Field generators in two variables

By
Peter RUSSELL

(Communicated by Prof. Nagata, Sept. 3, 1974)

A field generator in two variables is a polynomial $f(x, y)$ such that f together with some rational function $g(x, y)$ generates the field $k(x, y)$ (k a field of constants). It was conjectured by Abhyankar and proved by Jan (for k of characteristic 0) that f has at most two points at infinity, that is, the degree form of f has at most two irreducible factors. The aim here is to give more precise results. First (see 3.7), unless $\{f=0\}$ is isomorphic to a line, there are exactly two infinitely near points of f on L, the line at infinity. (So if f has two ordinary points at infinity, no branch is tangent to L. Otherwise, branches are at most simply tangent.) More generally (see 3.6), there is a quite sharp bound on the number of infinitely near points of f on L in terms of the genus of $k(x, y)$ over $k(f)$. Secondly (see 4.5), after a suitable automorphism φ of $k[x, y], f$ is linear or has two (ordinary) points at infinity. (φ is essentially unique in the latter case (see 4.7).) φ is shown to be tame, and a proof of the result of Jung [1] and Van der Kulk [5] on the structure of automorphisms of $k[x, y]$ appears as a byproduct.

I would like to express my thanks here to S. S. Abhyankar and participants in his seminar at Purdue, where I was first introduced to these problems and learned how much there is still to be learned about polynomials in two variables.

1. Let k be a field, $k[x, y]$ the polynomial ring in two variables over k and $f \in k[x, y], f \notin k$. Then $k(x, y)$ is of transcendence degree 1 over $k(f)$ and hence the function field of a complete regular curve over $k(f)$, which we denote by C_{f}. Let t be transcendental over k and
X, Y variables over $k(t)$. Then
$1.1(k(t)[X, Y] / f(X, Y)-t) \xrightarrow{\rightarrow} k(f)[x, y]$
under the map sending t to f, X to x and Y to y. We are thus led to investigate the pencil of Curves $\{V(f-\lambda) \mid \lambda \in k\}$, of which $V(f-t)$ is the generic member (see 2.8). (We use $V(f)$ to denote the curve, or effective divisor, defined by f.)

In order to enable us to use geometric arguments, we imbed the the affine plane $\boldsymbol{A}_{k}{ }^{2}$ in the projective plane $\boldsymbol{P}_{k}{ }^{2}$ in the usual way, choosing projective coordinates $\left(X_{0}, X_{1}, X_{2}\right)$ on $\boldsymbol{P}_{k}{ }^{2}$ such that $x=X_{1} / X_{0}$ and $y=X_{2} / X_{0}$. Then the line at infinity of $\boldsymbol{A}_{k}{ }^{2}$ is $L=V\left(X_{0}\right)=\boldsymbol{P}_{k}{ }^{2}-\boldsymbol{A}_{k}{ }^{2}$. Let $d=\operatorname{deg} f$ and $F\left(X_{0}, X_{1}, X_{2}\right)=X_{0}^{d} f\left(X_{1} / X_{0}, X_{2} / X_{0}\right)$. Then $V\left(F-\lambda X_{0}^{d}\right)$ is the closure in $\boldsymbol{P}_{k}{ }^{2}$ of $V(f-\lambda)$ and the points of $V\left(F-\lambda X_{0}{ }^{d}\right)-V(f-\lambda)$, in one-one correspondence with the irreducible factors of the degree form of f, are the points at infinity of f. We define

$$
1.2 \quad \Lambda(f)=\left\{V\left(\alpha_{0} F+\alpha_{1} X_{0}^{d}\right) \mid\left(\alpha_{0}, \alpha_{1}\right) \in \boldsymbol{P}_{k}{ }^{1}\right\} .
$$

By 1.1, C_{f} is the normalization of $V\left(F-t X_{0}^{d}\right)$. Also, $k(f)[x, y]$ is a regular ring (it is a localization of $k[x, y]$). Hence $V(f-t)$ is an affine open subset of C_{f}. The points of $C_{f}-V(f-t)$ we will call the points at infinity of C_{f}.
1.3 Definition: f is a field generator if there exists $g \in k(x, y)$ such that $k(f, g)=k(x, y)$ or, equivalently, if C_{f} is a rational curve over $k(f)$.

Remark: It does not seem to be known whether, given that f is a field generator, g can be chosen in $k[x, y]$, or, equivalently, whether C_{f} has a point at infinity rational over $k(f)$.
2. Most of the contents of this section are quite well known, and its main purpose is to establish a coherent notation. We assume that k is algebraically closed.

Let S be a complete non-singular surface, $p_{0} \in S$ (all points are assumed to be closed unless otherwise designated) and (see [3, II, § 4, 2]).

$$
\pi: S^{\prime} \rightarrow S
$$

the local quadratic transformation (l.q.t.) or blowing up with centre p_{0}. We denote by $E=\pi^{-1}\left(p_{0}\right)$ the exceptional fibre of π. Let C be a curve on S. We put

$$
\mu\left(p_{0}, C\right)=\text { multiplicity of } p_{0} \text { on } C .
$$

Let $\pi^{\prime}(C)$ be the proper transform and $\pi^{*}(C)=\pi^{\prime}(C)+\mu\left(p_{0}, C\right) E$ the total transform of C on S^{\prime}. Let $(-,-)$ denote the intersection product on both S and S^{\prime}.

Then (see [3, IV, § 3, 2])
2.1 (i) π^{*} preserve linear equivalence and the intersection product.
(ii) $E \simeq \boldsymbol{P}_{k}{ }^{1}$ and $(E, E)=-1$.
(iii) If C is a curve on S,

$$
\left(\pi^{\prime}(C), E\right)=\mu\left(p_{0}, C\right) .
$$

(iv) If C, D are curves on S,
$(C, D)=\left(\pi^{\prime}(C), \pi^{\prime}(D)\right)+\mu\left(p_{0}, C\right) \mu\left(p_{0}, D\right)$.
Let C be an irreducible curve on S. Then the arithmetic genus of C is given by (see $[2, \mathrm{IV}, \S 2,8]$) $p_{a}(C)=1+\frac{1}{2}(C, C+K)$, where K is a canonical divisor on S. Now $K^{\prime}=\pi^{*}(K)+E$ is a canonical divior on S^{\prime} and hence
$2.2 p_{a}(C)=p_{a}\left(\pi^{\prime}(C)\right)+\frac{1}{2} \mu\left(p_{0}, C\right)\left(\mu\left(p_{0}, C\right)-1\right)$.
We note that in case k is not algebraically closed, 2.1 and 2.2 remain valid if p_{0} is rational over k.
2.3 Definition: (i) An infinitely near (i.n.) point of S is a sequence

