Note on integral closures of a noetherian integral domain

By

Jun-ichi NISHIMURA

(Received Dec. 9, 1974)

In this note we prove a theorem of Mori-Nagata ([4], (33.10)) using elementary facts that a complete local ring is a henselian ring ([4], (30.3)), and that if α_n $(n=1,2,\cdots)$ are ideals of a complete semi-local ring with Jacobson radical m such that $\alpha_{n+1} \subseteq \alpha_n$ for any n and such that $\alpha_n = (0)$, then for any given natural number n, there exists a natural number m(n) such that $\alpha_{m(n)} \subseteq m^n$ ([4], (30.1)). Using our proof, we can prove the finiteness property for integral extensions of a complete local integral domain ([4], (32.1), cf. [2], [5]), without using the structure theorem of complete local rings ([4], (31.1)). Finally we outline our proof of a theorem of Nagata ([4], (36.5)). In this article, we mean by a ring a commutative ring with identity and by a local ring a noetherian ring with only one maximal ideal. When p is a prime ideal of a ring R, we denote by $k(\mathfrak{p})$ the field of quotients of R/\mathfrak{p} .

The writer expresses his hearty thanks to Professor M. Nagata for valuable suggestions.

Proposition 1. (Krull-Akizuki, [4], (33.2)) Let R be a noetherian integral domain with field of quotients K, let L be a finite algebraic extension of K and let R' be a ring such that $R \subseteq R' \subseteq L$. If altitude R=1, then i) R' is a noetherian ring of altitude at most one, ii) for every prime ideal \mathfrak{p} of R the number of the prime ideals \mathfrak{p}' of R' such that $\mathfrak{p}=\mathfrak{p}'\cap R$ is finite, and iii) $[k(\mathfrak{p}'):k(\mathfrak{p})]$ is finite.

This is well known and we omit the proof.

Proposition 2. Let (R, \mathfrak{m}) be a henselian local integral domain with field of quotients K, let L be a finite algebraic extension of K and let $(\overline{R}, \overline{\mathfrak{m}})$ be the integral closure of R in L. Then $[\overline{R}/\overline{\mathfrak{m}}: R/\mathfrak{m}]$ is finite.

Proof. We prove the assertion by induction on the altitude of R. If altitude R=1, the assertion is included in Proposition 1. Let altitude R=n>1, and assume that the assertion is valid for any henselian local integral domain of altitude at most n-1. Take a prime ideal \mathfrak{p} of R of height one and a prime ideal $\overline{\mathfrak{p}}$ of \overline{R} such that $\mathfrak{p}=\overline{\mathfrak{p}}\cap R$. Then $[k(\overline{\mathfrak{p}}):k(\mathfrak{p})]$ is finite by Proposition 1. Let $(\overline{R},\overline{\overline{\mathfrak{m}}})$ be the integral closure of R/\mathfrak{p} in $k(\overline{\mathfrak{p}})$, then by the induction assumption, $[\overline{R}/\overline{\overline{\mathfrak{m}}}:R/\mathfrak{m}]$ is finite, Therefore $[R/\mathfrak{m}:R/\mathfrak{m}]$ is finite. q.e.d.

Let (R, \mathfrak{m}) be a local integral domain with field of quotients K, let (R^h, \mathfrak{m}^h) be the henselization of (R, \mathfrak{m}) and let \overline{R} be the derived normal ring of R. Then we have three natural one-to-one correspondences between i) the maximal ideals $\{\mathfrak{m}_i\}$ of $\overline{R} \otimes_R R^h$ and those $\{\overline{\mathfrak{m}}_i\}$ of $\overline{R} \otimes_R R^h$, ii) the maximal ideals $\{\overline{\mathfrak{m}}_i\}$ of $R \otimes_R R^h$ and the minimal prime ideals $\{\overline{\mathfrak{q}}_i\}$ of $\overline{R} \otimes_R R^h$, iii) the minimal prime ideals $\{\overline{\mathfrak{q}}_i\}$ of $\overline{R} \otimes_R R^h$ and those $\{\mathfrak{q}_i\}$ of R^h . Since R^h is noetherian, \overline{R} is a quasi-semi-local ring. In these correspondences, $\overline{R}/\mathfrak{m}_i$ is isomorphic to $(\overline{R} \otimes_R R^h)/\overline{\mathfrak{m}}_i$, and $(\overline{R} \otimes_R R^h)_{\overline{\mathfrak{m}}_i}$ is the derived normal ring of R^h/\mathfrak{q}_i ([4], [6]).

