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Introduction.

The purpose of this paper is to obtain a formulation of the
Riemann-Roch theorem on open Riemann surfaces by using the real
Hilbert space of square integrable complex differentials and introduc-
ing a special A,-behavior space, as has been done by Shiba [9]. In
our case, only A-periods are normalized, and B-periods are completely
arbitrary and this character of our behavior space is in contrast with
Aybehavior in [9]. Besides this, the period normalization in this
paper gives much hope to obtain some relations between these be-
havior spaces and the classical works. Also it seems that in a
similar way, we can get the Riemann-Roch theorem by treating the
complex Hilbert space. But in this case the ideal boundary becomes
small [7], [8]. To get the Riemann-Roch theorem for general open
Riemann surfaces, Kusunoki [2, 3] made restrictions only on the real
part of differentials. In Kusunoki’s line, some works have been done.
As in [9], our formulation of the Riemann-Roch theorem is valid for
general surfaces with large boundaries.
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author’s thanks also go to M. Shiba and K. Matsui with whom the

author had many valuable discussions.
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1. Preliminaries.

The totality of square integrable complex differentials on a
Riemann surface W forms a Hilbert space over the complex field C,

if we introduce the usual inner product defined by

(A, Ae) = ”le/\zgu I L(a,ﬁz-%b,gz)dxdy

where 1;=a;(2)dx+b,(z)dy with local parameter z=x+iy. We
denote it by A=A (W). As usual 1=adz+bdy and 1*= —bdz+ ady
stand for the complex conjugate and conjgate of 1 respectively. The
norm in A is denoted by [Al=(Z,1)"%. Square integrable real dif-
ferentials on W also form a Hilbert space I'=I"(W) over the real
field R with the same inner product as above. It can be easily
checked that 4 forms a linear space over R, and in this meaning
we denote it by A=A(W). A forms a real Hilbert space with respect
to the new inner product defined by

<ll, li> = Re (}‘ly 12) .

The norm in 4 will be denoted by |I-i|. It is trivial that |{-'|=]-
and so A and A have the same topological structure.

It should be noticed that, through this paper, the notations I" and
A are different from those in Ahlfors-Sario [1]. With only these
exceptions we follow Ahlfors-Sario [1] for notations and terminology.
For instance Iy, Io,Ico,leo, In, -+ will be used to denote the sub-
spaces of the real Hilbert space I', and also 4., 4., 4.,, Aco, 41, -+ will
stand for corresponding subspaces of A. The orthogonality
relation between these last subspaces certainly is taken with respect
to the inner product ¢ , >. The following orthogonal decompositions
are valid (cf. [9]):

Ac=l"c-i—i]"c, Acozrco"i'ircm AthcﬂAc*
AczAh'i‘Aeo’ AIt:A:u'i' Ahm’ A:Ah‘i'Aeo"‘.‘ A:;
The following lemma is frequently used in the sequel.

Lemma 1.1. Let @ be a canonical regular region on W, and
E(W)={A,, B,}%_, a canonical homology basis on W modulo di-
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viding cycles, such that B\ forms a canonical homology basis on
0 modulo 0. If ¢, ¢ are C'-differentials which are semiexact and

closed respectively, then

o= [ (folocesl Lo o)

This can be proved by cutting @ along A,, B;, and applying
Green’s formula.

Note that because of closedness of ¢, the integral {;,(]¢,)@: is
independent of the additive constant of fg,.

2. A4,-behavior space.

Definition 2.1. A linear subspace A4, of A4, will be called a
behavior space if
(1) There exists a closed subspace A, of A, such that

A, DA +id*

where A,* is the orthogonal complement of A, in 4,
2) {2y, i2,*>=0 for each 1,4,

3 j =0, j=1,2,..- for every 1,€4,.
45
From this definition it is easy to verify that if A4, is a behavior
space, so is A, where A,={1,:1,E 4,}.

Definition 2.2. A meromophic differential defined on a neighbor-
hood U of the ideal boundary B of W is said to have A,-behavior if
there exist A, & 4,, A€ Ae,N A" such that on a neighborhood U of

©=2Ap+ deo-

Definition 2.3. A meromorphic function f (not necessarily
single-valued) defined near 8 is said to have A,-behavior if differential

df has A,-behavior in the above sense.

3. The existence and uniqueness theorems.

Theorem 3.1. (uniqueness). Let ¢ be a first kind differential
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which has A,-behavior. Then it is identically zero if

[e=0 G120
4y

where §(=oc0) is the genus of W.