$$
q=\left(p_{i}, p_{i-1}, \cdots, p_{0}\right)
$$

such that $p_{0} \in S_{0}=S$ and for $0<j \leq i, p_{j} \in \pi_{j}^{-1}\left(p_{j-1}\right)=E_{j} \subset S_{j}$, where

$$
\pi_{j}: S_{j} \rightarrow S_{j-1}
$$

is the l.q.t. with centre p_{j-1}. We will also say that q is infinitely near to p_{0}. An i.n. point $q=\left(p_{0}\right)$ will be called an ordinary point of S.
(ii) Let D be a curve on S. Then

$$
\mu(q, D)=\mu\left(p_{i}, D^{(i)}\right),
$$

where $D^{(i)}$ is the proper transform of D on S_{i}. We say q is on D if $\mu(q, D)>0$, i.e. $p_{i} \in D^{(i)}$. (Note that then all i.n. points $q_{j}=\left(p_{j}\right.$, $\left.\cdots, p_{0}\right), 0 \leq j \leq i$, are on D.)

Remark: Let $\pi_{j}: S_{j} \rightarrow S_{j-1}, j=1, \cdots, l$ be a sequence of l.q.t. and $p \in S_{l}$. Then p determines uniquely an i.n. point $q=\left(p_{i}, \cdots, p_{0}\right)$ (with $i<l$ in general). If there is no danger of confusion, we will call p an i.n. point of S_{0}.

Let Λ be a linear system of curves on S and $p \in S$. We put

$$
\mu(p, \Lambda)=\min \{\mu(p, D) \mid D \in \Lambda\}
$$

(Then $\mu(p, \Lambda)$ is the multiplicity at p of a general member of Λ, i.e. $\mu(p, \Lambda)=\mu(p, D)$ for D ranging over a dense open subset of Λ.) Let π be the l.q.t. with centre p. Then

$$
\pi^{*}(\Lambda)=\left\{\pi^{*}(D) \mid D \in \Lambda\right\}
$$

the total transform of Λ, is a linear system with $\mu(p, \Lambda) E$ as fixed component. We define the proper transform of Λ by

$$
\pi^{\prime}(\Lambda)=\left\{\pi^{*}(D)-\mu(p, \Lambda) E \mid D \in \Lambda\right\} .
$$

$\pi^{\prime}(\Lambda)$ is a linear system not having E as fixed component. We note that as a consequence of 2.1 (iv)

$$
2.4(\Lambda, \Lambda)=\left(\pi^{\prime}(\Lambda), \pi^{\prime}(\Lambda)\right)+\mu(p, \Lambda)^{2}
$$

(where $(\Lambda, \Lambda)=\left(D, D^{\prime}\right)$ for any $\left.D, D^{\prime} \in \Lambda\right)$.
2.5 Definition: Let $q=\left(p_{i}, \cdots, p_{0}\right)$ be an i.n. point of S.
(i) $\mu(q, \Lambda)=\mu\left(p_{i}, \Lambda^{(i)}\right)$, where $\Lambda^{(i)}$ is the proper transform of Λ on S_{i}.
(ii) q is a base point of Λ if $\mu(q, \Lambda)>0 . \quad B=B(\Lambda)$ is the set of base points of Λ. (Note that B is finite if Λ has no fixed component.)
(iii) Let $\pi_{i+1}: S_{i+1} \rightarrow S_{i}$ be the l.q.t. with centre p_{i} and $E_{i+1}=\pi_{i+1}^{-1}\left(p_{i}\right)$. Suppose q is a base point. Then q is non-terminal if a general member of $\Lambda^{(i+1)}$ meets E_{i+1} only in base points of Λ. Otherwise, q is terminal.
2.6 Remark: Suppose Λ is one-dimensional and let $g=\alpha_{0} f_{0}$ $+\alpha_{1} f_{1},\left(\alpha_{0}, \alpha_{1}\right) \in \boldsymbol{P}_{k}{ }^{1}$ be a local equation of $\Lambda^{(i)}$ at p_{i}. Let F_{0}, F_{1} be the leading forms of f_{0}, f_{1} and G the leading form of g for general $\left(\alpha_{0}, \alpha_{1}\right)$. Then there are the following possibilities:
(i) $\operatorname{deg} F_{0} \neq \operatorname{deg} F_{1}$, say $\operatorname{deg} F_{0}<\operatorname{deg} F_{1}$. Then $G=\alpha_{0} F_{0}$.
(ii) $\operatorname{deg} F_{0}=\operatorname{deg} F_{1}$ and $F_{1}=\beta F_{0}, \beta \in k$. Then $G=\left(\alpha_{0}+\beta \alpha_{1}\right) F_{0}$.
(iii) $\operatorname{deg} F_{0}=\operatorname{deg} F_{1}$ and $H=G C D\left(F_{0}, F_{1}\right) \neq F_{0}$. Then $F_{0}=H \tilde{F}_{0}$, $F_{1}=H \widetilde{F}_{1}$ with $G C D\left(\widetilde{F}_{0}, \widetilde{F}_{1}\right)=1$ and $\operatorname{deg} \widetilde{F}_{0}=\operatorname{deg} \widetilde{F}_{1}>0$. Now. $G=$ $H\left(\alpha_{0} \widetilde{F}_{0}+\alpha_{1} \widetilde{F}_{1}\right)$.

The points of $\Lambda^{(i+1)}$ on E_{i+1} are given by the different irreducible factors of G. In cases (i) and (ii) these are independent of (α_{0}, α_{1}) and lead to base points of $\Lambda^{(i+1)}$ on E_{i+1}. In case (iii), factors of $\alpha_{0} F_{0}+\alpha_{1} F_{1}$ depend on (α_{0}, α_{1}) and do not lead to base points. So q is terminal in that case.
2.7 Definition: Assume Λ has no fixed component. Let $p \in S$. Then

$$
m(p)=m(p, \Lambda)=\sum \mu(q, \Lambda)
$$

the sum extended over all base points of Λ i.n. to p. If $T \subset S$, then

$$
m(T)=m(T, \Lambda)=\sum_{p \in T} m(p, \Lambda)
$$

A pencil Λ on S, which we assume to be without fixed component, defines a rational map $\lambda: S \rightarrow \boldsymbol{P}_{k}{ }^{1}$.
2.8 Definition: The generic member Λ_{η} of Λ is the fibre of λ over the generic point η of $\boldsymbol{P}_{k}{ }^{1}$.
Λ_{η} is a curve on $S \otimes \kappa(\eta)$, where $\kappa(\eta)$ is the residue field of η. Since $\kappa(\eta)$ is purely transcendental over k, an ordinary base point of Λ on S defines, by extension of scalars, a unique point on Λ_{η}. We then have the following easy version (which has the advantage of being true if char $k>0$) of Bertini's theorem.
2.9 Lemma: The generic member of a pencil without fixed component is regular outside the base points of the pencil.

