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Introduction

W e m ean by a  classical infinite L ie  algebra on e  o f th e  following

L ie  a lgebras w h ich  a rise  fro m  prim itive in fin ite L ie  tansformation
groups:

(I) th e  L ie  algebra o f  a ll vector fields,

(II) th e  L ie  algebra o f  vector fields of divergence zero,

(III) th e  L ie  algebra o f  vector fields of constant divergence,

(IV) th e  L ie  algebra o f  vector fie lds preserving a  hamiltonian
structure (the ham iltonian L ie  algebra),

(V) th e  L ie  algebra o f  vector fie lds preserving a  hamiltonian
structure up  to  constant factors,

(VI) the Lie algebra of vector fields preserving a contact structure
(the contact Lie algebra).

Though we have not cla lified  the category to which vector fields
belong, specifying it, we may speak of f o rm al or g lobal classical infinite

L ie  a lgebras. M ore precisely, formal algebras are those algebras con-
sisting o f form al (i.e. form al power series ) vec to r fields, and global
algebras are those algebras consisting of vector fields which are defined
globally on certain differentiable manifolds.

In  this paper we shall determine completely the derivation algebras

o f th e  classical infinite L ie  algebras, both  form ally and globally.

T h e  firs t cohomology group  11' (L, L) o f  a  L i e  a lgebra L  with
adjoint representation is ipso facto the derivation algebra D ( L )  o f  L
factored by the ideal o f  D (L )  consisting o f inner derivations.
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Therefore the first cohomology groups of the classical infinite Lie
algebras will be determined at the same time.

The present paper is composed o f two chapters.

Chapter I is devoted to the study o f formal vers ion . Let 4 ,( n ) ,
1„1 (n ) , L „,(n ) , L „(2 n ) , L e„ (2 n ) and L e ,(2n + 1 ) be the formal classi-

cal infinite L ie  algebras corresponding to ( I ) ,  (II), ••• ( V I ) .  We shall

prove the following

T h e o r e m  I .  T h e  d e riv a t io n  a lg e b ra s  D ( L )  o f  t h e  f o rm al
c lass ic al in f in ite  L ie  alg e b ras  L  a re  a s  f o llow s:

i) D (L g t ( n ) ) =L g t(n).

ii) D (L s,(n )) D (L „,(n ) )  = L „,(n ) .

iii). D ( L ( 2 n ) ) = D ( L ( 2 n ) ) =  L c „(2n).

iv) D (L „(2 n + 1 ))  =L ,(2 n +1 ) .

The formal classical infinite Lie algebras are defined purely alge-

braically, and our proof is algebraic and elementary only except that

w e  use some knowledge of the structures of those L ie  algebras.

After preparing the manuscript, the author was informed that the
first cohomology groups of the form al classical in fin ite L ie  algebras

had been determined by C. Freifeld [2].
Chapter II is devoted to the study of the global version . We shall

obtain the results parallel to those of Chapter I. Denote by 1' , i (i1/),
(M , 9 ),  ± „, (111, D), J 1,(2lf , w), „ p (M, w), J „ ( M , 0), the global

classical infinite L ie  algebras corresponding to ( I ) ,  ( I I ) ,  ••• (VI).
Then we shall prove

T h e o r e t n  II. T h e  d e riv a t io n  a lg e b ras  D ( Z )  o f  t h e  g lo b a l
c lass ic al in f in ite  L ie  algebras a re  a s  f o llow s:

i) D ( Z o (M )) -- -  f g,( M ),

D(J%.1(21 1 , ,Q)) = D(± „q(M , .Q)) = Q),

iii) D (Z ,(111 , (Û)) = D (Z  „ p (M, w)) (Û),

iv) D ( J  ( M ,  0 ) )  = X  (M ,
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Since the global algebras are deeply related to the formal algebras,

the formal results in Chapter I  g ive  us a  clear perspective and much

information to study the global version.

T h e  principle o f th e  proof of Theorem  II is very s im p le : Let .1 '

be a  global classical infinite L ie  algebra and a  be a  derivation of

W e  show that a  is  a  local operator and fu rth er th a t a t an y  point P
it induces the derivation a ,  o f th e  formal algebra o f  L  at p. B y  the

formal results we see that there exists a  form al vector field such

that a ,(E „ )= [C ,,E „ ] for a ll form al vector fields $ 2, o f  at p .  To

show that r e a lly  d e f in e s  a global smooth vector field on the manifold,

w e  are led to solve certain partial differential equation, th e solvability

of which is assured by the formal integrability and the uniqueness of

the formal solution.

Recently F . T a k en s  [7 ] has proved the reseu lt for _Co  (M )  and

A. Abez, A . Lichnerow icz and A. D iaz-M iranda [I] and Y . K an ie  [3 ]

fo r  _C „(M , w ) and (0 ), b u t their proofs seem  to be rather

complicated and use the case by case analysis depending on the peculiari-

ty  o f  each structure concerned.

Chapter I. Form al Version

1. L e t h be the complex number .field C or the real number field

R .  The fo llow ing L ie  algebras are called ( f o rm al) c lassical in f in ite
L ie  alg e b ras  over k:

(I) 1.51 (n ) :  the Lie algebra of all formal (i.e. formal power series

w ith  coefficients in k )  vector fields in n-verialbes x 1 ,  x 2 ,  ••• x".
(II) L n (n ) :  the L ie  algebra of formal vector fields in n-veriables

x ',  x ',  ••• x " ,  preserving the volume form  dx 1 A d x 2 A•••Adx".
(III) L 8 2 (n ): th e  L ie  algebra o f form al vector fields in n-vari-

ables x 1 , x 2 , ••• preserving the volume form  dx 1
 
A dx 2 A • • • A d e  up

to  constant factors.

(IV) L 2 5 (2 n ): th e  L ie  algebra o f  formal vector fields in 2n-vari-
ables x 2 ,  •  x 2 " ,  preserving the symplectic form  E7= i dx i A d x i ±".

(V) L e „ (2 n ):  th e  L ie  algebra of form al vector fields in 2n-vari-
ables x 1 , i2 , x2n, preserving the symplectic form  E7= i dx 1 A d x j "  up
to  constant factors.