Proof. It should be observed that the condition in the theorem
is only for finite number of A;. Since ¢ has A4,-behavior, there exist
A€ Ay, 2o Ay A' such that on a neighborhood U of 8 ¢ can be
written as

¢=1p+leo'

Now let £ be a canonical regular region on W such that its relative
boundary 88 is contained in U. We may assume that §N& forms a
canonical homology basis of £ modulo the border. Then, by Lemma
1.1 and {, ¢=0 (j=1,2,---,) we can write

llelle® = llgle® = (@, @) o= —i (@, ¢*) 2

gL Lo L)
Lot fram) oo

e it Ao A4 A ot S (j P j APJ 1,).
v J4y By By 4;
From the condition (3) in the definition of A,-behavior we obtain

llglla* =lella® = (25,72,%) o —ito

where 9= (eo, 4s¥) o+ (Ap, 4%) o+ (Aeoy AX) . By making use of the
orthogonal decompositions in section 1, it follows that limg.w €,=0

Then, we get the equality

prmz: (25, id*) = <}\p’ id,*).

The right side is also zero because of the condition (2) in Definition
2.1, and so we get ¢=0.

Now we will prove the existence of certain first kind differentials
. which have A,-behavior.
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Theorem 3.2. Let ;0 be given complex numbers. Then
there exist square integrable first kind differentials ¢,,(B;) which
have the following properties:

(i)  ¢a(By) have Ay-behavior

—a; (k=j)
0 (k#7)

(iii) The ¢,,(B;) are uniquely determined for each j.

Gi) |, pa (B =

Proof. The cycles B; can be regarded as oriented analytic
Jordan curves. Let R be a relatively compact ring domain contain-
ing a B, and v be a C*function on R—B; defined as follows:

a; on the left side of By
v=
0 on the right side of Bj.

Then v can be extended to W —Bj such that it becomes a C’-function
with relatively compact support in W. Denote the extension by 9.
Then doeA.'(W) and so it can bewritten as:

do =+ 4"+ Aeo
where
MhEA, Mted?r, A+id¥rCA,.
Now we set
bay(By) =2 +1(4N) * =d0— (L —idf*) —heo=dT— 2, — oo

It can be seen from this equation that ¢, (B,) is a first kind dif-
ferential and has A,-behavior, since d9 has compact support. Also
for any cycle 7

(B =, @3y - (1.

Now if we take A, instead of y, then (ii) is satisfied. The uni-
queness follows easily from Theorem 3. 1.

To prove the existence of second and third kind differentials we
need the following lemma [10].
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Lemma 3.1. Let  be a regularly imbedded connected sub-
region of W whose relative boundary 08 is compact, and V be the
complement of Q. For any closed C'-differential ¢ defined on a
neighborhood of V, the following two statements are equivalent :

(1) 0|V, the restriction of ¢ onto V, can be extended as a
closed Cl-differential & on W such that the support of & has a com-

pact intersection with 0.
Gi) j 5=0.
2

Theorem 3.3. Let 0; be an analytic singularity given at cach
point p; on W (j=1,2 --- n). Consider a differential 0 which is
equal to 0; near p; and the sum of residues of 0 is zero. Then
there exists a differential ¢=q, such that

(1) ¢ has A,-behavior

(ii) ¢ is regular analytic except at p, (j=1,2,--- n)

(iii) ¢ has singularity 0, that is, [|0 —¢ly,<oo for a punctured
neighborhood U; of p; (j=1,2,--- n).

The proof can be carried out in the same manner as Ahlfors-

Sario [1], Shiba [9], if we use our orthogonal decomposition
A=A+ A+ Ao+ A5,
Namely define
T=0— 2= 2= A+ A* +i6*.

Then ¢ is a complex harmonic differential with singularity 6. Con-
sequently AL, lwes A,,N A}, since red, 6C', lLed,. If we set
¢o=%(r+ir*) it is easily seen that ¢ has the desired properties.

Remark. We can see that the differentials constructed above
are uniquely determined, if we require that ¢ should satisfy

j ¢=0 (=1, 2, e ).
Ay

Now we show that this normalization is always possible.

Indeed, let x; be Aj;-periods of ¢ such that only a finite number
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of x; are different from zero. We set
¢p:¢+;‘¢x1(31)-

It is clear that ¢, preserves the singularity, and satisfies the normali-

zation:

: L,‘*"’: Lﬁ”; L,%(Bf) = Lw—rﬁ().