Proof: We can cover S by affine open sets U with coordinate rings A such that there exist $f_{0}, f_{1} \in A$ with

$$
\Lambda \mid U=\left\{V\left(\alpha_{0} f_{0}+\alpha_{1} f_{1}\right) \mid\left(\alpha_{0}, \alpha_{1}\right) \in \boldsymbol{P}_{k}{ }^{1}\right\}
$$

and $\left(f_{0}, f_{1}\right) A$ a zero-dimensional ideal. Then there is a $t \in \kappa(\eta)$ such that $\kappa(\eta)=k(t)$ and $f_{0}+t f_{1}$ is an equation for Λ_{η} in $A \otimes k(t)$. Now generalizing 1.1

$$
\left(A \otimes k[t] / f_{0}+t f_{1}\right)_{f_{1}} \simeq A_{f_{1}}
$$

and hence $\left(A \otimes k(t) / f_{0}+t f_{1}\right)_{f_{1}} \simeq T^{-1} A_{f_{1}}$, where $T \subset A_{f_{1}}$ is the multiplicative set of all non zero polynomials over k in f_{0} / f_{1}. Let $I \subset A$ $\otimes k(t)$ be the maximal ideal of a point p on Λ_{η} (i.e. $f_{0}+t f_{1} \in I$). If $f_{1} \notin I$, then p is a regular point of Λ_{η} by the above since $T^{-1} A_{f_{1}}$ is a regular ring. If, on the other hand, $f_{1} \in I$, then $f_{0} \in I$ and it follows that I is the extension to $A \otimes k(t)$ of a maximal ideal $I^{\prime} \subset A$ such that $f_{0}, f_{1} \in I^{\prime}$. Hence p is a base point of Λ.

Remark: The strong version of Bertini's theorem asserts regularity of Λ_{η} over the algebraic closure of $\kappa(\eta)$. This, of course, may fail if char $k>0$.

Let p be an ordinary base point of Λ. It is easily seen (for instance by the discussion in 2.6) that $\mu(p, \Lambda)=\mu\left(p, \Lambda_{\eta}\right)$, and it follows that the proper transform of Λ_{η} under the l.q.t. with center p is the generic member of the proper transform of $\Lambda .2 .9$ therefore extends to i.n. points, that is, all i.n. singular points of Λ_{η} are base points of Λ. In particular, they are rational over $\kappa(\eta)$.

Since Λ has no fixed component, we can find a sequence of l.q.t.

$$
S^{*}=S_{l} \xrightarrow{\pi_{l}} S_{l-1} \rightarrow \cdots \rightarrow S_{1} \xrightarrow{\pi_{1}} S_{0}=S
$$

with centres at base points of Λ and such that Λ^{*}, the proper transform of Λ on S^{*}, is free of base points. Then $\left(\Lambda^{*}, \Lambda^{*}\right)=0$ since two distinct members of Λ^{*} do not meet. By repeated application of 2.4
$2.10(\Lambda, \Lambda)=\sum \mu(q, \Lambda)^{2}, \quad q \in B$.
Now Λ_{η}^{*} is regular and obtained from Λ_{η} by l.q.t. with centres rational over $\kappa(\eta)$. Hence $\Lambda_{\eta}{ }^{*}$ is the normalization of Λ_{η} and $p_{a}\left(\Lambda_{\eta}{ }^{*}\right)=g$, the genus of $\kappa\left(\Lambda_{\eta}\right)$ over $\kappa(\eta)$, where $\kappa\left(\Lambda_{\eta}\right)$ is the function field of Λ_{η}. By repeated application of 2.2 we obtain
$2.11 p_{a}\left(\Lambda_{\eta}\right)=g+\frac{1}{2} \sum \mu(q, \Lambda)(\mu(q, \Lambda)-1), \quad q \in B$.
3. We assume that k is algebraically closed in this section. Otherwise we return to the notation of section 1 .

Let $f \in k[x, y], d=\operatorname{deg} f>0$ and $\Lambda=\Lambda(f)$ (see 1.2). Then d^{2} $=(\Lambda, \Lambda)$ and $p_{a}\left(\Lambda_{\eta}\right)=\frac{1}{2}(d-1)(d-2)$. By 2.10 and 2.11 we have
3. $1 \quad d^{2}=\sum \mu(q, \Lambda)^{2}, \quad q \in B$,
$3.2(d-1)(d-2)=2 g+\sum \mu(q, \Lambda)(\mu(q, \Lambda)-1), \quad q \in B$.
Hence
3. $3 \sum \mu(q, \Lambda)=3 d+2(g-1), \quad q \in B$.

Here g is the genus of C_{f}, or of $k(x, y)$, over $k(f)$.
Pencils of type $\Lambda(f)$ have the d-fold line at infinity as a member. In fact, $\Lambda_{\infty}=V\left(X_{0}{ }^{d}\right)=d L$, where Λ_{∞} is the member of Λ given by $\alpha_{0}=0, \alpha_{1}=1\left(\infty=(0,1) \in \boldsymbol{P}_{k}{ }^{1}\right)$. We wish to exploit this special property. Let

$$
S_{l} \xrightarrow{\pi_{l}} S_{l-1} \rightarrow \cdots \rightarrow S_{1} \xrightarrow{\pi_{1}} S_{0}=\boldsymbol{P}_{k}{ }^{2}
$$

be a composite of l.q.t. Let $p_{j} \in S_{j}$ be the centre of π_{j+1} and E_{j+1} $=\pi_{j+1}^{-1}\left(p_{j}\right), j=0, \cdots, l-1$. Put $E_{0}=L$. If D is a curve on some S_{i}, denote by $D^{(j)}$ its proper transform on $S_{j}, j \geq i$. $\Lambda^{(j)}$ will be the proper transform of Λ on S_{j}, and $\Lambda_{\infty}{ }^{(j)}$ the member of $\Lambda^{(j)}$ given by ∞ $\in \boldsymbol{P}_{k}{ }^{1}$ (to be distinguished from $\left.\left(\Lambda_{\infty}\right)^{(f)}\right)$.
3.4 Definition: Let D be an irreducible curve on S_{l}. $\varepsilon(D)$ is the multiplicity of D as a component of $\Lambda_{\infty}{ }^{(l)}$, i.e. $\Lambda_{\infty}{ }^{(l)}=\varepsilon(D) D+C$, where C does not have D as a component.