Thus we have

Proposition 3. Let (R, \mathfrak{m}) be a local integral domain with field of quotients K, let L be a finite algebraic extension of K and let \overline{R} be the integral closure of R in L. Then the number of maximal ideals \mathfrak{m}_i of \overline{R} is finite and, for each maximal ideal \mathfrak{m}_i of \overline{R} , $\lceil \overline{R}/\mathfrak{m}_i \colon R/\mathfrak{m} \rceil$ is finite.

Proposition 4. Let (R, \mathfrak{m}) be a complete local integral domain with field of quotients K. If altitude $R \geq 2$, then there exists a finite integral extension (R', \mathfrak{m}') of R such that i) $R \subseteq R' \subseteq K$, ii) depth $R' \geq 2$.

Proof. Set $R_0 = R$, $\mathfrak{m}_0 = \mathfrak{m}$, and define $R_{i+1} = \{x \in K | \mathfrak{m}_i x \subseteq \mathfrak{m}_i\}$ for $i = 0, 1, 2, \cdots$. Then, $(R, \mathfrak{m}) = (R_0, \mathfrak{m}_0) \leq (R_1, \mathfrak{m}_1) \leq (R_2, \mathfrak{m}_2) \leq \cdots \leq (R_i, \mathfrak{m}_i) \leq \cdots$, and each \mathfrak{m}_i is an \mathfrak{m}_{i+1} -primary ideal of R_{i+1} .

Suppose that depth $R_i = 1$ for every i, then there exists a sequence of pairs (a_0, b_0) , (a_1, b_1) , \cdots , (a_i, b_i) , \cdots of elements of K such that $a_i, b_i \in R_i$, $(a_i R_i : b_i)_{R_i} = \mathfrak{m}_i$.

We claim that for sufficiently large $n, u_n = b_n/a_n$ belongs to R_n (which is a contradiction). $u_n \in R_n \Leftrightarrow \mathfrak{m}_{n-1} u_n \subseteq \mathfrak{m}_{n-1} \Leftrightarrow \mathfrak{m}_{n-1} u_n \subseteq R_{n-1}$ (for, by assumption, altitude $R_n \geq 2$) $\Leftrightarrow \mathfrak{m}_{n-2} \mathfrak{m}_{n-1} u \subseteq \mathfrak{m}_{n-2} \Leftrightarrow \mathfrak{m}_{n-2} \mathfrak{m}_{n-1} u_n \subseteq R_{n-2} \Leftrightarrow \mathfrak{m}_{n-1} u_n \subseteq R_1 \Leftrightarrow \mathfrak{m}_0 \mathfrak{m}_1 \mathfrak{m}_2 \cdots \mathfrak{m}_{n-1} u_n \subseteq \mathfrak{m}_0$, and this last is implied by $\mathfrak{m}_1 \mathfrak{m}_2 \cdots \mathfrak{m}_n \subseteq \mathfrak{m}_0$.

Therefore we are to prove the final inclusion for sufficiently large n.

Now consider the sequence of ideals in $R_1: \mathfrak{m}_1 \supseteq \mathfrak{m}_1 \mathfrak{m}_2 \supseteq \mathfrak{m}_1 \mathfrak{m}_2 \supseteq \mathfrak{m}_3 \supseteq \cdots \supseteq \mathfrak{m}_1 \mathfrak{m}_2 \cdots \mathfrak{m}_t \supseteq \cdots$, if $\bigcap_{t=1} \mathfrak{m}_1 \mathfrak{m}_2 \cdots \mathfrak{m}_t = \mathfrak{n} \neq (0)$, then for every j and for $y \in \mathfrak{n}(y \neq 0)$, $R_j \subseteq (1/y) R_1$, which is a contradiction. Hence $\mathfrak{n} = (0)$. Then, by ([4], (30.1)), there exists a natural number n_0 such that for every $n \geq n_0$, $\mathfrak{m}_1 \mathfrak{m}_2 \cdots \mathfrak{m}_n \subseteq \mathfrak{m}_0$.

