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§ 1. Introduction and Preliminary Lemmas.

We have discussed in [9], [10] on the generalized Bergers’
equation (abbreviated below, G.B.E.) as a simple model of the funda-
mental system of equations for compressible viscous fluid. It will be
shown in this paper that we also obtain, for G.B.E. with a pressure
model term, results almost similar to those in [9] and [10]. As for
the notations, see [9]. The abbreviation “m..e.a.” stands for ‘“monotoni-
cally increasing in each argument”.

Now, the system of differential equations to be discussed on is
as follows:

v 7 0’ 0v
_*.x’lz = ’t_. ',t—’,t
ot ) p(x, t) 6.r2v(x ) v ) ox (. 2)
K
R0y,
p(z,t) 0x
(1.1)

0 0 . .
——po(x,t) + —{p(x,)v(x, )} =0, (v, velocity; p, density;
ot dx
X, viscosity coeflicient (constant); ¢, time; K, positive constant
such that P(pressure) = Kp),

where v is a scalar function and x€R'. For a while, to the end of

§ 2, we assume for (1.1) the initial condition that
(1. 1)’ v(x,0) =v,€ H** o(x,0)=p,€e H'**, (= (0,1),

0<po=inf poépoéfhz [0o] <+ 00).
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In the following, we shall study on the initial value problem for the
system of equations (1.1), especially from a temporally global point

of view. First, we prepare some preliminary lemmas.

Lemma 1.1. If (v, p) € Hi**X B (0<T <+ o0) satisfies (1.1)
-(1.1)’ then the function y(t;x,t) defined by

(1.2) e N R EN G P
0
satisfies an ordinary differential equation

di-y<r; 2,0 + ko (x, O, (55 2, 7y (25 2, £)

_ ~ 00 (2o (2,2))
(1.2)’ el t){ v t)+k00(xo(r 1))
. [4
x?ﬂ(ng(f;x £) f)}
ae‘ Al k] A

K
V Z, =0v kE— ’
y(oiz,0=0, (k="

where T(t;x,t) is the characteristic curve in p of the latter equa-

tion of (1.1), i.e., satisfics
: d . —_ =t e 1) = e
(1. 3) d—x(r z,t)=v(Z(r;x,¢t),7), T(;2,t)=ux,
T

and T, V.., etc., are defined in such a way that, e.g.,
(1.3)" o(r:x,)=v(&T(t;x,t),7),
Ve (T3 2, 8) =0, (T(r1 2, 8),7), xo(x,8)=Z(0:2,0).

Proof. The following relations are obvious.
(1.4) a—f(r;x, t)=exp{— jv,(r x,t)dr’ }
ox
B,y mexp{~ [5(s 2 0ar =2 (ei 2, 0)
x

xexp{—j’zu';x,t)dr'}, 0(z, 1) =P (c: 2, )T, (0 2, 8);
0

2o(x,8) =20 (T (T3 2,8),7), Vau(T/3 T(T1 2, 2), 7)
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=v.,(t"; z,t) (0=t'=1), etc.;

007 @l 1) 020, .
o o) o2 B TYEE D,

v(o;Z(t;x,8),0)= (T, "-y) (t;x,¢).

Noting that our discussion is being made along the characteristic curve
Z(t;x,t), by (1.1) and (1.4) we have (1.2)". Q.E.D.

Remark. The lemma above shows that y(¢; x,¢) is expressed as
follows:

(1.5) y(t:0,0) =p(z, ) -[v(z, ) ——exp{—kp ) j'zx(r; z, t)“dt}
X v (o (x,8)) —k gexp { —ko(x, 1) rf,(r’; z, t)“dr’}
x [o (@, )T (e 7, )T, (cs 7, £)"

_00 (<f ((f—;)i exo|— [0 2 0ac'} s,

Lemma 1. 2. If a function u(x,t) defined on R'X[0,T] has
0/0x u(x,t) and, moreover, satisfies

(1.6) lu(x,t) —u(x,t) |ZC\|t—2¢|%,

lus (x,8) —u (2, 1) |[SCo|x — 27",

(C, and C,, constants; a, < (0,1]),
then it holds that
1.7 sz, 8) —ug(x,t") | SColt — /|15,

where Cy is a constant depending on C,, C, and f, especially,
monotonically increasing in C, and C,, respectively.