We note the following facts concerning $\varepsilon(D)$.
3.5.1 $D=\pi_{\iota}^{\prime}(\widetilde{D})$ for some $\widetilde{D} \subset S_{\iota-1}$, then $\varepsilon(D)=\varepsilon(\widetilde{D})$.
3.5.2 $\varepsilon\left(E_{0}\right)=d$.
3.5.3 $\varepsilon(D) \geq 0$ and if $\varepsilon(D)>0$, then $D=E_{i}{ }^{(l)}$ for some $i \leq l$.
3.5.4 $\varepsilon\left(E_{l}\right)=\sum_{j=0}^{l-1} \varepsilon\left(E_{j}\right) \mu\left(p_{l-1}, E_{j}^{(l-1}\right)-\mu\left(p_{l-1}, \Lambda^{(l-1)}\right)$.

In fact, by 3.5 .1 and by 3.5 .3 ,
$\sum_{j=0}^{l-1} \varepsilon\left(E_{j}\right) \mu\left(p_{l-1}, E_{j}^{(l-1)}\right)=\mu\left(p_{l-1}, \Lambda_{\infty}{ }^{(l-1)}\right)=$ multiplicity of E_{l} in $\pi_{l}{ }^{*}\left(\Lambda_{\infty}{ }^{(l-1)}\right)$.

Remark: $\mu\left(p_{l-1}, E_{j}{ }^{l-1}\right)=0$ or 1 , and 1 for at most two j.
3.5.5 If p_{l-1} is a terminal base point of Λ (see 2.5), then $\varepsilon\left(E_{l}\right)=0$.

In fact, E_{l} is not a fixed component of $\Lambda^{(l)}$, but $\Lambda^{(l)}$ meets E_{l} in infinitely many points. Hence E_{ι} is not a component of any member of $\boldsymbol{\Lambda}^{(l)}$.
3.5.6 If p_{l-1} is a base point of Λ and $\varepsilon\left(E_{l}\right)>0$, then all points of (a general member of) $\Lambda^{(l)}$ on E_{l} are base points of Λ, and there is at least one such.

In fact, since p_{l-1} is a base point, all members of $\Lambda^{(l)}$ meet E_{l}. But E_{l} is a component of $\Lambda_{\infty}{ }^{(l)}$, and hence if $\Lambda_{\infty}{ }^{(l)} \neq D \in \Lambda^{(l)}, D$ meets E_{l} only in base points of Λ.
3.5.7 Let $p_{l} \in E_{l}$ be a base point of Λ. Then $\varepsilon\left(E_{l}\right) \leq m\left(p_{l}\right)$ (see 2.7).

In fact, we can find an i.n. point $\left(p_{l+r}, \cdots, p_{l}\right)$ of S_{ι} such that p_{l+r} is a terminal base point of Λ. If E_{l+j+1} is the exceptional fibre
above p_{l+j}, then $p_{l+j} \in E_{t+j}, j=0, \cdots, r$, and

$$
\varepsilon\left(E_{l+r+1}\right) \geq \varepsilon\left(E_{l}\right)-\sum_{j=0}^{r} \mu\left(p_{l+j}, \Lambda^{(l+j)}\right)
$$

be repeated application of 3.5.4. Now $\varepsilon\left(E_{l+r+1}\right)=0$ by 3.5 .5 and hence $\varepsilon\left(E_{l}\right) \leq \sum_{j=0}^{r} \mu\left(p_{l+j}, \Lambda^{(l+j)}\right) \leq m\left(p_{l}\right)$.
3.5.8 Let s be the number of i.n. base points of Λ on E_{l}. Then $s \varepsilon\left(E_{l}\right) \leq m\left(E_{l}\right)$ (see 2.7).

In fact, suppose $q=\left(p_{l+r}, \cdots, p_{l}\right)$ is a base point of Λ on E_{l}. Then $q_{0}=\left(p_{l}\right), q_{1}=\left(p_{l+1}, p_{l}\right), \cdots, q_{l+r}=q$ are base points of Λ on E_{l}. We have $\mu\left(p_{l+j}, E_{l}^{(l+j)}\right)=1$ and $\mu\left(p_{l+j}, E_{l+j}\right)=1$ for $j=0, \cdots, r$. Repeated application of 3.5.4 gives

$$
\varepsilon\left(E_{l+r+1}\right) \geq(r+1) \varepsilon\left(E_{l}\right)-\sum_{j=0}^{r} \mu\left(p_{l+j}, \Lambda^{(l+j)}\right) .
$$

If $\varepsilon\left(E_{l+r+1}\right)=0$, let $m=0$. Otherwise there is a base point p_{l+r+1} of Λ on E_{l+r+1} by 3.5.6, and we let $m=m\left(p_{l+r+1}\right) \geq \varepsilon\left(E_{l+r+1}\right)$ (by 3.5.7). Hence $(r+1) \varepsilon\left(E_{l}\right) \leq \sum_{j=0}^{r} \mu\left(p_{l+j}, \Lambda^{(l+j)}\right)+m \leq m\left(p_{l}\right)$. We may assume that $r+1$ is the exact number of base points of Λ on E_{l} i.n. to p_{l} (p_{l} determines a unique maximal sequence of them). Summing over all ordinary base points of $\Lambda^{(l)}$ on E_{l} we obtain the desired result.
3. 6 Theorem: Let $f \in k[x, y], d=\operatorname{deg} f>0, g$ the genus of $k(x, y)$ over $k(f)$ and s the number of points of f on the line at infinity of $\boldsymbol{A}_{\boldsymbol{k}}{ }^{2}$, including all infinitely near points. Then

$$
(s-3) d \leq 2(g-1)
$$

Proof: The i.n. points of f on L, that is the i.n. points common to $V(F)$ and L, are base points of $\Lambda=\Lambda(f)$ since $V(F)$ and L are components of different members of Λ. Also, Λ has no base points on $\boldsymbol{A}_{k}{ }^{2}$, and hence $m(L)=\sum \mu(q, \Lambda), q \in B . \quad$ By 3.5.2,3.5.8 and 3.3 we have $s d \leq 3 d+2(g-1)$.
3.7 Corollary: Let $f \in k[x, y]$ be a field generator. Then there are at most two infinitely near points of f on the line at in-
finity of $\boldsymbol{A}_{k}{ }^{2}$. In particular, the degree form of f has at most two distinct irreducible factors.

