (N )) =0 b y  L e ra y 's  spectra l sequence ([1],
III). Q .  E .  D .

F ro m  th is  lem m a , it  fo llo w s th a t II ' (GF (N)) ï 6_, (G/Do.
H en ce H' (G F (N ))  is a s  follows ; = H2 = H' = 0 ,  113 =Z  and
115 =Z,C)Z2.

Lemma 5 ,  5 :  F  is a  2-sphere.

Proof: A s  w as show n befo re , each  com ponent o f  F  is an
orientable 2 -m an ifo ld . I t  su ff ic e s  to  show  t h a t  H ' (F)  =0  and
H2(F) = Z .  L et V  b e  a  closed neighborhood o f F  in  F (N ) which
is  diffeomorphic to  F x I  ( I  is th e  u n it  in te rva l [ 0 ,  1 ] ) .  Then

(N) —v nv is  a  disjiont union of tw o cop ies o f F .  G (F (N) —V)
= (F (N) —V) x  P2  a n d  G ( V )  i s  homotopically e q u iv a le n t to  F.
Since F (N ) is  a  Z-homology 3-sphere, w e have rank H' (F (N) —V)
= ra n k  H ' ( F )  a n d  r a n k  HI (F (N) —V) = ran k  H2 (F) — 1 b y  the
Alexander-duality. Now consider th e  Mayer-Vietoris sequence,
••• (GF (N)) —>H' (G(F (N) — V)) C)H' (CV) —Jr (GV nG(F (N) —V))

Put 1 = 4  and we have 2 ran k  H2 (F) —rank TI2 (F (N) —V) =2.
Hence rank  H2 (F) =1 that is H ' (F)  = Z .  P u t  1 , 3  a n d  w e  have
rank H1 (F) =0 that is H' (F) =0. Q . E . D.

Consequently X  i s  a  contractib le 4-m anifo ld  with boundary
ax and F  is a  2-sphere em bedded in  ax b y  th e  o rb it map. (X ',
ço) has three isotropy subgroup types (D 2 ) , (N ) a n d  (G )  corre-
sponding to In tX , ax—F and F  respectively.

By Theorem I  in  §  2 ,  ( r ,  ço) is  o f typ e  (A).
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Case 2
First w e w ill show that F(N )=F.
Assume that F ( N ) # F .  Let x  b e a  p o in t o f F ( N ) — F . Then

= N  and G x n F ( N ) =x . As Gx is  P2 and d im . (F(N )— F) = 4 , we
have dim. GF(N ) = 6 .  It follows from a  theorem about the dimen-
sion o f singular s e t  ( [ 1 ] ,  IX  p . 117) th a t th ere  is  no three dimen-
sional orb it. A s a principal orbit is orientable, the principal isotropy
subgroup type m ust b e  (S O (2 ) ) . I f  F # 0 ,  th e slice representation
of G  a t  a  fixed point has three isotropy subgroup ty p e s  (SO(2)),
( N )  an d  (G ) . B ut th e re  is  n o  su ch  7-dim ensional representation,
so this is impossible and F=g5. H ence every orb it is 2-dimensional
and  w e  h ave  a  fib re  bundle

F(S 0(2)) — >E2--->P2.
But F(S 0 (2 ) )  is  a  Z-hom ology 5-sphere by P . A . Smith's theorem,
so this is impossible. W e get F(N )=F.

Now F  is 4-dim ensional by the assumption. The slice represen-
tation of G  a t  a  fixed  point must be a 4 0 .  L e t  X  b e  th e  orbit
space o f  (2 7, yo). X  is a  5-dim ensional m anifold with boundary
which corresponds to  F.

Lemma 5,6 : X  is acyclic, hence contractible.

P ro o f : The quotient group N/SO(2)  =Z2 acts o n  F (S O (2)),
and  the fixed point set of this Z 2-action is  F  an d  th e  orbit space
can be identified w ith  X .  F  is  a  Z2-homology sphere a n d  it sepa-
rates F(S 0 (2 ) )  into two diffeomorphic parts. Let g  b e  the genera-
tor o f N /S O (2) a n d  le t  B  b e  a  sub set o f  F ( S 0 ( 2 ) )  such  that
B u g B =F(S 0 (2 ) )  and  B n g B = F .  T hen B  can be identified w ith
X .  N ow  it su ffices to  show th a t  B  is  a c y c lic . L e t  i,: F B  and

F c g B  b e  the inclusions. The diagram
H ,(F  ; Z) (i2)* H , (B  ; Z)

(i2)* g*
H , (gB  ; Z)
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commutes. The M ayer-Vietoris sequence w ith  in teger coefficients
fo r the trip le  (F (SO (2)) , B, gB) ,

• — i l l ,  ( F ) H, (B)C)H, (gB) -- H , (F (S O  (2))
shows th a t ( i1 )*  a n d  ( i2 ) *  a r e  both isomorphisms a n d  I-4 (B)
H, (gB ) =O. Q . E. D .

Consequently X  is  a  contractible 5-manifold with boundary ax
a n d  (I ', ço ) has tw o  iso tropy subgroup  types (S O (2)) a n d  (G).
B y the classification theorem in  §  1 , ( I ' ,  ço) is o f  typ e  (B) .

