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1. Introduction

We are concerned with the uniqueness theorem in the Cauchy
problem for the following type of partial differential equations:
Pu=o,"u+ > a,;(x,t)0,°0/2=0, (xreR").

lal+i<m
j<m-1

Here we assume a,,;(x,t) are sufficiently smooth functions. In the
case where the characteristic roots are simple and the coefficients
g ;(x,t) (Ja|+j=m) are all real, A.P. Calderén [1] proved the
uniqueness theorem in 1958, When (x, ¢) is two-dimensional, T.
Carleman [2] obtained the same result as early as 1939. S. Mizohata
[11] proved the uniqueness in the case of elliptic type of order 4
with smooth characteristic roots. Many authors have studied the unique-
ness in case of at most double smooth characteristic roots ([4], [9],
etc.) Then a study for elliptic operators with triple characteristic
roots, was made by K. Watanabe [15] under the assumption that the
multiplicity of the characteristic roots are constant, Let us consider

the following type of operator:

P=Pp(x’ t;az, al)m l)"l_P‘mp—l(l:a t;a.‘c; at) +R(l‘,t;az, at)y

Y We start assumig that the principal part of P is (Pp)™, but if P, differential
operator of order mp, has the p characteristic roots with constant multiplicity m
we can have a differential operator P, of order p with simple characteristic roots
such that Pn,=(P,)™ modulo order mp—1. Moreover if m>=3, Pn,—P," does
not affect the conditions (A), (B)) and (B:), and if m=2

]
[%(’gai"kP;npaIklj'l'arP;npalAj) +Pmp—l] |r=l,

serves our need instead of Pnp_i1[r=1, in the conditions (A), (B:) and (B:) where
P, ,=0.P., (see S.Mizohata-Y.Ohya [13]).
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where m=>2 and p=1. Here we assume that, 1) P, is a homogeneous
partial differential operator of order p with real coefficients continuously
differentiable up to order [+ max{mp,6}. Moreover its characteristic
roots {A;(x,%; &) }ici<p Of Po(x, t; & 1) =0 are distinct for all real
£(s£0),2)P,,_, is a homogeneous partial differential operator of order
mp—1 with real coefficients belonging to C'*™*{mP=15 3} R is a partial
differential operator of order at most mp—2, with bounded measurable
coefficients.

Let {1;(x,¢;&)}i<s<p be the characteristic roots of P,. We in-

troduce the following conditions.

(A) Pnpr(0,05 6, 0)]ccnj0,0,070
for all ée R'— {0}, (1<<j<p).

(B) Prpoi(z, 856, 7)|conyzt:0=0
for all (z,¢,€) eUx (R'—{0}), (1<j<p),

U being a neighbourhood of the origin.

(By) (By) and 0.Ppnp_1(0,05 &, 7)]ccrj0,0:070

for all £ R — {0}, (1<<j<p).

Then our result is the following,

Theorem 1. If m=2 and all i; satisfy the condition (A) or
(By), or if m=3 and all 1; satisfy the condition (A) or (B,), there
exists a neighbourhood  of the origin such that the solution u(zx,t)
eC™ of

Pu=0
07uliee=0 (0= j<mp-—1)

vanishes identically there.

Now we give some comments to the above new type conditions.
When we do not assume the above condition (A), (B,) or (B,), the
following examples show that we should assume another kind of con-

ditions in order to obtain the uniqueness theorem. First, we give

»  We stated this theorem with a short proof in [10].
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three examples of elliptic type. Example 1 is in case of /=1, that
is, (x,t) € R

Example 1. (A. Plis§ [14]). Let us consider the following
operator:

P: (ag—ia,)m+tl‘(ia,)"+ (iaz)n—l-

If (m+3/2)<<n<m,k>(m—1)/(2n—m—3), there exist f(x,t) €C”
and u(x,t) €C™ satisfying (P+f)u=0, u=0 (¢=<0), where u never
vanishes in any neighbourhood of the origin.

Let us remark that if m=6, we can take n=m —1, and if m>8,
n=m—2. In each case, neither the condition (A) nor (B,) is satisfied.

Example 1 implies the following example in a higher dimensional
space.

Example 2. Let /=1, m>6, and (m+3)/2<a<m—1,k>(n—1)
/(@2n—m—3), 4 be the Laplacian in R,'X R,}. There is an operator
Q of order at most 2m —2 with C~-coefficients and u(x, ¢) =u(xy, t)
eC= satisfying

(4" + Py + 5 (8. +i0,) ™ (10, )" + Qlu =0,
u=0 (=0),

where P,,_, is an arbitrary operator of order 2m—1 containing only
05, +, 0z, and u(x,t) never vanishes in any neighbourhood of the

origin,

Note that the term of order 2m —1 at the origin is nothing but
Py, 1(0,0;0,,, -, 0,,). Since P,,_; vanishes for (£, &, -+, &) = (1,0,
---,0), the condition (A) is never satisfied. Moreover, for such P,,_,,
the condition (B;) implies P,,_;=0. Therefore (B,) is not satisfied,
too.

In particular if m=8 we can take #=6 and P;;=0. This means
that for the operator of the form:

4°+ (Lo.t. of order at most 14),

we cannot obtain in general the uniqueness theorem, although the
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homogeneous term of order 15 vanishes identically.
If we do not require sufficient differentiability of the coefficients
of l.o.t,, we have the following example:

Example 3.” (P.]J. Cohen [3]). For arbitrary partial differential
opetator of order m with constant coefficients P(d,, -+, 0., 0,) and
with a non-real characteristic root of multiple order » and arbitrary
positive integer p, there exist a C’-function a(x, t) and a C*-function
u(x,t) =u(x,,t) satisfying a=0 when #<<0 and

Pu+ P, _u+a(x,t)07 Pu=0,

u=0 @¢=<0),
where s<{r—2p and P,_, is an arbitrary operator of order m —1 con-
taining only 08,,, :-+, 0,, and #(x, t) never vanishes in any neighbourhood

of the origin.

In the above example, if we want to take s=>0 and p=>1,7 must
be larger than 2 and neither the condition (A) nor (B,) is satisfied
as well by the same reason in Example 2.

Particularly, for »=5 we can take p=2 and s<{1. Then for the
operator with 4° as the principal part, we cannot obtain in general
the uniqueness theorem, although the homogeneous term of order 9
vanishes identically and the l.o.t. of order at most 8 have Hglder-
continuous coefficients.

Next, we give an example of hyperbolic type.

Example 4. (L.Hérmander [5], see also P.J. Cohen [3]) Let
[=1,r=2. There exist functions a(x, ¢t) and u(x, t) =u(x, t) €C”
satisfying a=0 when ¢<<0, and

0 u+P,_wu+a(x,t)d,u=0,
u=0 (<0),
where P,_, is an arbitrary operator of order »—1 containing only

0z, -+, 0z, and u(x,t) never vanishes identically in any neighbourhood

of the origin.

» In [3], P. J. Cc;van asserts that s can béAt;l;é:;naller than 7—p—1 but it seems
to us that he proved only that s<r—2p.
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2. Preliminaries and outline of the proof of Theorem 1.

2.1. Notations.

Throughout this paper, we use the following notations. R,' denotes
the Euclidian space of [ dimensions; R;' denotes its dual space. For
¢e R, we denote &’=¢/|¢|, and S;'”' denotes the unit sphere in R;'

with its centre at the origin. 9,, 0, denote ai, aa—respectively.
L x

Furthermore D,, D, denote (1/i)®,, (1/7)9.. ‘¢.d.0.” means pseudo-
differential operator, and by saying that an operator 7' is of order
p, we mean that T is a continuous map from Dit? into 9.

For a differential operator P(x,¢;9,,0,), we denote its principal
part by P°(x,t;0,, 0,), and “l.o.t.” means lower order terms. For

u(x) e D4, we define its norm by

Nall; =11 (&1 + D2 )| L

Finally, we use the following notations.
C?.lt,t) chooz {[Z (.1:, t’ 5); a(.l', t; e) ECE”’I.t)’ (l(x, t; 5) EC?’ ‘57&0}-

Let E be a topological vector space, we write f(¢) €&,™(E), when
f is a function m-times continuously differentiable in ¢ with values
in E.

2.2. Properties of pseudo-differential operators.

In this paper we use frequently pseudo-differential operators.
Although its fundamental properties are fairly known, in order to
make clear the required order of differentiability of symbol a(x; &)
in x we shall enumerate the following lemmas. We refer the readers,
for example, to Kohn-Nirenberg [7]. $,? is the class of functions
a(x; §&) €eC,?XC> satisfying the following three conditions:

1. a(x;§) is homogeneous of degree A in €.

2. there exists a limit a(oo;§) uniformly in €/, when |x|—oo.

Y L ar const. (q)
3. la(z;¢) —a(oos§ )|Sm for all g R.

Modification of a(x; §). ‘We often use the following modification. Let
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0(s) be a C~-function satisfying

0(s) {1’ 0=s=R, 0<6(s) <1
5) = 0, s>R+1, <0(s)<1.

We define

c<e>=<1—a<|c-*|>>-e+<9<|e|>-R-éI .

And finally we put

a(x; §) =a(x;£(£)).
For‘a(x;é) we define
a(z; §) =a(x:£(§)) —a(eo: {(§)) and @(o0;§) =a(oo;{($)).
Therefore, for a(x;é), a(x;é) =a(x; &) —a (00 8).