Proof. It is obvious that

=t

— Iu (x//’ t”)

| [0 —u,ehyaz].

=t

—u(@’, t") +u(x, ) —u(x”, )| Z2C,|t" —¢'|°,
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j, {u(x, ") —u(z, t/)}dx‘éczlx/ — |18,

and that

([ —u, 1az|z1e 2|

X [luz (2", t") —u (2", ') | = Cylz” — 2’| *].
Therefore, we have

T
|2 | +202|x//_x/|,e,

lus (', t7) —us (27, t) | =2C—;
|z” — x|

where we note that z” is arbitrary. If we define f(s) by
F=24Bs® (A=2C,|1" —1'|% B=2Cy),
s
then f(s) takes at s= (A/BB)/'*#=s, its minimum value (if C,>0)

(L.7)" f(s) = [2CP1+0C 148 (G118 4 g48) ] |1 —1/|<#0+#,

We define Cs by [---] in (1.7)’, including the case C,=0. Then, by

the above discussion follows our assertion. Q.E.D.

Lemma 1. 3. If (v, p) € Hi** X By' satisfies (1.1)-(1.1)", then
it holds that

1.8 0185, lol8P =Cu(T, [0, [0[2”)  (<+00),

where [p]r=|0|$"+ 07"z and C,is a non-negative value depending
on T, etc., and mudi.e.a.

Proof. Let w(x,t) be defined by
w(zx,t)= pr (', t)dx’.
Then, it follows that
w.(z, 1) = Lzlpz(x', t)dz' = — j:(pv),,dx’= (pv) |Zz2.

Therefore, we have

lw(z, ') —w(z, t") |S|wl|f |t —t'|=2|pv]f|” =]
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On the other hand, there are relations
P=Wz 2= Was.
Here, by (1.4) and (1.5) it holds that
(1.9) 10217 =Cs (T, [0z, |v]r™) <+ o0,
where C; has the same property as C,. Applying Lemma 1.2 to

w(z,t) (@=B=1), we have the inequality (1.8). Q.E.D.

Lemma 1. 4. Let(v,p) € H'** X By' satisfy (1.1)-(1.1)".
Then, for the fundamental solution I' (x,t; &, ) of a linear parabolic
equation

(1. 10) Ou _p 0, 0,
ot p oxt ox
it holds that

1D LT 2,0 SC, [0k, 1ol)

2
x eyt exp = (e o1 L= (0>0),
-t
where [0l =[p]r+ 0711 and Cs is mi.e.a.

Proof. I'(x,t:&,t) is expressed by using as a parametrix the
fundamental solution I'y(x,¢: &, 7) of the linear equation

(1.12) W= Wi,

SRES

as follows:

(1.13) 'z, t; &, 0)="(x,t; &, 7)

t
+ j de’ Lro (2,28, T) X0, <1 &, 1) dE".
O satisfies the integral equation

+ fdf’ Lli‘(@ 6,8, T)X0(&, ' &, 0)dE,



228 Nobutoshi Itaya
where E(---) is defined by

(1.15) F(z,t:8,0) =v(z, t)airux, £ 8,7).
v

0 is solved as a Neumann series. If we estimate I", on the basis of
(1.13) ~(1.15) (also, cf. [9]), we obtain easily the estimate (1.11).
Q.E.D.

§ 2. Discussions.

Theorem 2. 1. Let (v,p) and (v*,p*) € H**X B;' satisfy
1.1)-(1.1)". Then, (v,p0)=(v* p*).

Proof. The theorem is proved in a way similar to that in [9]
by using (1.2), (1.5), and Lemma 1. 3. Q.E.D.

Theorem 2. 2. For some T € (0, +00), there cxists a unique
solution (v,p) € Hf** X By' satisfying (1.1)-(1.1)".

Proof. The theorem is proved almost in the same way as in

[71, [9]. Q.E.D.

Now, we make a step toward demonstrating several lemmas that
show as a result what is essential in the temporally global problem

of the system of equations (1.1).

Lemma 2. 1. Let (v, p) € H** X By satisfiy (1.1)-(1.1)".
Then, |v|/® can be estimated from above in terms of T and [p]r.

