The Veronesean subrings of Gorenstein rings

By

Shiro GOTO

(Communicated by Prof. Nagata, Oct. 26, 1974; Revised, Dec. 16, 1974)

Let k be a field and $R = \bigoplus_{n \geq 0} R_n$ be a Noetherian graded ring with $R_0 = k$ and suppose that R is generated by R_1 as a k-algebra. For d > 0 we define $R^{(d)} = \bigoplus_{n \geq 0} R_{nd}$ and call it the Veronesean subring of R of order d. Note that $R^{(d)}$ is Macaulay if R is Macaulay (cf. Proposition 12 of M. Hochster and M. Eagon [3]). We put $H(n,R) = [R_n:k]$ $(n \geq 0)$, and $t(R) = \max\{n \geq 0 \text{ such that } R_n \neq (0)\}$ if R is Artinian. The purpose of this note is to give

Theorem 1. Let R be Gorenstein and $\{X_1, X_2, \dots, X_r\}$ be a homogeneous system of parameters of R $(r = \dim R > 0)$. Then for d > 0, $R^{(d)}$ is Gorenstein $\Leftrightarrow H(1, R) = 1$ or $t(R/(X_1, X_2, \dots, X_r))$ $\equiv \sum_{i=1}^r \deg X_i \mod d$.

and to show similar results in case R is Artinian.*)

1. The case where R is Artinian.

In this section R is assumed to be Artinian. We denote the k-dimension of the socle of R by r(R) and put t = t(R).

Lemma 1. H(s,R) = 1 $(s>0) \Rightarrow H(n,R) \leq 1$ for every $n \geq s$.

Proof. It suffices to prove that $H(s+1, R) \le 1$. Since $R_s = R_1 R_{s-1}$ and H(s, R) = 1, we have $R_s = x R_{s-1}$ for some $x \in R_1$. Hence $R_{s+1} = R_1(R_{s-1}x) = R_s x$ and this implies that $H(s+1, R) \le 1$. QED.

^{*)} The referee showed to the author that our theorems give a generalization to some results of T. Matsuoka [4]. He proved Th. 1 in case R is a polynomial ring.

Corollary 1. Suppose that R is Gorenstein and $H(1, R) \ge 2$. Then $H(s, R) = 1 \Leftrightarrow s = t$.

Proof. \Rightarrow) R_t coincides with the socle of R and hence H(t,R) = 1. \Rightarrow) Assume that s < t. Then it follows from Lemma 1 that H(t-1,R) = 1. If we define $R^* = \operatorname{Hom}_k(R,k)$, then R^* becomes a graded R-module with $\{\operatorname{Hom}_k(R_{-n},k)\}_{n \in \mathbb{Z}}$ as its grading (Here we understand $R_n = (0)$ for n < 0.). Since R is Gorenstein, it is known that $R \simeq R^*(-t)$ as graded R-modules (Here $R^*(-t)$ denotes the graded R-module whose underlying R-module is the same as that of R^* and whose grading is given by $[R^*(-t)]_n = [R^*]_{n-t}$.) by Ch. 4 of S. Goto and K. Watanabe [2]. Therefore H(n,R) = H(t-n,R) for $n = 0,1, \dots, t$. Thus we have H(1,R) = H(t-1,R) = 1 and this contradicts the hypothesis of Corollary.

Remark 1. This is incorrect if R is not Gorenstein. For example, let k be a field and $R=k[X,Y]/(X^2,XY,Y^{s+1})$ ($s\geq 2$). Then t(R)=s and H(1,R)=2. But H(n,R)=1 for every $n=2,3,\cdots,s$. Hence the assertion of Corollary does not hold for s>2. In this case the socle of R is (x,y^s) and r(R)=2 (Here $x=X \mod (X^2,XY,Y^{s+1})$ and similarly for y.). Moreover the case s=2 shows that the converse of Corollary is not true.

Lemma 2. R_t coincides with the socle of $R \Leftrightarrow 0$: $R_d = \sum_{n+d \geq t+1} R_n$ for every $d \geq 0$.

Proof. ⇒) Put d=1. ⇒) We have only to prove 0: R_d ⇒ $\sum_{n+d\geq t+1} R_n$. Assume the contrary and let x be a homogeneous element of 0: R_d such that $x\notin \sum_{n+d\geq t+1} R_n$. Then 0< e< t+1-d where $e=\deg x$. If we choose x for which d+e is smallest among the countre examples, then $xR_{d-1}\neq (0)$. Since $xR_{d-1}\subset 0$: R_1 , this implies that $(0)\neq xR_{d-1}\subset R_t$. Hence e+(d-1)=t. This is the required contradiction. QED.