Proof: $k(x, y)$ is purely transcendental over $k(f)$, so $g=0$ and $(s-3) d<0$. Hence $s \leq 2$.
3. 8 Proposition: Let k be any field and f a field generator over k. Then the points at infinity of f are rational over k, that is, the degree form of f splits into linear factors over k.

Proof: The points at infinity of f are base points of $\Lambda(f)$. We will consider them as points of $\Lambda_{\eta}=V\left(F-t X_{0}^{d}\right)$ and show that they are rational over $k(t)$. Now over $\bar{k}(t), \bar{k}$ an algebraic closure of k, there are at most two, and hence over $k(t)$ there are at most two with the sum of their separable degrees ≤ 2.

Note that $V(f-t) \subset C_{f}$ contains a point q rational over $k(t)$ since C_{f} is a rational curve. Also $R=k(t)[X, Y] / f-t$ has unique factorization by 1.1 and there exists $h \in R$ such that $(h)=q+\sum_{i=1}^{r} n_{i} \bar{q}_{i}$, where $\bar{q}_{1}, \cdot \cdot, \bar{q}_{r}$ are the points at infinity of C_{f} and (h) is the divisor of h on C_{f}. Hence $G C D\left(\operatorname{deg} \bar{q}_{1}, \cdots, \operatorname{deg} \bar{q}_{r}\right)=1$, and it follows that $G C D\left(\operatorname{deg} q_{1}, \cdots, \operatorname{deg} q_{s}\right)=1$ if q_{1}, \cdots, q_{s} are the points at infinity of f. We conclude that there is at least one q_{i} rational over $k(t)$ and, possibly, one more, q_{1} say, purely inseparable over $k(t)$. Let in that case κ be the residue field of q_{1} and $[\kappa: k(t)]=p^{n}=b$, where $p=$ char k. We note that Λ_{η} is not tangent to L at q_{1} over $\bar{k}(t)$ since f already has two ordinary points at infinity.

Let A be the local ring of q_{1} on $\boldsymbol{P}_{k(t)}^{2}$ and M the maximal ideal of A. Now there exist parameters u, v for A such that v is a local equation for L and $u=x^{b}-a$, where $a \in k-k^{p}$ and $x \bmod M$ generates κ over $k(t)$. Now $\bar{A}=A \otimes_{k(t)} \kappa$ is the local ring of q_{1} on $\boldsymbol{P}_{k}{ }^{2}$ and there exist parameters \bar{u}, \bar{v} for \bar{A} such that $\bar{u}^{b}=u \otimes 1$ and $\bar{v}=v \otimes 1$. Let $g \in A$ be a local equation for Λ_{η} at q_{1}. Then monomials appearing in the power series expansion of $\bar{g}=g \otimes 1$ are of the form $\bar{u}^{b i} \bar{v}^{j}$, where $u^{i} v^{j}$ appears in the power series expansion of g. Since, as
stated above, \bar{v} and \bar{g} are not tangent, a term $\bar{u}^{b e}$ appears in the leading form of \bar{g}. But $b i+j \geq b e$ implies $i+j>e$ if $b>1$, and the leading form of g is u^{e}. Hence $g-u^{e} \in M^{c+1}$. It follows that if \bar{q}_{1} is a point of C_{f} above q_{1}, then $u=x^{b}-a$ has value ≥ 2 at \bar{q}_{1}. By [4, prop. on p. 405 and thm. 2] the genus of C_{f} drops if the base field is extended to κ, and this is impossible if f is a field generator.
4. An automorphism $\varphi: \boldsymbol{A}_{k}{ }^{2} \rightarrow \boldsymbol{A}_{k}{ }^{2}$ given by $\varphi^{*}: k[x, y] \rightarrow k[x, y]$ is elementary if either $\varphi^{*}(x)=x$ and $\varphi^{*}(y)=y+g(x), g \in k[x]$, or both $\varphi^{*}(x)$ and $\varphi^{*}(x)$ are linear. φ is tame if it can be written as a composite of elementary automorphisms.

An automorphism φ of $\boldsymbol{A}_{\boldsymbol{k}}{ }^{2}$ determines a rational map

$$
\widetilde{\varphi}_{0}: \boldsymbol{P}_{k}{ }^{2}=S \rightarrow \widetilde{S}=\boldsymbol{P}_{k}{ }^{2}
$$

such that $\widetilde{\varphi}_{0} \mid \boldsymbol{A}_{k}{ }^{2}=\varphi$. Now either $\tilde{\varphi}_{0}$ is a morphism (in case φ is linear), or $\tilde{\varphi}_{0}$ has a unique fundamental point p_{0}. In fact, p_{0} is the unique point of S corresponding to \widetilde{E}_{0}, the line at infinity of \widetilde{S}, which is the only irreducible curve on \widetilde{S} not corresponding to a curve on S. Clearly $p_{0} \in E_{0}$, the line at infinity of S. Let

$$
\pi_{1}: S_{1} \rightarrow S_{0}=S
$$

be the l.q.t. with centre p_{0} and

$$
\tilde{\varphi}_{1}: S_{1} \rightarrow \tilde{S}
$$

the rational map such that $\widetilde{\varphi}_{1}=\widetilde{\varphi}_{0} \circ \pi_{1}$. Again, $\widetilde{\varphi}_{1}$ is a morphism or has a unique fundamental point $p_{1} \in \pi_{1}^{-1}\left(p_{0}\right)=E_{1}$. Continuing we obtain uniquely a sequence of l.q.t.
4. $1 \quad S_{l} \xrightarrow{\pi_{l}} S_{l-1} \rightarrow \cdots \rightarrow S_{1} \xrightarrow{\pi_{1}} S_{0}$
and rational maps

$$
\tilde{\varphi}_{j}: S_{g} \rightarrow \tilde{S}, j=0, \cdots, l
$$

such that $\tilde{\varphi}_{l}$ is a morphism and for $j=0, \cdots, l-1$
(i) $\widetilde{\varphi}_{j+1}=\widetilde{\varphi}_{j} \circ \pi_{j+1}$,
(ii) p_{j}, the centre of π_{j+1}, is a fundamental point of $\tilde{\varphi}_{g}$,
(iii) $p_{j} \in E_{j}$, where $E_{j}=\pi_{j}^{-1}\left(p_{j-1}\right)$ (for $j \geq 1$).

