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§0. Introduction and Notations

In this paper, we shall study smooth actions of the rotation
group SO(3) on homotopy 7-spheres. Our category is the smooth
category.

As for actions of SO(3) on the n-sphere S", there are several
works by D. Montgomery, H. Samelson and R, W. Richardson [5],
[6] etc. In [5], Montgomery and Samelson proved that every
smooth action of SO(3) on the 7-sphere S’ has an orbit of dimen-
sion less than three (Theorem 4 of [5]). The proof of this theo-
rem uses only the differentiability and the homology properties, so

that it holds also for homotopy 7-spheres. Our study is based on
this result.

We wish to classify all smooth SO(8)-actions on homotopy 7-
spheres. But in this paper, only partial answer will be given, that
is in the case with 2 or 3 orbit types.

In §2 we will construct one type of SO(3)-actions on the
n-sphere S for n>7 which will be called type (A) (Theorem I
and II). In §3 we offer more two types of SO(3)-actions on
homotopy 7-spheres which will be called, type (B) and type (C).

The method of these constructions is that of the orbit triple
due to W. C. Hsiang and W. Y. Hsiang.

Our main result will be stated in §4 (Theorem III) and will
be proved in §5. From this theorem, it follows that our construc-
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tions cover all of smooth SO(3)-actions on homotopy 7-spheres with
two or three orbit types.

The closed subgroups of SO(3) are known ([8]) and we use
the following notations;
(Z,) : the conjugate class of the cyclic group of order %
(D.) : the conjugate class of the dihedral group of order 2k
(T) : the conjugate class of the tetrahedral group
(O) : the conjugate class of the octahedral group
(I) : the conjugate class of the icosahedral group
(N) : the conjugate class of the normalizer of SO(2).
With respect to the real representations of SO(3), we use the
following notations ;
a : the 3-dimensional irreducible representation
B : the 5-dimensional irreducible representation
0 : the l-dimensional trivial representation.
Finally, in general we denote by (M, ¢) asmooth manifold M
with SO (3)-action .
The auther thanks Prof. M. Adachi and Mr. K. Abe for their
valuable criticism.

§1. Preliminaries

In this section, we recall a classification theorem of G-mani-
folds with two orbit types due to W. C. Hsiang and W. Y. Hsiang
[3]. This will be often used later.

Let G be a compact Lie group. Let H and K be two closed
subgroups of G such that HC K. We assume that the homogeneous
space K/H is diffeomorphic to the k-sphere S* for some k. Let X
be a paracompact contractible manifold with boundary 0X. Then
there are smooth G-manifolds {M} such that
1) the orbit space M/G is X,

2) the isotropy subgroup types are (H) and (K) and IntX is the
image of the orbits of type (G/H) and 0X is the image of the

set of the orbits of type (G/K)
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Let N(H) and N(K) be the normalizer of H and K respectively
in G. Let N(H) NN(K)\N(H) be the right coset space.

Classification Theorem : 7Thesetof the equivariant diffeomor-
phism classes of the above G manifoldsis inone to one correspondence
with the set

[0X , N(H) NN (E)\NU)]1/m(N(H)/H)
where, [ , | denotes the set of the homotopy classes and =N (H)/H)
is the group of the arc components of N(H)/H. = (N(H)/H) acts
on [ , ] by the right translation action of N(H)/H on N(H) NN(K)/
N(H). (See Bredon G. E. [2] V 5, for example).

§2. A construction, type (A)

First, we give a short description of the 5-dimensional irredu-
cible real representation of SO(3) which we have denoted by
B in §0. Let us consider the space S of all symmetric 3x3
real matrices of trace 0. Note that this is a real vector space of
dimension 5, 1. e. S=R°’. For g&SO(3) and s&S§ define B(g) s
=gsg™', where the right hand side is the matrix multiplication.
Then we have a linear action of SO(3) on R® and this is §.
Define a norm on S by ||s||°=trace of ss for s2S. This norm is
SO (3) -invariant.

Now let (S* B) be the restriction of 8 on the unit sphere S*
It has two isotropy subgroup types (D;) and (N). The orbit space
S‘/SO(8) is an arc and the interior points of the arc correspond
to the orbits of type (SO(3)/D,) and the two endpoints to the
orbits of type (SO(3)/N). Now by the classification theorem in
§1 we know that those SO(3)-manifolds are classified by elements
of the set [S°, D\O]/7(0/D;), where S° denotes the O-sphere
(we note that N(D,) =0, N(N)=N and NNO=D,). Let S,
denote the symmetric group of 3 letters. Then O/D, is isomorphic
to S; and D,\O is isomorphic to Z,\S:; as sets. Now we have

LS, DA\O]/7 (0/D,)
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= (Z:\Ss) X (Z\S») /Ss
where S, acts on (Z,\S:) X (Z\S:) diagonally. Therefore the above
set consists of two elements, the trivial one represented by (I, 1)
(1€S; the unit) and nontrivial one represented by (1, g) (some
g€ S, of order 3).