(VI) L 2 2 (2 n  + 1 ) :  th e  L ie  a lg eb ra  o f fo rm a l v ec to r  fields in
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(2n+ 1)-variab les x°, x ', ••• x", preserving the contact form

dx °E L i x' dx"' — dx i up to functional factors.

In  this chapter we shall determine the derivation algebras o f  these

L ie  algebras.

2 .  Here we recall briefly a few fundamental facts about the struc-

tures o f th e  classical infinite L ie  algebras. Details are refered to  [4 ] ,
[ 5 ] ,  and [6 ].

a) L e t L  be a  classical infinite Lie a lg eb ra . L  has the filtration

{4 } p E , ,  defined as follows.

1, = L  f o r  p< —1

L o =  { X E L  I the value X, of X  at the origin -= 0 }

L i,= { X E  . 4 ,  I [X, L]OELp_ i } (p>1 )

Specially fo r  th e  con ta c t L ie  algebra L c, (2 n  + 1 )  we define another

filtration { L , }  which is more convienient than usual o n e .  It is defined

inductively as follows:

1 L = L   f o r  p< —2

L- —  1XE LI<X, O>o --- 0 , where 0 -
-
dx °

+1- E xiclxi+n — xi+ndxil .

L o = {X E LIX 0 = 0}

L i,=  {X E L„_,I[X , L ]  c L p _ i}  (p > i)

This filtration is  compatible w ith  the usual o n e :  W e  have

LpDL„, i a n d  L n DL2p+1

Since we exclusively use the filtration -{L ,}  for the contact Lie algebra,

w e  d en o te  it b y  th e  sam e letter -{4 }  b y  abu se o f language. The

filtrarion  L , satisfies

[L b , L j c L p + , fo r  a ll p, q E  Z.

W e  topologize L  by assigning { L ,}  a s  a  system o f  fundamental

neighpourhoods o f  L .  T h e n  L  is  a  topological L ie  algebra and it is

separated and complete.

b) T h e  graded  L ie  algebra Qv- (L ) -=E „ z g , ( L ) ,  where q ( L )
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=L p /L p , „  satisfies th e  fo llow ing conditions:

i) dim gp < 0 0  fo r a ll p E Z  a n d  [gp , go] c g „  fo r  a ll p ,  q e  Z.

ii) T h e r e  is  a  p o s it iv e  nteger ,a  such that g 0 a n d  ga =0
f a ll q< —  ,n . (It= 2  fo r L c , (2 n + 1 ) and te =1  for the other classical

infinite L ie  algebras.)

iii) T h e  subalgebra n i =E„ < o g„ is generated by  Ç .
iv) F o r  any p > 0 ,  the condition that x p E O p  and ni] =0 im-

plies x ,=0 .

c) Any classical infinite L ie  algebra L  is isomorphic to th e  com-

letion 11„„g i,(L ) o f  th e  graded L ie  algebra E p c z g , ( L )  o f  L.
Hereafter we identify L  w ith  th e  d ire c t  product lh E z g,(L ) and

each gp (L ) is considered to be imbedded in  L.

d) T h e  subalgebra go (L )  is reductive, and either go (L ) is simple

o r  00 (L ) i s  a  d ire c t  sum  of a  s im p le  ideal I 0 ( L )  a n d  1-dimensional

center

I f  L= L g , ( n )  ,  L  (n )  ,  L  „  (2 n )  o r  L 1 (2n+ 1), 3,,(L )  contains a

unique element /  such that

[I, x i,] = P x , fo r a ll x,E  gn (L).

e) L 3 1 ( n )  (resp. L ,  ( 2 n ) )  i s  an  ideal of L 3 1 (n) (resp. L c „ (2 n ) )
and

L 1 (n)=L31(n)

L (2 n ) =  L „  (2n) + kI

f) T h e  graded L ie  algebra E „ ,g ,( L )  is determined by its lower

subspaces igi,I p po fo r  some p c . I f  L = L s 1 ( n )  or L 3 (2 n ) ,  then for
0 (L ) is identified with th e  prolongation gi,„ (L) ( " ,  w h ere  g„,(L )" )

is  th e  subspace of Hom (g_„ g) consisteing o f those T  such that

[T (x ) , y ]  = [T  (y ) , x ]  fo r a ll x, y e  g_, .

g )
 

[L ,„  L j=  4 ,„  fo r  a ll p, q >0.
Moreover dim L /[L , L ] < 1, equality holds if and only if  L=  L„,(n)  o r
L„,(2n ).

3 .  From  now  on L  always represents a  classical infinite Lie alge-
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bra over R  o r  C.

P rop os ition  1. E v ery  deriv ation  o f  L  i s  continous.

Proof . Since L i, constitutes a fundamental system of neighbourhoods

o f  the origin o f  L , it suffices to prove that f o r  a  derivation a  o f  L
and for any integer r  there exists an in teger s  such that a (L s )OEL r .

L e t  r '  be an integer such that r '> 0  and r '> r  + 2 , and put s =2r'.

Then by 2-g) we have Ls= [L,., Since [a(L,,), L„ - ]OE[L_,,
C L , - ,  w e  s e e  th a t a (L ,)O EL, q.e.d.

A  derivation a  o f  L = l ig , ( L )  is  s a id  t o  b e  o f  d e g re e  k  if

a (gp(L))Cg„i_k (L) fo r  a ll P E Z .

W e denote by L  th e  L ie  algebra containing L  defined as follows:

L8/ (n) = L 581(n) , L,,(20 = (2n ), and L= L  fo r  the others.

Proposition  2 .  L e t  L  be a  cleassical inf inite  L ie algebra and
a  be  a  deriv ation  o f  degree  O. T h e n  th e re  e x is t s  a n  elem ent n o

o f  go ( L )  su c h  th at a (x ) = [u „  x ] f o r  a l l  x E L.

P ro o f .  First assume that the ground f ie ld  o f  L  is  the complex

number fie ld  C.
Let be the simple part of  0 0 (= g 0 (L ) ) .  Since [go, go] =bo,

induces a  derivation o f  fio. b o b e ing  simple, there is v o E f), such that

a — ad v o = 0  on 0o.
L e t g  be the restriction of a —ad vo t o  g_,, then

j9( [x0. x-1] ) = [-ro, 8 (x -1 )] fo r  a ll x 0 b o  and x.-1 E g  •

This implies that the map 3 : commutes w ith the representation

Of b o t o  g .  Since c3 i s  1 ) 0 -irreducible, we see from Schur's lemma

that there exists a  complex number A such that

3 + 0 .