Then, ¢.d.o. A and A associated with a(x; &) are defined by

Definition 2.1.

D au= (L) feraa a@a
2) T = je-“'fa (x: &) u(x) dx.

These can be written as

T

Aw=a(oo; O + [ae =7y,
where 4,(7; &) =Je " a,(x; &)dx, and
T =203 2@ + (a6 —7; Handy.
Then,
Lemma 2.1.° Let a(x; &) €9.". Then, if p>I+|s|, Ais con-

tinuous operator from Dix* into Di.. if p>I+|s+ 2], then J is con-
tinuous operator from Dit* into Di..

9 From Lemma 2.1 to 2.4, we need the differentiabilities up to only some orders in €.
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Next,

Lemma 2.2, Suppose a(x;§&) €9.?, and that p>I+|s|. Then
it holds

(Au, v) = (u, Av),

for all ue Dt and ve Di?, where the symbol of A is a(x;&).
Note. The above lemma shows A*=_1 in the above sense.

Now, we give two definitions.

Definition 2.2. Let A and B be two ¢.d.0o.’s whose symbols are

a(x;€) and b(x; &) respectively. We define a new ¢.d.o. AoB by

1

AoB= (27[)[ je"“?z(x: )5 (x: &) a(8)de.

Definition 2.3. Let A be a ¢.d.o. whose symbol is a(x; £).
“Then,

1\* ;
(3),, — iz an B~ . ~ A
A@Gu= (2——) j-e (D;%0.Pa (x; 8))a(8)ds.

Note. AoB can be expressed as

N ~ ~
ABu=a(c0: 9)8(o0; 2@ + [@(o0: DboE—7; M)y

+ [ae =7 mb(eos paay
+ jﬁo(f—f;ﬂ)go(f“ﬂiﬂ)ﬁ(ﬂ)dfdﬂ'
Now we obtain the following asymptotic formula.

Lemma 2.3. Let a(x;8) €H\?, 0(x;6) €D, If p>1+11—0|
+|s|+p, AB can be expressed as

AB= 3 L A@.B,+T,

laf<p-1 ¢!
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where T is continuous from DEH*=° to Dh..

Corollary of Lemma 2.3. Ifp>/+max{|A—1],|0—1|}+]|s|+1,
[A, B] = AB— BA is continuous from DiE**°~' to Dh..

Lemma 2.4. Let a(x:¢) €9,\P. If p>1+max{|s|,|s+1—0p|} +p,
we have the following expression:

J= ¥ LAG+T.

lal<o-1 !
where T is continuous from Dit*=* to Di..
In this paper we are mainly concerned with the symbol
a(z;§) =ao(x;§) +ai(z: ) [E]7Y™ +ay(z: §) [§] 7™+ -+

where a;(xz; &) € $,°(0=<j<oo0) and ¢>0.
Put M;=3",<u sup|d;’a;(x; €)| where supremum is taken over

re R, ¢S8!, we have the following lemmas.

Lemma 2.5. (7. Kano [6]). Supposc that the above sequence
{M,} satisfies the following condition: therc cxists ¢ (>0) such that
for all 6 (0, &), X 5-M,;0//™ <oo. We choose R in paragraph 2.2
larger than 1/¢, then

| Au||< X MR-/ [u]|
j=0
for all uc? satisfying supp[@(&)]C{&; |¢|>R+1}.

Finally we need the following

Lemma 2.6. (T.Kano [6]). Put inf|a,(x;&)|=0>0, where
infimum is taken over x€ R, ¢ €8'™. Then, for all u(x) € L? satisfv-
ing supp[@ (&)1 C{¢; || >R+ 1}, we have the following estimate

14| = (S —cR™ e 33 MR ) Ju].

2.3. Outline of the proof of Theorem 1.

Under the condition (B;) or (B,), we can easily obtain the theorem
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by applying the result under the condition (A). Thus we give the
outline of the proof of the theorem under the condition (A).

Reduction to a system of first order

We put «=0 when #<<0, then z remains as a solution of Pu=0.
When we perform a Holmgren’s transformation, all the conditions in
the theorem are invariant in a neighbourhood of the origin. Moreover,

modifying the coefficients out of the neighbourhood of the origin, we
can assume

IPmp-—l(x’ t: é) f) lr=Xj(-ty¢;E)| Zaolslmp_l’

where 0, is a positive constant (paragraph 3.1).

Next, in paragraph 3.2 we reduce the equation to a system of
first order regarding (P,)™+ Pn,_; as the principal part, in the same
way as S. Mizohata-Y. Ohya [13], then we have®

D.U=HU+BU+GU+ U,,

where D,— H is the principal part of the new equation. Then the
characteristic roots of det(ul— H(x,t;£)) =0 can be expanded with
rsepect to |&]7%™ in the sense of Puiseux by virtue of the condition
(A) and they are distinct (paragraph 3.3). Let 1; be real when 1
<i<p,, and non-real when p,+1<i<p.

Lemma 3.3. The characteristic roots {p;"},<i<p are expanded
1=52m
in the following manner,
1 65 8) = 1, 15 )+ 3z, 43 )81,
WD "=V =1Pnpi(x,t; &, 7) lcarya,:00/ ’H, (Ae(x, 85 6) — Qe (=, £ 67,

for 1<i<p, 1<j<m, and where v{) arec homogencous of order O
with respect to & and belong to Ci3}, X C.™.

% In the case when /=2, we encounter the difficulty. That is, in this case, in general

we cannot expect A¢(x,2; &) to be one-valued on the unit circle S;. Moreover,
even if A(z,t;€) is one-valued, we cannot expect u”(x, t;€) to be one-valued
in general. On this subject, see A5 in Appendices.
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Then the imaginary part of p{# never vanishes (1<i<{p,).

Now, in paragraph 3. 4 let us construct the diagonalizator A4 (x, ¢ £)
of H(x,t:€). Let us put f (x,¢: &)= (n:(x, t;&)), then we have
ny= |l = (0= ] (0=} mod. Lot

: k=j-pLj/plil kr

where r=i—p[(i—1)/p], s=[E—1)/p] + 1.

Because y;“? is not homogeneous, .# ' (x, £; ) degenerates near the
point at infinity. So the operator with the symbol S =_""! is not
bounded, but by the detailed consideration we can see that the :order
of my; (x, t; D), the (¢, j)-element of M, is at most 1 —(1/m)([¢—1)/p]
+1). ‘

The above fact gives us ||A# U||=const. || (4+ 1) "HY™U|| if we

restrict /i sufficiently small.

Energy with a weight function
Now, operating . f~ to PU=0, we have
AN PU=D, V' U-DN U~ A4 U~ (VS H-DAU
b—J”BU—..VGU—J/‘UO=0,

where @ is a diagonal matrix whose diagonal elements are y;%. In
pavragraph» 4.2 and 4.3 let us estimate the energy of # PU with a
weight function ¢, (¢) = (¢+ 1) ™", namely E, = [{¢.’(¢)||#"PU||*d¢t. Con-
cerning the four terms ./ /U, (#/ H-D AU, #°B, and 4G in
paragraph 4.4, we have C '

I.#"Ul| <const. (||.#"Ul| +]| (4+ 1) U],
| (#"H=DAT)U||<const. (||.#"Ul| +|| (4+ 1) UID,
[|#"BU|| <const. (||#"Ul|+[(4+1)"'UID),
|#"GU||<const. (||. /Ul + || (4+1)7'U|]).
Then a slight m&diﬁéation of the Cald_eréﬁ’s argument in [1] (see

also S. Mizohata [12]) gives the following proposition.

Proposition 1. There cxists a sufficiently small h depending

only on P such that for sufficiently large n we have
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E,— jqa O)||A#"PU ) | dt

> S ("o )10 (o) | idt
—;j=1 n(ﬁn ¢ u j—1

cn Th (* - -
+ 9 S or 0| (A ) mp )| e,
A = Jo
In this estimate, ||-||;-1 means Dir* (R)-norm, and the constants c,,
¢y are independent of u, h and n.

On the other hand since .#"PU =0, we have E,=0. This implies,
by virtue of the above inequality, that =0 in a n.b.d. of the origin.
So we have Theorem 1 under the condition (A).

3. Reduction to a system of first order.

From now on we start out to prove Theorem 1. First we con-
sider the theorem under the condition (A).

3.1. Modification of coeflicients and solution.

First we put u(x, t)=0 for ¢t<<0. So u(x,t) is still m-times
continuously differentiable in R'*' because of 8,/u(x, 0) =0(0<;<mp
—1) and Pu=0. Let us transform the coordinates, ¥;=x,, f=¢+xz
+ x4+ - +x" (Holmgren’s transformation). Then u(x, £)=0 if ¥
<|z|>. Regarding 7 as a parameter, we have supp[u(Z, £)]C{z; |z|*
<h} for 0<<i<h. By 13,, we mean the normalized homogeneous prin-

cipal part of the transformed operator. Namely the symbol of ]3,, is
defined by

2

l l
P,(zt— X2 %" 6+2%c,0) /P, (7, F— X &% 2%, 1).