Lemma 2, 1: (S B) corresponds to the nontrivial element.

Proof: Let (M, ¢) be an SO(3)-manifold corresponding to
the trivial element. Then the fixed point set of D, in M consists
of three disjoint 1-spheres. But the fixed point set of D, in (S*
B) is a l-sphere. It follows that (M, ¢) =+ (S*, B). Q. E. D.

Lemma 2, 2: Let f be an equivariant diffeomorphism of (S', B)
such that the induced map of the orbit space is the identity. Then f is
the identity map.

Proof: Let F(D,) be the fixed point set of D,, F(D;) s a
l-sphere and contain exactly 6 points whose isotropy subgroups are
conjugate to N. Let [/ be an arc in F(D,) such that the isotropy
subgroups of the two endpoints are conjugate to N and those of
the interior points are D,. Then [ is a cross section of (S ).
As f is equivariant, f fix the two endpoints of [ By the assump-
tion, / must be pointwise fixed by f. Since SO(3)I=S§', f is the
identity map. Q. E. D.

Now let X be a comact contractible manifold with boundary
0X. We assume the dimension of X=n>4. The boundary 6X is a
Z-homology (n—1)-sphere. Let F*"* be a Z-homology (n—2)-
sphere embedded in 0X. Let R and R* denote the interval (—oo
+ o) and the interval [0, +o0) respectively. Let FXRXR* be
an open tubular neighborhood of F in X such that Fx0x0=F
and FXRXR* NoX=FxRx0.

Let (X, ¢o) be a smooth SO(3)-manifold such that
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1) the orbit space Y,/SO(3) is X—F,

2) the principal isotropy subgroup type is (D,) and Int(X—F)
is the image of the set of the principal orbits and

3) the singular isotropy subgroup type is (N) and (X—F)NoX
is the image of the set of the singular orbits.

By the classification theorem in §l, those SO(3)-manifolds are

classified by elements of the set

[6X—F, D\O]/7(0/D:).
Now by the Alexander duality, 6X—F consists of two connected

components. Under the restriction the above set coincides with the
set

[Fx (R—0) x0, D\O]/7(0/D;) =[S°, D\O]/7.(0/D,).

As was shown before, this set consists of two elements. We assume
that (3, ¢,) corresponds to the nontrivial element. Then by the
orbit structure and Lemma 2, 1 and the covering homotopy proper-
ty ([2], II, 7), we see that the part of 3, over (FXRXR*—F)
is equivariantly diffeomorphic to FxS'XR=Fx (R°—0) where
SO(3) acts on S* and R°—0 by B and trivially on F and R.

Now let Fx R’ be the SO(3)-manifold such that SO(3) acts
on R’ by B and trivially on F. Then we may patch together 3,
and F xR’ by an equivariant diffeomorphism of Fx (R*—0) over
(FXRXR*—F). But by Lemma 2, 2, such an equivariant diffeo-
morphism must be the identity map. Therefore we obtain a unique

equivariant diffeomorphism class of SO(3)-manifold (¥, ¢).

Theorem 1: Let n>4 be an integer. Let (X"*°, ¢) be an (n+3) -
dimensional SO (3)-manifold such that
1) the isotropy subgroup types are (D), (N) and (SO(3))
2) the orbit space ¥/SO(3) is a compact contractible manifold with
boundary and the boundary corresponds to the singular orbits and
3) the fized point set F is a Z-homology (n—2)-sphere.
Then the set of the equivariant diffeomorphism classes of such SO(3)-

mani folds is in one to one correspondence with the set of the diffeomorph-
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ism classes of the pairs (X, F) such that

1) X is an n-dimensional compact contractible manifold with boundary
and

2) Fisan (n—2)-dimensional Z-homology sphere embedded in the
boundary of X.

The correspondencee is given by taking the orbit space of the given SO (3)-

mani fold.

Proof: As above, we have constructed one class of SO(3)-
manifold for a given pair (X, F). Now conversely let (X, ¢) be
an SO(3)-manifold satisfying the above condition. Then by its
isotropy subgroup structure, we see that the slice representation of
SO(3) at a fixed point is P —2)0. Hence by the condition of
the orbit space, there is an equivariant tubular neighborhood of F
which is equivariantly diffeomorphic to FxR®, where SO(3) acts
on R’ by B and trivially on F. Now Y —F has two orbit types and
by the classification theorem in §l, it follows that (¥, ¢) coincides

with a manifold constructed as above. Q. E. D.

