A decomposition of meromorphic differentials and its applications

By
Osamu Watanabe
(Communicated by Prof. Kusunoki, May 19, 1975)

Introduction

The purpose of the present paper is to give some results concerned with the theory of Abelian differentials on open Riemann surfaces with certain null boundaries. So far almost all the theories of Abelian differentials on open Riemann surfaces have dealt with the meromorphic differentials which are square integrable outside of compact subsets. For instance Riemann-Roch's theorem and Abel's theorem are formulated in terms of those meromorphic differentials and their integrals with certain boundary behaviors. (cf. L. Ahlfors [1], Y. Kusunoki [2] [3], M. Shiba [5] and M. Yoshida [7], etc.)

Recently Y. Sainouchi [4] has introduced some metric conditions on open Riemann surfaces and meromorphic differentials, and succeeded in a systematic treatment of meromorphic differentials with an infinite number of polar singularities under these metric conditions. On the other hand M. Shiba has generalized the notion of the divisors on open Riemann surfaces by making use of the notion of behavior spaces introduced by himself in [5] and proved a duality theorem [6]. This generalized notion of divisors makes possible to deal with certain infinite divisors. However Sainouchi's treatment and Shiba's one for infinite divisors are different and it is desirable to unify two approaches.

In the present paper we give a generalization of the notion of divisors on open Riemann surfaces with certain null boundaries and prove a duality theorem (Theorem I) which includes the Sainouchi's
duality theorem and also, in the case of our surfaces, a duality theorem analogous to that of Shiba. We also prove an interpolation theorem for multiplicative meromorphic functions.
§ 1 contains the preliminary facts and the definition of the generalized divisors. In $\S 2$ we define a decomposition of meromorphic differentials. This decomposition will play fundamental roles in $\S \S 3$ and 4. $\S 3$ is devoted to prove a duality theorem. The special cases of this duality theorem will be discussed also in $\S 3$. Finally in $\S 4$ we shall be concerned with an interpolation theorem from which we derive a theorem of Abel type for our divisors.

The author wishes to express his deepest gratitude to Prof. Y. Kusunoki for his encouragement and comments. The author also thanks to Prof. Y. Sainouchi for his valuable suggestions. During the preparation of the present paper the author had useful conversation with Mr. M. Shiba many times, without which the present paper could not be appeared. I am grateful to him for hearty and valuable suggestions.

§ 1. Preliminaries and the definitions of divisors

1.1. Riemann surfaces with certain null boundaries and elementa$r y$ differentials.

Let W be an open Riemann surface of genus $g(1 \leqq g \leqq \infty)$ and $\left\{W_{n}\right\}_{n=1}^{\infty}$ be a canonical exhaustion of W. We denote by $g(n)$ the genus of W_{n} and $\Xi=\left\{A_{j}, B_{j}\right\}_{j=1}^{g}$ a canonical homology basis of W whose restriction to $W_{n+1}-\bar{W}_{n}$ forms a canonical homology basis modulo boundary of $W_{n+1}-\bar{W}_{n}$. Let $\partial W_{n}=\bigcup_{i=1}^{1(n)} \gamma_{n}^{i}$ be the decomposition of ∂W_{n} into its connected components. We take a ring domain $D_{n i}$ containing γ_{n}^{i} so that $D_{n i} \cap D_{n j}=\emptyset$ for $i \neq j$ and we put $D_{n}=\bigcup_{i=1}^{1(n)} D_{n i}$. We assume that $D_{n} \cap D_{m}=\varnothing$ for $n \neq m$. Let v_{n}^{i} and v_{n} be the harmonic moduli of $D_{n i}$ and D_{n} respectively, that is to say,

$$
v_{n}=\frac{2 \pi}{d_{n}} \quad d_{n}=\int_{\left(\partial D_{n}\right) \cap W_{n}} * d u
$$

where u_{n} is the harmonic function on D_{n} such that it vanishes identically
on $\left(\partial D_{n}\right) \cap W_{n}$ and is identically equal to 1 on $\partial D_{n}-\left(\partial D_{n}\right) \cap W_{n}$. v_{n}^{i} is defined analogously. We put $D=\bigcup_{n=1}^{\infty} D_{n}$ and define a function u on D so that

$$
u=\sum_{i=1}^{n-1} v_{i}+v_{n} u_{n} \quad \text { on } \quad D_{n} .
$$

If we denote by v the conjugate harmonic function of u, then $u+i v$ maps conformally the domain D with suitable slits onto the domain $D^{\prime}=\left\{(u, v) \mid 0<u<R=\sum_{i=1}^{\infty} v_{i}, 0<v<2 \pi\right\}$ with suitable slits. In the following we only consider an open Riemann surface satisfying the condition

$$
\begin{equation*}
\inf _{n} \min _{1 \leqq i \leqq 1(n)} v_{n}^{i}>0 \tag{A}
\end{equation*}
$$

for suitable choices of $\left\{W_{n}\right\}_{n=1}^{\infty}$ and $\left\{D_{n i}\right\}$. On such a surface we fix $\left\{W_{n}\right\}_{n=1}^{\infty}$ and $\left\{D_{n i}\right\}$ satisfying the condition (A). There are elementary differentials with the following properties uniquely on such a surface, Sainouchi [4], § 1:
(I) $\quad d w_{j}(1 \leqq j \leqq g)$: the square integrable semi-exact holomorphic differential such that

$$
\int_{A_{i}} d w_{j}=\delta_{i j}, \quad i=1,2, \ldots
$$

(II) $d Y_{p, n}(n \geqq 1)$: the semi-exact meromorphic differential, holomorphic except at p and square integrable outside each neighborhood of p, such that

$$
\begin{align*}
& \int_{A_{j}} d Y_{p, n}=0 \quad \text { with } \quad 1 \leqq j \leqq g \tag{1}\\
& d Y_{p, n}=\left(-\frac{n}{z^{n+1}}+\text { reg.term }\right) d z \tag{2}
\end{align*}
$$

for some local coordinate z about $p(z=0 \leftrightarrow p)$.
(III) $d \Pi_{p, q}$: the meromorphic differential, holomorphic except at p and q, where $d \Pi_{p, q}$ has simple poles with residues +1 at p and -1 at q respectively. Furthermore $d \Pi_{p, q}$ is square integrable outside each neighborhood of $\{p\} \cup\{q\}$, semi-exact in $W-C$, where C is a path from
p to q, and

$$
\int_{A_{j}} d \Pi_{p . q}=0 \quad \text { with } \quad 1 \leqq j \leqq g .
$$

There hold some relations between the above differentials, Sainouchi [4], propositions 2, 3 and 4:

Proposition 1.1.

$$
\begin{equation*}
\int_{B_{k}} d \Pi_{p, q}=-2 \pi i \int_{q}^{p} d w_{k}, \tag{1}
\end{equation*}
$$

where the path of integration from q to p is chosen in $W_{0}=W-\Xi$.

