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Let 2 be a field and R=@,> R, be a Noetherian graded ring
with Ry=%k and suppose that R is generated by R, as a k-algebra.
For d>0 we define R =@, R,« and call it the Veronesean subring
of R of order d. Note that R® is Macaulay if R is Macaulay (cf.
Proposition 12 of M. Hochster and J. A. Eagon [3]). We put
H(n,R) =[R,: k] (n=0), and ¢(R) =max{n=0 such that R, (0)} if
R is Artinian. The purpose of this note is to give

Theorem 1. Let R be Gorenstein and {X,, X, -, X,} be a
homogeneous system of parameters of R (r=dim R>0). Then
for d>0, RY is Gorenstein &OH(1,R) =1 or t(R/(X,, X;, -+, X}))
=>7_1deg X, mod d.

and to show similar results in case R is Artinian.®

1. The case where R is Artinian.
In this section R is assumed to be Artinian. We denote the
k-dimension of the socle of R by (R) and put t=¢(R).

Lemma 1. H(s,R) =1 (s>0)=>H(n, R) X1 for every n=s.

Proof. It suffices to prove that H(s+1, R) <1. Since R,=R,R,_,
and H(s, R) =1, we have R,=xR,_; for some xR,. Hence R,,,
=R, (R,_,x) =R,r and this implies that H(s+ 1, R) <1. QED.

*  The referee showed to the author that our theorems give a generalization to some
results of 'I'. Matsuoka [4]. He proved Th. 1 in case R is a polynomial ring.
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Corollary 1. Suppose that R is Gorenstein and H(1, R)=>2.
Then H(s, R) =1 & s=¢.

Proof. =) R, coincides with the socle of R and hence H(¢, R)
=1. =) Assume that s<#. Then it follows from Lemma 1 that
H(—1,R)=1. If we define R*=Hom, (R, k), then R* becomes a
graded R-module with {Hom,(R_,, £#)},c, as its grading (Here we
understand R,= (0) for 2{0.). Since R is Gorenstein, it is known that
R=R*(—1t) as graded R-modules (Here R*(—¢) denotes the graded
R-module whose underlying R-module is the same as that of R* and
whose grading is given by [R*(—¢)],=[R*]._;.) by Ch. 4 of S. Goto
and K. Watanabe [2]. Therefore H(#, R)=H(¢—n, R) for n=0,1,
-+-,t. Thus we have H(1,R)=H((t—1,R) =1 and this contradicts
the hypothesis of Corollary. QED.

Remark 1. This is incorrect if R is not Gorenstein. For
example, let £ be a field and R=k[X, Y]/(X? XY, Y**) (s=2).
Then ¢(R) =s and H(1,R) =2. But H(n, R) =1 for every n=2, 3,
..., 5. Hence the assertion of Corollary does not hold for s>2. In
this case the socle of R is (z,%') and r(R)=2 (Here x=Xmod
(X% XY, Y**Y) and similarly for y.). Moreover the case s=2 shows
that the converse of Corollary is not true.

Lemma 2. R, coincides with the socle of R & 0: Ry
=3 lurazer1 Ra for every d=0.

Proof. =) Put d=1. =) We have only to prove 0: R,
DY uiazesr Ra.  Assume the contrary and let x be a homogeneous
element of 0: R; such that x€&) 45001 K. Then 0<le<t+1-d
where e=deg x. If we choose = for which d+¢ is smallest among
the countre examples, then xR, ;% (0). Since xR,_,C0: R,, this
implies that (0)=*xR; ;CR,. Hence ¢+ (d—1)=¢. This is the
required contradiction. QED.

Proposition. Let R be Gorenstein and 0<d=<t. Put
s=min{nedZ such that n+d=t+ 1} Then the socle of R@
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coincides with R,. Therefore r(R®)=H(s, R). In particular R® is
Gorenstein & H(s, R) =1.

Proof. The socle of R®=(0: R;) NR®
= Y R,NR® (by Lemma 2)
+1

n+d2t

=R,. QED.

Theorem 2. Assume that R is Gorenstein.
(1) Let H(1,R)<1. Then R® is Gorenstein for every d>O0.
(2) Suppose that H(1, R)=2. Then

(a) R {s Gorenstein for every d>t.

(b) Let t=d>0. Then R® is Gorenstein & t=0modd.

Proof. (1) In this case R™® is a PIR and hence it is Gorenstein.
(2) (a) For d>t we have R =k, (b) Let t=d>0. Then R? is
Gorenstein & H(s, R) =1 where s=min{zdZ such that n+d=¢+1}.
The latter is equivalent to say that s=¢ by Corollary of Lemma 1. And
this means that £=0mod d. QED.

2. Proof of Theorem 1.

In this section R is assumed to be Macaulay and {Xj, X,, ---, X;}
denotes a homogeneous system of parameters of R(r=dim R>0).