Proof. We can express v by use of I'(x,¢;&,7) in Lemma 1.4
as follows:

2.1 vz, 0= | I 680
+ fac [ re e o{-keEDae,

()

In virtue of (1.2), (1.4), and (1.5), p;/p is to be expressed by using
y(r; & 7). On this occasion, ZT,(r"; &, )" (0=t'<r=<T) is estimated
in such a way that
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2.2 1Z (e €, 7= 0l? - [o7' 1P = [0]"
Thus, we have the assertion of the lemma, noting that
2.3) Llf(x, t;7,8)dé=1,
and that the inequality
2.4 0Sy®Sa+b [v@dr+e [dr [v@ar @b,620

implies the following relation

(2. 5) Ogy(t)—B£ty(f)dr§a+A[J:dr(y(r)—B>< ﬁ 'y(r')dr')],

where A and B are the roots of §*—b&—c=0 such that A=0=>B.
From (2.5) follows

2.6) 0<y () <y () + (—B) j () dr<a et

Finally, we have an estimate

(2' 7) I'l}I;?)éC7(T, [0]T)<+°°»
where C; is a non-negative finite value m..c.a. Q.E.D.

Lemma 2. 2. Let (v, p) € H** X By' satisfy (1.1)-(1.1)".
Then, |v,|r® is estimated in terms of |v|+®, |ol®, o~ '|+®, and T.

Proof. We express v(x,t) in the form
t
2.8)  v(z, 0 =vet jdr LF(x,t;E,z‘)
0 1

v’ (€) _ ‘(&) KL D)
- {0(6, o EDTE TGS 4

Hence, we have

t
(2.9) v.(x, t) =v, + J;dz‘ Ll]",(x, t;€,7) {-hid§.
Thus, by Lemma 1.4 we have(A(---) =a,-|p7'|7®)

(2.10)  Joal 2= 0 [P +2Co () - (T A% {1l 2,

and, in the same way as in the preceding lemma, it follows that
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2.11) {2 O=Co (T, |12, |0l 2, |07 2) <+ o0,

where C; is a value m..c.a. By (1.11), (2.10), and (2.11), we

obtain our assertion.

Q.E.D.

Lemma 2. 3. Let (v,p)s H 4% X B! satisfy (1.1)-(1.1)".

Then, |p7'|+'® is estimated in terms of [p)r and T. '
Proof.
(2.12) o7z =107z + 107 1E2+ 07 Ii%F, (@€ (0,1)).
First, from the relation
(0™2=—p"""0,,
by (1.4), (1.5), (2.2), etc., it is known that [p7'|{) is

from above in terms of |v|r, [p]r, and T, ie.,
(2.13) o~ E2=Cs (T, |v|r " [p]r) <~ o0,
where C, is m.i.e.a. Next, by Lemma 1.3 it holds that
lo(z, )" —o(x, &) |=0(x, )70 (x, )
Xlo(z,t") —o(x, ) = (lo7" 2
XC(T, [v]z®, [0]r) - |t/ —2]"
Therefore,
lo(z, )" —po(x, )| =2(p7 )7 [t —¢/|*
XC(T, |v|r®, [p])~
Hence, it follows that

2.19) o7 EP=Cy (T, vl 2™, [p]r) <+ oo,

estimated

where C,’ is m..c.a. Since, by Lemma 2.2, |v|;® is estimated is

terms of [p]r and 7', we have the assertion of the lemma.

Q.E.D.

Lemma 2. 4. For (v,p) € Hy***X B;' satisfying (1.1)-(1.1)",

vl 7+ can be estimated in terms of |p|+, |07+, and T.

Proof. By using the fundamental solution Iy of the linear equation

(1.12), we can express v(x,t) in the following way:
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2.15) w0 =v() + fdf Lr o2, 856, 7) {;j (05 (i;_

_ . [Y
o6, DU, ) K- Lo (E;)}”dé

In a way analogous to that in [9], we have

(2.16) ol 29 =3lvg]® + Cuo(T'; [0™'Te) [ {+}uel 2.
Hence, it follows that

(2.17) {3}l P =Ch(T5 [07'1, lol 2, ol 24+) <+ oo,

where C,, and Cj, are m.i.e.a., respectively. For |p|r*, we have also

an estimate such that
(2.18) lol 2 @ =C (T, o], [0]r) <+ oo,

where CJ, is m.d.c.a. Therefore, finally, by the lemmas 2.1, 2.2, and
2.3, and by (2.16), (2.17), and (2.18) it holds that