$$
\begin{gather*}
\int_{B_{k}} d Y_{p, n}=\frac{2 \pi i}{(n-1)!} w_{k}^{(n)}(P), \tag{2}\\
\int_{q}^{p} d \Pi_{r, s}=\int_{s}^{r} d \Pi_{p, q}
\end{gather*}
$$

where the two paths of integration are chosen in W_{0} and do not intersect with each other.
(4) If we put

$$
Y_{p, n}^{s, t}=Y_{p, n}(s)-Y_{p, n}(t)=\int_{t}^{s} d Y_{p, n},
$$

where the path of integration is chosen in $W_{0}-\{p\}$, then

$$
\begin{gathered}
\frac{1}{(n-1)!} \frac{\partial^{n} \Pi_{s, n}^{p, q}}{\partial p^{n}}=\int_{s}^{t} d Y_{p, n}, \\
\frac{1}{(m-1)!} \frac{d^{m} Y_{p, n}}{d q^{m}}(q)=\frac{1}{(n-1)!} \frac{d^{n} Y_{q, m}}{d p^{n}}(p) .
\end{gathered}
$$

From [4], corollary 1 to theorem 4 we have also the following lemma.

Lemma 1.1. If $d v$ is a semi-exact holomorphic differential on W such that it is square integrable and has no non zero A-periods, then dv vanishes identically.
1.2. Definitions of divisors. Let W^{*} be the Kerékjártó - Stoïlow compactification of W and we put $\partial W=W^{*}-W$. We denote by P a regular partition of ∂W. Since a regular partition P is induced by a consistent system $\left\{P_{n}\right\}$ of partitions $P_{n}\left(W_{n}\right)$ of $W-W_{n}, P$ induces a partition of ∂W_{n} for each n (cf. Ahlfors - Sario [1], chap. 1, §6). Let $\partial W_{n}=\bigcup_{j=1}^{k(n)} \beta_{n j}$ be a partition of ∂W_{n} induced by P. In particular we denote by Q the canonical partition of ∂W and the induced partition of ∂W_{n} by Q is assumed to be the partition of ∂W_{n} into its connected components. Further we denote by $\varepsilon(W)$ the set of all canonical ends, that is, the set of complements of closures of canonical regions of W. We associate with P and $U \in \varepsilon(W)$ a complex vector space denoted by $m(P, U)$ such that each element ϕ of $m(P, U)$ is a meromorphic differential defined on U and satisfies the period conditions

$$
\int_{\beta, j} \phi=0 \quad \text { with } \quad 1 \leqq j \leqq k(n)
$$

if ∂W_{n} is contained in U. We put

$$
\begin{aligned}
& A_{0}(P, U)=\{\phi \in m(P, U) \mid(\mathrm{i}) \phi \text { is holomorphic (ii) } \phi \text { has no non- } \\
& \quad \text { zero } A \text {-periods }\}, \\
& A_{d}(P, U)=\left\{\phi \in A_{0}(P, U) \mid\|\phi\|_{U}<\infty\right\},
\end{aligned}
$$

where $\|\phi\|_{U}$ is the Dirichlet norm of ϕ on $U .\{m(P, U)\}_{U \in \varepsilon(W)},\left\{A_{0}(P\right.$, $U)\}_{U \in(W)}$ and $\left\{A_{d}(P, U)\right\}_{U \in \epsilon(W)}$ becomes inductive systems in an obvious manner. We put their inductive limits

$$
(P) m=\underline{\longrightarrow} m(P, U), \quad(P) A_{0}=\underline{\longrightarrow} A_{0}(P, U), \quad(P) A_{d}=\underline{\longrightarrow} A_{d}(P, U) .
$$

In particular we put $(Q) A_{d}=A_{d}$. Then evidently $(P) m \supset(P) A_{0} \supset A_{d}$. $\mathscr{D}_{P}=(P) m / A_{d}$ and $\mathscr{D}_{P}^{\prime}=(P) A_{0} / A_{d}$ are complex vector spaces and \mathscr{D}_{P}^{\prime} is a subspace of \mathscr{D}_{P}.

Let V be a subspace of \mathscr{D}_{P}^{\prime} and put $\mathscr{D}_{P} / V=\mathscr{D}_{P}(V)$. Let

$$
\eta_{P}:(P) m \longrightarrow \mathscr{D}_{P}, \quad \eta_{P}^{V}: \mathscr{D}_{P} \longrightarrow \mathscr{D}_{P}(V)
$$

be the respective natural mapping. To each element ϕ of $m(P, U)$
there corresponds an element $\tilde{\phi}$ of $(P) m$, and hence an element $\eta_{P}^{V} \eta_{P}$ $(\tilde{\phi})$ of $\mathscr{D}_{P}(V)$. For simplicity we put $\eta_{P}^{V} \eta_{P}(\tilde{\phi})=\langle\phi\rangle_{V}$. Since V is a subspace of \mathscr{D}_{P}^{\prime}, there is a subspace \tilde{V} of $(P) A_{0}$ such that \tilde{V} contains A_{d} and $V=\tilde{V} / A_{d}$. It is easy to see that $\phi_{1} \in m\left(P, U_{1}\right)$ and $\phi_{2} \in m$ $\left(P, U_{2}\right)$ determine the same element $\left\langle\phi_{1}\right\rangle_{V}=\left\langle\phi_{2}\right\rangle_{V}$ if and only if there are a suitable canonical end U, an element $d \tilde{v}$ of $A_{0}(P, U)$ which determines an element of $\tilde{\nu}$, and an element λ of $A_{d}(Q, U)$ such that

$$
\phi_{1}=\phi_{2}+d \tilde{v}+\lambda \quad \text { on } \quad U .
$$

From now on we represent elements of $(P) m,(P) A_{0}$ and A_{d} by their representatives.

Definition 1.1. We call a subspace V of \mathscr{D}_{P}^{\prime} a (P)-divisor at boundary. An element σ of $\mathscr{D}_{P}(V)$ is called a $P_{V^{-}}$-singularity if and only if there exist a $U \in \varepsilon(W)$ and $\phi \in m(Q, U)$ such that $\|\phi\|_{\left(U D_{n}\right) \cap U}$ $<\infty$ and $\sigma=\langle\phi\rangle_{V}$. The subspace of $\mathscr{D}_{P}(V)$ consisting of all $P_{V^{-}}$ singularities is called the space of P_{V}-singularities and denoted by $\mathscr{S}\left(P_{V}\right)$. To distinguish a (P)-divisor at boundary and a usual divisor (a finite or infinite linear combination of points of W with integer coefficients), we call a usual divisor an inner divisor. The inner divisor δ we shall consider in the following has the support $|\delta|$ contained in $W_{0}-D=W-\Xi-\bigcup_{n=1}^{\infty} D_{n}$.