Lemma 3. :(R/(X% X4, -, X)) =t (R/(X;, X3, -+, Xp)) +
'_(deg X,) (d—1) for every d>0.

Proof. Put P=k[X,, X;, ---, X;]. Then P is a graded subring of
R. Since R is Macaulay, {X;, X;, ---, X;} are algebraically independent
over £ and R is a finitely generated free graded P-module (By a free
P-module we understand a graded P-module which is isomorphic to a
direct sum of graded P-modules of the form P(n), n€Z. Recall that
P(n) denotes the graded P-module whose underlying P-module is the
same as that of P and whose grading is given by [P(#)],=Puim.).
In fact, if {e}:er is a family of homogeneous elements of R which
constitutes a k-basis of R/(X), Xi, -+, X;) mod (X, X5, -+, Xp),
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then {e;};cr forms a free basis of R as a P-module. Thus we
have R=@._,P(—n)*" as graded P-modules for some {an}n-o,1,..
(Here t=t(R/(X,, X,, .-+, X;)).). Therefore we obtain R/ (X% X,%
e, X =@ [P/ (XY XY -, X T (—#)* and hence ¢ (R/ (X4, X0,
ey X)) =t (P/(X XY -, X)) H =200 (deg X)) (A1) +2.
QED.

Proof of Theorem 1. Suppose that H(1, R) =1. Then R=k[X]
(a polynomial ring over k£ with a variable X) and hence R =£k[X"*]
for every d>0. Therefore we assume that H(1, R)=2. The asser-
tion is obvious in case d=1 and hence we assume that d=2. Now
suppose that »=>2. In this case :(R/ (X% X,%, -, X,))=r(d—1)=d
by Lemma 3. Note that if we put A=R/(X\ X,% -, X,*) then
R® /(X2 X0, -, X,) RD =A™, Since R is Macaulay and {X,%
X%, -, X% is a system of parameters of R®, R is Gorenstein
globally if and only if A® is Gorenstein (cf. Corollary (4.2) of
Ch. 1, S. Goto and K. Watanabe [2]). Thus Theorem 2 is applicable
since H(1, R) =H(1, A)=2 and we have the assertion by virture of
Lemma 3 if »==2. For =1, put X=X,. In the following we will
prove that t(A)==d. Assume the contrary. Then d>¢(4)=
(deg X)(d —1). Hence deg X=1 and ¢(A) =d—1. Therefore R;=kX"*
and so H(d, R) =1. On the other hand, since X is R-regular and XR,
CR;;, we have that HG, R)<H@G+1,R) (:=0,1,2,---). Hence
H(,R)<H(d, R) and therefore H(1, R) =1. This is a contradiction.
Thus we have £(A)=d and the assertion follows form Theorem 2.

QED.

Remark 2. With the same hypothesis as Theorem 1 we define
g(R)= {d>0 such that R® is Gorenstein}. Then
(@) gR<wOH(,R)Z2 and t(R/ (X, Xp, -+, X))
#37_1deg X,
(b) 9g(R) =c0c&OR™ is Gorenstein for every d>0.

Examples. (1) Let & be a field and R=k[X,, X, --+, X;] (v>0)
be a polynomial ring over % with r variables {Xi};.,,, ...». Then for
d>0, R® is Gorenstein & r=1 or r=0modd. (This example is
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given by T. Matsuoka [4].)

(2) Let k be a field and R=k[{Xi;}i<i,s<r] /N (r=2) where
k[{X:;h<i,s<-] 1s a polynomial ring over k& with r* variables {X;;}i<i, s<r
and 9, denotes the ideal generated by all the 2X2 minors of the
matrix [X,;;]. Then R is Gorenstein and H(1, R) =7* (cf. S. Goto
and K. Watanabe [2]). If we put fi=2 o, X;ymod A, (¢=2,3, -,
2r), {fi}i=s,s, .., 2r constitutes a homogeneous system of parameters of
R and t(R/(fo, fs, -+, for)) =r—1 (cf. S. Goto [1]). Hence for d>0,
R® is Gorenstein & »=0mod d.

(3) Let k be afield and R=k[X}, X;, -+, X,, Xppr]/ (XN —F (X,
X, o, X, Xop))) (7>0,2>0) where f(X,, X,, -+, X,, X;41) denotes a
homogeneous polynomial of degree n+1 which does not contain the
term X%'. Then H(, R) =r+1 and dim R=7r. Moreover if we put
=X, mod (X[H —f (X, Xo, -+, X, Xph1)), t(R/(zy, 23, -+, 7)) = 1.
Hence for d>0, R is Gorenstein & n=rmodd. Thus, if n=r,
R is Gorenstein for every d>0.
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