Put uo =v0 + AL w here / is  the element of 00 (L ) determined by [T, x 5 ]
= p x , fo r  a ll x „G  g p (L ).  T h en  w e  h ave  a —ad u 0 0  o n  q  and 00.

Since m ---- Ep< o g , is generated by g_„ a —ad no vanishes on n i , which,
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combined with the fact that a— ad u, is a derivation o f degree 0 and 2-b)
implies that a— ad  u 0 = 0 on g, forall p .  Since the derivation a— ad u0 is

continuous, we see that a =ad uo . Thus w e have completed the proof

in  the complex case.

In  th e  real case we just note that a  induces the derivation a e o f

the complexification L o f  L ,  and that LC is also classical infinite Lie

algebra over C o f th e  same type as L .  Thus we can find an element

u, o f  î  such that cec = ad uo . As easily seen, u, proves to be an element

o f L , which proves our proposition.

Proposition 3 .  L e t  L  b e  a  c las s ic al in f in ite  L ie  alg e b ra and
a  h e  a d eriv ation  o f  d eg ree  k .  I f  k*O , th e n  th e re  e x is ts  an elem ent
Ilk  o f  gk (L ) s u c h  th a t  a = ad uk.

P ro o f .  I f  L =  L 0 1 (n ), 1 , 0 (n ), o r  L c 1 (2n + 1 ), th e  fact that I  is

contained in  L  facilitates the proof.

Put =  - (1/ k) a ( I ) ,  and 8 = a — ad  uk . Then  uk g ,  ( L )  and 8
is  a  derivation o f  degree k, moreover 8(1") = 0 .  H ence w e have

/9([I, x0]) = [ I ,  ( x , ) ]  fo r  a ll x, E g p .

O n the other hand /9(11, .x0 ]) =p ig (x ,,) a n d  [I, 8 (.;,)] (p + k) (x,) ,
from  which it follows that 8 (x 0 ) =0  for all x 9 E g,. By the continuity

o f 8  w e  have 3 =0 , that is a =  ad uk ,  w hich  proves Proposition 3  in

our case.

T h e  rest o f this section is devoted to the proof of Proposition  3
fo r  th e  L ie  algebras L , 1 (n )  and L 0 (2n)

N o w  w e  assume that L = L 31 (n )  o r  L, 0 (2n)

Lemma 1. L e t  a  b e  a  d e riv a t io n  o f  L .  I f  a  vanishes on g,
f o r  p <O , t h e n  a = 0.

P ro o f .  By our assumption we have

(1) [a (x 1 ) , =  O fo r  .r, E  g„ x_,

(2) a ( [x o , x l] )  = [ x 0 , a ( x i ) ]  fo r  x, E 0 i ,  x 0 q , .

From  (1 )  we see that a (x i ) E _ ,  f o r  a l l  x,E  g,, and  therefore the
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restriction al g, maps g, in to  g .  (2 )  im p lie s  th a t  g , commutes with

the representations o f  go to  g , and g_ i . It is known that every gp,(P

> — 1) is q 0-irreducible and that 137, and g, are never isomorphic to each

other i f  P * q .  H en ce  w e  have al g, =O. B y  th e  same w a y , o r  by

using th e  fa c t th a t th e  L ie  algebra generated by (gp } , , ,  is  dense in

L , w e have our conclusion.

Coro llary . F o r  k < - 1 ,  an y  d e riv at io n s  o f L  o f d e g re e  k are
triv ial.

P ro o f .  L e t  a  be a  derivation o f  degree k. Since g, =0 fo r  q <
—1, w e  have a(g p ) =0  for p < 0 .  Hence we have a =0 by Lem m a 1.

Lemma 2 .  L e t  a  b e  a  d e riv atio n  o f  d e g re e  — 1 . T h e n  th e re
e x is t s  a  u_,E g_, such that a =ad u_1.

P ro o f .  Denote by a ' the restriction of a  t o  go. The formula:

([x0, yo]) = [ a' (x0), Yo] + [so, a / (Yi) ] for .2-0 , yo E  go

implies that a ' is closed, regarded as an elem ent of c  (go. g i ) ,  where

E,,,Cq (go,  g , )  is  the complex associated to the representation of go to

g -i. I t  is well known that the 1-st cohomology group 1-P(g 0 , g ,) van-

ishies for any semi-simple Lie algebra go. Since go is  simple, this applies

to th is c a se . Thus we can find a u_,E g_ i such that

a' (x 0 ) = [u_„ x 0 ]  fo r  a ll x o E go.

Put 9 a— ad u_ 1 th en  3 vanishes on go an d  also on  g „ ,  fo r  /3 is o f

degree — 1. From  this and Lemma 1 it follows that a =ad u_1.
q.e.d.

Lemma 3 .  Suppose t h a t  k > 0  and t h a t  a  b e  a  d e riv at io n  o f
d e g re e  k .  T h e n  th e re  e x is t s  a  uk G g ,  s u c h  th a t  a = ad uk .

P r o o f .  L e t  a ' be the restriction o f  a  to  g„, then a '  is  a  map

from  g_, to  gk _, and satisfies

[a' (x_1) , Y - 1] + [x a' (Y - 0] —
— 0  for x--1, Y-1 g -i,
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which implies that a ' is an element o f th e  prolongation f3V1, o f  i l k - 1 .

F o r the algebras L 8 1 ( n )  and  L 8 (2 n ) ,  it  h o ld s  th a t 4 = g ,  fo r  all

p > 1 .  H en ce  w e  can  fin d  uk E (3, such  that a—  ad uk  van ish es  on

g_1 . It easily fo llow s that a= ad uk • q.e.d.

Combining Corollary, Lemma 2  and  Lemma 3 , we have proved

Proposition 3  for L 1 1 (n) and L 1 (2 n ), and the proof o f  Proposition 3
is complete.

4 .  N o w  w e  a re  in  a  position to prove our theorem.