Definition 1.2. Let δ be an inner divisor and ∂ be a subspace of $\mathscr{S}\left(P_{V}\right)$. We call the couple $\Delta=(\delta, \partial)$ a P_{V}-divisor. A multiplicative meromorphic function f is said to be multiple of $\Delta=(\delta, \partial)$ if and only if $(f) \geqq \delta$ and $<d f>_{V} \in \partial$. A meromorphic differential ϕ is said to be a multiple of $\Delta=(\delta, \partial)$ if and only if $(\phi) \geqq \delta$ and $\langle\phi\rangle_{V} \in \partial$. We use the notation $\Delta \mid f$ to show that f is a multiple of $\Delta . \Delta \mid \phi$ also means that ϕ is a multiple of Δ. If δ is a positive inner divisor and f is an additive meromorphic function, then f is said to be a multiple of Δ $=(-\delta, \partial)$ if and only if $(f) \geqq-\delta$ and $<d f>_{V} \in \partial$. We denote by $\Delta \mid f$ this relation.

Let V be a (P)-divisor at boundary and $d v$ be an element of V.

Let q be a point of ∂W. If there is an open subset F of W^{*} containing q and $d v$ has a representative $d \tilde{v}$ in \tilde{V}, i.e. $\quad \eta_{P}(d \tilde{v})=d v$, such that the restriction $d \tilde{v} \mid F \cap U$ of $d \tilde{v}$ is semi-exact and square integrable, then we say that $d v$ is regular at q. Here we have assumed that $d \tilde{v}$ belongs to $A_{0}(P, U)$. This definition does not depend on a choice of a representative $d \tilde{v}$. Indeed if $d \tilde{v}^{\prime}$ is another representative of $d v$ in \tilde{V}, then there are a suitable canonical end $U^{\prime} \subset U$ and an element λ of $A_{d}\left(Q, U^{\prime}\right)$ such that $d \tilde{v}^{\prime}=d \tilde{v}+\lambda$ on U^{\prime}. Thus $d \tilde{v}^{\prime}$ is semi-exact on $U^{\prime} \cap F$ and

$$
\left\|d \tilde{v}^{\prime}\right\|_{U^{\prime} \cap F} \leqq\|d \tilde{v}\|_{U \cap F}+\|\lambda \cdot\|_{U^{\prime} \cap F}<\infty .
$$

The support of $d v$ is, by definition, the set

$$
S(d v)=\{q \in \partial W \mid d v \text { is not regular }\}
$$

This is a closed subset of W.

Definition 1.3. \quad Supp. $V=\underset{d r \in V}{\bigcup} S(d v)$, where the closure is considered in W^{*}.

Since ∂W is closed in W^{*} and $S(d v)$ is a subset of ∂W, Supp. V is contained in ∂W. For a subset B of $W^{*} \bar{B}$ means the closure of B and Int B the interior of B.

Proposition 1.2. Let V be a (P)-divisor at boundary and E be a closed subset of ∂W such that $E \cap S u p p . V=\emptyset$. Then for a given representative $d \tilde{v}$ in \tilde{v} of $d v \in V$, there exists an integer n_{0} with the following property: Suppose $\left\{W_{n}\right\}_{n=1}^{\infty}$ is a canonical exhaustion of W and $W-W_{n}={ }_{i=1}^{(n)} U_{i}^{(n)}$ is the decomposition of $W-W_{n}$ into its connected components. Let $U^{(n)}$ be the union of $U_{j}^{(n)}$ with $U_{j}^{(n)} \cap E \neq \varnothing$, then $d \tilde{v} \mid U^{(n)}$ is semi-exact and square integrable for $n \geqq n_{0}$.

Proof. Let q be a point of E. Then $q \notin$ Supp. $V=\overline{\bigcup_{v \in V} S(d v)}$ and this means that $q \notin S(d v)$ for all $d v$ in V. Therefore for a given $d v$ there exist an open subsct F_{q} of W^{*} and a representative d \tilde{v} in \tilde{V} of $d v$ such that $d \tilde{v} \mid F_{!} \cap U$ is semi-exact and square integrable, where
$d \tilde{v}$ is assumed to belong to $A_{0}(P, U)$. We may assume that $F_{q} \subset U$ and thus $F_{q} \cap U=F_{q}$. The set $F=\bigcup_{q \in E} F_{q}$ is an open neighborhood of E. Let q be a given point of E. To each positive integer n there is a component $U_{j}^{(n)}$ of $W-W_{n}$ such that q is contained in $\overline{U_{j}^{(n)}}$. We put $U_{j}^{(n)}=U^{(n)}(q)$. Then evidently $U^{(n)}(q) \subset U^{(m)}(q)$ for $n \geqq m$. Thus $\left\{U^{(n)}(q)\right\}$ determines a boundary component which defines the point q. Hence there is an integer $n(q)$ such that $U^{(n)}(q) \subset F$ if $n>n(q)$. $\left\{I n t \bar{U}^{(n(q)}(q)\right\}_{q \in E}$ is an open covering of E. Since E is compact there is a finite number of points q_{1}, \ldots, q_{s} of E such that $\left\{\text { Int } \bar{U}^{(n i)}\right\}_{i=1}^{s_{1}}$ is an open covering of E, where we put $U^{(n i)}=U^{\left(n\left(q_{i}\right)\right)}\left(q_{i}\right)$. Now let n_{0} be $\max _{1 \leq i \leq s} n\left(q_{i}\right)$. If $n>n_{0}$ and Int $\overline{U_{j}^{(n)}} \cap E \neq \emptyset$, then there is an
 $U_{j}^{(n)} \subset U^{(n i)}$. Therefore $U U_{j}^{(n)}=U^{(n)}$ is contained in F. Since $U_{j}^{(n)} \subset U^{(n i)}$ we may assume that $U_{j}^{(n)}$ is contained in $F_{q_{i}}$. Thus $d \tilde{v} \mid U_{j}^{(n)}$ is semiexact and square integrable, and so is $d \tilde{v} \mid U^{(n)}$.
q.e.d.

§ 2. A decomposition of meromorphic differentials

In this section we fix an open Riemann surface W satisfying the condition (A).
2.1. Some lemmas. The following lemma 2.1 is easily proved by (4) of proposition 1.1.

Lemma 2.1. (1) If we put

$$
h(p, q)=\frac{d Y_{p, 1}}{d q}(q)=\frac{d Y_{q, 1}}{d p}(p)
$$

then $h(p, q)=h(q, p)$ and $h(p, q) d p d q$ is a double differential. $h(p$, $q) d p(r e s p . h(p, q) d q)$ has a finite norm outside of each neighborhood of q (resp. p).

$$
\begin{equation*}
d \Pi_{s, t}^{p, q}=\left(\frac{\partial}{\partial p} \Pi_{s, t}^{p, q}\right) d p=\left\{\int_{s}^{t} h(r, p) d r\right\} d p \tag{2}
\end{equation*}
$$

where the path of integration is chosen in $W_{0}-\{p\}$.