We note that if (X, F) is (D", S*7?), then the corresponding
SO (3)-manifold is (S"*3, BPr—1)0).
Now we denote by &/ the set of the SO(3)-manifolds in

Theorem 1.
Lemma 2,3: : If (2, ¢) is in &, then X is a homotopy sphere.

Proof: We decompose X into three parts X, X, and X, as
follows,

X, a closed neighborhood of F in X

which is a trivial half 2-disc bundle
over F,

X.: a closed neighborhood of 9X—X,

in X—X, which is a half 1-disc

[“
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bundle over 0X—X, and Xi: X—X,U X,.

Let p: Y——X be the orbit map. Then we have 1) p7'(Xy)
~FxD% 2) p~'(X,) is homotopically equivalent to p~* (0X—X,)
~ (00X —X,) X PP~ (0X—F x I) x P>, where P*=S0(3)/N denotes the
real projective plane and I the interval [0, 1] and 3) p7'(X.) =X,
x (SO (3)/D,) ~SO(3) /D, since X is contractible.

Now we denote p~'(X;UX,) by Y. Then the Mayer-Vietoris
sequence (with integer coefficients)
"'_’Hi(P_I(Xl))@)Hi(P_‘(X)z)_’Hi(Y)i" Hio (7" (XiNX5))—-+
shows that H,(Y; Z)=Z and H,;(Y; Z) =0 for i+#4.

The Mayer-Vietoris sequence (with integer coefficients)
e H (V@H; (p7 (X)) > ()= H, - (Y Np™ (X)) =+
shows that Y is a homology sphere.

It remains to show that Y is simply connected. First we
calculate 7z, (p7'(XoUX.)). By the van-Kampen’s theorem and
the above observation 1), 2) and 3),

m(p~ (XU X)) =m (p7 (0X))

=1 (Ze X PY)*, (s roxrn T (F) ¥, rxixrn T (Zy X P?)
where 0X=ZUFxI1UZ, ZNFxI1=0Z =Fxi for i=0, 1, Z,NZ,
=¢ and * denotes the amalgamated product. Now the factor r,
(P in =, (FxixP?) is mapped isomorphically onto the factor =,
(P*) in 7,(Z; xP?) for =0, 1 and trivially into #'(F). Hence we
may cansel 7, (P?) in the above product. Then,

m(p7 (XU X)) =m(Zo) *o o0 1 (F) * oo w0y @ (Z) =, (0X)
by the van-Kampen’s theorem. Now

() =m (P (XoU X0)) ¥~ T cournnstagn T (p7H(X2))

=T (aX)*”(axnzl(so(w/oz) 771(50<3)/D2),
where 7,(0X) X7, (SO(3)/D.) is mapped onto =, (6X) and = (SO
(3)/D;) by the projection onto the first and the second factor
respectively. Hence this product is trivial. Q.E.D.

Theorem I : Let n=7 be an integer. If (3", ¢) is in o, then
" s the standard n-sphere S". If (S°, ¢) is in &, then there is some
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(S, @) in o such that (S", ¢) can be equivariantly embedded in
S @). If n=8, (8", @) may be chosen so that it is equivariantly
embedded in (S"**, BPD(n—2)0).

Proof: Let (X"7°, F"™°) be the orbit pair of (X", ¢). Let I
be the closed unit inierval [0, 1]. Then XX I is an (#—2)-dimen-
sional contractible manifold. Now we can find an embedding f:
0X——09(Xx I) such that
fOX)NXx {1/2} =Fx {1/2} and f(0X) intersects transversally with
Xx {1/2). Let F be f(3X). Then the pair (XxI, F) satisfy the
coditions of Theorem I and we obtain an SO(3)-manifold (3"*',
@) in . Identifying (X, F) with (Xx {1/2}, Fx {1/2}) we see
that (2", ¢) can be equivariantly embedded in (X"*!, ¢). Now
by Lemma 2, 3, 3"and XY"*'are both homotopy spheres. Hence
X" is the standard sphere S". The same procedure as above for
the pair (Xx I, F) gives us a pair (XxIxI, 2X) where 2X=30
(XxI) is the double of X. But m(@(XxIxI))=1=m(2X) hence
by Smale’s h-cobordism theorem we see that XX IxI=D'" and
2X=8"*if n>8. Therefore if n>8, (8", ) =(2"*", &) can be
embedded in (5"*% B8P (n—2)0). Q. E. D.