Remark: P_{0}, \cdots, p_{t-1} are the i.n. base points of the linear system $\Phi=\left\{V\left(\alpha_{0} \varphi^{*}(x)+\alpha_{1} \varphi^{*}(y)+\alpha_{2}\right)\right\}$.

The following now is easily verified by direct calculation (computing the base points of successive proper transforms of Φ, for instance). As before, if D is a curve on $S_{i}, D^{(f)}$ will be its proper transform on $S_{j}, j \geq i$.
4. 2 Suppose $\varphi^{*}(x)=x$ and $\varphi^{*}(y)=y+a_{2} x^{2}+\cdots+a_{n} x^{n}, n \geq 2$, $a_{i} \in k, a_{n} \neq 0$. Then the sequence 4.2 is determined as follows
(i) $l=2 n-1$,
(ii) $p_{0} \in E_{0}, p_{1} \in E_{0}{ }^{(1)} \cap E_{1}$,
(iii) for $2 \leq j \leq n-1, p_{j} \in E_{1}{ }^{(j)} \cap E_{j}$,
(iv) for $n \leq j \leq 2 n-2, p_{j} \notin E_{i}^{(f)}$ for any $i<j$,
(v) p_{n} is in one-one correspondence with $a_{n}, a_{n} \neq 0$, and for $n+1 \leq j \leq 2 n-2$, once p_{n}, \cdots, p_{j-1} and $a_{n}, \cdots, a_{2 n-j+1}$ are fixed, p_{j} is in one-one correspondence with $a_{2 n-j}$.

The figure below gives a schematic description of the configuration of $E_{0}, \cdots, E_{2 n-1}$ (or rather, their proper transforms) on $S_{2 n-1}$. The number given in parenthese behind each E_{i} is ($E_{i}^{(2 n-1)}, E_{i}^{(e n-1)}$). $E_{0}(-1) E_{2}(-2) E_{n-1}(-2) E_{n}(-2) E_{n+1}(-2) E_{2 n-2}(-2) E_{2 n-1}(-1)$

Now $\widetilde{\varphi}_{2 n-1}$ maps $E_{2 n-1}$ isomorphically onto \widetilde{E}_{0}, and $\widetilde{\varphi}_{2 n-1}$ is a composite

$$
\tilde{\varphi}_{2 n-1}=\tilde{\pi}_{1} \circ \cdots \circ \tilde{\pi}_{2 n-1}
$$

of l.q.t. which, looked at from the top, consist in shrinking successively the proper transforms of $E_{0}, E_{2}, \cdots, E_{2 n-2}, E_{1}$. (This can again be verified by direct calculation. It helps to note that $\left(\widetilde{\varphi}_{0}\right)^{-1}=\bar{\psi}_{0}$, where $\psi^{*}(x)=x$ and $\psi^{*}(y)=y-a_{2} x^{2}-\cdots-a_{n} x^{n}$, so that $\left(\widetilde{\varphi}_{0}\right)^{-1}$ has a sequence of i.n. fundamental points of the same type as $\tilde{\varphi}_{0}$.) Hence if \widetilde{E}_{j} is the exceptional fibre of $\tilde{\pi}_{j}$
4.3 (i) $E_{0}{ }^{(2 n-1)}=\widetilde{E}_{2 n-1}, E_{2 n-1}=\widetilde{E}_{0}{ }^{(2 n-1)}$,
(ii) $\quad E_{1}^{(2 n-1)}=\widetilde{E}_{1}^{(2 n-1)}$,
(iii) $\quad E_{2 n-j}^{(2 n-1)}=\widetilde{E}_{j}^{(2 n-1)}, j=2, \cdots, 2 n-2$.

Conditions (i) to (iv) of 4.2 allow, in view of (v), the reconstruction of ψ up to automorphisms of S and \widetilde{S} induced by linear automorphisms of $\boldsymbol{A}_{k}{ }^{2}$. Hence
4.4 Lemma: Suppose 4.1 is a sequence of l.q.t. such that conditions (i) to (iv) of 4.2 are satisfied. Let $\pi=\pi_{1} \circ \cdots \circ \pi_{2 n-1}$. Then there cxists an elementary automorphism $\varphi: \boldsymbol{A}_{k}{ }^{2} \rightarrow \boldsymbol{A}_{k}{ }^{2}$ and a morphism $\tilde{\pi}: S_{2 n-1} \rightarrow \boldsymbol{P}_{k}{ }^{2}$ such that

commutes and $\tilde{\pi}=\tilde{\pi}_{1} 0 \cdots \circ \tilde{\pi}_{2 n-1}$ is a composite of l.q.t. such that 4.3 is satisfied.
4.5 Theorem: Let $f \in k[x, y]$ be a field generator. Then there exists a tame automorphism $\psi: \boldsymbol{A}_{k}{ }^{2} \rightarrow \boldsymbol{A}_{k}{ }^{2}$ such that either $\psi^{*}(f)$ is of degree 1 or the degree form of $\psi^{*}(f)$ has two distinct irreducible factors. Equivalently, $V\left(\psi^{*}(f)\right)=\psi^{-1}(V(f))$ is cither a line or has two (ordinary) points at infinity.

Proof: We assume first that k is algebraically closed. Our aim is to show that $\Lambda(f)=\Lambda$ has a sequence of i.n. base points as described in 4.2 (i) to (iv). We keep the notation used there and put $\mu_{i}=\mu\left(p_{i}, \Lambda^{(i)}\right)$.