Lemma 2.2. Let ϕ and ψ be meromorphic differentials defined in a neighborhood of ∂W such that their poles do not lie in $D=\bigcup_{n=1}^{\infty} D_{n}$ and

$$
\int_{\gamma_{n}^{i}} \phi=0, \quad \int_{\gamma_{n}^{i}} \psi=0
$$

for all γ_{n}^{i} contained in the common domain of ϕ and ψ. If D_{n} is contained in the common domain of ϕ and ψ, then we have an inequality

$$
\begin{equation*}
\left|\int_{i W_{n}}\left(\int \phi\right) \psi\right| \leqq 2 \pi \frac{\|\phi\|_{D_{n}}\|\psi\|_{D_{n}}}{\min _{1 \leqq i \leqq 1(n)}} v_{n}^{i} \tag{2.1}
\end{equation*}
$$

The proof of lemma 2.2 is contained in the proof of [4], lemma 3. Next we show a similar inequality as in lemma 2.2. We put $\partial D_{n} \cap W_{n}=\partial D_{n}^{(i)}$ and $\partial D_{n}^{(e)}=\partial D_{n}-\partial D_{n}^{(i)}$.

Lemma 2.3. Under the same conditions as in lemma 2.2, we have

$$
\left|\int_{i D_{n}^{(e)}}\left(\int \phi\right) \Psi\right| \leqq 2 \pi \frac{\|\phi\|_{D_{n}}\|\psi\|_{D_{n}}}{\min _{1 \leqq i \leqq 1(n)}^{v_{n}^{i}}}+\|\phi\|_{D_{n}}\|\psi\|_{D_{n}} .
$$

Proof. Let u be the harmonic function on D_{n} such that $u \mid \partial D_{n}^{(i)}$ $=0$ and $u \mid \partial D_{n}^{(e)}=v_{n}$. We denote by v the conjugate harmonic function of u. The function $u+i v$ maps D_{n} with slits conformally onto the plane domain $\left\{(u, v) \mid 0<u<v_{n}, 0<v<2 \pi\right\}$ with slits. We put $C(r)$ $=\left\{p \in D_{n} \mid u(p)=r\right\}$ for r with $0<r<v_{n} . \quad C(r)$ is a union of closed curves in D_{n} and the component of $C(r)$ contained in $D_{n_{i}}$ is homologous to γ_{n}^{i}. The part $D_{n}(r)$ which is surrounded by $\partial D_{n}^{(e)}$ and $C(r)$ is a union of ring domains in D_{n}. By the Stokes' theorem

$$
\begin{array}{r}
\int_{\partial D_{n}^{(e)}}\left(\int \phi\right) \bar{\psi}=\int_{C(r)}\left(\int \phi\right) \bar{\psi}+\int_{D_{n}(r)} \phi \bar{\psi} . \\
\left|\int_{\partial D_{n}^{(e)}}\left(\int \phi\right) \Psi\right| \leqq\left|\int_{C(r)}\left(\int \phi\right) \Psi\right|+\left|\int_{D_{n}(r)} \phi \bar{\psi}\right|
\end{array}
$$

$$
\begin{aligned}
& \leqq\left|\int_{C(r)}\left(\int \phi\right) \Psi\right|+\|\phi\|_{D_{n}(r)}\|\psi\|_{D_{n}(r)} \\
& \leqq\left|\int_{C(r)}\left(\int \phi\right) \psi\right|+\|\phi\|_{D_{n}}\|\psi\|_{D_{n}}
\end{aligned}
$$

In exactly the same way as the inequality (2.1) we can show that

$$
\inf _{r}\left|\int_{C(r)}\left(\int \phi\right) \bar{\psi}\right| \leqq 2 \pi \frac{\|\phi\|_{D_{n}}\|\psi\|_{D_{n}}}{\min _{1 \leqq i \leqq 1(n)} v_{n}^{i}}
$$

This completes a proof.

Lemma 2.4. Let Ω be a relatively compact subregion of W with $\Omega=W_{n_{0}}$ for some n_{0}. Then

$$
\left\|d \Pi_{p, q}\right\|_{W-\Omega}^{2}=\frac{i}{2} \int_{W-\Omega}\left|\partial \Pi_{p, q}^{s, t} / \partial s\right|^{2} d s \overline{d s}
$$

is continuous function on $\left(\Omega \cap W_{0}\right) \times\left(\Omega \cap W_{0}\right)$. Moreover if we put

$$
H_{\Omega}(p)=\frac{i}{2} \int_{W-\Omega}|h(p, q)|^{2} d q \overline{d q}
$$

then $\sqrt{H_{\Omega}(p)}|d p|$ is a continuous invariant form on Ω.
Proof. Since proofs for the cases of $d \Pi_{p, q}$ and $H_{\Omega}(p)|d p|$ are same, we give a proof for the latter. We put $\tilde{W}_{n}=W_{n} \cup D_{n}$. The boundary of \tilde{W}_{n} is $\partial D_{n}^{(e)}$. If n is sufficiently large so that $W_{n} \supset \Omega$, then by the Stokes' theorem

$$
\begin{aligned}
\frac{i}{2} \int_{\tilde{W}_{n}-\Omega}|h(p, q)|^{2} d q \overline{d q}= & \frac{i}{2} \int_{i D_{n}^{(e)}}\left(\int h(p, q) d q\right) \overline{h(p, q) d q} \\
& -\frac{i}{2} \int_{i \Omega}\left(\int h(p, q) d q\right) \overline{h(p, q) d q}
\end{aligned}
$$

By lemma 2.3 the first term of the right hand side tends to 0 for $n \rightarrow \infty$. Thus we see

$$
H_{\Omega \Omega}(p)=-\frac{i}{2} \int_{\partial \Omega}\left(\int h(p, q) d q\right) \bar{h}(p, q) d q
$$

Since the integrand is continuous with respect to p and $\partial \Omega$ is compact we see that $H_{\Omega}(p)$ is continuous with respect to p. This completes a proof.

Lemma 2.5. Let γ be a dividing cycle and σ be a continuous differential form on γ. Then for a fixed branch of $\Pi_{s, t}^{p, 4}$ on γ

$$
d F(t)=d_{t} \int_{\gamma} \Pi_{s, t}^{p, 4} \sigma(p)
$$

is a differential on $W-\gamma$ and has a finite norm outside of a sufficiently large compact subset of W, where d_{t} means the exterior differential operator with respect to t. Here the points q and s are assumed to be fixed in W_{1} and do not lie on γ.