As for uniqueness we need only Theorem 3. 1.

The following normalized differentials whose existence is guaran-
teed by Theorem 3.3, and the holomorphic (first kind) differentials
¢o;(B;) obtained by Theorem 3.2, will play an important role in the
proof of the Riemann-Roch theorem.

(I)  @pun, (resp. @p,.): differential with A,-behavior, regular
analytic except at p; where it has singularity dz/z;"
(resp.idz/z,") (n=2,3, )

(I1)  ¢yp,q, (xesp.Pp,,): meromorphic differential with A,-be-
havior, which has residues 1 at p;, —1 at gq; (resp.i at

p;, —1 at g;) and regular elsewhere.
4. Dual boundary behaviors.

Definition 4.1. Let 4,9 =4,(4,®, 0,C) (k=1,2) be two be-
havior spaces corresponding to the subspaces A,V, A, ®C A,.. We say

that A4,%-behavior and A4,® behavior are dual to each other if for all
LOEA,D) OO

W, 179 =0 (& 0, L=y, i, % =0).
The following lemma is a nice consequence of this definition.

Lemma 4.1. Suppose that A,=A,(A,,0, C) is a behavior which
satisfies the condition:

@ (4 i/{p]*) =0 (& <lm ilpl*> = <Apa ]-pl*> =0)
for all 1,,4,'€4,.
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Then A,-behavior and A,behavior are dual to each other.

Proof. Since A, is a behavior space, we need only check the
condition in definition 4.1. For this purpose take 2,, 1,4, then
by (i) we get

(lpa (A_Pi) *) = <1P9 }\Pl*> + i<lpv ilpl*>
=0 q.e.d.

The following lemma [2, 3], will be used in the proof of
Riemann-Roch theorem. Therefore we prove it in our terminology.

Lemma 4.2. Let A,® and A,® be dual boundary behaviors to
cach other. Let ¢ be an abelian differential (of first or second
kind) with A, -behavior and ¢ any abelian differential with A,®-
behavior. Let W, be the planar surface obtained from W by cutting
along A; and B; cycles. Then,

(1) there exists a single valued meromorphic function f on
W, such that df =g,

Gi) 2ni DRes fp=~3( [0 0= [ o] 0)

Proof. (i) is obvious by assumptions. To prove (ii) we apply
Lemma 1.1 to the region £, obtained from a sufficiciently large
canonical! region £ by taking off mutually disjoint parametric disks
about the singularities of ¢ and ¢. We may suppose that EN 82 forms
a canonical homology basis of & modulo 98 then

2ni Y Res fg= —; < L;¢ B,¢— L}(ﬂ L,¢> + Laﬂb'

By assumption we know that ¢p=2,"+ ., ¢=2,+ 2L, near the ideal
boundary, in particular near 92. By use of Lemma 1.1, and from

the definitions of A, and its dual behavior we can write

Jf‘[,: _<1p<1>, };a‘)?) +Z(j lp“).( /1,,‘2’~ f l"(l)j lp(2)>+eg
29 2 g\ Jay B; B 4,
=— (2", 5,9%) g+ 8,0 (2->W).
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Thus we get the desired result.

5. The Riemann-Roch Theorem.

Let §=0,/0, be a finite divisor on W, where §,=P"PF"--P,""
and 0,=gq,"'g,"*--q,™ are disjoint integral divisors. Let 4, and 4,®
be dual boundary behaviors. We consider the following sets which
evidently form linear spaces over R:

S(4,:1/8) ={f: (i) single valued meromorphic function on W,
(i) has A,®-behavior, (iii) is multiple of of 1/4}

M(A4,M;1/6,) ={f: (1) is a multi-valued meromorphic function
on W. (ii) has A,®-behavior, (iii) is a multiple of 1/§, (iv) periods
of df are normalized, i.e., {4,df=0}

D(4,®;0) ={a: (i) a meromorphic differential on W, (ii) has
A,®-behavior, (iii) is a multiple of ¢}

E(4,2;1/6) ={a: (i) a meromorphic differential on W, (ii)
has A,®-behavior, (iii) is a multiple of 1/4.}

In the case that §,#1 we identify the elements f;, f; of M if and
only if f,—f,=constant.

The following well-known algebraic lemma should be provided.