By Mazur’s result ([4]), there are infinitely many compact
contractible manifolds which are not diffeomorphic to D'. Hence
we obtain infinitely many distinct SO(3)-actions on the standard

7-sphere S’. We call these actions as of type (A).

§3. More two constructions, type (B) and type (C)

In this section, we state two more types of SO(3)-actions on

homotopy 7-spheres.

Construction, type (B): Let X be a 5-dimensional compact
contractible manifold with boundary 6X. Let D’ be the unit
3-disc. Let SO(3) act on XX D® such as trivially on X and by a
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on D’. Then by the h-cobordism theorem, 9(XxD’) is the
standard 7-sphere S’ and we have an SO(3)-action on S. If X
is the 5-disc D’ then the action is a@54. There are infinitely
many compact contractiple 5-manifolds such that = (0X) +1.
Hence we have infinitely many distinct SO(3)-actions on S".

We call these SO(3)-actions as of type (B).

Construction, type (C)

First, we consider the J5-sphere with SO(3)-action a@®a,
(S% a@a). It has two isotropy subgroup types (1) and (SO(2)).
The orbit space is the 2-disc D* whose boundary S is the image
of the S* orbits. Now by the classification theorem in §1, those
SO(3)-manifolds are classified by elements of the set

[S*, N\SO(3)1/m(SO(3))

=[S!, P1=H'(S"; Z.) =Z,
where P? denotes the real projective plane.

Lemma 3,1: (S° a@a)corresponds to the nontrivial element of
Hl (Sl 5 Zz) :Zz-

Proof: Let M be an SO(8)-manifold corresponding to the non-
trivial element. Then the fixed point set of SO(2) in M consists
of two disjoint I-spheres. But that of (S°, a@a) is a l-sphere.
Hence M=+ (S°, a®Pa). Q. E. D.

Now let X be a compact contractible 4-manifold with bounda-
ry 0X. Let S' be a l-sphere embedded in 9X. We assume that
the double cover of 80X branched at S'is a Z-homology 3-sphere.
Let R and R* be the interval (—oo, +o0) and [0, 4+o0) respec-
tively. Let S'XR*XR* be an open tubular neighborhood of S' in
X such that $'x0x0=S'and S'XR*XR*NIX=S'XR?*x0 is an
open tubular neighborhood of S' in 9X.

Let (27, ¢,) be a 7-dimensional SO(8)-manifold such that
1) the orbit space is X—S57,
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2) there are two isotropy subgroup types (1) and (SO(2)) and
0X —S' is the image of the S® orbits.
By the classification theorem in § 1, those SO(8)-manifolds are
classified by elements of the set
[0X—S', N\SO(3)]/=(SO(3))=[0X-S', P].

Lemma 3,2 [0X—-S', PP]=H'(0X-S'; Z,) =Z,.

Proof: Since 0X—S' is an open 3-manifold, it has a homotopy
type of a 2-complex, K. Let P~ be the infinite real projective
space which is K(Z, 1). It suffices to show that the map induced
by the inclusion P°’C P~, i: [K, P°l——[K, P=] is bijective. As K
is a 2-complex, 7 is surjective. Let K' be the 1l-skeleton of K. By
the following commutative diagram containing the Puppe sequence
associated to the cofibration: K'—->K—\/S%

[SK, PPl—1[V S°, I]

[K, PP l—[K" P’]

I l
[K, P~]—[K', P~]
it suffices to show that [SK', P*]——[\/&% P?] is onto. As K' is
connected, we have [SK', P*]=[SK', §*] and [\VS%, P*]1=[VS%
S?]. The surjectivity follows from the following commutative
diagram

[SK', P'l—[V/S%, P*]

I |

[SK', S 1—>[\V/ 8% S*]->[K, S*1=H*(K; Z)=0.
We note that H? (K;Z)=H?@X-S'; Z)=0 by the Alexander
duality. Q. E. D.

Now we assume that (X7, ¢) corresponds to the non-trivial
element of H' (0X—S'; Z.). Under the inclusion (S'x (R*—0))
>(0X —S'), the non-trivial element of H'(0X—S";Z,) corresponds
to the non-trivial element of H'(R*—0; Z,)CH'(S'x (R*—0); Z).

Hence by the orbit structure and Lemma 3, 1 and the covering

homotopy property ([2]) we see that the part of (2§, ¢,) over
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(S'xR*xR*—S") is equivariantly diffeomorphic to (S5'xS*XR,
1 X (a@a) x 1), where 1 denotes the trivial action. Hence we may
patch together (3}, ¢,) and (S'XR’, 1X (a@a)) by an equivari-
ant diffeomorphism f of S'x (R*—0) over (S'XR*XR*—S").
Then we obtain an SO (3)-manifold

(275 @) =(2% @) U,(S'XR’, 1X (a®a)).