Proof. We choose W_{n} so large that W_{n} contains γ. We show that the norm of $d F(t)$ on $U=W-\bar{W}_{n}$ is finite. We divide γ into small arcs $\gamma_{i}(1 \leqq i \leqq 1)$ so that cach γ_{i} is contained in a coordinate neighborhood. If we put

$$
d F_{i}(t)=d_{t} \int_{\gamma_{i}} I_{s, t}^{p, q} \sigma(p),
$$

then we have $d F(t)=\sum_{i=1}^{1} d F_{i}(t)$. Hence it suffices to show that each $d F_{i}(t)$ is of finite norm on U. Since $\gamma_{i} \cap \bar{U}=\emptyset$ we obtain

$$
d F_{i}(t)=\left\{\int_{\gamma_{i}}\left(\partial \Pi_{s, t}^{p, q} / \partial t\right) \sigma(p)\right\} d t=\left\{\int_{\gamma_{i}} \sigma(p) \int_{q}^{p} h(r, t) d r\right\} d t,
$$

where the second equality holds by lemma 2.1. Let $f(r)=\int^{r} \sigma(p)$ and p_{i}, q_{i} the end points of γ_{i}, then by the integration by parts

$$
\begin{aligned}
d F_{i}(t)= & -\left\{\int_{\gamma_{i}} f(p) h(p, t) d p\right\} d t+\left\{f\left(p_{i}\right) \int_{q}^{p_{i}} h(r, t) d r-\right. \\
& \left.-f\left(q_{i}\right) \int_{q}^{q_{i}} h(r, t) d r\right\} d t .
\end{aligned}
$$

We have only to show that the first term on the right hand side is
of finite norm on U, since we can show in exactly the same way that the second term is so. We put

$$
d G_{i}(t)=\left\{\int_{\gamma_{i}} f(p) h(p, t) d p\right\} d t .
$$

We may assume that γ_{i} is a plane curve. By definition of the integral we may write as

$$
d G_{i}(t)=\left\{\lim _{m \rightarrow \infty} \sum_{\Delta} f\left(z_{j}^{\prime}\right) h\left(z_{j}, t\right)\left(z_{j}-z_{j-1}\right)\right\} d t,
$$

where Δ is a division of γ_{i} by points $z_{j}, 1 \leqq j \leqq m, z_{j}^{\prime}$ being a point on γ_{i} between z_{j} and z_{j-1}. Let $H_{U}\left(z_{j}, z_{k}\right)$ be the inner product of $h\left(z_{j}\right.$, $t) d t$ and $h\left(z_{k}, t\right) d t$ on U, then by the Schwarz's inequality we obtain

$$
\left|H_{U}\left(z_{j}, z_{k}\right)\right| \leqq \sqrt{H_{U}\left(z_{j}, z_{j}\right)} \sqrt{H_{U}\left(z_{k}, z_{k}\right)} .
$$

We put $H_{U}\left(z_{j}, z_{j}\right)=H_{W_{n}}\left(z_{j}\right)=H_{n}\left(z_{j}\right)$ for simplicity. Now we put

$$
d G_{i \Delta}(t)=\sum_{i=1}^{m} f\left(z_{j}^{\prime}\right) h\left(z_{j}^{\prime}, t\right)\left(z_{j}-z_{j-1}\right) d t
$$

and $t=\xi+i \eta$. Then

$$
\begin{aligned}
& \int_{U}\left|G_{i A}^{\prime}(t)\right|^{2} d \xi d \eta=\sum_{j=1}^{m} \sum_{k=1}^{m} f\left(z_{j}^{\prime}\right) \overline{f\left(z_{k}^{\prime}\right)} H_{U}\left(z_{j}^{\prime}, z_{k}^{\prime}\right)\left(z_{j}-z_{j-1}\right)\left(\overline{z_{k}-z_{k-1}}\right) \\
& \quad \leqq \sum_{j=1}^{m} \sum_{k=1}^{m}\left|f\left(z_{j}^{\prime}\right)\right|\left|f\left(z_{k}^{\prime}\right)\right| \sqrt{H_{n}\left(z_{j}^{\prime}\right)} \sqrt{H_{n}\left(z_{k}^{\prime}\right)}\left|z_{j}-z_{j-1}\right|\left|z_{k}-z_{k-1}\right| \\
& \quad=\left(\sum_{j=1}^{m}\left|f\left(z_{j}^{\prime}\right)\right| \sqrt{H_{n}\left(z_{j}^{\prime}\right)}\left|z_{j}-z_{j-1}\right|\right)^{2} .
\end{aligned}
$$

Thus by the Fatou's lemma

$$
\begin{aligned}
\int_{U}\left|G_{i}^{\prime}(t)\right|^{2} d \xi d \eta & \leqq \frac{\lim }{\Delta} \int_{U}\left|G_{i \Delta}^{\prime}(t)\right|^{2} d \xi d \eta \\
& \leqq\left(\int_{\gamma_{i}}|f(p)| \sqrt{H_{n}(p)}|d p|\right)^{2} .
\end{aligned}
$$

Since $\sqrt{H_{n}(p)}|d p|$ is a continuous invariant form by lemma 2.4
$\int_{\gamma_{i}}|f(p)| \sqrt{H_{n}(p)}|d p|$ is finite. Hence the norm of $d G_{i}(t)$ on U is finite and so is the norm of $d F_{i}(t)$.
q.e.d.
2.2. A decomposition of meromorphic differentials. In this section we define a decomposition of meromorphic differentials and this decomposition will play important roles in $\S \S 3$ and 4.

Proposition 2.1. Let dv be an element of \mathscr{D}_{P}^{\prime} with a representative div in $A_{0}(P, U)$. Let fix q in W_{1}, then

$$
i(d \tilde{v})=-\frac{1}{2 \pi i} \lim _{n \rightarrow \infty} d_{p} \int_{i W_{n}} \Pi_{p, 4}^{s, t} d \tilde{v}(s)
$$

is a meromorphic differential on W and is also a representative of $d v$, that is, $\eta_{p}(i(d \tilde{v}))=d v$. Here $\Pi_{p, q}^{s, t}$ is a single valued branch of the integral of $d \Pi_{p, 4}^{s, t}$ on $W_{0}-C$, where C is a path from q to p in W_{0}.