=1 =1

~

And similarly we shall use the same convention for general differential
operators. Thus ﬁ’,, satisfies the same condition as P, stated in The-
orem 1 in a n.b.d. of the origin. Moreover it holds 13,,=P,,, Pmp_,
=Ppn, s mod. [[2.,(D,—2,(0,0; D,)), and 1,=2, at the origin, thus

Pmp—l (0’ 0; Ey f)]r:)\/(o,o;f):Pmp~l (0’ 0; 5; t) |r=x,(0,0:£)5&0a (SERL— {O})'
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From these considerations we see that the assumptions are invariant
by Holmgren’s transformation. From now on we write z, ¢, P,, P,,_,
1; instead of %, 7, P,, Pnp.1, 4; respectively. From

Pmp—l(oa Oy 5) 7) ]r=x,(o,o;,=)=zé0, SERl— {O} (1§JSP))

it follows that there exists a (/+1)-dimensional cube n.b.d. U, of the

origin such that

Pmp-!(il', t;6,7) |r=x,(z,tze)7&0 (I, t, &) e U, x (Rsl_ {O}),

where U,=U, . x [0, 2]. Because of the compactness of & U, xS,
and the homogeneity of P,, .., in &, there exists §,>0 such that

(1) ]Pmp—l(‘ry t; S) T) lr:k,(t,t:f) 260|$|mp—1’ (l" ta E)E% UO X (REl_{O})-

Now we change all the coefficients appearing in P by replacing 3 (x/r)
instead of ., where %(x) is defined by 7(x)=0(=z|) (z/|x]), 0(s)
C~(R,") and

s 0<<s<},

0(s) = 0<<60(s) <1. After this modification

0 s>1,
we can make small the oscillations of the coefficients and those of
their derivatives in & up to order 2/ by taking » small. Since for
sufficiently small » we have {|z|<#} 3} U,.,. Then, if we restrict ¢
to 0<t<<h’ where h’<<(+*/16), we have supp[«] T+ U,,.. Accordingly
since the coefficients are not modified on % U, . X [0, 2’], u(x, t) re-
mains the solution of Pu=0 and moreover |Pn,_;(y(x/r), t; & ).l
>00l€]™ " in R}'X[0,h"] X (R!—{0}). We write & instead of &/,
and denote the modified operators by the same notation.

We note that in this modification we can assume that the oscila-

tions of 8;°A;(x, t;§) (|v]<<2l) are sufficiently small on S,'”".

3.2. Transformation of the base.

From paragraph 3.2 to paragraph 3.4 we use the same method
as in Mizohata-Ohya [13]. We assume that 2, is real when 1<;<p,,
and that 1, is non-real when p,+1<;<p.

Put
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L (x, 8. 8) = Ay_prs-vrm (s £ Y 1<;<mp,

aszt—l](“ryt;Dz) 1Sj§7np’

Hozampamp—l e alv
imP_l ’[1 =l.mp(Pp (x, t; D;, D'))m+ imp_lep-—l(xv t; D.r’ Dl)_impno .

Lemma 3.1. 1) For all 70 there exist a;(x, t; D,), ¢.d.o’s
of order 1(0<i<j and a,(x,t;D,)=1) such that

]
0051 = é ai(x,t: D)D"+ T,

where Ty=>1Zc;(x, t: D) D', order(c;) <i.
2) Conversely for all j=0 there exist b,(x, t; D,), ¢.d.o’s of
order 1(0<i<j and by(x,t;D,)=1) such that

U
D/= 2__(.: bi(x,t; D)0 0y -1 0o+ T,

where Ty,=>"120d:(x,t; D;)0;-:-105-1- -+~ 0o, orderorder (d;) <i.
Proof. This is easily proved by induction on j. Q.E.D.

Corollary 3.1. Ewery partial differential operator of order k
has the expression

k
Z: ci(x, 63 D)0k iBk_ion -+ 00+ T,

i

where c;(x,t; D,) are ¢.d.o’s of order i, and T is an operator of
order at most k—1 for x and t. (More precisely, T, has the fol-
lowing form T =3 ¥ le,(x,t: D)0 i-10x_1 s +0,, order(e;) <i.)

Proof. For |a|+j=k,

ozaatl =a (D::) azj

O Apes=4s for 1<j<p (0<i<m—1). Then when 1<j<pi, Ayss is real and when
p1+1<j<p, Aipss is non-real.
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i
=a(D,) ; bi(x, t; Dz) aj—-iaj—t—l e By + TV
; v
= >_: (‘wbt) (r, t; Dz')aj—iaj—i—l < 00+ T,
i=0

where a(x,¢:D,) and b;(x,t:D,) are ¢.d.o.’s of order |a| and Z, re-
spectively, and T and T’ are operators of order at most £—1 for x, 2.

Q.E.D.

Corollary 3.2. For any non-positive s there exist positive con-
stants ¢; and ¢, such that

a3 1 A+ DDEally S S (A4 DDy Bl
<o 211 (44 1) DE .,
For any u(z,t) € N4 EF (DL, (k=0).
Proof. This follows immediately from Lemma 3. 1. Q.E.D.

In view of Corollary 3.1, we have the following expression,
”lzamp-—l (.‘l'. L D.r) + (lmp—z(x» ¢, DJ.') 01 + -
+ amp—i(x’ t: Dz)ai-—l 01+ e +a00m7)—1 01+T,~

where a;(x,t: D,) are homogeneous ¢.d.o.’s of order j, and T is an
operator of order at most mp—2 for x,¢. To make clear our essential

assumption stated in Theorem 1, we introduce

Definition 3. 1.
Ly(x,t;8) =1, (x,t: ¢, 25(x, £58))
=Qmpe1F Anp_o (g — 1) + -+
+ampog (A= Ay1) (Agr = Agra) - (Ayr — A1)
where j'=j—p[(j—1)/p].

Lemma 3. 2.

Lj (I, t; 6) :I)mp—l(-r» t; 5) f) lr:)q(z,t;,‘)'
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Proof. Put
]:[ Oj = 0,,00,,_10 ce 001.
1<5<p

Let us denote by G,,-1(A4) the symbol of the homogeneous part of
order mp—1 of a ¢.d.o. A. Then it sufficies to prove

Onpa ((P)™—11,)=0 mod. 111:11 (t—25).
Gmp—l (Ho) :Gmp—l((az; 01) m)

=i ((I] 007@, - 90) mod. 1T (=2

=Gt (119" (119,)  mod. [T =1

:J'mp—l (Pp) ™. o : Q.E.D.

Now let us reduce the equation to a system. Put
uy=(A+1)""0; 4 - 0 (1=j<mp),
then
D, = (A+ D)™ D3,y - Oyt

= (A—{~ 1)7.np_j(0/+ );j)aj—l e Ot
= (A-I—].)ZL“.]"}‘ /{jllj—}' [(A‘]’ l)mp_j, lj]aj—l 00
= <A+ 1)11»j+1+ )\juj_l_ bj“jy (1§]§772P—1),

where b; (v, ¢; D,) = [(A+1)"?77, 2,1 (A+1) ~®?=P_ Denote a;’ (2, ¢; §)
=a;(x,t;¢8),8 = (£/5]), then

73

vIL"uz am,, s(x, 8. DY A9, 1~'-301¢

ll

Il
gk
1S

S (2 D) uy+ }__,g,u,,

1\

H
—

where 9;(D,) =an,,(x, t; D,) {A””’"’— (A—l— D72~ (4+1) ~mr-h We
note that order(¢;) <—1. From the equation we have :

mp mp '
L&, .
Dty = Anttmp+ 1 j) ‘] Amp-jtt; +1 _5_31 gsuy+Tu+T u,
— = . S0
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where 77 and T are the lower order terms of P and II,, respectively,
and they are of order at most mp—2 for x,¢{&. So we arrive at the

following system

2) DU=H(x,t:D,)U+B(x,t; D,)U+G(x,t; D) U+ U,,

where
0
Uy .
U=( N )7 U0= 0
Unp
(T+THu
M 4
e A 0
H(x, l; Dz) = .
0
oA
iamp—l iamp—? ............... kmp—l_iao
Ay=2;(x, 83 D) = A5 pes-nm(x, t: D).
b, 1
by 1 0
B(x’t;Dz)= ..'. '.'. ’
0 w1
By

by=by(x,t; D) = [(A+ D)™, 1,1 (A+1)~™?=D (b,,=0).
G(x,t;D,)=< 0 )
gy 10y -+ zgmp
9;(x, t; D;) =an,_;(x,t; D) {A™? 7 — (A+1)™P~} (A+ 1)~ PP,
3.3. Puiseux’s expansion of the eigenvalues of H(x,t;§).

In this paragraph we try to expand the eigenvalues of H(x,¢; &) in
|£] in a n.b.d. of the point at infinity,
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Det(uI—H(x,t: §))
n—>= —I§l
/l'"lz:'.'
Rl
=det ﬂ_}\p _lél.
ﬂ_ll.'..
0 .
.« / . / .« /7 . /7 ... —.lsnl
—2mp 1~ mp-2 " —LAm-1p " Lqm-np-1 " M4 — Ap—ia |

= B =) =i B alyy (O E (=2 (a = o).

Now we show
Lemma 3.3. The roots of det(ul—H) =0 can be expanded
for |¢|=3R, in the following manner.
w2, 1:8) + N vz, 19|81,

k=1

where
(vgfl))m — v—1Li(x,t;§")
' IT ez, 25 87) — 2, 5 €)™

ki
(1<i<p, 1< j<m)

and yJl(x,t; &) eCi3ly < Ce™.