(2.19) ol O=Cy,i (T, 1p|r®, |07 ™) < 4 00,
where C,, is m.i.c.a. . Q.E.D.
The preceding lemma denotes that, in order to have an a priori

estimate for [v]r¢*?®, it sufices to have such ones for |p|-® and |1/p|,©.
It is known that p is expressed in the form

(2. 20) o(x,t>==oocrocx,t>)exp{—-j:6;<r;x,,t)dr}

= 00 (@, £)) 20z, 1),
0x

which implies that, for the above-mentioned purpose, it suffices to have
a priori estimates for exp{+[{v,(t; z, t)dc}|r.

§ 3. Main Theorem.

Let (v,t) e H** X B! satisfy (1.1)-(1.1)’. The expression in
the characteristic co-ordinates (x,,#,) (cf. [9]) of the system of equa-
tions (1.1) and the initial condition (1.1)” is as follows:
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Us, (Lo, ty) = “ ( Uz, (o, o) )

00 (x0) \ 14+ w (o, 2y)
__ K 00 (o)
@1 o T rmay)

<ﬁ (0, &) = %) ,

B. D" 9(x, 0) =vo(x0) €H™ (0 (20) € H'®, 0<Dy= 00 =00 < + 0),
where

ro=x,(x,t), ty=t (therefore, z=x(x,,¢), t=1));
(8.2) ¢ T(xo, to)=v(x(x0, ), t=1t0), P(x0, ty) =p (x (2, to),

to
t=1t9); 0 (Zo, ;) = J\ D, (X0, t)dty .
0

Note that
t
(3.2)’ L 0%, t>=exp{— j“v:(r; z, z)dr},
1+w Ox 0
os_1( 0o
0 Do<1+a))fo

Here, we remark that ve H,*** implies € H** Directly from
(3.1)-(3.1)’, we obtain an equality

0 j\za ()0 = -/ ’ 6]: _‘kpo ‘Iu:zo
3.3 — 2 (®— St daxy = —Fo 2 .
( ) ots Jo 1 (T —wo) (2, ) dixy 14 leme
where k= K/y. Define Y*(x,¢) by

(3.4) Y (20, 1) = j%(@ —v0) (&' to) daxy’

_ jl"[ﬁza _kpo] dty’.
0 1 + To=a

Then, it holds that

(]
Zo

(3.5) Ye @ ) =2 @), o= (LY5) +ur
3 0o

Y* satisfies the following equation
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0 ya_TUs,—koo_ 1 (ﬂ) ) —koo_ p (Y% + vy’ koo
(3.6) 0t, 1+w 1+w\ py /= 1+ 1+w

Y (z,,0) =0,
where we consider £ as a linear operator. Since it holds by (3.2)’

that

20 RO <07 — ko Wexp (T 0] 1}
140

and since, by (3.4), Y* satisfies Tédcklind’s condition, we know, from
the expression of Y* by use of the fundamental solution G for .L,=_[
—0/0t as a linear operator, that

3.7 Y*=Y* (a and a’, arbitrary real numbers),
|Y* (20, £0) [P+ 00 (0=£,=T").

By virtue of (3.7), we put

3.7 =—-Y°=-Y"*.

Then, Y satisfies

Y, :_L<£> +kp°“1’0/=l’(y)+k00—vo/
(3.8) " 14e\p /s 14 1+

Y (x,,0) =0.

’

Lemma 3. 1. Y is related to (1+w)™"' in such a way that
Lo —1
(3 9) (1 +w)—l:e}'{1 +k00 j\ eY(zoytnf)dto/} )
0
Proof. It is obvious that

Y, :kpo‘_“/l)\,a: kﬂo __(1+CD)¢°'
° 1+ow 1+w 1+

Hence,

(14 0),+ (1+0) Y, = kps,

from which we obtain (3-9). Q.E.D.