Theorem I': Let M bea 7-dimensional SO (8) -manifold such that
1) the isotropy subgroup types are (1), (SO(2)) and (SO(3)),
2)  the orbit space X is a compact contractible 4-manijfold with boundary
0X and the boundary is the image of the set of the singular orbits, and
3) the fixed point set is a l-sphere S' and the double cover of 0X

branched at S' is a Z-homology 3-sphere.

Then M is equivalent to one of (X}, ¢) constructed as above and it

is a homotopy sphere.

Proof: By the isotropy subgroup structure of M, we see that
the slice representation of SO(3) at a fixed point is a@Pa. Hence
by the condition of the orbit space, there is an equivariant tubular
neighborborhood of S*' which is equivariantly diffeomorphic to
(S'XR’ 1x (a@a)). M-S has two orbit types and by the
classification theorem in § 1, it follows that M is equivalent to one
of {(2}, ¢)}. Now let O (3) be the orthogonal group. According
to G. E. Bredon ([2], V Theorem 11, 5, and VI Theorem 7, 2)
for a pair (X, S§'), we can construct a unique homotopy 7-sphere
>7 with O(38)-action such that
1) it has three isotropy subgroup types (O(1)), (O(2)) and

0@3)),

2) the orbit space is X and 90X is the image of the singular set
and

3) the fixed point set is S'.

Now we restrict the O(3)-action on Y to SO(3). This SO(3)-

manifold is one of those constructed as above by the above argu-
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ment. If we remove a tubular neighborhood of the fixed point set
which is equivariantly diffeomorphic to (S'XR’ 1x (a@a)) and
reattach it by an SO(3) equivariant diffeomorphism over S'x (R®
—0) xR*, we see that any (3], ¢) with orbit space (X, S') can
be obtained in this way. The reattaching does not change the
fundamental group and the homology properties of the total space.
Hence Y] is a homotopy sphere. Q. E. D.

Remark: The double cover of 90X branched at S' is the
submanifold of (2}, ¢) fixed by SO(2).

We call the above SO(3)-actions on homotopy 7-spheres as
of type (C).

§4. On SO(3)-actions on homotopy 7-spheres

In § 4 and § 5, we denote SO(3) by G. Let (3", ¢) be an
SO (8)-action on a homotopy 7-sphere 2’. For a closed subgroup
H of G, F(H) denotes the fixed point set of H. F(H) is a smooth
submanifold of X" and if K>H then F(K)CF(H). F(@G) is
denoted simply by F.

Now F(Z;) and F(D,) are both Z,-homology spheres by P.
A. Smith’s theorem ([1], III). Since all the elements of order 2
in G are mutually conjugate, it follows from a theorem of A. Borel
([1] p 175), that

7—dim. F(D,) =3 dim. F(Z.) —3dim. F(D,).

Therefore we have dim. F(Z,) =5 and dim. F(D,) =4 or dim. F(Z.)
=3 and dim. F(D,) =1.

We separate our study into four cases ;
Case 1: dim. F(Z,) =5, dim. F(D,;) =4 and F(D.) #F(N),
Case 2: dim. I['(Z,;) =5, dim. F(D,;) =4 and F(D.) =F(N),
Case 3: dim. F(Z,) =3, dim. F(D;) =1 and F(D,) =F(SO(2)),
Case 4: dim. F(Z,) =3, dim. F(D;) =1 and F(D,) #F(SO(2)).
The linear model of each case is as follows, Case 1: BP30, Case
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2: a®b0, Case 3: 2a@P20 and Case 4: a@®p, yP0, where r is the
7-dimensional irreducible real representation of SO(3).

Theorem III: Let (37 ¢) be a smooth SO(3)-action on a
homotopy T-sphere. Then
in Case 1, (3", ¢) is equivalent to one of type (A)
in Case 2, (X', ¢) is equivalent to one of type (B)
in Case 3, (2, ¢) is equivalent to one of type (C)
and in Case 4, (2", ¢) has more than three orbit tvpes.

This theorem will be proved in the next section §.

Corollary: If (X', ¢) has two or three orbit types and X is an
exotic sphere, then (37, ¢) is of type (C).

Proof: This is an immediate consequence of the above theorem
and Theorem II in § 2.

§5. Proof of Theorem III

First we note that the orbit space X=23"/G is simply
connected. This is a consequence of the fact
(2" =1=r,(G) (Bredon [2], p. 91, Corollary 6, 3).