Proof. Put u=Ai;+v, then det(ul—H) =0 becomes
v* T (A=A + )"
kit
mp
=iIZ__"laﬁnp-;|$|"”’"’(/1s—i/—1+ v) - (Ai—A+v).

(the right side) = v —1L;(w, ;&) + bmp2(x, ; E) Y+ bnp_a(x, t; E)VI+
(the left side) =v™{[1ini(Ae—A)™ + Cmp-n-1(x, £; E) Y+ -+

+ bol)mp_l,



496 - Waichiré Matsumoto

+y"™®-Y b, and ¢; being homogeneous of order j in & Put yp’
=y/|€|, then

VAL e, 2087 = 26 (2, 880D F Cnpon-a (2, 3§V 4 o 07D
—El—{‘\/ 1L;(x, ¢; $)+bmp (X, s ENVY A+ by (e, k€)™Y,
Because |[xpi(A:(x, 258") —Au(x, £:€7))™ does not vanish at (z,¢, &%)
eR,' X [0, h] XS&, we can put for |v/| <3¢,
R mp—l
\/—]-Ltl'l' /\;1 b:np—.f—ll)/j
11 (li,—lkl)m'i' Z C;L(p—l)—jyf/
) .

oW, t; &)=
1<j<m(p-1

where L/, b/, ¢/, means that we replace & instead of £, We verify

easily that
Oz, t; &) eCiEly, for V| <e,.

Let us remark that we can take ¢, positive in view of our modifica-
tion of the coefficients. On the other hand, since |L, |=§, (from (1)
and Lemma 3.2), ¢ does not vanish if p” is sufficiently small. There-

fore
@Oz, t;8)meCily xCe.

From y'™= (1/|§)¢ (" x, ¢;¢"), we have v’ =’V (9 (v'; z, ¢; £7)) /™,
(0<j<m—1), where ¢=1/|¢|, and » is a primitive m-th root of 1.

So well-known Lagrange’s formula shows

/8

v'= 2 vtk(x b8 (e l/"‘)" thk(l‘ t;¢7) (W€]” “/”")"

a
-

where

,,1,,_ ¢(C§r,t§$/)k/m. d

y X, t, N =
ar o) 2kni Jici=n &

Since ¢(&;x,¢; &) is not zero if 77(>0) is suﬁ‘imently small, we have
vie(x, t: &) eCiil,y xCe.  In particular

vz 8y = L[ HEGBEET g

2w VC
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SIL )

=¢(0;x,t:$')'/m=<*———. YT
1L @S =2)

Finally we put yf2=0Y Yy, ,, 0=+ 20 w{R1E1™ (1<j<m).
Q.E.D.

Remark. 1) If we put

3 M= max > sup|(9:*)vi,i(x,2;: €)1,

I<i<p la|<2

where sup is taken over (x,¢:¢) € R,' X [0, 2] xS, we have easily
ST M 0m< oo for O (0,7e,), 60,
k=1 .

(From our modification of the coefficients, we can take &>0. See
T. Kano [6].) 2) Since we are concerned only with real coefficients,
if 1<i<p, Li(z, ¢t:¢) and [[ip:i(A:—20)™ are real, then 1’:('./1)510"_1
X (V=TLy/1 ] (Ai— Ae) ™) Y™ are non-real.

3.4. Diagonalizator /" (a,t3E) of Hy(x,15§).

In this paragraph we aim at the construction of the diagonalizator

of Hy(x, ;€)= (H(x,¢:6)/I§]), that is, /" Hy=Dot",

\ .'up"")'
near the point at infinity for &. :

From |y{} (x, t; €")|=35=>0, it follows that the eigenvalues of H,
are distinct near the point at infinity, so H, is diagonalizable. Since
the row-vectors of the diagonalizator of H, are the left eigen-vectors
of H, so we investigate the left eigenvectors of H,.

Let us 4;; be (Z,7)-cofactor of ((u,"/|&])I—H,), then. (4, -~
dnpr) is an eigenvector (possibly O-vector) corresponding to the

’

eigenvalue #,®/|¢|. For general 4,
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L= (x,t:6) -1

7,
.

ﬂI_Hoz

oy e =2 —dmy

where degree(d;) <—1 (1<j<mp). Especially (4y, -+, dnp1) is non-
zero vector because 4,,,=1 for any u, so it is a global eigenvector
with eigenvalue u.

Let us express explicitly 4;, modulo order —1. A simple observa-

tion shows that
mp
A,q:(u—l;+1_,,[,,p])A,+1.~d,+,EkJ;[+l(;¢—Ak’) mod. order —1.

when we replace 4" instead of x4 (4, =pu"/|€|), we have AP
=117, (" —2,") mod. order —1. By the relation 1;,,,=1; and
the expansion formula of 4., we have if j—p[j/p]+ 1>,

p ’
AgP=p¢-Om-Ur-y ] A =ANDA{TT A = 27) y&yym-tirea-1
k=J-pLi/PI+1 kr

and if j—p[j/p]+1=<r,

P ) b
A(f,’f)Ea)('_l)(m‘U/p]) H (Zr’ _lk’) JI (lr'_ik’)m—[!/pl—l(vg{ )m [!/p]‘
k=]—k€£rj/p]+1 k1

We understand the above formula in the following sense: If the right-

hand side is of degree>>—1, then the principal part of 4Y-” is given

by the right-hand side; if the right-hand side is of degree —1, then
.y —

the above formula means merely degree (4 —1.
From the above relation, it follows that

degree (45:) < " (m - [i;i] 1) =[] 41) -,

m m P

and if [(j—7)/p]+1>>0, it is of true degree.
Let us put A+ (x, ;&) = (n;(x,t;&)) where

@ ny= A5, r=z’—;b[i;1], 5= ["71] +1 (e i=(s—Dp+7).

More precisely, we denote by 4"* the row-vector
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40D = (450, 450)  (A<r<p,1<s<m),

then .#~ is composed of these mp row-vectors arranged with the fol-

lowing order
A(l,l)’ A(2,1)’ e A(Prl), 4(1,2)’ A(M), g,

Obviously it follows that degree(n;;) <(1/m) ([(j—7)/p]+1) —1, and
moreover if [ (j—7)/p]+1>>0, the equality holds, where =7 —p[(F—1)
/p), s=[GE—-1)/p] +1.

Therefore we have the following

Lemma 3.4. Det 4 (x,¢; &) is of true degree —p(m—1)/2 in
[é|ZR,R>(1/¢)).

Proof. We decompose #” into m* blocks (7:;),piisi<eine 0=,
sp+1SIS@+DP

s<m —1. The principal part of det .#" is equal to that of the matrix
A, obtained by taking only the diagonal elements in each block. So
now we prove that it is of true degree —p(m—1)/2. From now
. nU i=j n]od. p .
on we consider A, = (ai;), a;;= o The jth column-
0 i75jmod. p.

vector of A, has the following common term
= ’ ’ u ’ ’ - J—l
PRI G =y o 1 o= amom, (r=j-p[21]),
k=1 k=r+1 p
so that

det Am:: (__1) p(p—l)m(m+l)/l( 1"1 l)g’lg)m(rn—l)/z H (l‘/_lrl)mz det Bm,
r=1

1<rls<p

where B, is a constant matrix, then degree(det 4,) = —p(m—1)/2 if
det B, 0.

Finally, we show that det B,#0. Put B,= ((z, j)-block) < s<s,
where (Z,)-block is w® P¢-9I and I is the unit matrix of order p.
Now, let us show det B,=@?¢ ¢392 [iz1(1—0w*)? det B,_;. In B, let
us subtract the (j+p)-th row-vector from the j-th row-vector, then

G, 5)-block = [0 (1<i<s—1),
| I G=9),

(@, 7)-block=¢ VDA —p* NI (1<, j<s—1).
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Therefore det B,=det C,_,, where C,_; is a matrix of order (s—1)p
with (Z,j)-block=w" "¢ (1~w*?)I. The i-th row-vector and the j-th
column-vector of C,_, have common factors o771 and 1 — p*-09-1/#1-1,

respectively. Thus
-1 ‘
det By=det C,_; = @™¢" V¢392 1T (1 —w")® det B,_,.
. i=1
Starting from det B;=1, step by step we have det B,#0. Q.E.D.

We modify # (x,¢: &) to A (x,¢;L(€)) in the same way as par-
agraph 2.2 in taking account of Remark of Lemma 3.3. Hereafter
we denote N (x, t; £(&)) simply by A4 (x, ¢; &). Put M(x, t; &)
= (my(x, t;8) =" (x, t; &), then we see that D (x, ¢; &) = A" (x, t:§)
H(x,t;8) M(x,t; ) is a diagonal matrix, namely,

P (z, 85 6)
12V (z, £ €)

N /lp(’n)«

when [¢|>R+1. Then we have from Lemma 3.4 and (4),

degree (my;(x, t;€))<1 _%([z_—[_-)i] + 1).

4. Proof of Theorem 1 under the condition (A).

4.1. Energy inequality with a weight function.

From now on we denote several different constants indepent of
u, h, and »n simply by c.

We operate A4 (x,t; D,;) to our system and denote it PU. Put
V=4"U, then we have
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(5) PU=D,V -V — N U—~(N4"H~-DAN U~ A"BU—AN"GU—AN"U.,.

We use ¢,(¢) = (¢+h) " as the weight function and consider the energy

h ~
E,= j ol O |PU@) |13t

U1
where || V][1,:=272]|v,l|%,: (V:( :

Ump

)), then E,=0 for all n be-

cause of PU=0. However we have the following proposition.