T h e o r e m .  T h e  deriv ation  algebras D ( L )  o f  th e  classical in-
f in i te  L ie  alg eb ras  L  o v e r C  o r R are  as  follow s:

i) D (4 ,  (n ) ) (n)

ii) D (L s i  (n ))  D  ( L .  (n ))  L „ , (n )  .

iii) D (L 1 (2 n ) )  D  (L  „ i,(2n )) L  c s ,(2 n )

iv) D (L (2 n  + 1 ))  =  L e ,(2n +1).

P r o o f  W e  show that fo r  any derivation a  of L  there exists one

and only one u E  L  such that

a ( x )  = [ u , . r ]  fo r  x  L

Denote by a n '  th e  Hom(gp(L), gp+k (L))-component o f a .  The

continuous derivation a '  o f  L  determined by an g p = a p ( k )  is a deriva-

tion o f L  o f  degree k. By Proposition  2  and Proposition 3  we can

find a  uk  G gk  ( L) for each k  such that

(.r ) = [ ik , x ]  fo r  a ll s e  L .

T h e  direct product u =  I k u, is an element of Î .  T h e  continuity of a

assures that u  satisfies the required property.

The uniqueness of u  fo llow s from  the obvious fact that the condi-
tion "u E Lr, and [u, L ] =0 -  im plies u q.e.d.

T h e  first cohomology group ( L ,  L )  o f th e  L ie  algebra L  with

adjoint representation is immeadiately from the definition seen to be the
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derivation  algebra D  (L ) factored  by th e  id ea l o f  D  (L )  consisting of
inner derivations.

T hus w e .have th e  following

Coro llary . L e t  L  b e  th e  c lass ic al in f in ite  L ie  alg e b ra o v e r k,
w h e re  k= C o r  R, a n d  IP  (L ,  L ) b e  th e  1-st cohonzology g ro u p  o f
L  w ith  ad jo in t  re p re s e n tat io n . T h e n  w e  h av e

H  (L, L) = 0  i f  L = L g i (n ) , L „,(n ) , L „ (2n ) o r  L c ,(2n +1) .

ii) H (L , L ) = k  i f  L =  L , , (n ) o r  L 8 ,(2n).

( la v e r  I I .  G lo b a l  Version

In  th is chapter w e consider a  g lobal version  of the results in
C h a p te r  I . T h ro u g h o u t th is  c h a p te r  m a n ifo ld s  a re  assum ed  to  be
connected, paracompact, and  o f c la s s  C ", an d  vecto r f ie ld s , forms and
functions on them are  all assumed to be of class C's and defined globally
on them  even i f  it  is  n o t s ta ted  explicitely.

O ur objects a re  th e  fo llow ing L k a lgebras w h ich  w e call (global)
c lass ic al in f in ite  L ie  algebras:

(I) T h e  L ie  a lg eb ra  Z o (M )  o f a ll sm o o th  v ec to r  f ie ld s  o n  a

smooth manifold M.
Su p p o se  th at it is  g iv en  a  volum e form  S2 o n  M .

.. (II) L 1  ( M  ..(2) i s  th e  L ie  algebra consisting of sm ooth  vector
fie lds X  o n  M . sa tis fy in g  L 5 .S2 = 0 , w here L , denotes th e  L ie  derivative
a long  X .

(III) £ 0 1  ( ? l ,  a ) )  i s  th e  L ie  algebra consisting of sm ooth vector
fie ld s X  o n  A l sa tisfy in g  L,S2= cS2, where c is some constant depending
0 1 1  X .

Suppose that ( M, w) is  a  symplectic manifold of dimension 2n, that
n-times

is , th ere  is  g iven  a  closed 2-form w on M  with W A w A • • •  A O) 0 every-
where.

(IV)0 )  i s  th e  L ie  algebra consisting of sm ooth vector
fields X  o n  M  satisfying =0.

( V )  _E (/11, (n) i s  th e  L ie algebra consisting of sm ooth  vector
fields X  o n  21,1 satisfy ing 1,,o)=-  co), where c is some constant depending
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on X .
I f  (A 1,0) is  a  (2n +1)-dim ensional contact manifold, that is , there

n-times
is  g iven  a  1-form with OAd0A •-• AdO*0 everywhere.

(V I ) c,(111, 0) is  th e  L ie  algebra consisting o f  smooth vector
fields X  on  M . satisfying L.r 0 = p0, where p is some function depending
on X .

Hereafter ...Co  (M ), L e  (M , 9 ) ,  • -• , Let ( M , 0 )  are often abbriviated
as _E (111) , • • • , L e t ( M ) ,  or m ore simply a s  ...Cgt , „ f • • • ,

For an open set U of Ill, (U), C  (U ) ,  • • • , L e , ( U )  always mean

L  ( U )  ,  L 0  ( U , D IU ), • • • , L 1 (U, 01 U )

2 .  We begin with introducing some general properties of the glob-
al classical infinite L ie  algebras.

P rop os ition  1. T h ere  are  can o n ical iso m o rp h ism s b e tw een

-C  (M , 2 ) a n d  th e  s p a c e  o f  c lo s e d  (n---.1)-f orm s on
w h e re  n= dim M.

s p(M , w ) and the space  o f  c lo se d  1 -f o rm s on III,
iii) „ ( M ,  0 )  a n d  the  sp ac e  o f  sm o o th  f u n c tio n s  o n  M.

P r o o f  T h e  isomorphisms are given by

i) X-->X _IQ  fo r  X E  _Ca  ( M , 2 ),

ii) X—>Xio) fo r  X E  „,C„(M, (0 ),

iii) X — > X  10  fo r  X E  _Ca  (M , 0),

w h ere  X I d en otes  the interior product by X .  Non-degeneracy of the
forms assures that the maps are isomorphisms.

P ropos ition  2. (111, 2 ) ( re e p . w ) )  i s  a n  id e al o f
cv(M, 2

)  ( re sP . o ) )  o f  codim ension  1  i f  S 2  (resp . w ) is
e x a c t .  I f  i t  is  n o t  e x ac t , „,(111, S2) (resp. (111, w)) coincides
w ith  L 0 (M, 2 ) (re sP. ,„( M , (0).