Case 1

By theorem 4 of Montgomery and Samelson [5], F(SO(2)) is
not empty (this theorem is proved for the standard sphere S’ in
[5], but as was noted in § 0, it holds also for homotopy 7-spheres).

Lemma 5,1: Let (P) be the principal isotropy subgroup type, then
(P) must be (Do) for some k and if k=2, then F=¢.

Proof: There are exactly three subgroups of SO(3), N, N, and
N. which contain D, and are of infinite order. N, N, and N, are
mutually conjugate. Hence dim. F (N) =dim. F (N,) =dim. F (N,)
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<3 by the assumption. Let z be a point of F(D,) — (F(N) U F(N,)
UF(N:)). Then the isotropy subgroup of x, G,, is a finite sub-
group containing D,.  Since the normalizer of D,, N(D,) =0, is
finite, there are at most finitely many elements g of G such that
gD.g'cG.. Hence Gx N F(D,) consists of finite points. As
dim.G=3 and dim.(F(D,) —(F(N)UF(N,) UF(N.))) =4, we have
dim.GF(D;) =7. Hence GF(D,)=2", and it follows that (P)>
(D;). Therefore (P)=(D.) or (T) or (0) or (I). Now if F is
not empty, we have a slice representation of G at a fixed point.
But the principal isotropy subgroup type of 7-dimensional real
representation of G is (1) or (D,). Hence if (P)+# (D,), then F
must be empty. But if (P)=(T) or (0) or (I), then F(SO(2)) =
F and this is impossible. Hence (P)= (D). Q. E. D.

Now the natural representation of N: N——>SO(3) has a 2-
dimensional invariant subspace and this induces a 2-dimensional

representation d: N——O0(2).

Lemma 5,2: F(N)is a connected 3-manifold. and for each point
z of &', (G)=Du)=(P) or (G.)=(N).

Proof: As (P)=(D.), we have F(SO(2))=F(N) and GF(N)
is the singular set. As F(N) S F(D,), dim.F(N)<3. If dim.F(N)<
2, then dim.GF(N)<4 and (P) must be (1) by theorem 2 of
Montgomery and Samelson [5] (this theorem holds also for homo-
topy spheres in the same reason as theorem 4 of [5]). Hence we
have dim.F(N)=3. As F(SO(2)) =F(N), itis a Z-homology sphere
by P. A Smith’s theorem, hence connected.

Now a 4-dimensional real representation of G has at least
l-dimensional trivial subspace, hence we see dim.F+3. Therefore
FZF(N). Let y be a point of F(N)—F. As (D,) is principal
and dim.F(N) =3, the slice representation of N at y is of the form
6@30, where § is given by the homomorphism N—>N/Zy ~N——0
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(2). From this fact it follows that if p'% 2k and p°>3 for an
integer s and a prime p, then F(N) is a connected component of
F(Z, ) (we note that F(Z,) NGF(N)=F(N)). But F(Z,) 1is
a Z,~-homology sphere and dim.F(Z, )>dim. F(N)=3, hence F
(Z,+) 1is connected and F(Z,)=F(N). Now let x be a point
of 2. If (G,)= (Dw)=(P), then g G, g7'2D,, for some g=G. We
can choose an integer s and a prime p such that Z,r Cg G, g™
and Z, D, (hence p°} 2¢) and p'>3. Then we have F(g
G. g )YCF(Z,)=F(N) and (G,)>(N). Q. E. D.

Lemma 5, 3: F is not empty.

Proof: Let us assume that F is empty. Then GF(N) =F(N) x
P?, where P? denotes the real projective plane. The orbit space
X is a compact 4-manifold with boundary 0X~F(N). X"—GF(N)
is a fibre bundle over IntX with fibre G/D., and structure group
N (D) /Dy (this is finite) by Lemma 5, 2. As X is simply con-
nected, 3'"—GF(N) =IntX X (G/Dx). By the Alexander-duality we
have

H,(Int XX (G/Dx) 5 Z) =H*(F(N) xP% Z).
The first group is isomorphic to Z; @ Z, and the second to Z..
This is a cotradiction. Q. E. D.

By Lemma 5,1, 5,2 and 5, 3, we see that the principal isotropy
subgroup type (P)=(D,). Now the slice representation of G at a
fixed point must be fP20. Hence each component of F is 2-
dimensional and there are three isotropy subgroup types (D.), (N)
and (G). The orbit space X is a 4-dimensional manifold with
boundary corresponding to GF(N). ¥"—GF(N) is a fibre bundle
over IntX with fibre G/D, and structure group 0/D,=.S,, the
symmetric group of 3 letters. As X is simply connected

3"—GF(N) =IntXx (G/D,).