Proposition 1. There exists a sufficiently small h depending
only on P such that for sufficient large n we have

n

3 _ ‘mp  Ch
E,= j 0 ) | PU ) |de= £ 3 j 02 (D) 11077 2u (8) |15 -t

027’12 f ¢n”(t)II(A+1) '+<1/'">a:w ’u(t)H;qldt

where ||-||;., means Di:' (R,")-norm, and the constants i, €y are in-
dependent of u, h and n.

Before proving Proposition 1, we consider the estimate .# U. For

this purpose we prove

Lemma 4.1. For all pair (s,5"), 0<s<s’, there exists a con-
stant c(s, s, 1), such that, for all uc Di.(|x|<d), it holds

el [=<ed**||ul|s,

where d is an arbitrary positive number.

Proof. This lemma is a result of H, Kumanogo-M. Nagase [8].
Here we present a short proof. Since the result is trivial when
d>1, we assume d<{1. Let us put 2’= (0/d)x, &' =(d/d)¢&, v(z))
=u((d/0)z"), then we have dx= (d/0)'dx’, d&é= (0/d)'de’, u(x)
=v(z’) and supp[v]CB, where B, is the ball with radius o in R'.
Since @(§) =[e*u(x)dx= (d/0)'[e ¥ v(z’)dx'= (d/6)'D(§"),

1l = (112 ds = f|s 115 (&7) |2,
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For the estimate of the right side, we prove the following lemma.

Lemma. If we fix 0 sufficiently small, we have the following
property for any v(x) € D(By):

j |a<e)12desf 19(2) | 'de.
181<1 1€1>1

Proof. Since |9(8)| <[ |v(x)|dz<{vol (B;) [|v(x)|’dx} "> = vvol(B;)
[lvl], we have [ ;)| (8)|’*dE<vol(Bs)vol(By)||v]|’. Let us fix § in
such a way that vol(B;) -vol(B,) <%, then

j |o]'ds<} f |o]°d.
1€1<1 R!
Therefore J‘Ie.zlﬁlsz:Imlﬁlsz _I|5|<1|ﬁ|2d5212“.rnllﬁlzd$a that is,

[ _Jorae<t [ jotae< | _jorae. QED.
€<t R! 1€j=1

In virtue of the above lemma ||A’«||® is estimated as follows

(L), eree) Pds's(%)”"“ (%)“”'

, ’ ’ / -n 2 112
x [ Jeo@rae <(L)"
1§12t 0
Then we have

]|A‘u||<2< ) HA:'u“Sza-wd:'_:”A:'u”,

0

8

luli<2(L) 14w <20 @ 14wl

that is,
Nl Zc(s) (1 Aul| + |ul]) <c(s)407d" || 4" ul|
<Const.(s,s", D) d* ~*||ulle.

Since @ is dense in D under the topology of D}, so the above
result remains true for all ue Di(|x|<d). Q.E.D.
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Remark. When s72>0>s, the above proof implies the following
inequality,

Nl <c(s, s, Dd||ull,, for all wedDi(x|<d),

where p=5"+ (—1s) /({—2s).
More generally, when s> —[/2 and s">s, for each ¢>0, there
exists a sufficiently small >0 such that

(%) lulls<ellu|l, for all ueHjg,(RY,

(see F. Treves: Linear partial differential equations with constant

coefficients (Goadon and Breach, New York, 1966) Theorem 0.41).
But, when —/[/2>s">>s, considering Dirac’s ¢-function, it seems

that the inequality like (%) is not correct for arbitrary small ¢>0.
Here, we need only the case where s">5=>0.

In virtue of the above lemma, we have

Lemma 4.2. For sufficiently small hy,>0 depending only on P,
and k=0, we have

[| (A+1D)* AU () IIZc"‘i [ (A+ D)+ UmGre=Ty (8) ||, 0=t=h,,
i=
where ¢ is a constant independent of u and t.

Proof.
1A+ DF=0m Y| = || (A4 1)1+ Ho /U]
<|| A+ D)™ U U + || (A+ D™D (YN — Mo AU

Thus taking account of the fact that order(n;;) <0, 7;,,=1 and
order (m;;)<<1— (1/m), we obtain the following inequality,

mp—1
[| (A+ 1) HMU|| <, || (A+ 1) AUl + ¢ 12 | (A+ 1) " uy]l,
=1
where ¢, and ¢; depend only on P. Therefore
mp-1
[ (A+D* A U||Zc, || (A+ D) YU|| — ¢ pE [| (A+1)*uy]].
=

Applying Corollary 3.2 to the right-hand side we have



504 Waichiré Matsumoto

mp .
[|(4+D*A"Ul=c,” ;\__:‘1 I (A+1D)F=*ampme=Iy||,

mp s
e 1A+ D0 Sl

Since u(x,t) belongs to D™?(|z|<+vh) for 0<t<<h, Lemma 4.1 gives,
[ (A+ D077 a1 Sc B || (A+ 1)+ ul]

where ¢; depends only on P and j, (2<j<mp).
Let us take £ sﬁfﬁciently small such that ¢,” maX,cjcn, {c;} 27"
<% ¢,”, then we have
mp

Il (4+1)*#"U|| 25;; S (A4 1)Errumg =iy, Q.ED.

s

From now on, we try to estimate the energy [%¢,*(¢) || PU (2) ||%dt.
In view of the expression (5) of PU, introduced at the beginning of

paragraph 4.1, we have
(6) [|1PUI|Z 3 ID.V—-DV|*=c(||A#4 U+ | (S H=DA)U|?
+ A" BUI*+ [|#"GUI*+ [| AU, 1D

First we consider ||D,V—9V{|>. For this purpose, first we
define 7,(s) €C~(R,") such that 0=y, (s) <1, 7,(s) =1 for s=R,+1,
and 7,(s) =0 for s<R,. In view of (3) at the end of pal'agraph 3.3,
and also of Lemma 2.6, R,(>(1/¢,)) is taken sufficiently large in
such a way that, denoting V(&) :r1(|$|)\7($),

| dm 9) V| 2% A+ DOmV | A<i<p,),

Il (Im 29 VIHZ(%H A+ VI (= 1<i<p),

where 0°=min{inf,<;, |Im v (z, ¢ &)|, inf, ,1cicp/Im 2;(x, ¢: )|} and
: I<j=sm

inf is taken over (x, ¢, &) € R;'X [0, 2] XS,'”'. Moreover, let 7,(s)
=1-7,(s), and V(&) =7:(1¢]) ¥(§), then we have |

V=1V+7,V=V,+ V.

Lemma 4.3. We have
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1D,V —-DVI[*Zc (| DV, = DV,[|*+ || DV, = DV,|[*) =" [| V%,

where ¢, ¢’ are depending only on P and R,.

Proof.
ID.V—DV||*=||D,V,— DV,||*+ || D,V,— DV, ||*
+2Re[(D,— D) V,, (D, —D) Vs].
[D=D)rV, (De=D)1:V]=[11(De= DV, 1:(D.— D) V]
Fnln D1V, D= D) VI+ (D~ D)V, 1:[1s DIV
+ [, DIV, [12, D]V,

where 7y, 73, [71, 9] and [1,, D] are bounded operators in L?, so we
have ’

[[(D=D)Vy, (D= D) V]I <ci | (D~ D) VI[P + || VI
Then
| (D= DY VIPZN (D= D) Vi|I*+ || (D — D) Vo||*
=20 (D= D) V||* =26 || V||,
i.e. ’
(D= D)VIPZc (|| (D= D) Vi1 + || (D= D) Vo ||H) =< || V|2
Q.E.D.

4.2. Estimate of [20,2(2) || (D, — D) V,(2) ||*dt.

In this and the next paragraphs we follow essentially the method
of A.P.Calderén [1].

Let us decompose x;(x,¢;¢) into the positive order parts p{#)
and the rest parts u{f}. We denote the real and the imaginary parts
of —iu? by a;'” and B, respectively. More explicitely,

m—1
@ (@, £58) =Im {L(z, 25 ) + X vl (x, £; ) 18] ¢my,
k=1 .

m-—1
BiP(x, t; &) = —Ref{di(x, £;8) + D v (a, £ &) | &'~ @/m},
k=1

Recalling that D,= (1/:)d, and the form of & in |§|>=R,+ 1, we have
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h
[oron@-Dvia

= Z.n (anz(t)H(aL \/Tlﬂi(j))vl.(f—l)pnnzdt

1<i<g
ISJSM

- 5 j 02 (O 11 {0+ + V=TBP) — =T 1} vrs-noeil L,

where V,="(v,,, -**, ¥;,mp). Now the last integral is greater than

. h o - 9
iZ; {12_ I, @2 () 1] (0. + a; P+ V—1B,Y) 'Un,(j—l)pwllzdt
—C j‘ @n (t) Il/‘( 32U, (- 1)p+1H dt}

h SR —
e P CT IR VRO PRI

i<p

3
—C,j; (Png(t) Hvx,(f—l)pw'”zdt}E S‘\;z e, dmhrEn,
1<5<m

From now on we write v, @, 8 and ¢, instead of v, ¢;_ppsss @,
B, and e, =D,

Let us introduce the following two standard quantities
3 . 3 )

I} = j @2 () [|v (@) |1*dt and p,*L, = j oo’ (8) [l (2) [7dt.
0 0

Note that by virtue of (3) in Remark of Lemma 3.3, the definition
of ;¥ (x,¢; D,) and supp[9(2)]C{¢:|§|=R.}, we have

( E [ eorerses (oo,
%4- j 02 (D) || (A+ 1) (2) ||*de<p,*1..
) < "ot (O | (A+ 1) =0my () [P A<i<p,).

