An example of indecomposable vector bundle of rank $n-1$ on P^{n}.

By
Hiroshi TANGO

(Communicated by Prof. Nagata, Dec. 20, 1974)

Introduction and notation

It is well known that there exists a vector bundle of rank $n-1$ on \boldsymbol{P}^{n} for n odd, which is not direct sums of line bundles cf. [1]. In this paper we shall give an example of indecomposable vector bundle of rank $n-1$ on \boldsymbol{P}^{n} for each $n \geqq 3$.

In this paper we shall use the following notation: $\mathcal{O}_{P^{n}}$ is the structure sheaf of n-dimensional projective space \boldsymbol{P}^{n} defined over an algebraically closed field k of an arbitrary characteristic; $\mathcal{O}_{\boldsymbol{P}^{n}}(1)$ is the line bundle associated with a hyperplane of $\boldsymbol{P}^{n} ; \Omega_{\boldsymbol{P}^{n}}^{1}$ is the sheaf of germs of regular differential 1-forms; $T_{P^{n}}$ is the tangent bundle on $\boldsymbol{P}^{n} ; \check{E}$ is the dual vector bundle of a vector bundle $E ; E(m)$ is the vector bundle $E \otimes \mathcal{O}_{\boldsymbol{P}_{n}}(1)^{8 m} ; \boldsymbol{c}_{i}(E)$ is the i-th Chern class of E; $\boldsymbol{c}(E)=1+\boldsymbol{c}_{1}(E)+\boldsymbol{c}_{2}(E)+\cdots$ is the Chern polynomial of $E ; \boldsymbol{h}$ $=\boldsymbol{c}_{1}\left(\mathcal{O}_{\boldsymbol{P}^{n}}(1)\right)$ i.e. the first Chern class of a hyperplane; $H^{i}(E)$ $=H^{i}(X, E)$ and $h^{i}(E)=\operatorname{dim}_{k} H^{i}(X, E)$ for a vector bundle E on a complete nonsingular variety X defined over $k ; \boldsymbol{\operatorname { r r }}(n, d)$ is the Grassmann variety which parametrizes d-dimensional linear subspaces of $\boldsymbol{P}^{n} ; \boldsymbol{Q}(n, d)$ is the universal quotient bundle of $\boldsymbol{G r}(n, d) ; L_{x}$ is the d-dimensional linear subspace of \boldsymbol{P}^{n} which is represented by a point x of $\boldsymbol{\operatorname { r r }}(n, d) ; \omega_{s, 0, \ldots, 0}(A)=\left\{x \in \boldsymbol{G} \boldsymbol{r}(n, d) \mid L_{x} \cap A \neq \phi\right\} \quad$ is the special Schubert variety for an $n-d-s$ dimensional linear subspace A of \boldsymbol{P}^{n}; and $\omega_{s, 0}, \ldots, 0$ is the Schubert cycle associated with a $\omega_{s, 0,0}, \ldots, 0(A)$.

Construction of the example

Lemma 1. $\Omega_{\boldsymbol{P}^{n}}^{1}(2)$ is generated by its global sections.

Proof. Consider the following commutative diagram with exact rows and exact colums.

It is easy to see that f and f^{\prime} are surjections. Hence, the Snake lemma shows that g_{0} is surjective.
q.e.d.

By virtue of the proof of Lemma 1, we have

$$
h^{0}\left(\Omega_{P^{n}}^{1}(2)\right)=(n+1) h^{0}\left(\mathcal{O}_{P^{n}}(1)\right)-h^{0}\left(\mathcal{O}_{\boldsymbol{P}^{n}}(2)\right)=\frac{1}{2} n(n+1) .
$$

We denote Kernel g_{0} by \check{E}_{n}. Then, we have the following exact sequence of vector bundles

$$
\begin{equation*}
0 \rightarrow T_{P^{n}}(-2) \rightarrow \oplus_{\oplus}^{N_{n}} \mathcal{O}_{P^{n}} \rightarrow E_{n} \rightarrow 0 \tag{1}
\end{equation*}
$$

where $N_{n}=\frac{1}{2} n(n+1)$ and rank $E_{n}=N_{n}-n=\frac{1}{2} n(n-1)$. Using the long exact sequences of cohomology groups