In the proof of the next two lemmas, homology and cohomolo-

gy groups have always integer coefficients.
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Lemma 5,4: X is acyclic, hence contractibl.

Proof: It suffices to show that H,(X)=H,(X)=0 and hence
to show that H; (IntXx (G/D;)) =H,(IntXx (G/D;)) =0. By the
Alexander-duality H, (IntXx (G/D;)) =H**(GF (N)). Since F
(N)=F(SO(2)) is a Z-homology 3-sphere, we have I:I"(GF(N))
=0. Now GF(N)/ G=F(N). As H'(P®) =H'(point) =H'(F(N)) =
0, we have H'(GF(N))=0 by Leray’s spectral sequence ([1],
III). Q. E. D.

From this lemma, it follows that H*(GF(N))=H.., (G/D,).
Hence H' (GF(N)) 1is as follows; H'=H*=H'=0, H*=Z and
H*=Z7,DZ..

Lemma 5,5: F is a 2-sphere.

Proof: As was shown before, each component of F is an
orientable 2-manifold. It suffices to show that H'(F)=0 and
H*(F)=Z. Let V be a closed neighborhood of F in F(N) which
is diffeomorphic to FxI (I is the unit interval [0, 1]). Then
F(N) —VNV is a disjiont union of two copies of F. G(F(N)—V)
=(F(N)=V)xP?* and G(V) is homotopically equivalent to F.
Since F(N) is a Z-homology 3-sphere, we have rank H'(F(N) —V)
=rank H'(F) and rank H'(F(N)—V)=rank H?*(F)—1 by the
Alexander-duality. Now consider the Mayer-Vietoris sequence,
+—>H (GF(N))»H'(G(F(N) =V) @H' (GV) >H'(GVNG(F(N) - V)
—>...Put i=4 and we have 2 rank H*(F) —rank H*(F(N) —V)=2.
Hence rank H*(F) =1 that is H*(F)=Z. Put i=3 and we have
rank H'(F) =0 that is H'(F)=0. Q. E. D.

Consequently X is a contractible 4-manifold with boundary
90X and F is a 2-sphere embedded in 0X by the orbit map. (&7,
¢) has three isotropy subgroup types (D.), (N) and (G) corre-
sponding to IntX, 6X—F and F respectively.

By Theorem I in § 2, (37, ¢) is of type (4).
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Case 2

First we will show that F(N) =F.

Assume that F(N)#F. Let x be a point of F(N)—F. Then
G,=N and GxNF(N) =x. As Gr is P? and dim. (F(N) —F) =4, we
have dim. GF(N) =6. It follows from a theorem about the dimen-
sion of singular set ([1], IX p. 117) that there is no three dimen-
sional orbit. As a principal orbit is orientable, the principal isotropy
subgroup type must be (SO(2)). If F+#¢, the slice representation
of G at a fixed point has three isotropy subgroup types (SO(2)),
(N) and (G). But there is no such 7-dimensional representation,
so this is impossible and F=¢. Hence every orbit is 2-dimensional
and we have a fibre bundle

F(SO(2))——>3"—-P%

But F(SO(2)) is a Z-homology 5-sphere by P. A. Smith’s theorem,
so this is impossible. We get F(N) =F.

Now F is 4-dimensional by the assumption. The slice represen-
tation of G at a fixed point must be a@46. Let X be the orbit
space of (27, ¢). X is a 5-dimensional manifold with boundary

which corresponds to F.

Lemma 5,6: X is acyclic, hence contractible.

Proof: The quotient group N/SO(2) =Z, acts on F (SO(2)),
and the fixed point set of this Z,-action is F' and the orbit space
can be identified with X. F is a Z,-homology sphere and it sepa-
rates F(SO(2)) into two diffeomorphic parts. Let g be the genera-
tor of N/SO(2) and let B be a subset of F(SO(2)) such that
BUgB=F(SO(2)) and BNgB=F. Then B can be identified with
X. Now it suffices to show that B is acyclic. Let 7, : FCB and
i+ FCgB be the inclusions. The diagram

H;(F 5 Z) @)* H; (B; Z)
(12) % 8x
H; @B ; Z)
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commutes. The Mayer-Vietoris sequence with integer coefficients

for the triple (F(SO(2)), B, gB),

«.——H; (F)—H,;(B)®H,; (gB)—H;(F(S0(2))— "

shows that (7)) and (7,)4 are both isomorphisms and H, (B)=

H, (gB)=0. Q. E. D.
Consequently X is a contractible 5-manifold with boundary X

and (27, ¢) has two isotropy subgroup types (SO(2)) and (G).