Proof. First we remark that for n such that $\partial W_{n} \subset U \int_{\partial W_{n}} \Pi_{p, q}^{s, t} d \tilde{v}(s)$ does not depend on the point t. For let t^{\prime} be another point of W_{0} $-\cup D_{n}$. Then the difference $d \Pi_{p, 4}^{s, t_{4}}-d \Pi_{p,{ }_{4}^{s, t}}^{,^{\prime \prime}}$ is a holomorphic square integrable differential on W such that all of its A-periods are zero. By lemma 1.1 it vanishes identically and therefore $\Pi_{p, 4}^{s, t}-\Pi_{p, 4}^{s, t^{\prime}}$ does not depend on s. Hence

$$
\begin{aligned}
\int_{\partial W_{n}} \Pi_{p, q}^{s, t} d \tilde{v}(s) & =\int_{\partial W_{n}} \Pi_{p, q}^{s, t^{\prime}} d \tilde{v}(s)+\int_{\partial W_{n}}\left(\Pi_{p, q}^{s, t}-\Pi_{p, q}^{s, t^{\prime}}\right) d \tilde{v}(s) \\
& =\int_{\partial W_{n}} \Pi_{p, q}^{s, t^{\prime}} d \tilde{v}(s)
\end{aligned}
$$

Choose a sufficiently large n_{0} so that ∂W_{n} is contained in U for n $\geqq n_{0}$. Then it is easy to see that

$$
\begin{array}{ll}
-\frac{1}{2 \pi i} & \lim _{n \rightarrow \infty} d_{p} \int_{\partial W_{n}^{\prime}} \Pi_{p, 4}^{s, t} d \tilde{v}(s)= \\
& -\frac{1}{2 \pi i} d_{p} \int_{\partial W_{n_{0}}} \Pi_{p, q}^{s, t} d \tilde{v}(s)
\end{array}
$$

$$
-\frac{1}{2 \pi i} d_{p} \int_{i W_{n_{0}}} \Pi_{p,{ }_{4},{ }_{4}} d \tilde{v}(s)+d \tilde{v}(p) \quad p \notin W_{n_{0}}
$$

Since $\Pi_{p, q}^{s, t}$ has no non-zero periods along each dividing cycle in $W-C^{\prime}$, where C^{\prime} is a path from s to t in W, and also has no nonzero A-periods, we see

$$
\int_{\gamma_{n i}} \frac{1}{2 \pi i} d_{p} \int_{\partial W_{n_{0}}} \Pi_{p, 4}^{s, t} d \tilde{v}(s)=0, \quad \int_{A_{1}} \frac{1}{2 \pi i} d_{p} \int_{\partial W_{n_{0}}} \Pi_{p, 4}^{s, t} d \tilde{v}(s)=0
$$

for $n>n_{0}$ and for all 1. Therefore

$$
\int_{\beta_{n j}} i(d \tilde{v})=0 \text { and } \int_{A_{1}} i(d \tilde{v})=0
$$

for $n>n_{0}$ and for all 1. This means that $i(d \tilde{v}) \in A_{0}\left(P, W-\bar{W}_{n_{0}}\right)$. The differential $\frac{1}{2 \pi i} d_{p} \int_{\partial W_{n_{0}}} \Pi_{p, 4}^{s, t} d \tilde{v}(s)$ is of finite norm on a neighborhood of ∂W by lemma 2.5. Hence the above differential belongs to $A_{d}\left(Q, U^{\prime}\right)$ for some canonical end $U^{\prime} \subset W-W_{n_{0}}$. Since

$$
i(d \tilde{v})=d \tilde{v}+\left(-\frac{1}{2 \pi i} d_{p} \int_{i W_{n_{n}}} \Pi I_{q, p}^{s, t} d \tilde{v}(s)\right)
$$

outside of $W_{n}, i(d \tilde{v}) \equiv d \tilde{v} \bmod A_{d}$. Hence $\eta_{p}(i(d \tilde{v}))=d v$.
q.e.d.

Proposition 2.2. Let η be a meromorphic differential on W and assume that η is represented as

$$
\eta=\sigma+\phi+\lambda
$$

on a canonical end U, where $\sigma \in m(Q, U), \phi \in A_{0}(P, U)$ and $i \in A_{d}(Q$, $U)$. We put $(\eta)=\delta_{1}-\delta_{2}$, where δ_{1} and δ_{2} are positive inner divisors, and put $\delta_{2}(n)=\sum_{j=1}^{k_{2}(n)} n_{j} q_{j}=\delta_{2} \mid W_{n}$. If the singular part of η is $\sum_{k=1}^{n_{j}} \frac{b_{j k}}{z^{k}} d z$ at q_{j} then,

$$
\begin{aligned}
H_{n}(p)= & \sum_{i=2}^{k_{2}(n)} b_{i 1} \Pi_{q_{i, 1}}^{p, q}-\sum_{i=1}^{k_{2}(n)} \sum_{k=2}^{n_{i}} b_{i k} Y_{q_{i}, q_{-1}}^{p-1}+\sum_{j=1}^{g(n)}\left(\int_{A_{j}} \eta\right) \int_{q}^{p} d w_{j} \\
& -\frac{1}{2 \pi i} \int_{\partial W_{n}} I_{p, 4}^{s, t_{4}} \sigma(s)
\end{aligned}
$$

converges to a (multi-valued) meromorphic function H uniformly on compact subsets of $W_{0}-\left|\delta_{2}\right|$ and

$$
\begin{align*}
\eta(p) & =d_{p}\left(\lim _{n \rightarrow \infty} H_{n}(p)-\lim _{n \rightarrow \infty} \frac{1}{2 \pi i} \int_{\partial W_{n}} \Pi_{p, 4}^{s, t} \phi(s)\right) \tag{2.2}\\
& =\lim _{n \rightarrow \infty} d H_{n}(p)-\lim _{n \rightarrow \infty} \frac{1}{2 \pi i} d_{p} \int_{\partial W_{n}} \Pi_{p, 4}^{s, t} \phi(s) .
\end{align*}
$$

Proof. We remark at first that

$$
\begin{equation*}
\sum_{i=1}^{k_{2}(n)} b_{i 1}=0 \tag{2.3}
\end{equation*}
$$

for sufficiently large n. Let p_{0} be an arbitrary point of W_{0} and and K be a relatively compact simply connected neighborhood of p_{0} in W_{0} such that $K \cap\left|\delta_{2}\right|=\varnothing$. It is sufficient to show the uniform convergence of $H_{n}(p)$ on such K. We choose n_{1} such that $K \subset W_{n_{1}}$. Let Ξ_{n} denote the restriction of Ξ to W_{n}. For a fixed q in $W_{1}-\Xi_{1}$ $-\left|\delta_{2}(1)\right|$ we take a path ρ from q to p_{0} and a narrow strip $K^{\prime} \supset \rho$ such that $K \cup K^{\prime}$ is simply connected domain in $W_{n_{1}}-\Xi_{n_{1}}-\left|\delta_{2}\left(n_{1}\right)\right|$. We denote by U_{j} a simply connected neighborhood of $\left\{q_{j}\right\} \cup\left\{q_{1}\right\}$ such that $U_{j} \cap\left(K \cup K^{\prime}\right)=\varnothing$ and $U_{j} \subset W_{n}$ for $q_{j} \in W_{n}$, where we have assumed $q_{1} \in W_{1}-\Xi_{1}$. Then by the Stokes' theorem

$$
\begin{aligned}
& +\sum_{j=1}^{g(n)}\left(\int_{A_{j}} d \Pi_{p, 4}^{s, t} \int_{B_{j}} \eta-\int_{A_{j}} \eta \int_{B_{j}} d \Pi_{p, 4}^{s, t}\right) .
\end{aligned}
$$