Suppose Λ has only one ordinary base point on E_{0}, p_{0} say. Since $d=\operatorname{deg} f=\left(E_{0}, \Lambda\right)\left(\left(E_{0}, \Lambda\right)=\left(E_{0}, D\right)\right.$ for any $\left.D \in \Lambda\right)$ and since a general member of Λ is irreducible $(k(f)$ is algebraically closed in $k(x, y))$ either $d=1$ or Λ is tangent to E_{0} at p_{0}, i.e. there is a second i.n. base point $\left(p_{1}, p_{0}\right)$ on E_{0}. By 3.7 there are at most two, and hence
(assuming $d>1$)
(1)

$$
d=\mu_{0}+\mu_{1}
$$

by 2.1 (iv). Arguing as in the proof of 3.6 , we have $m\left(E_{0}\right)=3 d-2$. Hence $m\left(E_{2}\right) \leq m\left(E_{0}\right)-\mu_{0}-\mu_{1}=2 d-2$. Now $\varepsilon\left(E_{1}\right)=d-\mu_{0}$ and $\varepsilon\left(E_{2}\right)$ $=\varepsilon\left(E_{0}\right)+\varepsilon\left(E_{1}\right)-\mu_{1}=d$ by 3.5.4. If s is the number of i.n. base points of Λ on E_{2}, we therefore have $s \leq 1$ by 3.5.8. On the other hand, $s \geq 1$ by 3.5.6. Suppose now there is a unique i.n. base point p_{j} of Λ on E_{j} and $p_{j} \in E_{1}^{(j)}, j=2, \cdots, r$. Then $\mu_{r}=\left(E_{r}, \Lambda^{(r)}\right)$ by 2.1 (iv) and $\left(E_{r}, \Lambda^{(r)}\right)=\mu_{r-1}$ by 2.1 (iii). Also $m\left(E_{r}\right) \leq m\left(E_{2}\right) \leqq 2 d-2$. Hence $\mu_{r}=\mu_{1}$ and $\varepsilon\left(E_{r}\right)=d$ by induction on r, and we see as before that there is a unique base point p_{r+1} of Λ on E_{r+1}.

Let then n be the first integer such that p_{n}, the unique base point of Λ on E_{n}, is not on $E_{1}{ }^{(n)}$. We note that

$$
\begin{gather*}
n \geq 2, \tag{2}\\
\mu_{j}=\mu_{1}, \quad j=2, \cdots, n, \tag{3}\\
\varepsilon\left(E_{n}\right)=d, \tag{4}
\end{gather*}
$$

(5) $\mu_{0}=\left(E_{1}, \Lambda^{(1)}\right)=(n-1) \mu_{1}+\nu$, where $\nu \geq 0$ is the contribution to ($E_{1}, \Lambda^{(1)}$) arising from base points on E_{1} other than p_{1}. In particular, $\mu_{0} \geq(n-1) \mu_{1}$.

We now show by induction on r that for $r<n-2$
(i) there is a unique base point p_{n+r+1} of Λ on E_{n+r+1}, and p_{n+r+1} $\notin E_{j}{ }^{(n+r+1)}$ for $j \leq n+r$,
(ii) $\varepsilon\left(E_{n+r+1}\right)=\mu_{0}-r \mu_{1}>0$
(iii) $\mu_{n+r+1}=\mu_{1}$.

In fact, this is true for $r=-1$. So let $-1<r<n-2$ and assume it is true for $r^{\prime}<r$. Then $p_{n+r} \in E_{j}^{(n+r)}$ for $j=n+r$ only and $\varepsilon\left(E_{n+r+1}\right)$ $=\varepsilon\left(E_{n+r}\right)-\mu_{n+r}=\mu_{0}-r \mu_{1}$, and by (5), $\mu_{0}-r \mu_{1}>0$. This proves (ii) for r. Now

$$
\sum_{i=0}^{n+r} \mu_{i}+m\left(E_{n+r+1}\right) \leq 3 d-2
$$

and $\sum_{i=0}^{n+r} \mu_{i}=\mu_{0}+(n+r) \mu_{1}$ by (3) and (iii). Hence if s is the num-
ber of i.n. base points of Λ on E_{n+r+1},

$$
\mu_{0}+(n+r) \mu_{1}+s\left(\mu_{0}-r \mu_{1}\right) \leq 3 d-2,
$$

or, using (1), $(s-2) \mu_{0}+(n+r-s r-3) \mu_{1} \leq-2$. So if $s \geq 2$, we have, using (5), $s(n-r-1)-n+r-1 \leq-\left(2 / \mu_{1}\right)<0$. Since the left hand side is an integer, $s(n-r-1) \leq n-r$ and $s \leq(n-r) /(n-r-1)<2$ (since $n-r-1 \geq 2$). Hence $s \geq 2$ leads to a contradiction and $s \leq 1$. On the other hand, $s \geq 1$ in view of (ii). We have

$$
\mu_{n+r+1}=\left(E_{n+r+1}, \Lambda^{(n+r+1}\right)=\mu_{n+r},
$$

repeating an earlier argument. Also, $p_{n+r} \notin E_{j}{ }^{(n+r)}$ for $j<n+r$ implies $p_{n+r+1} \notin E_{j}^{(n+r+1)}$ for $j<n+r$, and by uniqueness of p_{n+r} as base point of Λ on $E_{n+r}, p_{n+r+1} \notin E_{n+r}^{(n+r+1)}$. This proves (i) and (iii). We note that $\Lambda^{(2 n-1)}$ has base points only on $E_{1}^{(2 n-1)}$ and $E_{2 n-1}$, and no other $E_{j}{ }^{(2 n-1)}$. Hence

$$
\begin{equation*}
\left(E_{j}^{(2 n-1)}, \Lambda^{(2 n-1)}\right)=0, \quad j=0,2,3, \cdots, 2 n-2 . \tag{6}
\end{equation*}
$$

In view of (5)

$$
\begin{equation*}
\left(E_{1}{ }^{(2 n-1)}, \Lambda^{(2 n-1}\right)=\nu<\mu_{0} \tag{7}
\end{equation*}
$$

and, using (3) and (iii)

$$
\begin{equation*}
\left(\Lambda^{(2 n-1)}, \Lambda^{(2 n-1)}\right)=d^{2}-\sum_{i=0}^{2 n-2} \mu_{i}^{2}=d^{2}-\left(\mu_{0}^{2}+(2 n-2) \mu_{1}^{2}\right) \tag{8}
\end{equation*}
$$

We have arrived at a sequence of l.q.t. as required to apply 4.4. Let φ be as in 4.4 and put $\psi=\varphi^{-1}$. Then $\varphi(V(f))=V\left(\psi^{*}(f)\right)$, and if $\tilde{\Lambda}=\Lambda\left(\psi^{*}(f)\right)$ (considered as pencil on $\left.\tilde{S}\right)$, then $\Lambda^{(2 n-1)}=\tilde{\Lambda}^{(2 n-1)}$. Put $\tilde{d}=\operatorname{deg} \psi^{*}(f)$. Then

$$
\begin{equation*}
\tilde{d}^{2}=(\tilde{\Lambda}, \tilde{\Lambda})=\left(\Lambda^{(2 n-1)}, \Lambda^{(2 n-1)}\right)+\nu^{2} \tag{9}
\end{equation*}
$$

in view of (6), (7) and 4.3 (the salient point there is that E_{1} is the last curve to be shrunk under $\tilde{\pi}$). Finally, combining (8) and (9), we conclude that $\tilde{d}^{2}<d^{2}$, and the degree of f has been reduced by an elementary automorphism. We can continue until either $\operatorname{deg} f=1$ or f has two (ordinary) points at infinity.