By the classification theorem in § 1, (&7, ¢) is of type (B).

Case 3

First we will show that F(D,) =F(N)=F. From the assum-
ption (F(Z;)=F(SO(2))), it follows that F(D;) =F(N). It is
a Z,-homology sphere (1-dimensional), hence a circle. For a point
z of F(SO(2)), the isotropy subgroup G, is SO(2). Hence the
principal isotropy subgroup type (P) must be (Z,) for some 2. But
by theorem 1 of Montgomery and Samelson [5], it must be (1).
Let x be a point of F(N), then G,=N or G. Assume that G,=N,
then the slice representation of N at x have a 2-dimensional invari-
ant subspace (the normal plane to GF(SO(2)) ) on which N acts
freely (as (P)=(1)). But there is no such a 2-dimensional repre-
sentation of N, so this is impossible. Hence we have F(D.) =F(N)
=F.

Lemma 5,7: (X7, ¢) has three isotropy subgroup types (1), (SO
(2))and (G).

Proof: It remains to show that for any point of (X"—GF(SO
(2)) ), its isotropy subgroup is trivial. Since F(Z.) =F(SO(2)),
this group has no elements of order 2 and must be conjugate to
Zoi.: for some k. Now fix an odd prime p. Let x be a point of
F(Z,) —F(SO(2)). Consider the slice representation of Z, at x.
As the principal isotropy subgroup is trivial, Z, acts non trivially
on the slice. Hence dim. F(Z,)<3. But F(Z,)2F(SO(2)) and
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dim. F(SO(2)) =3, so that we have F(Z,)=F(SO(2)) (we note
that F(Z,) and F(S0O(2)) are both connected). It follows that
(3"—GF(S0(2))) consists of principal orbits. Q. E. D.

Now the slice representation of G at a fixed point must be
2a@0. The orbit space X is a 4-dimensional manifold with bound-
ary which corresponds to GF(SO(2)).

Lemma 5, 8: X is acyclic, hence contractible.

Proof: We will show that H,(X) =H;(X)=0. Throughout the
proof homology and cohomology groups are understood to have in-
teger coefficients. Since there is a fibre bundle, G—— (2" —GF (SO
(2)))——IntX, it suffices to show that H; (3" —GF(SO(2))) =H,(¥"—
GF(SO(2))) =0. By the Alexander duality, H,(3"—GF(SO(2))) =
H*(GF(S0(2))). As F(SO(2)) is connected, H*(GF(SO(2))) =0.
It remains to show that H'(GF(SO(2)))=0. Now N/SO(2)=2Z.
acts on F(SO(2)) and F(SO(2))/Z.=GF(SO0(2))/G. As H'(F(SO
(2))) =0, we have H'(F(S0(2))/Z,) =H'(GF(S0O(2))/G) =0. Since
H'(S*) =H'(point) =0, we have H'(GF(SO(2)))=0 by Leray’s
spectral sequence ([1], III). Q. E. D.

Consequently X is a contractible 4-manifold with boundary 9X.
F is a circle and embedded in 0X by the orbit map. (27, ¢) has
three isotropy subgroup types (1), (SO(2)) and (G) corresponding
to IntX, 0X—F and F respectively.

By Theorem I’ in § 3, (X7, ¢) is of type (C).

Case 4

We note that F(D.) and F(SO(2)) are both circles. SO(2)
and N act on F(Z;). Let Y be the orbit space F(Z,)/SO(2). It
is an orientable 2-manifold with boundary corresponding to F(SO
(2)). Since F(Z.) is a Z.-homology 3-sphere and the map H,(F
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(Z.) 5 Z.)—H,(Y; Z,) is onto, we have H,(Y; Z.)=0. Hence
Y is a 2-disc. Now N/SO(2) =Z, acts on Y. The image of F
(D;) in Y is just the fixed point set of this Z,-action. By P. A.
Smith’s theorem ([1], III), it is acyclic over Z,; so that it is an
arc with the end points in Y. Now it follows that F(D.;) NF (SO
(2)) consists of two points.

For z€F(D,) —F(SO(2)), G, is a finite subgroup containing
D;, and for x3F(SO(2)) —F(D.), G. is SO(2), and for zF (SO
(2)NFMD.), G, is N or G. As F(Z;) NGF(D,) is 2-dimensional
(F(Z,) —GF(D,)) is not empty, and for re (F(Z.) —GF (D)), G,
is a cyclic group. Hence (27, ¢) has more than three orbit types.

TsubA COLLEGE
TOKYO JAPAN
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