On the type of graded Cohen-Macaulay rings

By

Yôichi AOYAMA and Shirô GOTÔ

(Communicated by Prof. M. Nagata, Dec. 21, 1973)*

1. Introduction.

In this paper a ring will always mean a commutative noetherian ring with unit.

Let A be a Cohen-Macaulay local ring with maximal ideal m and K-dim A=d. We define $r(A)=\dim_{A/m} \operatorname{Ext}_A^d$ (A/m, A) and call it the type of A. Various properties of the type are discussed in [2]. Here we note that if x_1, \ldots, x_n is an A-regular sequence in m, then $r(A)=r(A/(x_1,\ldots,x_n))$. The global type of a Cohen-Macaulay ring A is defined to be the supremum of the types of local rings A_n for all prime ideals p of A. A Cohen-Macaulay ring is Gorenstein if and only if the ring has global type one.

Let R be a graded ring. Recently it was proved that R is Cohen-Macaulay if and only if R_{\flat} is Cohen-Macaulay for every graded prime ideal \flat . ([3] and [4])

The aim of this paper is to prove the following

Theorem. Let $R = \sum_{n \in \mathbb{Z}} R_n$ be a commutative graded noetherian ring. If R, is a Cohen-Mac ulay local ring of type $\leq r$ for every graded

^{*} Each of the authors presented their manuscripts on November 12, 1973 and November 19, 1973, respectively.

Since their main result were the same, according to a suggestion made by an editor, their manuscripts were revised under co-authorship.

prime ideal \mathfrak{p} , then R is a Cohen-Macaulay ring of global type $\leq r$. In particular, if $R_{\mathfrak{p}}$ is Gorenstein for every graded prime ideal \mathfrak{p} , then R is Gorenstein.

We shall prove the theorem in more precise form in §3.

The above theorem was independently obtained by the authors.

2. Preliminaries on graded rings.

Let $R = \sum_{n \in \mathbb{Z}} R_n$ be a graded ring. For every ideal \mathfrak{a} of R we denote by \mathfrak{a}^* the ideal generated by all homogeneous elements of \mathfrak{a} . Then \mathfrak{a}^* is the largest graded ideal contained in \mathfrak{a} . It is obvious that if \mathfrak{p} is prime, then so is \mathfrak{p}^* . An ideal \mathfrak{p} of R is said to be H-maximal if it is a maximal element of the set of all proper graded ideals of R. If \mathfrak{p} is H-maximal, then \mathfrak{p} is prime and R/\mathfrak{p} has only two graded ideals (0) and R/\mathfrak{p} . Recall:

Lemma 2.1. If R has only two graded ideals (0) and R, then:

- (1) If x is a non-zero homogeneous element of degree n, then x is invertible and x^{-1} is a homogeneous element of degree -n. In particular, R_0 is a field.
- (2) R is an integral domain, and R is a field if and only if $R = R_0$.
- (3) If R is not a field, we put $d = \min \{n > 0 \mid R_n \neq (0)\}$. Then:
- (a) $R_n \neq (0)$ if and only if $n \in d\mathbf{Z}$.
- (b) If k denotes the field R_0 , every non-zero element X of R_4 is transcendental over k and R=k [X, X^{-1}] as graded rings. In particular, R is a principal ideal domain.
- (c) Every finitely generated graded R-module is free (as a graded R-module).

R is called H-local if R has unique H-maximal ideal. Let S be a multiplicative set of R consisting of homogeneous elements. Then the localization $S^{-1}R$ is a graded ring. $((S^{-1}R)_n = \{r/s \mid r \text{ is a homogeneous element of } R, s \in S \text{ and deg } r = \deg s + n.\}$ for

every $n \in \mathbb{Z}$.) If \mathfrak{p} is a prime ideal and if S is the multiplicative set of all homogeneous elements of R not in \mathfrak{p} , S^{-1} R is said to be the homogeneous localization of R at \mathfrak{p} and denoted by $R_{(\mathfrak{p})}$. In this case $R_{(\mathfrak{p})}$ is an H-local ring with H-maximal ideal $\mathfrak{p}^*R_{(\mathfrak{p})}$. Hence, if \mathfrak{p} is a non-graded prime ideal, it follows from Lemma 2.1 that $\mathfrak{p}R_{(\mathfrak{p})}/\mathfrak{p}^*R_{(\mathfrak{p})}$ is principal and that there is no prime ideal properly between \mathfrak{p}^* and \mathfrak{p} .

