Orientation reversing involution

By
Katsuo Kawakubo
(Communicated by Prof. Toda, Dec. 4, 1974)

§ 1. Introduction

In this note we discuss the following problem from the bordism point of view. "Which manifold admits an orientation reversing involution?"

Let Ω_{*} be the oriented cobordism group. Then we shall have

Theorem. An element x of Ω_{*} has a representative which admits an orientation reversing involution if and only if x is a torsion element of Ω_{*}.

The author wishes to thank Professor A. Hattori for suggesting him the problem above.

§ 2. Proof of the theorem

If an oriented closed manifold M^{n} admits an orientation reversing diffeomorphism, then $2\left[M^{n}\right]=0$ in Ω_{n}, that is $\left[M^{n}\right]$ is a torsion element of Ω_{n}. Therefore we have only to prove that each torsion element of Ω_{n} has a representative which admits an orientation reversing involution.

Let us first recall from Wall [4] that the algebra W_{*} of unoriented cobordism classes represented by a manifold with the first Stiefel-Whitney class w, reduced integral is a polynomial algebra over Z_{2} on classes $X_{2 k-1}, X_{2 k}, X_{2}^{2}$ with k not a power of 2 . There is a homomorphism 0 : $W_{n+1} \rightarrow \Omega_{n}$ obtained by sending the class of M into the class of the submanifold N of M dual to $r v_{1}$, and Wall has shown that image ∂ is precisely the set of torsion elements of Ω_{*}.

Using Wall's representative manifolds, one has that the classes $X_{2 k-1}$ and $X_{2,}^{2}$ contain orientable manifolds. It follows that $\partial X_{2^{j} j}^{2}=0$ and $\partial X_{2 k-1}=0$. Since ∂ is a derivation, for any monomial

$$
Y=\prod_{\alpha} X_{2^{\prime} \alpha}^{2} \cdot \prod_{\beta} X_{2 k_{\beta-1}} \cdot \prod_{r} X_{2 k_{r}}
$$

one has that

$$
\partial X=\prod_{\alpha} X_{2^{\prime \alpha}}^{2} \cdot \prod_{\beta} X_{2 k_{\beta}-1} \cdot \partial\left\{\prod_{r} X_{2 k_{r}}\right\}
$$

Thus, it suffices to show that each class $\partial\left\{X_{2 k_{1}} \cdots X_{2 k_{r}}\right\}$ contains a representative manifold on which Z_{2} acts in the desired fashion.

First consider the case $r=1$. Then $\partial X_{2 k}=X_{2 k-1}$ is representable by a Dold manifold $P(2 m+1,2 n)$ (see [2]). The Dold manifold $P(2 m+1,2 n)$ is obtained from $S^{2 m+1} \times \boldsymbol{C P}(2 n)$ by identifying the points

$$
\left(z_{0}, \cdots, z_{m}, \eta_{0}, \cdots, \eta_{2 n}\right) \quad \text { and } \quad\left(-z_{0}, \cdots,-z_{m}, \bar{\eta}_{0}, \cdots, \bar{\eta}_{2 n}\right)
$$

where $z_{i}, \eta_{j} \in \boldsymbol{C}$. Define a map

$$
T: S^{2 m+1} \times \boldsymbol{C P}(2 n) \rightarrow S^{2 m+1} \times \boldsymbol{C P}(2 n)
$$

by

$$
T\left(z_{0}, \cdots, z_{m}, \eta_{0}, \cdots, \eta_{2 n}\right)=\left(\bar{z}_{0}, z_{1}, \cdots, z_{m}, \eta_{0}, \cdots, \eta_{2 n}\right)
$$

This preserves identifications to give an involution

$$
T: P(2 m+1,2 n) \rightarrow P(2 m+1,2 n)
$$

Consider a neighborhood of a fixed point $\left(0, z_{1}, \cdots, z_{m}, \eta_{0}, \cdots, \eta_{2 n}\right)$ of T. Then T reverses the orientation locally. Since T is a diffeomorphism, we can easily deduce that T reverses the orientation globally.