Case 3
F irs t  w e  w ill show that F(D2) = F ( N )  = F .  From th e  assum-

ption (F(Z2)= F (SO (2 ))) ,  i t  f o l lo w s  th a t  F (1 3 ,)  = F (N ) . I t  is
a Z,-homology sphere (1-dim ensional), hence a  c irc le . For a point
x  of F (S O  (2)), th e  isotropy subgroup G . is SO (2) . H ence the
principal isotropy subgroup typ e  ( P )  must be (Zk) for some k .  But
by theorem  1 of M ontgom ery and Sam elson [5], i t  m ust b e  (1 ) .
L et x  b e  a  po in t o f F (N ), then G,=-IsT o r G .  Assume that G, =N,
then th e  slice representation of N  at x have a 2-dimensional invari-
ant subspace (the norm al plane to G F (SO (2)) ) on which N acts
free ly  (a s  (P) = (1 ) ) . B u t  there is no such a 2-dimensional repre-
sentation of N , so this is impossible. H ence w e h ave  F(D2) =F(N)
=F.

Lemma 5, 7: ( f ' ,  y o )  has three isotropy subgroup ty pes (1), (SO
(2) )and  (G) .

Proof: It rem ains to  show that fo r a n y  p o in t  o f  (f '— G F(S 0
( 2 ) )  ) ,  its iso tropy subgroup  is trivial. Since F(Z2) = F (SO (2)) ,
this group has no elements o f o rder 2  an d  m u st be con jugate to

Z 2 k  + 1  fo r som e k. N ow fix an  odd p r im e  p . L e t x  b e  a  p o in t o f

F (Z„) — F (S O (2)) . Consider th e  slice representation o f  Z ,  at x.
As the principal isotropy subgroup is trivial, Z , a c ts  n o n  trivially

on the slice. H e n c e  d im . F (Z ,) (  3 .  B u t F ( Z ,) _ F ( S 0 ( 2 ) )  and
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dim. F (S O (2)) =3, s o  th a t  w e  h a v e  F (Z ,) =F (S O  (2)) (w e  note

th a t  F (Z ,) and F (S O (2)) a r e  bo th  connected ). It fo llow s that

(2' — GF (SO (2))) consists of principal orbits. Q .  E .  D .

Now the slice representation of G  a t  a  f ix e d  p o in t m u st be
2aC )e. T he orbit space X  i s  a  4-dimensional manifold with bound-
ary w h ich  corresponds to GF (SO (2)).

Lem m a 5, 8 : X  is acyclic, hence contractible.

Proof: W e  w ill show th a t H 2(X) = 11,(X) = 0 .  Throughout the
proof homology an d  cohomology groups are understood to have in-
teger coefficients. S ince there is a fibre bundle, G---> ( I  —GF (SO
(2)))-- > I n t X ,  it suffices to show that (I' — GF (SO (2))) = —
GF (SO ( 2 ) ) )  = 0 .  B y the A lexander duality, (27 —GF (SO (2))) =

(GF (S O (2))) . As F (SO (2)) is connected, II° (GF (SO (2))) =0.
I t rem a in s  to  show  th a t  111 (GF (SO ( 2 ) ) )  = 0 .  Now N/SO(2) =Z2
acts on F (S O  (2)) a n d  F (S O (2)) / =GF (S O (2)) /G. A s  111 (F (SO
(2 )))  = 0 , w e have H' (F (SO (2)) / Z2) = H1 (GF (SO (2)) /G) = 0 .  Since
H1 (S2) = (p o in t)  = 0 , w e  h a v e  Ht (Gil' (SO ( 2 ) ) )  = 0  b y  Leray's
spectral s e q u e n c e  ( [ l] , III). Q . E . D .

Consequently X  is  a  contractible 4-manifold with boundary a X.
F  is  a  circle and  embedded in  aX b y  th e  orbit m a p . ( f i ,  go) has
three isotropy subgroup types (1 ) , (S O (2 ))  an d  (G ) corresponding
to  IntX , ax —1; and  F  respectively.

By Theorem  I '  in  §  3 , ( I I ,  go) is  o f typ e  (C).

Case 4
W e note th a t  F (D 2) an d  F (S O  (2)) a r e  both  circ les. SO (2)

and N  ac t on F ( Z 2 ) . L et Y  be th e  o rb it sp ace  F (Z 2 )/S 0 (2 ). It
is  an orientable 2-manifold with boundary corresponding to F (SO
( 2 ) ) .  Since F(Z2) is  a  Z2-homology 3-sphere a n d  th e  m ap  H  (F
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(Zz) ; Z2).— H 1 (Y ; Z 2 )  is  onto , w e  h av e  I l i (Y ; Z z )  = 0 .  Hence
Y is  a  2-disc. N o w  N/SO(2) =z, a c ts  o n  Y. T h e  im ag e  o f  F

( D 2 )  in  Y  is  ju s t  th e  f ix e d  p o in t se t o f t h i s  Z2-action. By P. A.
S m ith 's  theorem  ( [ 1 ] ,  I I I ) ,  i t  is a c y c l ic  o v e r  Z 2 ,  s o  th a t  i t  i s  an
arc  w ith  the end points in  ay. N o w  it  fo llo w s  th a t  F(D2) nF(so
( 2 ) )  consists o f tw o  points.

F o r x E F(D 2)— F(S 0(2 )),  G ,  is a  fin ite  subgroup conta in ing

D2, and  for x D F (S 0 (2 )) —F(D2), G . is S O (2 ), a n d  fo r  x F(S 0
(2 )) nF(Dz), G ,  i s  N  o r  G . As F(Z2) CIGF(D2) is 2-dimensional
(F(Z2) —GF (D O ) is  n o t  e m p ty , a n d  f o r  x e  (F(Z2)— GF (D2)),
is  a  cyclic group . H e n c e  (X7, yo) h as more th a n  th re e  o rb it  types.

T SU D A  COLLEGE
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