Proposition 5. Let (R, \mathfrak{m}) be a complete local integral domain such that altitude $R \geq 2$, and let \overline{R} be the derived normal ring of R. If $\mathfrak{m} = (m_1, \dots, m_r)$, then $\bigcap_{t=1}^r \overline{R}[1/m_t] = \overline{R}$.

Proof. If $x \in \bigcap_{i=1}^r \overline{R}[1/m_i]$, then there exists a natural number s such that $m_i{}^s x \in \overline{R}$ for every i. Let $R' = R[m_1{}^s x, \cdots, m_r{}^s x]$, then $(R':x)_{R'}$ contains a power m'^n of the maximal ideal m' of R' for some n. By Proposition 4, we can take a finite R'-algebra R'' such that i) $R' \subseteq R'' \subseteq \overline{R}$, ii) depth $R'' \ge 2$. Since $R'' = \bigcap_{\mathfrak{p}} R''_{\mathfrak{p}}$, where \mathfrak{p} runs through all prime ideals of R'' such that depth $R''_{\mathfrak{p}} = 1$, x belongs to R''.

Proposition 6. Let R be a noetherian integral domain with field of quotients K, let L be a finite algebraic extension of K and let \overline{R} be the integral closure of R in L. Then \overline{R} is a Krull domain.

Proof. We prove Proposition 6 in several steps.

Step I. If the assertion of Proposition 6 is true for all noetherian integral domains of altitude at most n-1, then the assertion is true for all complete local integral domains of altitude at most n.

Indeed, this follows from Proposition 1 or Proposition 5 depending on whether n=1 or $n\geq 2$.

Step II. If the assertion of Proposion 6 is true for all complete local integral domains of altitude at most n, then the assertion is true for all semi-local integral domains of altitude at most n.

Indeed, since $\overline{R} = \bigcap_{i=1}^s \overline{R}_{\mathfrak{m}_i}$, where \mathfrak{m}_i runs through all maximal ideals of R, we may assume that (R,\mathfrak{m}) is local and that L=K. Let \widehat{R} be the completion of R, let \mathfrak{n} be the nilradical of \widehat{R} , let $R^* = \widehat{R}/\mathfrak{n}$ and let \overline{R}^* be the integral closure of R^* in the total quotient ring of R^* . Then, by our assumption, \overline{R}^* is a direct product of Krull domains and $\overline{R} = \overline{R}^* \cap K$ (cf. [4], (33.10)). Hence \overline{R} is a Krull domain.

Step III. If the assertion of Proposition 6 is true for all (semi-)local integral domains of altitude at most n, then the assertion is true for all noetherian integral domains of altitude at most n.

As for this step, since $\overline{R} = \bigcap \overline{R}_{\mathfrak{m}}$, where \mathfrak{m} runs through all maximal ideals of R, it is sufficient to prove the following proposition.

Proposition 7. ([4], (33.11)) Let R be a noetherian integral domain, let \overline{R} be the derived normal ring of R, let $0 \neq f \in R$ and let $\overline{\mathfrak{p}}$ be a prime ideal of \overline{R} of height one. If $\overline{R}_{\overline{\mathfrak{p}}}$ is a discrete valuation ring and if $f \in \overline{\mathfrak{p}}$, then $\mathfrak{p} = \overline{\mathfrak{p}} \cap R$ is an associated prime ideal of fR.

Proof. We may assume that (R, \mathfrak{p}) is a local ring. In the above natural correspondences, let $\overline{\mathfrak{p}}=\mathfrak{m}_1$. Then, since $\overline{R}_{\overline{\mathfrak{p}}}$ is a discrete valuation ring, $(\overline{R} \bigotimes_R R^h)_{\overline{\mathfrak{m}}_1}$ is a discrete valuation ring. Hence altitude $R^h/\mathfrak{q}_1=1$. On the other hand, depth $R^h=\operatorname{depth} R+\operatorname{depth} R^h \bigotimes R/\mathfrak{p}$, and depth $R^h \leqq \min_{\mathfrak{q} \in \operatorname{Ass}(R^h)} \{\text{altitude } R^h/\mathfrak{q}\}$ ([3]). Therefore depth R=1.