Lemma 3.1 shows together with Lemma 2.4 that, in order to
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have a priori estimates from above and below for (1+w)™?, it suffices

to have such ones for Y.
Lemma 3. 2. It holds that
(3. 10) [ Gt en-( [Tm@rae)az=o,

Proof. S(x, ty) =[2p,(¢)d¢’ Ticklind’s condition and the equa-
tion

(3.11) S,nz.L’(S)(——-O), [S(xo, to)zs(l'o, 0)]

Therefore, it follows that

(3.12) St = [ on@de= [ Glan e,

3
< [ooenas)ae, 0se<usT).
On the other hand.
(3.12) S (o, to) = LG (o ta: €. 7) S (20, to) dE.

From (3.12) and (3.12)" follows (3.10). Q.E.D.

Lemma 3. 3. If w, is such that w,’ € H" and w, =0, then it
holds that

319 [ G a0 ([ n@)weas)az=o
Proof. By the preceding lemma, we have
(3.14) ["cae | n@)werar
< ["6az [ o)’
-~ [Toae @) w @na

e T WA PACOELS
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From the relation between the most right-hand side and the most left-
hand one of (3.14) follows (3. 13). Q.ED.

Now, in addition to the assumption (1.1)’ (or (3.1)’) on the

initial condition (i.e., (w,, po) e H***x H'**), we assume, moreover,
that

v, has an expression such that v,= vy + ve (vs and
v € H* 716120, veeL'(R")),
po’ € L'(R") (which guarantees the existence of p,(= o0)

= lim py(x0)),

To—too

(3.15) . .
J;J 00(&) —po(—00) |[dé<+ oo (for an arbitrary z,€ R"),

kOo - 71312 0,

o (o) =g () — [0k (00(£) —po(—00))dE has such an ex-
pressioa that u= 2y + tte; (uey € H®, w0, =0, upe L'(RY),
[Remark: u, € H**CH"].

It is easy to see that the above-mentioned assumption is consistent.

Y (2o, t,) is expressed by using the fundamental solution G for L as
follows:

(3.16) Y(zot) = | d LG(xo, i 6,0 ((B2) (¢, ) e
j — Uy — 'Uozd{g
1+

Therefore, we have, by the non-negativity of G and kp,—wvi,/1+ o,

(3.16) Y*=Y+ r’drj GV ge_ j drj kao ’”°ld$>o
0 2 140

We put

(3.17) Q=Y*—Y.

By integrating by parts the integrand G (vy/1+w) twice in &, we have

L




236 Nobutoshi Itava

- [laef, - St of [l

Il

Zg é
= [Temar s [ G a0 [ 0%as)as
Ja 2 JRr1 a /N

- [ G e o ["0mar)a,
R! 3 ¥

where we have made use of the well-known fact that the formally
adjoint operator [ ,* for _[, has the form

(3.19) Lxa) = “ (o)) ) 4Oz,

and that, for the fundamental solution G* (&, to; &, T) (¢e<7) for .[;*,
we have an equality (cf. [4], [10])

(3.20) G* (2, 20: 5, 7) =G (&, 75 20, ta) (£:<7).
By (3.18) we have an a priori estimate for Q (x,, ¢)
(3.21) Q1+ O =< 7" | pevezlziry (<< +00).

Similary we have for Y*(P=kp,(—0))

(3.22)  Y*(zo ty) = I”“dfj G{k(po—po(—oo))—vs,_ Po +I—,}
' B 1+w 1+w

x dé =Pty+ L'"df Ll (% (-l-iiw) ) ¢

< J‘:%{——uo(é') _P j (e, f')dr'}de'

=Pr+ [(ae L(-%f)d& jj%{w}de'

— P+ L j G (2o to: 2, 0)d2 f ‘potad’
n Je :

~ ("ac [ Gonie asP (" tace oae
Jo JRt Je

(Remark 0= — ﬁYe + 'vo>
Do
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=Pt [ Glan, 1o 6,008 [ oande)

+—Zz J\:ud‘l' Lth (xo‘ to; 5, ‘L’) d&( J:upo'vode,)

+P [[ar | Gonnig 0 Y@ e

-P '{:odr Y (20, 7)

=Pty+ p~! L.G (2o, to; &, 0) de L”po (ttoy + ttoy) A&
+§ Ltudr LG (xo, bo; &, 7) dé £ " 00 (003 + Vo) dE”
+P j “dr L-G (2o, 103 &, D) dE (Y *—Q) (£, 7)

_p j “de (Y* —Q) (0, 7).