Proposition. Let R be Gorenstein and $0 < d \le t$. Put $s = \min\{n \in d\mathbf{Z} \text{ such that } n + d \ge t + 1\}$. Then the socie of $R^{(d)}$

coincides with R_s . Therefore $r(R^{(d)}) = H(s, R)$. In particular $R^{(d)}$ is Gorenstein $\Leftrightarrow H(s, R) = 1$.

Proof. The socle of
$$R^{(d)}=(0\colon R_d)\cap R^{(d)}$$

$$=\sum_{n+d\geq t+1}R_n\cap R^{(d)} \qquad \text{(by Lemma 2)}$$

$$=R. . \qquad \qquad \text{OED}.$$

Theorem 2. Assume that R is Gorenstein.

- (1) Let $H(1, R) \le 1$. Then $R^{(d)}$ is Gorenstein for every d > 0.
- (2) Suppose that $H(1, R) \ge 2$. Then
 - (a) $R^{(d)}$ is Gorenstein for every d > t.
 - (b) Let $t \ge d > 0$. Then $R^{(d)}$ is Gorenstein $\Leftrightarrow t \equiv 0 \mod d$.

Proof. (1) In this case $R^{(d)}$ is a PIR and hence it is Gorenstein. (2) (a) For d > t we have $R^{(d)} = k$. (b) Let $t \ge d > 0$. Then $R^{(d)}$ is Gorenstein $\Leftrightarrow H(s, R) = 1$ where $s = \min\{n \in d\mathbf{Z} \text{ such that } n + d \ge t + 1\}$. The latter is equivalent to say that s = t by Corollary of Lemma 1. And this means that $t \equiv 0 \mod d$. QED.

2. Proof of Theorem 1.

In this section R is assumed to be Macaulay and $\{X_1, X_2, \dots, X_r\}$ denotes a homogeneous system of parameters of $R(r = \dim R > 0)$.

Lemma 3. $t(R/(X_1^d, X_2^d, \dots, X_r^d)) = t(R/(X_1, X_2, \dots, X_r)) + \sum_{i=1}^r (\deg X_i) (d-1)$ for every d>0.

Proof. Put $P=k[X_1, X_2, \cdots, X_r]$. Then P is a graded subring of R. Since R is Macaulay, $\{X_1, X_2, \cdots, X_r\}$ are algebraically independent over k and R is a finitely generated free graded P-module (By a free P-module we understand a graded P-module which is isomorphic to a direct sum of graded P-modules of the form P(n), $n \in \mathbb{Z}$. Recall that P(n) denotes the graded P-module whose underlying P-module is the same as that of P and whose grading is given by $[P(n)]_m = P_{n+m}$. In fact, if $\{e_i\}_{i\in I}$ is a family of homogeneous elements of R which constitutes a k-basis of $R/(X_1, X_2, \cdots, X_r)$ mod (X_1, X_2, \cdots, X_r) ,

then $\{e_i\}_{i\in I}$ forms a free basis of R as a P-module. have $R \cong \bigoplus_{n=0}^{t} P(-n)^{a_n}$ as graded P-modules for some $\{a_n\}_{n=0,1,\dots,t}$ (Here $t = t(R/(X_1, X_2, \dots, X_r))$.). Therefore we obtain $R/(X_1^d, X_2^d, \dots, X_r)$ $\cdots, X_r^d \cong \bigoplus_{n=0}^t [P/(X_1^d, X_2^d, \cdots, X_r^d)] (-n)^{a_n}$ and hence $t(R/(X_1^d, X_2^d, \cdots, X_r^d))$ \cdots , X_r^d) = $t(P/(X_1^d, X_2^d, \cdots, X_r^d)) + t = \sum_{i=1}^r (\deg X_i) (d-1) + t$.

QED.