R em ark . B y  th is  reason , h erea fter w e  a lw ays  assume that
(re sp . w ) is exact whenever we speak of _C „,(111, (resp. _C (111,
co)).
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P roo f. S in c e  X  is  the kernel o f th e  L ie  homomorphism which

maps X E  ca to cx E  R , where 1,42 = cxS2, st i s  an ideal o f  ...Cc ,/ o f

condimen.sion at most 1.
I f  there exists an X E_C„, with cx * O ,  th e n  2  is  exact, because

D=c x - I L,S2 = d(c x - 1X_JS2).
Conversely suppose that D  is  exact, say S 2 = dS2' . L e t X, b e  the

vector field  determined by X 0 _JS2 =..Q'. Then we have L x 0 S2 = S2, which

shows that R.
The assertion for X , can  b e  p roved  qu ite  an a logou s ly .

q.e.d.

Let us introduce filtrations of the global calssical infinite Lie alge-

bras which connect the global algebras with the corresponding formal

algebras.

L e t  X  represents one o f the classical infinite L ie  a lgeb ras . For

any point p  o f  M , a  filtration {Z , k },E z  o f  X  is defined as follows:

j -CPk = {X E --C liPk (X) =O}

Z p
k = ../: f o r  k< — 1 ,

where L k (X ) denotes the k-th je t  o f X  at p.
Specially fo r  th e  contact L ie  a lgebra X (211, 0 )  w e  use another

filtration, which we denote by th e  sam e le tter {X } .  It is defined

inductively as follows:

X p k =  , : f  f o r  k < — 2{

X 5
- '= {XE „ f I <X, 0>, = 0}

1 X p

°
 = {X E .1 I X, = 0}

z  p k _ 
{ x  ±  pk-i 1 [,x , z 5 - 1 ]  OE l '  p k - '} f o r  k >1 .

The filtration  {Z p k} o f  _C satisfies

iX n
k D ± p k + '  fo r  a ll k E Z .

1[ X 5 k . ±  in c ...E p'  fo r  a ll k, 1 E Z

Let j ( X )  be the projective lim it lim k . 1 / Z ,  and  denote by j , ,  the

canonical projection from  ...0  to j p (_C) . j 5 (X )  inherits a  L ie  algebra

f o r  k > 0
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structure and a filtration -{j i,(Z p
k )} ,, z , which make it a topological Lie

algebra called the f o rm al a lg e b ra  o f  o f  Z  at p.

P rop os it ion  3 . T h e  f o rm al a lg e b ra  o f  a  g lo b al c las s ic al in -
f in i te  L ie  alg e b ra at  an y  P o in t  is  is o m o rp h ic  to  t h e  corresponding
f o rm al c las s ic al in f in ite  L ie  algebra.

H ere w e agree that the corresponding formal classical infinite Lie

algebras of • • • , e t a r e  respectively 41 , L st, ••• , L et.
I t  is  a  w ell-know n fact that fo r  each o f a  v o lu m e  fo rm  S2, a

sympletic form  0 ,  and a contact form 0, there exists a  coordiante neigh-
bourhood and a coordinate system such that it is expressed in the follow-
in g  form:

-= dx' A d x 2 A • • • A ,

E d x i A d x i '
i = 1

0 = dx° E x i d x i " — x i" d x i

We mean by Z-coordinate system a  coordinate system  by which the

defining form of has the above standard representation. Z-coordi-

nate neighbourhood is a  coordinate neighbourhood o n  w h ich  an  Z -
coordinate system is defined.

Proposition 3  fo llow s from  the existence of Z-coordinate systems

and from Proposition 4, which w ill be proved in  the next section.

3 .  From  now on  w e  use the fo llow ing convention.

Z  always represents a  global classical infinite L ie  a lgebra . W e

denote by Z  and respectively the ideal o f  . .0  and the Lie algebra

containing Z  defined as follows: L i =- L , —CCsp=  -E,p, and  Z
otherwise, and L i= . . . c ,  2 ,=  .,e„„ and 2 = L  otherw ise. To exhibit
the base s p a c e  w e  o f t e n  w r i t e  a s  .1' (A l), 2L "(U), etc.

F irs t o f a ll observe that any local vector field o f Z  can be extend-
ed  g lo b a lly . M ore precisely,

P r o p o s io n  4 .  L e t  L  (X I) be  a s  abov e, a n d  U  be an  open subset
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o f  M .  F o r  a n y  X E  ± ( U )  and f o r  a n y  p m  U .  t h e re  e x i s t s  a n
) 7 E  (M )  s u c h  t h a t  g  =X  in  a  neighpourhood o f  p. M oreov er
i f  XE _C(U), th e n  g  c an  b e  tak e n  so  as to  s a t is f y  supp ICE U.

P ro o f .  Say XE _C,I (U ) .  L e t ço be the isomorphism from _Cs,  to
the space o f  closed (n -1 )-f o rm . Since (X )  is closed ; there exists

a n  (n-2)-form  77 on M  such that dv= ço(X ) on some neighbourhood of

p  and supp vC U .  X-•=q7 - 1 (c/v) satisfies the desired properties.

L e t  X E  r (u, 2 1 ) . Recall that in  this case we always assume

2  to  be exact. (S ee R em ark  a fter P rop . 2 ) .  Thus there ex ists  X ,

E Z e s t  (M ) such that L x ,,f2 2 .  Since X— c J 1 ( U )  where L 2
=c x .fl, there exists IC such that 5-C =X  in  a  neighbourhood o f p

P roo f fo r the other cases is quite similar. q.e.d.

Proposition 5 .  Fo r an y  Xm L , the condition  t h a t  [ X , ±-]
im p lie s  X =0.

P r o o f .  This follows from Proposition 4 and the corresponding fact

on  the formal algebra o f  Z .

Proposition 6 .  A n y  d e riv atio n  a  o f  „C i s  a  local operator,
t h a t  is , if  a  v e c to r f ie ld  X  o f  v a n i s h e s  on so m e  o p en  s e t U o f
111, th e n  a(X )  also  v an ish e s  on  U.

P r o o f  Suppose that YE 1 (M )  and supp Y E  U. Then we have

[X , Y ] = 0  and then a [X , Y] = 0 .  O n  th e  othe hand

a(  [X , Y ])  [a (X ) ,  Y ] +  [X, a ( Y )].

S ince [X , a ( Y) ]  u  = 0 , w e  h ave  [ a  ( X )  Y i u = 0. From  th is  fact,

taking accout of Proposition 4 and Proposition 5 w e see that a (X )
on  U.