[fer@ s vow ra<oss:

N

=c j‘oh%z(t) NA+Do@) ||’ dt (p+1<i<p),

where ¢ depends only on P.



Uniqueness in the Cauchy problem 507

Lemma 4.4. (A. P. Calderén [1], S. Mizohata [12]) We
have the following inequality:

[ec@i@+atiowa

Z (pn'—l)zlnz‘{' l In2_g€£pnln2—‘@‘ In2_¢n2(h) I ['U(h)’ av (h‘)]l'
n n

n

Proof. The proof is the same as those of A.P.Calderén [1],
and of S. Mizohata [12]. We need only take care of the above
estimates (7), so we omit it, Q.E.D.

From Lemma 4.4, we have

20,= fwa) @+ atiB)o ()i —c jo"mt) v (e) ||dt

>(u-Dp+ 2120l pe @ pe ey o), av ()]
n n

7n

2 272
Z(pn—l _ﬂ> Ii+ (1—2c,h—c2’h_£i>lznz

n n n

= (W) | [v(h), av(h)]].

From now on, we fix & as small as (2c,h+c’h+c’h?) <1, then for

sufficiently large 7, it holds

2
2> (pa 1= 202V i Lo gt ) o I llaw ) 1.

n

Moreover, if p,=>(3/2), since p,—1— (2c,h/n)=>(1/3)p., we have
20,220, L+ Li=g () oW || law () I,

and if p,<<(3/2), neglecting the term (p,—1— (2¢,h/n))%L,}% then we
have

1 1 o
26’112'@- I:x2+‘6—2——z; In2—¢n2(h) ||'U(h) || : ||C¥'U(h) “

1
24—m+i 0L — .2 () [[v (h) || - llaw (R .
n On
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In any case, for sufficiently large » we have
1 2r 2 1 2 2 | -
2e,Z2— p, L} +—— L' = (W) |lvA) || - l|lav (h) ]].
O 4n

If [|lv(h)]|-|lav(h)||5£0, there exists a positive constant ¢ such that
v(x, ) #0 in R'X [0, h—¢]. Thus

h—¢ h—¢
1= (el oliaze t-o [ ilvw (e

2 h—¢
>L< e\, f ’
= 1+2h "o (k) el

Finally for sufficiently large » depending on w(x,¢) we have

1
6’”2—— ,,21,,2+I,,2 .
18n e )

Then, summing up, we have

 [leronoeoviaz pezl oy oy,

Ch—
1 1

4.3. Estimate of [}¢,'(2) || (D,— D) V,||%dt.

Let us remark that 9 (x, ¢;£&) is not a diagonal matrix in {&:|&|
<R,+1}. But v, (é,t) has compact support for &, therefore we have

| (A+ DIV (R, + 17| Vel
Then we have
| (D= D) Vel |*= || @+ (A+ 1) I = D) V2 |?
>3 @+ A+ D V| P = [| D V7,

where =i — (A+1)1. Because 9 is bounded operator on V,, by
the same argument as in paragraph 4. 2 for ¢,*(2) || (0, + 4+ 1) v,,;(2) Ilzdt
(Vy="*(va1, ***, V2,mp) ), We have the following estimate,

n _ ~ [ . S
2¢,= I) 02 (@) || 9+ A+ 1) s, |’dt — Const. (D) jo 0a* (8) I vs,s1I°d2

> (oD 220k, czh ahys
n n
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= () 125, ) ll@wn s W | =R [0 en s @ 1,
where
oiti= [t @1 (A Doy O e and L= [0/ Ol 0117
However in this case
R S S O EOY

8h:R 2

772

2 2 h
s%fi j 07 (2) ||, (0) ||t = L

So we have

26,212 SR L 1) v () 1 -l s (D 1.

1

Moreover the same argument as in paragraph 4.2 gives us the fol-

lowing estimate for sufficiently large » depending on R, and v,,;:
e, Y L> 4 (o LF+ 1Y),
Then we have
. ,
[[er o@D Virar= Yo =1 3 L+ LY.
0 [ i,J .

By paragraphes 4,2, 4.3, Lemma 4.3 and ||V||*’<2(||V}|I*+ || V2|,
we have the following result,

h : .
® [ e01@-vira
>4 Sy AL 1) -wmy 2 gy 4 o7 b 2
=), o @O NA4+1) @) |I'de + 2 )y O @OV () 1%,
where ¢, and ¢, depend only on P, and n is sufficiently large.

4.4. Matrices of type(A").

In this paragraph we give the estimates of #",’U, (/" H— D) U,
A"BU, and #"GU. For detailed proofs, we refer to S. Mizohata-Y.
Ohya [13].
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Definition 4.1. Let A= (a;;(x,¢;D,)) be a matrix of order mp
with elements of ¢.d.o.’s. We say that “A is of type (#7)” when A
satisfies the following conditions.

1) ay(x,t; D) =alj (x, t; D;) mod. order —1, where afy(x,¢; &)

are expanded in the sense of Puiseux in |&]|~%™ for |&|=3R.

2) Order (a;,) g%([f;pl-] +1)-1,

Lemma 4.5. When A is of type (A#"), we have the following
estimate,

AU <Zc||A#"U|| +¢’||AC’U|| mod. order —1,

where order (CV) < — (j/m) and where ¢ and c’, depend only on P
and j.

Proof. Throughout this proof we consider always in the sense
of mod. order —1. Let us put C= M A" — Mo.#" then order (C)<< —(1/m)
and AM is of order O because A is of type(#"). Our proof is car-
ried out by induction on j. The case j=1 follows from the fact that
A=A(MoN)=AM. A+ —AC. Assuming the case j=F is true, let us
prove for the case j=£k+ 1. First,

ACF= AC* (Mo A= AC*HN" — ACH
—C*AMN +[A, CLHN — ACF*.

In virtue of order(C*A M)<< —(k/m) and order([A, C¥] M) —(k+1/m),
the case j=k+1 is proved. Q.E.D.

Lemma 4.6. ./, (V' H-DAN"), 4B, and 4G are all of
type(A7).

Proof. Let us note that .#" is of type(.#"). Since G is of order
at most —1, #°G is of type(#"). Concerning .#7,”, obviously it is of
type(#”). Concerning 4 B, since B is a triangular matrix of order
0, 4B is of type(A#"), too. As regards /" H— DA, we devide this
as (S H—A"oH)+ (Dot —DA"). Then the former is of type (A")
because H is triangular mod. order 0, and the latter is also of type (#")
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since 9 is a diagonal matrix of order 1 in a n.b.d. of the point at

infinity. Q.E.D.

We are now in a position to prove Proposition 1. In view of
(6), the estimate (8) and Lemmas 4.5, 4.6 give

h
© Ez=% [(or@nca+n-empvipa+ 2 [ or 17Ul e

h h
~a[ler@lrvia—c [ ot @l1A+ ) U@
h
—a (e @ U

h
=4 (o@D ema Ul 2 [0 || U e

h h
—a ﬁ ¢u" O |1 (A+1) U 'dt —cs L o’ (D) |1 U||"dt.

Let us recall that we have started from PU=D,U~ HU -BU -GU - U,
(see (2) in paragraph 3.2). Because T and T’ are of order at most
mp—2, by Lemma 4.2 and Corollary 3.2 we have the following
estimate,

’

E >S9 h (" e mp—7, (2
n__; ;l ) ¢n (t)lla; ullj—ldt

C

17 mg h B i .
+ ol 38 et @ emam g

mp R
~ 3 Mol s v0r e
/7 mp h
=60 3% " ot 1107 tully s
n j=1Jo

o’'n 3% (* C14Qmyn mp—
+ 22 5 o @l A ) emo ety e,

(n is sufficiently large).
Thus we have proved Proposition 1,

4.5. Proof of Theorem 1 under the condition (A).

By PU=0, we have E,=0, so by Proposition 1 we have
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mp h
2 @t @A+ 1) HAmg ey (1) ] dt =0,
=1 Jo

that is, u(x,¢)=0 in R'x[0,2]. This is equivalent to saying that

in the original coordinates #(z,t)=0 in

2={(z, 0); [t|<—|x|*+ A}.

5. Proof of Theorem 1 under the condition (B;) or (B,).

The condition (B,) implies that P,,_,=QP, (mod. order mp —2)
where Q is a homogeneous partial differential operator of order (m —1)p
—1, and the condition (B,) asserts further that Q (0, O;-Sv, corj0,007F0
for all £ R'— {0}.

" When we perform a Holmgren’s transformation and modify the
solution and coefficients in the same way as paragraph 3.1, the con-
ditions in the theorem are invariant in a neighbourhood of the origin.

So if we regard P,u=v as the unknown function, we have
Pu=(P," '+ Q)v+R'u=0.