Thus, by Lemma 3.3 and by the properties of Y*, Q, v, and u, it
follows that )

to
(3.23) 0S| Y*O <Aty + B +P j Y. Oz,
0
where
(3.24) A,=P(1+3H__0°%2' ), B,=“ Ootler |
[ ILY(BY J7R R 2Ye: D)

Hence, we have a priori estimates such that
(3.25) |Y*| O (A +B)e'" — A,

Y], O Y * 20+ (Qr V= (A + B el — A,

, (NB.:Y=Y*—Q,Y*>0).

Li(RY)

+ ” DOoVo2
V23
Therefore, by Lemma 3.1 we have:

Lemma 3. 4. Under the assumptions (1.1)'-(3.15) on the ini-
tsal condition, we have an a priori estimate
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(3. 26) [o]r=Iplr<°>+i%j(:)§C(T)<+oo(C(T) 7 as T 7).

Finally, we obtain:

Theorem 3. 1. Under the assumptions (1.1)'-(3.15) on the
initial condition for (1.1), G.B.E. with a pressure model term, there
exists a unique temporally global solution (v,p) of (1.1) which
belongs to Hp*** X By for an arbitrary T & (0, + o),

Corollary of Theorem 3. 1. Under the same assuptions as
above, there exists a unique regvlar solution (v,p) of (1.1) in R
X [0, +00) such that, for an arbitary T (0, +00), v and v, are
bounded in R'x [0,T].

Proof. For example, see [9]. Q.E.D.

Epilogue. As regards the case that v,’ <0 and v, %0, we know
only that there are global solutions of the form

v(x,t) =ve(x—ct), p(x,t) =po(x—ct), (c. constant).

The functions v, and p, can be known by substituting w,(x —ct) and
po(x—ct) into (1.1) and solving a system of ordinary differential
equations in v, and p,. Except for such solutions, we do not know any
result as yet. It is certain that (3.8) and (3.9) are very essential

in our problem.

Acknoledgememt. Many thanks are due to Prof. T. Nishida,
of Kyoto University, who has given the author a chance to know
several valuable references through his rich knowledge of related
topics and whose comments and suggestions have served him greatly,
and also due to Mr. A. Tani, of Tokyo Institute of Technology,
whose discussion with the author has helped him have more recog-

nition of our problem.
Corrigenda and Addenda to the Author’s Paper [7].

Corrigenda:

1) |h(z,8) [ P= sup |h(z, )]

(r,t)ER?T
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2) Proof of Lemma 1.1. From the equation

det(6(x,t) -Py(i8) —AI) = — (A+0|&1*)

x (1+%a|5|z>=0 (we denote the roots by i G=1,2,3))
we have L, =2,= —0(x,¢)|€|® and A= —(4/3)0(x,t)|é|*. Therefore,
it holds that

max sup Re 2;(&; x,t) = —0(x, t) < —0,<0. Q.E.D.

13 1€1=1
3) Lemma 2. 2. For the matriz ¢“® 9P it holds that
et PN <32 {14210 (v, ) | P (38) |

+4£6 (v, t)- | Po(G8) | exp {to (v, ) max Re 1,2 (&)}.
4) Lemma 2. 3. (which follows directly from 2) (above)).
max Re &, (C=¢ +i1: 3, ) S0 (v, ©) { — 6+ 1.
[Thus, from Lemma 2.4 on, we should take §=2 and a=4/3.]

Addenda:
1) H:*={h(z,t): DD h(|r| +25s=n) are continuous, |h| ™D <+ oo},

B;"={w(x,t): D,”"D’w(|r|+s<n) are continuous,

lDa:rDt'wI T(0)< + OO} ’

Ir|+38=0

B ={w(x,t): we B, Y |D.Dfw|<+ oo}

Irl+3=n

2) Lemma 4. 7. [CU™ etc. are defined in 0,7 >0, 6,>0, |0]+°=0,
T=0; therefore, their values at T=0 are positsve.]

KOBE COLLEGE OF COMMERCE,
4-3-3, SEIRYODAI, TARUMI-KU, KOBE

b h|P= 3 DDA
Ir|+2s=0
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