B y  Proposition 4 and Proposition 6 w e have

Proposition 7 .  L e t  a  b e  a  d e riv at io n  o f  L  (M ) .  T h en  for

any open set U o f 111, a  induces the derivation a u  o f  .,C(U) such that
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a u ( X I )  — a ( X ) 1  u fo r  a l l  X E  (M ).

4 .  In  this section w e  show that derivations of .1  induce the deri-

vations o f th e  formal algebra o f  L .  I n  order to prove it we establish

the follow ing local properties o f  L .

Proposition 8 .  L e t Z  be a global c lassical in f in ite  L ie  algebra
and U be a c o n trac tib le  Z -c o o rd in ate  n e ig h b o u rh o o d . L e t {± k  (U),,}
b e  the f i l t ra t io n  o f  Z  (U ) at  p E U .  T hen  f o r  an y  in te g e r r  there
e x is ts  an in te g e r s  su c h  th at

..P ( U )„C [Z r ( U )„, L r (U ) ,].

W e see  eas ily  th a t fo r  k > 1 ( U)p-= -iC“ U ) ,  a n d  ...e s p ( U ) P

= ..E ;cp ( U ) p  .  Hence it is sufficient to -prove this proposition only for

C s p  a n d  L e .  T h e  proof f o r  L o  is  n o t d iff ic u lt  and the

proof fo r  _C,(EI) is alm ost covered by that for .i.e ct . Therefore we

om it th e  proof f o r  L  a n d

Pro o f  o f  Pro p o s it io n  S. ( f o r the contact a lg e b ra  L e )
L e t  (x 1, 1 2, ••., x,,, y , ,  • • • ,  y „  z )  be coordinate system  on U  with

0  = dz  ,.E7=,..x i cly i — y idx ,. We may assume that p  is the origin 0  of

the coordinates.

Denote by g  th e rin g  o f all smooth functions o n  U , and  le t  ço
b e  the canonical isomorphism o f  .1  onto g  (See Proposition 1.). ç o

induces a  L ie  algebra structure o n  ET, o f which bracket operation is

called generalized Poisson bracket and  w ill b e  d en o ted  b y  { } .

Then it has the following coordinate representation:

o f  dy  O f  d g g + f a g

6 y io x ,  a z

where

01 0 0 01 d
— +  y, , — —  x i - -  .
0 x ,  O x ,  2 Oz dy, 0 y 1 2 O z

To introduce a filtration of g ,  w e define o r d ( f )  fo r  any f e y .
F o r  a  monomial x a y 'z r,  w h ere  a= ( a i •  • •a ,,) , / 3 =  (13i • • • i?n) and x "
= x 1 " ••• x n "  etc, o rd (x " y e z r )  is defined as
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ord (xay s e ) =  al +181 +2r —2

w here lal---E7=j a,, 181,---, E7=,8,. For any function f E g .,  o rd (f ) is

d e fin ed  to  b e  the minimum of orders of non-zero monomials which

apper in the Taylor expansion of f  around O.
Then we define a filtration {9 -/- o f 9- by,

= { f E  o rd (f) .k } for k e  Z.

This is  the filtration which corresponds to that of L ,  namely we

see that ço ( L k )  = 9-k .
Hence we can reformulate the proposition in the following dual

from.

L em m a  1. F o r  an y  in te g e r r  th e re  e x is ts  a n  in t e g e r s  such
t h a t  g s C { g r ,g r}

P r o o f .  W e m ay assume that r > 0 .  Let s  be an integer satisfying

(1) s> 2 ( n  +1)r +2(2n+5).

Any f E  a - 8 can be written as

(2) f E .e y fizrfa ,„ ,  where f a .  G g .

Hence it suffices to show that each ..eyszrf, w h ere  a  +131+2r —2>s,
is included in  { g r , E'} .

F rom  (1 ) we see that one of {•••a,•••8,•••}, is not less than r+2,
or y> r+6 .

In  the first case we may without loss of generality that a 1 > r + 2 .

We consider a following equation with u  unknown.

(3)
i x 1 r +2, i t ) , xayaz7f,

which reduces by a simple calculation to

(4) ( r+ 2) 
 a

  +  1  x i  —
a ) u = x ," ' - ' 1x 2"2 • •• x n a.y 13z rf .

O n  2 a z

A solution g  o f  ( 4 )  w ith  g (0 ) =0  can be obtained by integration.

Thus x ay 8z rf -
= tr1r+2, qk and ord (x,' ' 2) = r  and
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ord(g) = la ' —  (r-1-1) +131+ 2 7H- 1 - 2

> s — r

> r

In  the latter case where r > r + 6 .  L e t A be an integer such that

i ( r  +  2) +1____./1>i(r + 2 ) .  N ow  w e consider a  following differential

equa tion fo r  u:

(5) { z ", z "u}  =.ey f iz rf

B y a simple calculation the equation (5 )  reduces to

(6) A Ê au  + y i   au +  z  au z h

ayi 8z

w h ere  w e  pu t h= x"ya z r - " f .  Differential equation ( 6 )  is  easily  in -

tegrated, in  fact, we see that

(7 ) g =  f h (ex „ • • • ex i i , • • • ey„, • • • tz) zdt

is  a solution of ( 6 ) .  Hence we have

x'31 8 z 7f =- { z ", z "g}

and w e see easily that ord (z") = 4A — 2>r. and that

ord(z"g) +131+2r-4A
>s — (4A — 2)

>s — r— 4 .

> r .

Thus proof o f  the lemma is complete.

Pro o f  o f  Proposition  8  ( f o r J1 ) .
L e t  (x i , x 2 , • • • , x ,) be a  coordinate system on U  such that 2 = d x 1

A dx ,A •••A dx „ and p  is  the origin 0 o f th e  coordinates. We denote

by th e  L ie  a lgebra £ 81 (U ) .  L e t  C.'  and  An - 2  be respectively
the space o f  closed (n-1)-forms and the space o f (n-2)-forms on U,
and let ço be the isomorphism o f Cn-1 o n to  _C as in Proposition 1.

Since U  is a contractible domain, we can define a homotopy integral
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operator K  from  C 4 - 1  t o  A '  such that cl- K =id c . -  and further that

j o k (K a)= 0 i f  j o k -I (a)  = 0 ,

for aE C " - 1 and k>0.