Step IV. Repeating this process, we see that the assertion of Proposition 6 is true for all local integral domains.

Step V. If the assertion of Proposition 6 is true for all local

integral domains, then the assertion is true for all noetherian integral

Indeed, since $\overline{R} = \bigcap \overline{R}_m$, where m runs through all maximal ideals of R, by Step IV and Proposition 7, we get the conclusion. q.e.d.

Proposition 8. (Nagata [4], (36.5)) If R is a pseudo-geometric ring, then every R-algebra A of finite type is a pseudo-geometric ring.

Outline of the proof. By ([4], (35.2)), we may assume that R is a (pseudo-geometric) normal domain with field of quotients K, A = R[x], $x \in K$, $x \notin R$, and that for every non-zero ideal a of A, A/a is pseudo-geometric. Let x = b/a, $a, b \in R$ and let S = 1 + aA. Since $\overline{A} = \bigcap \overline{A}_m$, where m runs through all maximal ideals of A and since A[1/a] = R[1/a] is normal, it is sufficient to prove that the derived normal ring \overline{A}_S of A_S is a finite A_S -algebra.

Let $A^* = \lim_{\stackrel{\longleftarrow}{n}} A/a^n A$ (aA-adic completion of A). Then, by the theorem of Marot ([2]), A^* is a pseudo-geometric ring. Hence it is sufficient to prove that A^* is reduced (cf. [4], (32.2)).

Since Ass $(A/aA) = \mathrm{Ass} \ (A/a^nA)$ for every natural number n, we can take a finite number of maximal ideals $\mathfrak{m}_1, \mathfrak{m}_2, \cdots, \mathfrak{m}_r$ of A such that the induced homomorphism of A/a^nA to $\prod_{i=1}^r A_{\mathfrak{m}_i}/a^nA_{\mathfrak{m}_i}$ is injective for every n. Therefore we are to prove that $\widehat{A}_{\mathfrak{m}_i} = \lim_n A/\mathfrak{m}_i^n$ is reduced for every i.

Now we may assume that R is a local ring with maximal ideal $\mathfrak{m}=\mathfrak{m}_i\cap R$. Let f(X) be a monic polynomial over R such that $f(x)\equiv 0 \pmod{\mathfrak{m}_i}$ and let y=f(x). Put B=R[y] and $\mathfrak{n}_i=\mathfrak{m}_i\cap B$, then $y\in\mathfrak{n}_i$. By a lemma of Zariski ([4], (36.3)), $\widehat{B_{\mathfrak{n}_i}}$ is reduced, hence $B_{\mathfrak{n}_i}$ is pseudo-geometric. Therefore $A_{\mathfrak{m}_i}$ is pseudo-geometric, hence, by ([4], (36.4)), $\widehat{A_{\mathfrak{m}_i}}$ is reduced.

Remark Proposition 4 is not true if we drop the assumption that R is complete (cf. $\lceil 1 \rceil$).

DEPARTMENT OF MATHEMATICS
KYOTO UNIVERSITY

References

- [1] D. Ferrand-M. Raynaud: Fibres formelles d'un anneau local noethérien, Ann. Sc. E.N.S., t. 3, 1970, pp. 295-311.
- [2] J. Marot: Sur les anneaux universellement japonais, C. R. Paris, t. 277, 1973, pp. 1029-1031.
- [3] H. Matsumura: Commutative algebra, Benjamin, 1970.
- [4] M. Nagata: Local rings, Interscience, 1962.
- [5] J. Nishimura: Note on Krull domain, J. Math. Kyoto Univ. Vol. 15, 1975, pp. 397-400.
- [6] M. Raynaud: Anneaux locaux henséliens, Lecture Note in Mathematics 169, Springer-Verlag.