Hence if m=>3 we appvly the estimate under the condition (A4) and
if m=2 we do the modified Calderén’s estimate with our weight func-

tion, then we have

co "V (M, 1 2
E2% S [Tor@ ool ar

0
n

Coll m=Dep " 2 —1+(1/m m-1)p—7, 2
+ jZ fo(p" (@) || (A1) ~HHemg m=br-dy (2) ||5_\dt
=1

—c"'; ' £h¢/.2(t) 18720 (2) | 51t — cap (W) [V () || - ||V (R ..

Hence, 0.fv=0,P,u=P,0, u+ [0,*, P,]u, where [0, P,] is of order
p+k—1, so we have

(m--1)p h .
Bz [0 1IP0It
noJ=1 Ju

mp—1

h
—¢/ 5 ‘ J:, el @) o u ()| 5. de

=1

—c’ RV -V (W) L.
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Once again we apply modified Calderén’s estimate with our weight

function regarding 9, "?Ju=wv,” as a function, then
h h
[(ocoipes @I-aze [ 02O IO~ Gt DY VY @) 1151

. ’ h 2 T’ 7 2 ’ 7’
Z%j el OV O adt = (W) 1V () |51V (W) [,

zc 'n N j 0 () 1107740 (£) | By ot

—c' h) 7|V, (W) |11 V;' (M) i1y
Therefore

m

c L—\-1 " 2 mp—-F-1 2
E>S j 0 110 () |5 dt

hE =
mp-—1 h
—e' L [ er@lior e 11
=1 Jo
(m=1p
=" @RIV -V ]+ 12:‘1 NV VW)
Here we replace & with smaller A’ depending only on P, then we bhave

c mg;l h’ mp— g
Bz 0 [ a0 l10mr o

=" IV NV L+ 1V Bl 1V B,
1f
WV IV L+ 5 1V B 11V R 11,20,

We have 0 in R,'X[0,2"]. So there exists a positive constant
¢ depending on z such that «(x,#)#0 in R,'X[0,h'—¢]. By

h’ h’—¢
L 02 (D) (12 (2) || 2poadt> j 02 (D) |1 (2) | *dt

h’—¢
> (20 — &)~ j et (£ | e >0,

we have

7N\ —2n ’ ’ (m:%)p ’ ’ ’ ’
@OV NV RO [+ = VOOV (R 1)



514 Waichiré Matsumoto
(o [ ot @ lluo lpt),

with respect to n. This asserts that

c ™M 2
=58 [Ter@nomr @iy
for sufficiently large .
On the other hand, from the equation we have E,=0. Therefore
we have u(x, t)=0 in R;'X[0, A’]. This completes the proof of
Theorem 1.

Appendices

A.1. An extension of Theorem 1.

We can immediately extend Theorem 1 to the following form.
For simplicity we announce only the case corresponding to the condi-
tion (A).

Let us consider the following operator,

P=P™P™P,+ P, ,+R,

where m,>m,=2, p, q, ¥=0 and s=pm,+qgm,+,r>0. And here
P,(z,¢t; 0, 0,)., Py(x, t; 0,, 0,) and P,(x, t; 0,,0,) are homogeneous
partial differential operators of order p, q, and r respectively with
Cmaxin® coefficients, P,_,(x,¢; 0., 0,) is a homogeneous partial dif-
ferential operator of order s—1 with C'*™2*¥-1L3% cgefficients, and
R(x,t;0,,0,) is a partial differential operator of order at most s—2
with bounded measurable coefficients.
Moreover we assume the following four conditions.

Assumptions.

1) The characteristic roots {A;}<j<psq+r are always distinct and
real or non-real. Let 1, stand for the real characteristic roots of P,
when 1<<j<p,, the non-real roots of P, when p +1<;<p, the real
roots of P, when p+1<j<p+gq,, the non-real roots of P, when p+gq,
+1<j<p+gq, the real roots of P, when p+q+1<j<p+qg+r, and
the non-real roots of P, when p+qg+r +1<,<s.
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R =P SO =D p A<k<min{m, p, ma})?.
=omy J=t M

3) Ps—l(O,O;f,f)lmx,(o,o;f)%éo "SERL—{O}, 1§j§P+Q-

4) P,_(0,0;¢, 1) |r=x,(o,o;e) L
I G—=i0™ 1 Q—a0™ 11 (Ai—2x)
Py £k pra+I<k<s
1<k<p P+ISk<p+q

is not pure imaginary at the origin for 1<;<<p, p+1<i<p+gq,.

Theorem 2. If all the conditions are satisfied, there exists a
neighbourhood Q of the origin such that the solution u(zx,t) €C* of
Pu=0, 0 ul,.o=0 (0<j<s—1), vanishes identicrlly in .

Remark. A final extension of Theorem 1 and 2 will be an-
nounced in Zentralblatt fiir Mathematik.

A.2. Uniqueness theorem under another condition.

We proved a uniqueness theorem under the condition (4), (B,)
or (B;). We are tempted to consider the following condition:

(C) arijp—l(x, ty 51 t) ’r:Xk(:,t;f)Eo (jzoy 1) .

In general, (C) is not sufficient to get uniqueness theorem. In fact,

in Example 3 the operator of following type is contained,
Am + P[m/2]+1.

But if we assume similar conditions to (C) not only on the ho-
mogeneous term of order 2, —1 but also on the terms of order at
least [m/2] +1, we have the following theorem.

Let us consider the following operator:

A1) P=TIP+Q Pt +Q [ Pate+Qn PutR,

k=j+1
where we assume 1) P, (1<j<m) is a partial differential operator
of order p; whose real characteristic roots are simple and non-real
ones are either simple or always double, and whose coefficients belong
to C™ax@»1+%} respectively, where g;=> {Zip.. 2) Q, 1<;j<m-—1)

" If especially g/p<<2/mi(m:—1) or p/q<2/m:(mi—1), the condition 2) is satisfied.
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is a partial differential operator of order Y{_,(p,—1) with bounded
measurable coefficients. 3) R is a partial differential operator of order
p—m with bounded measurable coefficients, where P=2 "1 e

Then we have

Theorem 3. There crists a n.b.d. Q of the origin such that all
solutions of

Pu=0
07u|eo=0 0<j<p-1)

vanishes identically there.

Remark. In (A.1) if we assume 1’) instead of 1), we can get
the same result as Theorem 3 by using Mizohata’s estimate [11].

1) P, is elliptic of order 4 with C'*'characteristic roots
(1<j<m).» Here we do not assume that the multiplicities of char-
acteristic roots are constant, that is, more precisely we assume. only
that they are at most double.

- Before proving Theorem 3, we state a lemma.

Lemma A.1. When P satisfies the above condition 1) and
u(x, t) €C? satisfies 0ulio=0 (0<;<p—1), we have the following
estimate for sufficiently small h.

t o 2 c &t e k 2

E= (ot lPu@ a=s 2 [ o @1107 @) e,

Proof. Let us put u;=(A+1)?/D/~'u (1<;j<p), then we can
reduce Pu to a first order system:

(A.2) PU=D,U—~HAU+ BU,

where U="*(u,, -+, u,) and ||Pu||=||PU||.
Let {1;(x,¢; &)} 1<j<p be eigenvalues of H(x,t: &). Because of
rank (1,]—H) =p —1, we have a smooth #" (x, ¢; &) such that /" H #"!

is a Jordan’s normal form. Operating .#” to (A.2), we have following

® We assume P; has real coefficients when /=1 (1<j<m). Then for every I(=1),
two 4; have positive imaginary parts and the other two have negative imaginary
parts. Further we can have the same result if P, is of order 2 instead of order 4.
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(A.3) A4 PU=D,V—-9DV+B'U,
A A
S
P Ao 4 0
[0 ]
where V=4"U and 9 = R ,
vl
L0 2,
| SR
Aors
0 o~ A

Now we can use modified Caldrén’s estimate by multiplying 1/+/7 to
the (27—1)-th components of ./ PU (1<;<r). Q.E.D.

Remark.  Under the condition 1’) by modified Mlzohata s estlmate
we can get the same estimate as Lemma A.1 without reducing to a

system.

Proof of Theorem 8. We prove Theorem 3 by induction. Let

us assume

B2 00 50 [T edont [ Paullsde

n— hz(;- 1,4

m—1 h m h ‘
-5 [Toatie, T Padiae— ([ gl Ruliar
7=r Jo k=741 0

Then by the inequality

1r qr m
2 o "H Pulleorn= 220 1P:0:5 % 11 Pyu) |k
k=r—1 k=r-1 J=r+1 )

Qr+y m
—c 2 1107 T1 Pulli-dt,
k=r F=r+1

and Lemma A.1, we have

h m
=8 (M alioo T Pulltde

m—1 R ‘ m h
-3 [leio 01 Paltar- (ol Rular,
j=r+1 Jo k=7+1 o
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At last, we reach to »=m, that is,

c p\_—’:"‘ ko P Pm—k 2 By 2
E > j—ﬁ-l ) ¢n Hat ks Pmu||76—m+ldt_ ) Q’n “Ru” dt

n— f2m=1)

Once again we apply Lemma A.1, we have

c & (*

Bz S5 [ ollortulli e,
th j=m Jo

On the other hand, from the equation, we see E,=0. This implies

that =0 in a n.b.d. of the origin. Q.E.D.

A.3. On the unique continuation in two-dimensional space.

We are interested in the unique continuation property for oper-
ators without any essential assumption for l.o.t., especially those op-
erators having 4™ as their leading term. If m<<3 we have affirmative
results in more general cases by A.P. Calderén [1], S. Mizohata
[11], and K. Watanabe [15].