If k is not algebraically closed, we repeat the preceding argument over an algebraic closure \bar{k} of k. The ordinary base points of Λ on
E_{0} are rational over k by 3.8. If there is only one, p_{0}; we have inductively $p_{1}=E_{0}{ }^{(1)} \cap E_{1}, p_{2}=E^{(2)} \cap E_{2}, \cdots, p_{n-1}=E_{1}^{(n-1)} \cap E_{n-1}$ rational over k. Also, since over \bar{k} there is a unique base point p_{n+r} on $E_{n+r}, r=0$, $\cdots, n-2, p_{n+r}$ is purely inseparable over k. Then the argument given at the end of the proof of 3.8 shows that p_{n+r} is rational over k. Hence φ has coefficients in k.
4. 6 Corollary (Jung, Van der Kulk): Every automorphism φ of $\boldsymbol{A}_{k}{ }^{2}$ is tame.

Proof: $\varphi^{*}(x)$ is a field generator and $V\left(\varphi^{*}(x)\right) \simeq V(x)=\boldsymbol{A}_{k}{ }^{1}$ has only one (ordinary) point at infinity. By the theorem, we can find a tame automorphism ψ such that $\operatorname{deg} \psi^{*}\left(\varphi^{*}(x)\right)=1$. So we may assume, applying a linear automorphism, that $\psi^{*}\left(\varphi^{*}(x)\right)=x$. Then $\rho=\varphi \circ \psi$ is elementary and $\varphi=\rho \circ \psi^{-1}$ is tame.
4. 7 Corollary: Let f be a field generator and suppose $V(f)$ $\not \not \boldsymbol{A}_{k}{ }^{2}$. Then the automorphism ψ of 4.5 is unique up to linear automorphism and characterized by the fact that $\operatorname{deg} \psi^{*}(f)$ is minimal.

Proof: If ψ is as constructed in 4.5 , then $V\left(\psi^{*}(f)\right)$ has two ordinary points at infinity, q_{0} and q_{1} say, and $\operatorname{deg} \psi^{*}(f) \leq \operatorname{deg} f$. Let φ be a non-linear automorphism of $\boldsymbol{A}_{k}{ }^{2}$. Then an initial segment p_{0}, $\cdots, p_{2 n-2}$ of the sequence of i.n. fundamental points of $\widetilde{\varphi}_{0}$ will satisfy 4.2 (i) to (iv) for some n (since $\varphi^{*}(x), \varphi^{*}(y)$ are field generators, for instance). $\Lambda=\Lambda\left(\psi^{*}(f)\right)$ is not tangent to E_{0} at q_{0} and q_{1} by 3.7, and hence $\Lambda^{(2 n-1)}$ meets $E_{0}{ }^{(2 n-1)}$ and possibly $E_{1}{ }^{(2 n-1)}$, but no other $E_{j}{ }^{(2 n-1)}$. But $\widetilde{\varphi}_{2 n-1}$ is a morphism on $E_{0}{ }^{(2 n-1)}$ and $E_{1}{ }^{(2 n-1)}$ and contracts $E_{0}{ }^{(2 n-1)}$ and $E_{1}{ }^{(2 n-1)}$ to the same point on \widetilde{S}, and this is the only ordinary point at infinity of $\varphi\left(V\left(\psi^{*}(f)\right)\right.$.
4. 8 Corollary: Let f be a field generator and ψ as in 4.5. Then an irreducible factor of $\psi^{*}(f)$ has two ordinary points at infinity or is an irreducible polynomial in a linear form in x and y.

Proof: We may assume that $\psi^{*}(f)$ is not linear. Then $\psi^{*}(f)$ has two ordinary points at infinity, p and q say, which are rational over k by 3.8. Also, an irreducible factor g of $\psi^{*}(f)$ is not tangent to E_{0} by 3.7, and if g does not pass through q, the multiplicity of p on g is equal to deg g. In that case g splits in $\bar{k}[x, y]$ into linear irreducible factors passing through p. Hence $g \in k[u]$, where u is the linear form in $k[x, y]$ vanishing at p.
4.9 Remarks: (i) An irreducible factor of a field generator is not, in general, a field generator.
(ii) Let $g \in k[x, y]$ such that $k[x, y] / g$ is a polynomial ring in one variable over k. If char $k=0$, Abhyankar and Moh [6] have shown that g is a ring generator, that is, ther exists $h \in k[x, y]$ such that $k[x, y]=k[g, h]$. It follows from 4.8 that the same is true without restriction on the characteristic if it is assumed that g is an irreducible factor of a field generator. This, of course, is a much weaker result than that of Abhyankar and Moh, but nevertheless has useful applications over fields of positive characteristic, where the stronger theorem fails.

McGill University

References

[1] H. W. E. Jung, Über ganze rationale Transformationen des Eberre, J. Reine Angew. Math. 184 (1942), 161-174.
[2] J.-P. Serre, Groupes algébriques et corps de classes, Herman, Paris, 1959.
[3] I. R. Schafarewitsch, Grundzüge der algebraischen Geometrie, Vieweg, Braunschweig, 1972.
[4] J. Tate, Genus change in inseparable extensions of function fields, Proc. Amer. Math. Soc. 3 (1952), 400-406.
[5] W. Van der Kulk, On polynomial rings in two variables, Nieuw. Arch. Wisk. (3) I (1953), 33-41.
[6] S. S. Abhyankar and T.-T. Moh, Embeddings of the line in the plane, to appear in J. reine angew. Math.