$$
\begin{aligned}
& 0 \rightarrow H^{0}\left(T_{\boldsymbol{P}^{n}}(-2)\right) \rightarrow H^{0}\left(\oplus^{N_{n}} \mathcal{O}_{\boldsymbol{P}^{n}}\right) \rightarrow H^{0}\left(E_{n}\right) \rightarrow H^{1}\left(T_{\boldsymbol{P}^{n}}(-2)\right) \\
& 0=H^{0}\left(\oplus^{n+1} \mathcal{O}_{\boldsymbol{P}^{n}}(-1)\right) \rightarrow H^{0}\left(T_{\boldsymbol{P}^{n}}(-2)\right) \rightarrow H^{1}\left(\mathcal{O}_{\boldsymbol{P}^{n}}(-2)\right)=0 \\
& 0=H^{1}\left(\oplus^{n+1} \mathcal{O}_{\boldsymbol{P}^{n}}(-1)\right) \rightarrow H^{1}\left(T_{\boldsymbol{P}^{n}}(-2)\right) \rightarrow H^{2}\left(\mathcal{O}_{\boldsymbol{P}^{n}}(-2)\right)=0
\end{aligned}
$$

we obtain $h^{0}\left(T_{\boldsymbol{P}^{n}}(-2)\right)=h^{1}\left(T_{\boldsymbol{P}^{n}}(-2)\right)=0$ and $h^{0}\left(E_{n}\right)=N_{n}$.
Theorem 2. E_{n} has an indecomposable quotient bundle $E_{n}{ }^{\prime}$ of
rank $n-1$.

In order to prove the Theorem, we need the following four lemmas.

Lemma 3. $\boldsymbol{c}_{n}\left(E_{n}\right)=0$ and $\boldsymbol{c}_{n-1}\left(E_{n}\right) \neq 0$.

Proof. Indeed the exact sequences

$$
\begin{aligned}
& 0 \rightarrow T_{\boldsymbol{P}^{n}}(-2) \rightarrow \oplus_{\oplus}^{N_{n}} \mathcal{O}_{\boldsymbol{P}^{n}} \rightarrow E_{n} \rightarrow 0 \\
& 0 \rightarrow \mathcal{O}_{\boldsymbol{P}^{n}}(-2) \rightarrow \bigoplus^{n+1} \mathcal{O}_{\boldsymbol{P}^{n}}(-1) \rightarrow T_{\boldsymbol{P}^{n}}(-2) \rightarrow 0
\end{aligned}
$$

shows that $\boldsymbol{c}\left(E_{n}\right) \cdot \boldsymbol{c}\left(T_{\boldsymbol{P} \boldsymbol{n}}(-2)\right)=1$ and

$$
\boldsymbol{c}\left(T_{\boldsymbol{P}^{n}}(-2)\right) \cdot \boldsymbol{c}\left(\mathcal{O}_{\boldsymbol{P}^{n}}(-2)\right)=\boldsymbol{c}\left(\oplus^{n+1} \mathcal{O}_{\boldsymbol{P}^{n}}(-1)\right)
$$

Hence, we have

$$
\boldsymbol{c}\left(E_{n}\right)=\boldsymbol{c}\left(T_{\boldsymbol{P}^{n}}(-2)\right)^{-1}=(1-2 h)(1-h)^{-n-1}=\left(\sum_{i=0}^{n}\binom{n+i}{i} h^{i}\right)(1-2 h) .
$$

Therefore, $\boldsymbol{c}_{n}\left(E_{n}\right)=\left(\binom{2 n}{n}-2\binom{2 n-1}{n-1}\right) h^{n}=0$ and

$$
\boldsymbol{c}_{n-1}\left(E_{n}\right)=\left(\binom{2 n-1}{n-1}-2\binom{2 n-2}{n-2}\right) h^{n-1} \neq 0 . \quad \text { q.e.d. }
$$

Lemma 4. Let E be a vector bundle of rank r on a complete nonsingular variety X. Suppose that E is generated by its global sections and $\boldsymbol{c}_{s}(E)=0$ for a positive integer $s \leqq r$. Then E has a trivial vector bundle of rank $r-s+1$ as a subbundle.

Proof. Since E is generated by its global sections, there exists an exact sequence of vector bundles

$$
\stackrel{m+1}{\oplus} \mathcal{O}_{x} \rightarrow E \rightarrow 0
$$

where $m+1=h^{0}(E)$. Then, there is a canonical morphism $f: X \rightarrow \boldsymbol{G r}(m, m-r)$ such that $E=f^{*} \boldsymbol{Q}(m, m-r)$. Since $0=\boldsymbol{c}_{s}(E)$ $=f^{*} \boldsymbol{c}_{s}(\boldsymbol{Q}(m, m-r))=f^{*} \omega_{s, 0}, \ldots, 0$, we see that $f(X) \cdot \omega_{s, 0}, \ldots, 0=0$. Hence, there exists a linear subspace A of dimension $r-s$ of \boldsymbol{P}^{n} such that
$L_{f(x)} \cap A=\phi$ for any point x of X (cf. [2]). This shows that E has a trivial vector bundle of rank $r-s+1$ as a subbundle. q.e.d.