If we use (2.3) and proposition 1.1, then we see

$$
\begin{aligned}
\int_{\partial\left(\begin{array}{l}
\left.1_{i=2}^{k 2(n)} U_{i}\right) \\
\end{array} \Pi_{p, q}^{s, t} \eta(s)=\right.} & 2 \pi i \sum_{i=2}^{\sum_{2}(n)} b_{i 1} \Pi_{q i, q_{1}}^{p, q}- \\
& -2 \pi i \sum_{i=1}^{k_{2}(n)} \sum_{k=2}^{n_{i}} \frac{b_{i k}}{k-1} Y_{q i, k-1}^{p, q}
\end{aligned}
$$

On the other hand

$$
\int_{\partial\left(K \cup K^{\prime}\right)} \Pi_{p, 4}^{s, t} \eta(s)=-2 \pi i \int_{q}^{p} \eta(s), \int_{B_{j}} d \Pi_{p, 4}^{s, t}=-2 \pi i \int_{q}^{p} d w_{j} .
$$

Therefore we have

$$
\int_{q}^{p} \eta(s)=H_{n}(p)-\frac{1}{2 \pi i} \int_{i W_{n}} \Pi_{p, q}^{s, t} \phi(s)-\frac{1}{2 \pi i} \int_{i W_{n}} \Pi_{p, 4}^{s, t} \lambda(s)
$$

for each sufficiently large n. By lemma 2.2

$$
\left|\int_{i W_{n}} \Pi_{p, q}^{s, t} \lambda(s)\right| \leqq \frac{2 \pi}{\min _{1 \leqq i \leqq 1(n)} v_{n}^{i}}\left\|d \Pi_{p, q}\right\|_{D_{n}}\|\lambda\|_{D_{n}}
$$

Since $p \in K \subset W_{n_{1}}$, there is an n_{0} such that

$$
\left|\int_{O W_{n}} \Pi_{p, 4}^{s, r} \lambda(s)\right| \leqq \frac{2 \pi}{\min _{1 \leqq i \leqq 1(n)}^{v_{n}^{i}}}\left\|d \Pi_{p, q}\right\|_{W-W_{n-1}}\|\lambda\|_{U D_{n}}
$$

for each integer $n \geqq n_{0}$. Since $\left\|d \Pi_{p, q}\right\|_{W-W_{n-1}}$ is continuous with respect to p on K by lemma 2.4 and $\lim _{n \rightarrow \infty}\left\|d \Pi_{p, q}\right\|_{W-W_{n-1}}=0$, for a given $\varepsilon^{\prime}>0$ there is an integer n_{0}^{\prime} such that

$$
\left\|d \Pi_{p, q}\right\|_{D_{n}}<\left\|d \Pi_{p, q}\right\|_{W-W_{n-1}}<\varepsilon^{\prime}
$$

for each $n \geqq n_{0}^{\prime}$ and for each $p \in K$. Since $d \Pi_{p, q}$ and ϕ have no nonzero A-periods on their respective domains, it is easy to see that there is an integer $n_{0}^{\prime \prime}$ such that

$$
\int_{\partial W_{n}} \Pi_{p, q}^{s, t} \phi(s)=\int_{\partial W_{m}} \Pi_{p, q}^{s, t} \phi(s)
$$

for integers $n>m \geqq n_{0}^{\prime \prime}$. Therefore for a given $\varepsilon>0$,

$$
\left|\int_{q}^{p} \eta(s)+\frac{1}{2 \pi i} \int_{\partial W_{n}} \Pi_{p, q}^{s, t} \phi(s)-H_{n}(p)\right|<\varepsilon
$$

for each $n>\max \left(n_{0}, n_{0}^{\prime}, n_{0}^{\prime \prime}\right)$ and $p \in K$. This completes a proof.

Corollary. Let $\Delta=(\delta, \partial)$ be a P_{V}-divisor on W and η be a mero-
morphic differential such that $\Delta \mid \eta$. If η has two representations

$$
\eta=\tau_{1}+\phi_{1}+\lambda_{1}=\tau_{2}+\phi_{2}+\lambda_{2}
$$

on a canonical end U, where $\tau_{i} \in m(Q, U)$ with $\left\|\tau_{i}\right\|_{U \cap\left(U D_{n}\right)}<\infty, \phi_{i}$ $\in A_{0}(P, U)$ and $\lambda_{i} \in A_{d}(Q, U)$, then

$$
\begin{aligned}
H_{n_{i}}(p)= & \sum_{i=2}^{k_{2}(n)} b_{i 1} \Pi_{q i, q_{1}}^{p, q}-\sum_{i=1}^{k_{2}(n)} \sum_{k=2}^{n_{i}} \frac{b_{i k}}{k-1} Y_{q i, k-1}^{p, q}+\sum_{j=1}^{g(n)}\left(\int_{A_{j}} \eta\right) \int_{q}^{p} d w_{j} \\
& -\frac{1}{2 \pi i} \int_{\partial W_{n}} \Pi_{p, q}^{s, t} \tau_{i}(s), \quad i=1,2,
\end{aligned}
$$

tend to the same limit.
Proof. Since $\left\|\tau_{i}\right\|_{U \cap\left(U D_{n}\right)}<\infty$ and $\int_{\gamma_{n}^{i}} \tau_{i}=0$,

$$
\lim _{n \rightarrow \infty} \frac{1}{2 \pi i} \int_{\partial W_{n}} \Pi_{p, q}^{s, t} \tau_{i}(s)=0
$$

by lemma 2.2.
q.e.d.

Let $\Delta=(\delta, \partial)$ be a P_{V}-divisor on W, η be a meromorphic differential such that $\Delta \mid \eta$. Then η has a representation

$$
\begin{equation*}
\eta=\tau+\phi+\lambda \tag{2.3}
\end{equation*}
$$

on a canonical end U, where $\phi \in A_{0}(P, U), \lambda \in A_{d}(Q, U)$ and $\tau \in m(Q, U)$ such that $\|\tau\|_{U \cap\left(U D_{n}\right)}<\infty$. If we put

$$
\begin{aligned}
& h_{V}(\eta)(p)=\lim _{n \rightarrow \infty} d H_{n}(p)=d \lim _{n \rightarrow \infty} H_{n}(p), \\
& t_{V}(\eta)(p)=-\frac{1}{2 \pi i} \lim _{n \rightarrow \infty} d_{p} \int_{\partial W_{n}} \Pi_{p, 4}^{s, t} \phi(s),
\end{aligned}
$$

then $h_{V}(\eta)$ and $t_{\nu}(\eta)$ do not depend on a representation (2.3) by the above corollary.