Lemma 5.1. Let X and Y be two lLinear spaces over a field
K, and consider a biliner form (x,y) defined over XXY. Denote
the left kernel by X, and the right kernel by Y,. If the quotient
space X/X, is finite dimensional, then there is an isomorphism

X/X,=Y/Y,.

Theorem 5.1. (Riemann-Roch). Suppose that A,V-and A,®-
behaviors are dual to each other. Let 0=0,/0, be a finite divisor
on W, where 0, and 0, are disjoint integral divisors. Then

dim S(4,";1/0) =2[deg 6,+ 1 —min(deg d,, 1)]
— [dim E(4,%;1/8,) /D (4,®;3)].
Proof. We follow essentially the proof of Kusunoki [2]. We
define a function /,(f,a) on MXE by
h,(f,a) =Re (3 Res.fax) for feM, ackE.
j Py
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Since « is regular at each p,, additive constants of f have no effect
on the residues of fi at each p;. Therefore h,(f, ) is well-defined.
Then by Lemma 4.2 we can write

ho(f, a)———ImL defj ] —Re[ ZRes fal

since df is normalized, i.e., {4,df=0. Thus, if f belongs to the left-
kernel of 4,(f,«), ie., 0=h,(f,a) for every a=E, then we get
Im fp,df=0, Re [5,df=0 by taking a=¢,(B,) and a=¢;(B,) re-
spectively. Thus {3 df=0. Therefore f is single-valued on the whole
W, since by assumption we already know that [, df=0. If § is an
integral divisor, then §=¢, and so fS. If § is non-integral, then
we take a=¢@,. It can be seen that Im f(g,) =Im f(¢,) and Ref(q,)
=Ref(g,) (k=12 ---)s). Thus f—f(g,) has zeros at q,(2<k<s).
Moreover, if we take @3, and §Q, as a (1<k<s, 2<<y<n,) it follows
that f—f(q,) has at least n, zeros at ¢,. By the equivalent relation
in M we get f€S. Conversely, it is obvious that the left-kernel of
h, contains S. In a similar way we can see that D is the right-kernel
of h, Indeed, since fa is regular analytic at each p; for feM,
a e D, then D is contained in the right-kernel. The converse is proved
by taking the integrals §o$), and {35, , as f (1<j<r, 2<p<m;+1).
To get the final result we must see that M is a finite-dimensional
space. For §,#1 the following integrals span M

1<;<r
j\‘p;ﬂ/. « and j&gy) "
2<u<m,+1

If §,=1, the above integrals and 1, ; make a basis of M. So we
find that
2\L‘nz,+2 2degd,+2 (0,=1)

s

<

dim M =
2> m;=2degd, (0,#1)
7=

So in any case we have dim M =2[deg 0,-+1—min(deg d,, 1)]. Then
we can apply Lemma 5. 1. g.e.d.

If the genus of W is finite, Theorem 5.1 reduces to the follow-
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ing rather classical form:

Corollary 5.1. If A,%-and A,®-behaviors are dual to each
other, then for any finite divisor ¢ on W

dim S—dim D=2(deg 0 —¢+1).

Proof. We can find a basis for E:

(@) if 0,=1 {¢9(B)), 9% (B)}%-1 span E, where a;,b,€R.

(b) if 0,1 {2 (B)), 6% (By), 02, B, Vitas Piia} EIZHEES
span E provided that in both cases we choose a; and b; as in
Theorem 2.1, then

29 (0,=1)

dim E = .
2[g+ j;](nk—l)ﬂ—l] (0,#1).

So, dim E=2[¢g —min(deg §,,1) +deg d,] and the result easily fol-
lows from Theorem 5. 1.

6. Generalization.

Divide the set of positive integers {1,2,---,g} into two disjoint
sets J,,J,, and let {L,} be a set of straight lines L, (j=J,) passing
through the origin 2=0.

Definition 6.1. A linear subspace A,=4,(J,,Jy) of A, is
called a behavior space if
(1) there exists a closed subspace A, of A, such that

A DA 441>

where A4, is the orthogonal complement of A, in 4,
(2) Ay, i2,*>=0 for each 1,4,
() Ly if jeJ, and [4,2,=0 if jel.
Bj

We can similarly formulate the Riemann-Roch theorem in terms
of such behavior spaces. As a special case where J,=¢, we have
Shiba’s result [9], and our result is the case J,=¢. Given L, we

can prove that a behavior space A4, actually exists.
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