Lemma. 5. Let $n>s>d \geqq 0$ and let f be a morphism from \boldsymbol{P}^{n} to $\boldsymbol{G r}(s, d)$, then $f\left(\boldsymbol{P}^{n}\right)$ consists only of one point. cf. [2].

Lemma 6. (i) Let E be a nontrivial vector bundle of rank r on \boldsymbol{P}^{n}. If E is generated by its global sections, then $h^{0}(E) \geqq n+1$. (ii) Let E be a vector bundle which has no trivial vector bundle as a direct summand. Assume that E is generated by its global sections and that $h^{0}(E) \leqq 2 n+1$. Then, E is indecomposable.

Proof. (i). Since E is generated by its global sections, there exists an exact sequence of vector bundles

$$
\oplus^{m+1} \mathcal{O}_{P^{n}} \rightarrow E \rightarrow 0
$$

where $m+1=h^{0}(E)$. Then, there exists a canonical morphism $f: \boldsymbol{P}^{n}$ $\rightarrow \boldsymbol{G r}(m, m-r)$ such that $E=f^{*} \boldsymbol{Q}(m, m-r)$. Since E is nontrivial vector bundle, we see that $f\left(\boldsymbol{P}^{n}\right)$ is not one point. Hence, we have $m \geqq n$, by virtue of Lemma 5 .
(ii). (ii) follows from (i). q.e.d.

Proof of Theorem 2. Since E_{n} is generated by its global sections and $\boldsymbol{c}_{n}\left(E_{n}\right)=0$, we have the exact sequence of vector bundles

$$
0 \rightarrow F \rightarrow E_{n} \rightarrow E_{n}^{\prime} \rightarrow 0
$$

where F is a trivial vector bundle of rank $\frac{1}{2} n(n-1)-n+1$ and $E_{n}{ }^{\prime}$ is the quotient bundle of rank $n-1$, by virtue of Lemma 4 . From the exact sequence of cohomology groups

$$
0 \rightarrow H^{0}(F) \rightarrow H^{0}\left(E_{n}\right) \rightarrow H^{0}\left(E_{n}{ }^{\prime}\right) \rightarrow H^{1}(F)=0
$$

we obtain that $h^{0}\left(E_{n}{ }^{\prime}\right)=h^{0}\left(E_{n}\right)-h^{0}(F)=2 n-1$. The fact that $\boldsymbol{c}_{n-1}\left(E_{n}{ }^{\prime}\right)=\boldsymbol{c}_{n-1}\left(E_{n}\right) \neq 0$ shows that $E_{n}{ }^{\prime}$ has no trivial vector bunble as a direct summand. Since E_{n} is generated by its global sections, so is $E_{n}{ }^{\prime}$. These results shows that $E_{n}{ }^{\prime}$ is indecomposable, by virtue of Lemma 6 (ii).
q.e.d.

Remark. Canonically $\boldsymbol{G r}(n, 1)$ is embedded in $\boldsymbol{P}^{N_{n}-1}$. By this embedding $\omega_{n-1,0}(P)=\left\{x \in \boldsymbol{G r}(n, 1) L_{x} \ni P\right\}$ is $n-1$ dimensional linear subspace of $\boldsymbol{P}^{N_{n}-1}$. Hence, we have a map $\varphi: \boldsymbol{P}^{n} \rightarrow \boldsymbol{G r}\left(N_{n}-1, n-1\right)$. On the other hand, by virtue of the exact sequence (1), we have a morphism $\Psi: \boldsymbol{P}^{n} \rightarrow \boldsymbol{G r}\left(N_{n}-1, n-1\right)$. In this senes φ and Ψ are projectively equivalent, i.e. there exists a collineation $f: \boldsymbol{P}^{n} \rightarrow \boldsymbol{P}^{n}$ such that $\varphi=\Psi \circ f$.

Kyoto University of Education

Bibliography

[1] Hartshorne, R. Varieties of small codimension in projective space. to appear.
[2] Tango, H. On (n-1)-dimensional projective spaces contained in the Grassmann variety $\mathbf{G r}(\mathrm{n}, 1)$. J. Math. Kyoto Univ. Vol. 14-3 (1974).