Lemma 2.2. ([4] Lemma 1). If \mathfrak{p} is a non-graded prime ideal, then height \mathfrak{p} =height \mathfrak{p}^*+1 .

Lemma 2.3. ([4] Lemma 2). Let α be a graded ideal of R and let $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$ be graded prime ideals which do not contain all elements of R of positive degree. If the set of all homogeneous elements of α is contained in $\mathfrak{p}_1 \cup \ldots \cup \mathfrak{p}_n$, then α is contained in some \mathfrak{p}_i .

Let M and N be (finitely generated) graded R-modules. Then $\operatorname{Ext}_k^i(M, N)$ is a graded R-module for every i > 0.

3. Proof of Theorem.

Let $R = \sum_{n \in \mathbb{Z}} R_n$ be a graded ring and let \mathfrak{p} be a non-graded prime ideal of R. We prove the following

Theorem 3.1. If R_{v*} is a Cohen-Macaulay local ring of type r, then so is R_v .

Proof. Considering $R_{(\mathfrak{p})}$ instead of R, we may assume that R is an H-local ring with H-maximal ideal \mathfrak{p}^* . Since $R_{\mathfrak{p}^*}$ is Cohen-Macaulay, there is an R-regular sequence x_1, \ldots, x_n $(n = \text{height } \mathfrak{p}^*)$ in \mathfrak{p}^* such that x_i is homogeneous for every i by virtue of Lemma 2.3. Put $\overline{R} = R / (x_1, \ldots, x_n)$ and $\overline{\mathfrak{p}} = \mathfrak{p} / (x_1, \ldots, x_n)$. Then $\overline{\mathfrak{p}}^* = \mathfrak{p}^* / (x_1, \ldots, x_n)$ and $\overline{R}_{\mathfrak{p}^*}$ is a Cohen-Macaulay local ring of type r. In order to prove the theorem, it is sufficient to show that $\overline{R}_{\mathfrak{p}}$ is a

Cohen-Macaulay local ring of type r. Hence we may assume that height $\mathfrak{p}^*=0$. Then height $\mathfrak{p}=1$ by Lemma 2.2 and R is Cohen-Macaulay because Ass $(R)=\{\mathfrak{p}^*\}$. Since Ext_R^1 $(R/\mathfrak{p}^*,R)$ is a finitely generated graded R/\mathfrak{p}^* -module, Ext_R^1 $(R/\mathfrak{p}^*,R)$ is a free R/\mathfrak{p}^* -module by Lemma 2.1, whence Ext_R^1 $(R_\mathfrak{p}/\mathfrak{p}^*R_\mathfrak{p},R_\mathfrak{p})$ is a free $R_\mathfrak{p}/\mathfrak{p}^*R_\mathfrak{p}$ -module. Since $R_\mathfrak{p}/\mathfrak{p}^*R_\mathfrak{p}$ is a discrete valuation ring, the equality $r(R_\mathfrak{p})=r(R_\mathfrak{p}*)$ follows from the following

Lemma 3.2. Let A be an one dimensional Cohen-Macaulay local ring with maximal ideal \mathfrak{m} and let \mathfrak{p} be a prime ideal of A such that A/\mathfrak{p} is a discrete valuation ring. Then the equality $r(A) = r(A_{\mathfrak{p}})$ holds if and only if $\operatorname{Ext}_A^1(A/\mathfrak{p}, A)$ is a free A/\mathfrak{p} -module.