Proof of Theorem 1. Suppose that H(1, R) = 1. Then R = k[X](a polynomial ring over k with a variable X) and hence $R^{(d)} = k[X^d]$ for every d>0. Therefore we assume that $H(1,R)\geq 2$. The assertion is obvious in case d=1 and hence we assume that $d\geq 2$. Now suppose that $r \ge 2$. In this case $t(R/(X_1^d, X_2^d, \dots, X_r^d)) \ge r(d-1) \ge d$ by Lemma 3. Note that if we put $A = R/(X_1^d, X_2^d, \dots, X_r^d)$ then $R^{(d)}/(X_1^d, X_2^d, \cdots, X_r^d) R^{(d)} \cong A^{(d)}$. Since $R^{(d)}$ is Macaulay and $\{X_1^d, \dots, X_r^d\}$ X_2^d, \cdots, X_r^d is a system of parameters of $R^{(d)}, R^{(d)}$ is Gorenstein globally if and only if $A^{(d)}$ is Gorenstein (cf. Corollary (4.2) of Ch. 1, S. Goto and K. Watanabe [2]). Thus Theorem 2 is applicable since $H(1, R) = H(1, A) \ge 2$ and we have the assertion by virture of Lemma 3 if $r \ge 2$. For r = 1, put $X = X_1$. In the following we will Assume the contrary. Then $d > t(A) \ge$ prove that $t(A) \ge d$. $(\deg X)(d-1)$. Hence $\deg X=1$ and t(A)=d-1. Therefore $R_d=kX^d$ and so H(d, R) = 1. On the other hand, since X is R-regular and XR_i $\subset R_{i+1}$, we have that $H(i,R) \leq H(i+1,R)$ $(i=0,1,2,\cdots)$. $H(1,R) \leq H(d,R)$ and therefore H(1,R) = 1. This is a contradiction. Thus we have $t(A) \ge d$ and the assertion follows form Theorem 2. QED.

Remark 2. With the same hypothesis as Theorem 1 we define $g(R) = \{d > 0 \text{ such that } R^{(d)} \text{ is Gorenstein}\}.$ Then

- (a) $g(R) < \infty \Leftrightarrow H(1, R) \ge 2$ and $t(R/(X_1, X_2, \dots, X_r))$ $\neq \sum_{i=1}^r \deg X_i$.
- $g(R) = \infty \Leftrightarrow R^{(d)}$ is Gorenstein for every d > 0.

Examples. (1) Let k be a field and $R = k[X_1, X_2, \dots, X_r]$ (r > 0)be a polynomial ring over k with r variables $\{X_i\}_{i=1,2,\ldots,r}$. Then for d>0, $R^{(d)}$ is Gorenstein $\Leftrightarrow r=1$ or $r\equiv 0 \mod d$. (This example is given by T. Matsuoka [4].)

- (2) Let k be a field and $R = k[\{X_{ij}\}_{1 \le i, j \le r}]/\mathfrak{A}_2$ $(r \ge 2)$ where $k[\{X_{ij}\}_{1 \le i, j \le r}]$ is a polynomial ring over k with r^2 variables $\{X_{ij}\}_{1 \le i, j \le r}$ and \mathfrak{A}_2 denotes the ideal generated by all the 2×2 minors of the matrix $[X_{ij}]$. Then R is Gorenstein and $H(1, R) = r^2$ (cf. S. Goto and K. Watanabe [2]). If we put $f_i = \sum_{i+j=i} X_{ij} \mod \mathfrak{A}_2$ $(t=2, 3, \cdots, 2r)$, $\{f_i\}_{i=2, 3, \cdots, 2r}$ constitutes a homogeneous system of parameters of R and $t(R/(f_2, f_3, \cdots, f_{2r})) = r-1$ (cf. S. Goto [1]). Hence for d > 0, $R^{(d)}$ is Gorenstein $\Leftrightarrow r \equiv 0 \mod d$.
- (3) Let k be a field and $R = k[X_1, X_2, \dots, X_r, X_{r+1}]/(X_{r+1}^{n+1} f(X_1, X_2, \dots, X_r, X_{r+1}))$ (r > 0, n > 0) where $f(X_1, X_2, \dots, X_r, X_{r+1})$ denotes a homogeneous polynomial of degree n+1 which does not contain the term X_{r+1}^{n+1} . Then H(1, R) = r+1 and dim R = r. Moreover if we put $x_i = X_i \mod(X_{r+1}^{n+1} f(X_1, X_2, \dots, X_r, X_{r+1})), \quad t(R/(x_1, x_2, \dots, x_r)) = n.$ Hence for d > 0, $R^{(d)}$ is Gorenstein $\Leftrightarrow n \equiv r \mod d$. Thus, if n = r, $R^{(d)}$ is Gorenstein for every d > 0.

DEPARTMENT OF MATHEMATICS NIHON UNIVERSITY

References

- [1] S. Goto: "When do the determinantal ideals define Gorenstein rings?," Sci. Rep. of the Tokyo Kyoiku Daigaku, Sect. A. 12 (1974), 129-145.
- [2] S. Goto and K. Watanabe: "Noetherian graded rings I," in preparation.
- [3] M. Hochster and J. A. Eagon: "Cohen-Macaulay rings, invariant theory and generic perfection of determinantal loci," Amer. J. Math., 93 (1971), 1020-1058.
- [4] T. Matsuoka: "On an invariant of Veronesean rings," Proc. Japan Acad., 50 (1974), 287-291.