However Exampl 3 contains the following case:
4*+ (lo.t. with C'*? coefficients) (6>0).

This suggests that we need assume sufficient differentiability for co-
efficients. But by Example 2 we have the following case where unique

continuation is incorrect:
4%+ (l.o.t. with C>-coefficients).

If we suppose that only 4™+ (homogeneous terms of order 2m —1)
has sufficiently smooth coefficients, Example 3 contains the following

case:
4°+ (L.o.t. of order 8 with Hslder-continuous coefficients).

Therefore we restrict ourselves to operators whose principal parts are
4'. Moreover, we assume severely that homogeneous terms of order
7 are of constant coefficients. Then we have an affirmative result
when /=1, that is, x& R'. Let us consider the following operator:

L=A‘+P'l(a.r, at) +R(.E,t;a,, 02)’

where P, is a homogeneous partial differential operator of order 7
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with real constant coefficients, and R is a partial differential operator
of order at most 6 with bounded measurable coefficients.

We have the following theorem as a corollary to Theorems 1
and 3.

Theorem 4. If Lu=0 (ucC*(R?)) and u(x,y) =0 on an open
set, then we have u(x,y)=0 in R

Proof. If u#0 in R? there is an open ball B such that z=0
in B and supp[«] NB+#¢. Note that we can takea point Ae
supp[«] N B.

In the above operator, we have only the following three cases:

Case 1. P, (1, v/=1)=0,
Case 2. P,(1,V=1)=0 and 0,P;(1, v—=1)0,
Case 3. 0,’P,(1, v=1) =0 (j=0,1),

where 7~ is the radius of B. Let us transform the coordinates (x,y)
to (z,¢) in a n.b.d. of A mapping A and the boundary of B to the
origin and £=0, respectively. Then we can apply Theorem 1 in Cases
1 and 2, and Theorem 3 in Case 3. That is contrary to %0 in a
n.b.d. of A. Q.E.D.

A.4. Case of first order systems.
We give remarks in case of first order systems:
P=0¢—‘H(I,t;ax)+B(I,t),

where H and B are pXp homogeneous matrices of order 1 and 0,
respectively. When we establish Theorems 1, 2, and 3, we reduce
equations to first order systems and make those principal parts diagonal
or triangular by smooth regular matrix .#”. But in case of matrices, if
we do not assume nothing about the structure of the matrices we can
not find in general a continuous regular matrices 4" (x, ¢; &) with re-
spect to x and ¢ such that #/ H.# ! is triangular.

Example A.1. Let A be an arbitrary number and (z, ) € R' X R".
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2

l —xtl —t

H,='< T )
x A+t

Although H, is analytic, it has not a continuous matrix 4" at the or-

igin, (which will be called “triangulator”) that J’"H(///'"lz(é j)

Even in the case of one variable,: we have the following
‘Example A.2.

<f/1—exp(—l/t2)sin(1/t) —exp(—l/f) , )
exp(—1/£)sin*(1/t)  i+exp(—1/£)sin(1/2) )

This matrix has not continuous ‘“triangulator’ at the origin, too. Let

us remark that all elements of H, belong to C* class.

But, corresponding to Mizohata’s results [11] (see.also B.
Malglange [9]), we have the following theorem.

~ We assume that H(x, t;d,) has simple real characteristic roots
and at most double C™* non-real characteristic roots and has C'*°
coefficients, and that B(x,#) has Lipschitz continuous elements.” Then

we have

Theorem 5. There cxists a n.bd. £ of the origin such t/zqt all
solutions u(x,t) €C" of '

Pu=0
u(x,0) =0,
vanish in .
Proof. By localization in & and modification of coefhicients in
[12], we can assume that l,;_, coincides with only 1,; (1<j<r) and

1, Cr+1<j<p) is simple. We can have smooth regular matrix .4~
such that /" H,#""'=&, where H=H,4 and

» All assumptions are held after Holmgren’s transformation. On the other hand,
dividing U to U, and U, as in paragraph 4, we need the smoothneas of chdracter
" istic roots only up to order 1+a (6>>0).
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dy di é
Ay dw i
&= g dsy dy ! 0
{ da du i
0 Aor sy

We operate /" (x,¢; D,) to the equation, then we have
(A. 4 DU~ %A./f”Uﬂ- B’U= 0.

Moreover we operate L to (A.4) in distribution sense, where

(A + ]_) _]I':r : o \| T —'—D::;Z;(—-——gi;; ) -.E : 0

L, and I, , are the unit matrices of order 2 and p —2r respectively.
Finally we get the following

(A. 5) DV -B"U=0,
where V="(v,, -, v,) =.#"U and

((A+1) (D, —2,) (D, — 4s) .
A+D) (D~ 1) (Di—22) 0
A+1) (D= 25) (D= 29)
(44 1) (Dy—~2) (D= 1)
.Dt _}‘%”'1
D.-1,

-0
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If we expand all components appearing in (A.5), we see that all
terms except D,;(A+1) 'v, belong to L. Then, from the equation,
Dj(A+1)"'v; is also an element of L’ (1<j<2r). On the other
hand, for 2r+1<j<p, operating (A4+1)"' to the equation, we see

P )
D, (A+1) o || <[ (4+1) "'A04ll + ¢ kL_]} [[(A+1) v |<c ,;lllvkl I
By applying twice modified Calderén’s estimate, we have

E,= j'n"(,,,f(t)H.CDV(t) —B"U(®) ||t

h
=5 . j 02 (8)|v, (&) |1*de (see S. Mizohata[11]).
ht =1 Jo

Then, from (A.5), we can see #;(¢)=0 in a n.b.d. of the origin.
Q.E.D.

A.5. Remark on the localization in £.

In proving Theorem 1 and 2, in case of /=2, we must localize
P(x,t;&,7) in R Let (&) be a partition of the unity of S,'. The
modification of the symbols out of supp[a;] is as same as S. Mizohat
[12]. Operating a;(D.) to the equation, we have

aPu=P," (i) + Ppp_ (t:tt)
— v —1mP," '(grad,P, -grad a;) u + Ru=0,

where R is of order mp—2.
Let us reduce this equation to a first order system as the same

way as in paragraph 3.2. Put

= (A+1D)"P*0,_, - Docie  (1<k<mp),

U= (A+D)"?*0 - 0 (0, ) A+ D (j=1,2, 1<k<mp).
Then the above equation is reduced to a system of the following form:

P.U=D,U—HU-BU~GU~ Y K,U,~U,=0,
j=1

where U= («,) and U,= (4;), (see (2) in paragraph 3.2). Note
that K,U, corresponds to the term —+—1mP,"'(9,,P,) (0;a)u in
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the above equation. Let £{ be the (i, #) component of K,, then
kP is zero when 1<;<<mp—1 or when i=mp and 1<k<(m —1)p.
For the rest, the order is at most 0. Let us operate the diagonalizator

A" of H to P,U=0. We have
N PU=D, SV U-DANVS U~ U~(NSH-DAYU~ 4" BU - H#GU
2 2
i=1 j=1
(see (5) in paragraph 4.1). Let us remark that by virtue of the
structure of K, #/ K, M and /" K;(M A" — MoA#") are of order 0 and
—1, respectively.

After we estimate (D,— N AU, #°U, (S H-DANV"U, 4 BU,
and A#"GU as the same way as from paragraph 4.1 to 4.4, we see

3 h
Eyw= f @’ (2) Il/P;Ullzdth’—j e O A+ D ™A U *de
0 n Jo

n h
+%}Z L 0.2(8) || A UMt —c, ﬁ e @)1 (4+1)'U||"de

h 2 h
e j ot OVt =c0 )3 j 02 () || AU, |t

P n
~a 3 [Tecolus U ar,
(see (9) in paragraph 4.4). Here,

a (" ol A+ Dem o ultar+ S ("o | Ul
— ], e @Oll4+ S U+ 05 | el @ 1| AU

A
Z—;— (p,,2 &) || (A+ 1) 20-am) g U| |2 .
0

Moreover we consider (0;,a;) (A+1)Y2¢+A/m) Py, We have
(0e,) (A + 120+ /™) Py=(P,™ + P,,, ) (B, 0te) (A + 1)20+/myy L R gy =0,

where R; is of order mp— (3/2) +1/(2m), (j=1,2). This is reduced
to the following

P,U=DA4VU,~DVUO,—~ AU, —~ (S H-DAN)U,— A4 BU,
— A GU,; — AU/ =0, where U,=(4+1) 1200y,
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Then we have the similar estimate to that of .# P;U,

2 ~ ’ R ~
E,= ﬁq)f(i) |1#°Pyy O, | =S j 02 () [ (A + 1) va-cm_p T, |12
h ~
Y j 02O (4+1) 0, | dr

o jw OIU e (=1,2),

Summing up for j, we see that

0

2 h

2 B,z [Mor ]| A+ e am U
h

—a [Jor@l@nUa

h r ’
—e j ¢,.2<t>HUo|12dt—c;£ 0t () || U | dt

mp

c
h k=1

,, |
[Cor @1ty ro-emmpmrsau s ar

h . X
~a 3 (Mot 11 1) re-omg ety s _ar,
Jo
(see Corolary 3.2 and Lemma 4.2). Then, summing up for 7,

~ mp h
DSBS S (Tor (s 1y o-emp e p L,

(h is sufficiently small and n is sufficiently large).
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