Proof. By the assumption there is an element x such that $\mathfrak{m} = \mathfrak{p} + xA$. Then $0 \longrightarrow A / \mathfrak{p} \stackrel{s}{\longrightarrow} A / \mathfrak{p} \longrightarrow A / \mathfrak{m} \longrightarrow 0$ is an exact sequence. Since $\operatorname{Hom}_A (A / \mathfrak{m}, A) = 0$, we have an exact sequence:

$$0 \longrightarrow \operatorname{Hom}_{A} (A / \mathfrak{p}, A) \xrightarrow{s} \operatorname{Hom}_{A} (A / \mathfrak{p}, A) \longrightarrow \operatorname{Ext}_{A}^{1} (A / \mathfrak{m}, A)$$
$$\longrightarrow \operatorname{Ext}_{A}^{1} (A / \mathfrak{p}, A) \xrightarrow{s} \operatorname{Ext}_{A}^{1} (A / \mathfrak{p}, A).$$

This shows depth_{A/p} Hom_A $(A/\mathfrak{p}, A) > 0$, whence Hom_A $(A/\mathfrak{p}, A)$ is a free A/\mathfrak{p} -module by [1] Theorem 2.3 (d) because A/\mathfrak{p} is a discrete valuation ring. Therefore we have:

$$r (A_{\mathfrak{p}}) = \dim_{A\mathfrak{p}/\mathfrak{p}A\mathfrak{p}} \operatorname{Hom}_{A\mathfrak{p}} (A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}}, A_{\mathfrak{p}})$$

$$= \operatorname{rank}_{A/\mathfrak{p}} \operatorname{Hom}_{A} (A/\mathfrak{p}, A)$$

$$= \dim_{A/\mathfrak{m}} \operatorname{Hom}_{A} (A/\mathfrak{p}, A) / \operatorname{nt} \operatorname{Hom}_{A} (A/\mathfrak{p}, A)$$

$$= \dim_{A/\mathfrak{m}} \operatorname{Hom}_{A} (A/\mathfrak{p}, A) / x \operatorname{Hom}_{A} (A/\mathfrak{p}, A)$$

$$\leq \dim_{A/\mathfrak{m}} \operatorname{Ext}_{A}^{1} (A/\mathfrak{m}, A) = r(A).$$

Hence $r(A) = r(A_p)$ holds if and only if the map $Hom_A(A/p, A)$ $\longrightarrow Ext_A^1(A/m, A)$ is surjective, i. e., the map $Ext_A^1(A/p, A)$ $\xrightarrow{s} Ext_A^1(A/p, A)$ is injective, which is equivalent to say that $Ext_A^1(A/p, A)$ is a free A/p-module because A/p is a discrete valuation ring. **Remark 3.3.** Under the same assumption as in Lemma 3.2, A is Gorenstein if and only if $\operatorname{Ext}_{A}^{1}(A/\mathfrak{p}, A) = (0)$.

Remark 3.4. In proving the Theorem in §1 when $R_n = (0)$ for every n < 0, by a result in [2], we can reduce to the case where R_0 is a complete local ring, whence a homomorphic image of a regular local ring. In this case, using graded syzygies, the faithful exactness of $- \bigotimes_R R_M$ (M is unique graded maximal ideal) on the category of graded R-modules and the following lemma, we can prove the Theorem in §1 not considering negative degree. (cf. [3])

Lemma 3.5. Let A be a regular local ring with maximal ideal m and let a be an ideal of A. Then the following conditions are equivalent:

- (a) A / a is a Cohen-Macaulay local ring of type r.
- (b) α is perfect and $\dim_{A/m} \operatorname{Tor}_{d}^{A}(A / m, A / \alpha) = r$ where $d = \operatorname{grade}_{A}\alpha$.

EHIME UNIVERSITY NIHON UNIVERSITY

References

- [1] M. Auslander and D. A. Buchsbaum, Homological dimension in local rings, Trans. Amer. Math. Soc. 85 (1957), 390—405.
- [2] J. Herzog, E. Kunz et al., Der kanonische Modul eines Cohen-Macaulay-Rings, Lecture Notes in Math. No. 238, Springer, Berlin, 1971.
- [3] M. Hochster and L. J. Ratliff, Jr., Five theorems on Macaulay rings, Pacific J. Math. 44 (1973), 147—172.
- [4] J. Matijevic and P. Roberts, A conjecture of Nagata on graded Cohen-Macaulay rings, to appear.