Next we consider the case $r>1$. Recall that a representative for $X_{2 k}$ is obtained as follows: $P(2 m+1, n)$ has an involution

$$
\tau: P(2 m+1, n) \rightarrow P(2 m+1, n)
$$

induced by the involution

$$
\left(z_{0}, \cdots, z_{m}, \eta_{0}, \cdots, \eta_{n}\right) \rightarrow\left(z_{0}, \cdots, z_{m-1}, \bar{z}_{m}, \eta_{0}, \cdots, \eta_{n}\right)
$$

Then let $Q(2 m+1, n)$ be formed from $S^{1} \times P(2 m+1, n)$ by identifying (t, u) and $(-t, \tau(u))$. As noted by Wall [4], $Q(2 m+1, n)$ represents $X_{2 k}$ (for properly chosen m and n).

Let $N_{i}=Q\left(2 m_{i}+1, n_{i}\right)$ represent $X_{2 k_{i}}, i=1, \cdots, r$. Define an involution T_{1} on N_{1} by setting $T_{1}\left(t, z_{0}, \cdots, z_{m_{1}}, \eta_{1}, \cdots, \eta_{n_{1}}\right)=\left(t, \bar{z}_{0}, z_{1}, \cdots\right.$, $\left.z_{m_{1}}, \eta_{1}, \cdots, \eta_{n_{1}}\right)$. It is easy to see that T_{1} is well-defined. Remark that even if $m_{1}=0$, the map T_{1} is well-defined. Let $\pi_{i}: N_{i} \rightarrow S^{1}$ be the projection induced by $(t, u) \rightarrow t^{2}$. Then π_{i} is a fibration and realizes $w_{1}\left(N_{i}\right)$. Now let $P: N_{1} \times \cdots \times N_{r} \rightarrow S^{1}$ be the map defined by $P\left(v_{1}, \cdots, v_{r}\right)$ $=\pi_{1}\left(v_{1}\right) \cdots \pi_{r}\left(v_{r}\right)$. This is the composition of the bundle maps

$$
\pi_{1} \times \cdots \times \pi_{r}: N_{1} \times \cdots \times N_{r} \rightarrow S^{1} \times \cdots \times S^{1}
$$

and

$$
\mu: S^{1} \times \cdots \times S^{1} \rightarrow S^{1}
$$

where μ is the multiplication. Thus P is transverse regular on $1 \in S^{1}$. In addition, P realizes w_{1}, so

$$
V=\left\{\left(v_{1}, \cdots, v_{r}\right) \in N_{1} \times \cdots \times N_{r} \mid \pi_{1}\left(v_{1}\right) \cdots \pi_{r}\left(v_{r}\right)=1\right\}
$$

represents $\partial\left(X_{2 k_{1}} \cdots X_{2 k_{r}}\right)$. This construction of V is due to Anderson [1] and Stong [3]. Obviously $T_{1} \times i d \times \cdots \times i d$ induces an involution T on V.

Consider a neighborhood of a fixed point ($t(1), 0, \cdots, 0,1, \eta_{1}(1)$, $\left.\cdots, \eta_{n_{1}}(1)\right) \times \cdots \times\left(t(r), z_{1}(r), \cdots, z_{m_{r}}(r), \eta_{1}(r), \eta_{1}(r), \cdots, \eta_{n_{r}}(r)\right)$ of T where $t^{2}(1) \cdots t^{2}(r)=1$. Then T reverses the orientation locally.

Since T is a diffeomorphism, we can easily deduce that T reverses the orientation globally. Thus $\partial\left(X_{2 k_{1}} \cdots X_{2 k_{r}}\right)$ is represented by V on which Z_{2} acts in the desired manner. This completes the proof of the theorem.

Department of Mathematics Osaka University

References

[1] Anderson, P. G., Cobordism classes of squares of orientable manifolds, Ann. of Math. 83 (1966), 47-53.
[2] Dold, A., Vollständigkeit der Wu-schen Relationen zwischen den Stiefel-Whitneyschen Zahlen differenzierbarer Mannigfaltigkeiten, Math. Z. 65 (1956), 200-206.
[3] Stong, R. E., Stationary point free group actions, Proc. A. M. S. 18 (1967), 1089-109.
[4] Wall, C. T. C., Determination of the cobordism ring, Ann. of Math., 72 (1960), 292-311.