Set # =çood and b=Koyo - i, then we have

# 0 b =ic l x

Œi t ( =#  (e ) )  E Lok i f  $  A n ' and j o
k  ($) =-0

j ok + l ( X b )  _ 0  
if X E  L o

k ,  where X b =b ( X ) .

Hence to obtain the proposition it is sufficient to prove the follow-
ing lemma.

Lem m a 2 .  F o r  an y  in te g e r r th e re  e x is ts  a n  in teger s  such
th a t  the f o llow ing  ho ld s: A ny  0# , w ith  0e  A 2 and  j 0 '(0 ) = 0 , can
b e  w rit te n  as

O# = [$1#, 70]
1; finite

f o r  some e A " ' w i t h  or  ($ I )  =  Or  ( h )  =0 .

P ro o f .  Any  0 2  is  w ritten  as

0 = E  f i f Ou  ,
i< 1

A A
where O =  ( — 1) i ' d x ,  A • A dx i A • • • A dxf  A • • • A dx„. I f  j al (0) =0,
then j o "( f i j ) = 0  fo r a l l  i , j , and f i j  is  w ritten  as

fu  =  E  X af ij:a 5
lal=s+1

where a =  ( a l , • • • , a „ )  and x "= x i a 1 x2" 2 •••x7:Y "•
Thus it suffices to prove that (..e f 0 t5 )# , where IaJ s + 1 ,  is written

in a form [Eit, 774 ]  w ith  or  ( E )  =  Or =  0, p rov ied  s  i s  large enough.

T ak e  s so as to satisfy

s> m a x (n (r + 1 )  —1, 2r - 1),

then we see that fo r some k , a k > i -  + 1.

Case 1. k * i  and k * j.



C lassical in f in ite  L ie  algebras 19

Let I  be an integer such that 1 < l < n  a n d  / * k .  F o r  simplicity we

assume that k < l .  P u t  = x 1: --"Ok i ,  and v=g0 i 1 ,  where g  is given by

x " fg •  •x 2 , •  x .)  = —  z i
 

( r+1 ) x k r d x 1  •

B y a simple calculation we see that

[e#, 72#1 =  —  (r +1) x k r 
 a

g  0
uix i )  •

Hence we have [ V , 'e t] =  (e fO i i )#. It is easy to see that j o r ($ )= j o r (77)

=0.

C ase 2 . k -= i  or j.

Observe that the fo llow ing formula holds,

[ (qû0# . (h( = —  ({g, u 0 ,0

w here -{g, h h i  i s  the Poisson bracket o f g and h with respect to  x 1, xi ,
that is,

d g  O h  O h  d g  
Oxi Ox i  a x i  d x j

In  the same way as the proof for the contact a lgeb ra  (o r  better

for the hamiltonian algebra) we can find y , h  such that

— {g, x " .f

and j ar (g) = jo r (h) =0.
W e  have completed the proof o f Proposition 8.

From Proposition 8, taking account of the structures of the formal

algebras, we have the fo llow ing more detailed result.

P rop os it ion  9 . L e t _ E  be  a g lobal classical L ie  algebra, U be
a  sim p ly  con nec ted  _C -coo rd inate  ne igh bo urho od  o f  a  p o in t  p .  T hen
i t  h o ld  t h a t

( U),,, _M U M =  £ ( U ) a ll r, s>0,

and further that
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[_C (U), ( U).

N ow  w e can  prove the following

P rop os ition  1 0 .  L e t  a  be  a  deriv ation  o f  L .  T h e n  f o r any
p o i n t  p  th ere  is  induced  a u n iq u e  c o n tin u o u s  d e riv atio n  a, of the

formal algebra j p (...C) of  L  a t  p  s u c h  th a t  th e  f o llow ing  d iagram
commutes:

— >

a
- - - - i ( L )

P ro o f .  It is sufficient to show that fo r  any X , r, there exists s
such that a(Z p s)O E _ C ;. This follows from Proposition 8 and Proposi-
tion 4.

5 .  L e t  Z (A l )  b e  a  g loba l classical infinite L ie  algebra on  M
and a  be a  derivation o f  Z (M ).

T h e  following equation ( E )  fo r  unknown vector fie ld  Z,

(E) [Z , X ] , -----a ( X )  fo r  a ll X E  (M ),

has a unique form al solution at any point, that is, for any point p
there exists a  unique formal vector field at p  such that

(X )] = j , ( a ( X ) )  fo r  a ll X E  (M).

In  fact, L et a ,  be the continuous derivation of j ( L )  induced from

a ,  w e see, by Proposition 3 and the theorem in Chapter I ,  that there

exists a  unique s a t is f y in g

i n (X )  =  Up (X ) ) f o r  all _C(M ).

Since a,( ip (X ) )=i, (a (X ) ) ,  w e have our assertion.

N ow  w e p rove  th a t (E )  has a smooth global solution. B y  v ir tu e
o f  the uniqueness o f th e  formal solution o f  ( E ) ,  it suffices to prove it
locally.

L e t  U  be an  Z-coordinate neighbourhood of M , and consider the
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following equation (E u )  fo r  unknown vector fie ld  Z  on  U,

(E u ) [ Z,=  a u (x) fo r  a ll X E  ( U),

where au  i s  the derivation o f  Z (U )  induced from a
Since X  runs in the infinite dimensional space Z  ( U ), we introduce

an appropriate finite dimensional subalgebra SC o f  _ C (U ) and reduce

(E u )  to  a  differential equation (E ') .
L e t  (x„ x 2, • • • , x„) be an Z-coordinate system of U . S C  is defined

to  be the subspace of ...C (U ) consisting o f  those vector fields X=E7=. 1

P,(6/0x,) such that each P ,  is  a  polynomials in  x 1, x 2 , •••, x , o f  at

most degree 1. Then SC is a  finite dimensional subalgebra o f  ...C (U ),
and we see easily that

(1) J (M )  - L ip (-P (U )p )= .ip (-C  (U )) fo r  any PEU .

L em m a  3 .  L e t  Z  b e  a loca l v ector f ie ld  around p  and assume
th at  f o r  so m e  in te g e r k>1 j p k- - 1 [Z, X ] =0 fo r  all  XE SC, then j p ic (Z )
=0.

Th is  lem m a follows from  (1 )  and the corresponding facts on the

formal algebra o f  .Z , and w e  omit the proof.

Now we consider the following equation fo r  Z,

( E ') [Z , X ] = a ( X )  fo r  a ll X E

which is an inhomogeneous partial differential equation o f  1-st order.

P rop os ition  H .  T h e  d if f e re n tial e q u atio n  (E u ' )  h as  a unique
sm o o th  so lu tio n , an d  the solution Z  s a t is f ie s  (E u ) and  Z E .2  (U ).

P r o o f .  First o f  a ll w e  note that (E u ' )  has a  formal solution at
any point of U, and further we see by Lemma 3 that the form al solution
is  un ique. From these facts we can conclude that ( E u ' )  has a smooth
solution.

W e n ow  see  it more precisely. L e t  T  b e  tangent bundle o f  U
and j 1 (T )  be the 1-st je t  bundle of T .  H om  (SC, T )  is a vector bundle
over U, SC being regarded as the trivial bundle over U.

The differential equation ( E u ' )  comes from the following differential
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operator:

: ( T )  —>Hom (JC, T ),

where 0 is  the bundle map defined by

(j p
1 Z) (X ) = [Z, X ],  , XE3C.

From Lemma 3 w e  have immediately

Lemma 4. O p  : (S( , T )  i s  in jec tiv e  f o r  a l l  p.

For the given derivation a, we define a cross-section a of Hom (SC,T)
by à (X )  = a(X ) „ fo r P E U  and XE

Lem m a 5 . Ther e x is ts  a  sm ooth cross-section 6 o f  X (T )  such
t h a t  006=a.

Since (E r ' )  has a  unique formal solution, such 6  exists. The

smoothness o f 6  is ensured by Lemma 4.

L e t m, be the projection o f .11 (7 ')  to T ,  a n d  p u t  Z = m 0 6 . We

claim that Z  is  a  solu tion  of (E u '). Th is  w ill follow  im m ediately if

we see that j 1 (Z ) =6, and it is equivalent to say that j 'a  J 2 (T ),  where

,P  (T ) is regarded as the subbundle of J i (J1 (T ) ) .  Let be the formal

solution of (E u ' )  at p , and C ; be the projection o f  Cp  t o  .15
2 (T ) .  It

w ill not be d ifficu lt to  see that C ;= j p
16. Hence j'o- E ,P (T ) and we

see that Z  is  a  solution of ( E r ') .
It is  c lear from  the above argument that Z is uniquely determined

and that Z  satisfies (E u ). The fact that Z E ..2 (U ) follows from  the

theorem in  C h a p te r  I. T h is  completes the proof of Proposition 11.

B y Proposition 11 we see that there is one and only one smooth
vector fie ld  Z  on  M  which satisfies ( E ) .  M o reo ve r  w e  s ee  th a t Z

(M)
Thus w e have the following theorem.

Th eorem . T h e  d e riv atio n  alg e b ras  D ( C )  o f  th e  g lo b al clas-
s ic a l  in f in i t e  L ie  a lg e b ra s  I  a re  a s  f o llow s:
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i) D (_C) _C i f  -C -C (M) , -C ct(M. 0) , w (M , 2) , or

_C „ „ (M , Lû).

ii) D  (  s t (111, S2) = „ i (M, S2) .

iii) D (_C ,(111, to)) _C „,(111, w).

A s  a  corollary o f  th e  theorem we have

C o ro lla ry . L e t  _C b e  a g lo b al c las s ic al  in f in i te  L ie  algebra,
th e n  th e  1-st cohomology group  H 1 (i', _C ) o f  _C w i t h  ad jo in t  re-
p re se n tatio n  is  as  f o llow s:

i) H' (.1 , _C) = 0i f  _C = _C 0  (M) , .1 c t (M, 0) , _ C „,(M, S2) , or

£ ( M ,„n (M, to) .

ii) H i (..0 8, (M , S2) , ...0 81(M , 9)) =
0  i f  2  is  n o t  e x ac t .

IR  i f  0  i s  exact

0  i f  co  is  n o t e x ac t.

D EPARTM ENT O F  MATHEMATICS

KYOTO UNIVERSITY

References

[ 1 ] A. Avez, A. Lichnerowicz and A. Diaz-Miranda, Sur l'algèbre des automorphismes
infinitesimaux d'une variete symplectique, J. Differential Geometry 9 (1974), 1-
40.

[ 2 ] C. Freifeld, The cohomology of transitive filtered modules I: The first cohomology
group, Trans. Amer. Math. Soc. 144 (1969), 475-491.

[ 3 ]  Y. Kanie, Cohomologies o f L ie  algebras o f  vector fields w ith coefficients in
adjoint representations, Hamiltonian Case, Publ. RIMS, Kyoto Univ. 10 (1975),
737-762.

[ 4 ] S. Kobayashi and T . Nagano, On filtered Lie algebras and geometric structures.
III, J. Math. Mech. 14 (1965), 679-706.

[ 5 ] T. Morimoto and N. Tanaka, The classification of the real primitive infinite Lie
algebras. J. Math. Kyoto Univ. 10 (1970), 207-243.

[ 6 ] I. M. Singer and S. Sternberg, The infinite groups of Lie and Cartam  I. J.
Analyse Math. 15 (1965), 1-114.

[ 7 ] F. Takens, Derivations of vector fields, Comp. Math. 26 (1973), 151-158.

R  i f  2  i s  exact

iii) I I  (._f  sp(11/ 1 ,  ( 0 ) ,  C ,p ( M ,  0 ) )  =



24 T ohrz t M orim oto

Added in Proof.
The same result o f th e  theorem in  Chapter I I  has been obtained by other

authors : Prof. A. Lichnerowicz let me know that he had determined the 1-st cohomology
groups also for contact and unimodular cases in J . Math, pure et appl., 53 (1974),
459-484, and Ann. Inst. Fourier, Grenoble 24, 3 (1974), 219-266. Recently Y. Kanie
has extended his result [3] of hamiltonian case to  contact and unimodular cases in
Publ. RIMS, Kyoto Univ. 11 (1975), 213-245. Compared with their proofs depending
on case b y  case analysis, our proof seems to be more systematic and simple.