Definition 2.1. The decomposition

$$
\eta=h_{V}(\eta)+t_{V}(\eta)
$$

is called V-decomposition of η.
Proposition 2.3. $t_{V}(\eta)$ has no non-zero A-periods. $h_{V}(\eta)$ is semiexact if η has no residues. $\int_{y_{i}} h_{v}(\eta)=0$ for every sufficiently large n. Furthermore $h_{v}(\eta)$ has a finite norm on $\bigcup_{n=1}^{\infty} D_{n}$.

Proof. From the constructions of $h_{V}(\eta)$, all the A-periods of $h_{V}(\eta)$ and those of η are equal, and $h_{V}(\eta)$ is semi-exact if η has no residues. Therefore

$$
\int_{A_{j}} t_{V}(\eta)=\int_{A_{j}} \eta-\int_{A_{j}} h_{V}(\eta)=0 .
$$

To show that $\left\|h_{V}(\eta)\right\|_{U_{D_{n}}}<\infty$ it is sufficient to prove that $h_{V}(\eta)$ has a finite norm on $U_{0}=\left(\bigcup_{n=1}^{\infty} D_{n}\right) \cap U$, where U is a canonical end on which η is represented as $\eta=\tau+\phi+\lambda$.

$$
\left\|h_{V}(\eta)\right\|_{U_{0}}=\left\|\eta-t_{V}(\eta)\right\|_{U_{0}} \leqq\|\tau\|_{U_{0}}+\left\|\phi-t_{V}(\eta)\right\|_{U_{0}}+\|\lambda\|_{U_{0}} .
$$

From proposition $2.1 \quad \phi \equiv t_{V}(\eta) \bmod A_{d}$ and thus $\left\|\phi-t_{V}(\eta)\right\|_{U_{0}}<\infty$. Therefore $\left\|h_{V}(\eta)\right\|_{U_{0}}<\infty$. On the other hand if $\gamma_{l}^{i} \subset U$, then

$$
\begin{aligned}
\int_{\gamma i_{h}} h_{V}(\eta) & =\int_{\gamma_{n}^{i}}\left(\tau+\lambda+\phi-t_{V}(\eta)\right) \\
& =\int_{\gamma_{n}^{\prime}} \tau+\int_{\gamma_{n}^{\prime}} \lambda+\int_{\gamma_{n}^{\prime}}\left(\phi-t_{V}(\eta)\right)=0 . \quad \text { q.e.d. }
\end{aligned}
$$

Now let δ be a positive inner divisor and ∂ be an arbitrary subspace of $\mathscr{S}\left(P_{V}\right)$, where $\mathscr{S}\left(P_{V}\right)$ is the space of P_{V}-singularities. If η is a semi-exact meromorphic differential which is square integrable outside of a compact subset, $(\eta) \geqq-\delta$ and furthermore has no non-zero A-periods on a canonical end, then clearly $\Delta=(-\delta, \partial) \mid \eta$. This means that such a differential as above has V-decomposition.

Proposition 2.4. $d w_{j}=h_{V}\left(d w_{j}\right), d Y_{p, n}=h_{V}\left(d Y_{p, n}\right)$ and $d \Pi_{p, q}=h_{V}\left(d \Pi_{p, q}\right)$.

§3. Duality theorems

As in $\S 2$, we fix an open Riemann surface W satisfying the condition (A).
3.1. The main duality theorem. Let $\partial W=\alpha \cup \beta \cup \gamma$ be a regular partition of ∂W such that $\beta \cup \gamma \neq \varnothing$ and α may be empty. We denote this partition by P_{0}. Since P_{0} is regular, α, β and γ are closed subsets of $W^{*}=W \cup \partial W . \quad W^{*}$ is a compact Hausdorff space and therefore W^{*} is a normal space. Hence α, β and γ are separated by open subsets of W^{*}. Let $U(\alpha), U(\beta)$ and $U(\gamma)$ be open neighborhoods of α, β and γ respectively such that they are mutually disjoint. $U(\alpha)$ $U U(\beta) \cup U(\gamma)$ is an open neighborhood of ∂W and if we put (∂W_{n}) $\cap U(\alpha)=\alpha_{n},\left(\partial W_{n}\right) \cap U(\beta)=\beta_{n}$ and $\left(\partial W_{n}\right) \cap U(\gamma)=\gamma_{n}$, then $\partial W_{n}=\alpha_{n} \cup \beta_{n} \cup \gamma_{n}$ is a partition of ∂W_{n} induced by P_{0}. Let $\delta_{1}=\sum_{j=1}^{k_{1}} m_{j} p_{j}$ and $\delta_{2}=\sum_{j=1}^{k_{2}} n_{j} q_{j}$, $1 \leqq k_{1}, k_{2} \leqq \infty$, be positive inner divisors in $W_{0}-\bigcup_{n=1}^{\infty} D_{n}$ such that $\left|\delta_{1}\right|$ $\cap\left|\delta_{2}\right|=\varnothing . \quad Q$ is the canonical partition of ∂W. Let V_{1} be a (Q)-divisor at boundary such that Supp. $V_{1} \subset \beta . \quad \Delta_{1}=\left(-\delta_{1}, \partial_{1}\right)$ is a $Q_{V_{1}}$-divisor. Let P be a regular partition of ∂W which is a refinement of P_{0}, that is to say, each part of P is contained in a part of P_{0}. Let V_{2} be a (P)-divisor at boundary such that Supp. $V_{2} \subset \gamma$ and let $\Delta_{2}=\left(-\delta_{2}, \partial_{2}\right)$ be a $P_{V_{2}}$-divisor. We consider the following two complex vector spaces.
$N\left(\Delta_{1}\right)=\{f \mid f:$ an additive meromorphic function such that
(1) $\Delta_{1} \mid f(2) \int_{\gamma_{n}^{i}} d f=0$ for all γ_{n}^{i} and (3) $\int_{A_{j}} d f=0$
for all j,
$W\left(\Delta_{2}\right)=\{d v \mid d v$: a meromorphic differential such that
(1) $\Delta_{2} \mid d v$ and (2) $\int_{\beta_{n j}} d v=0$ for all $\left.\beta_{n j}\right\}$,
where $\partial W_{n}=\bigcup_{j=1}^{k(n)} \beta_{n j}$ is the partition of ∂W_{n} induced by P which is used to define $(P) m$ and $(P) A_{0}$, etc.. We assume that the partition of
∂W_{n} induced by P is a refinement of the partition of ∂W_{n} induced by P_{0}.

Let f be an element of $N\left(\Lambda_{1}\right)$. Since $\left\langle d f>_{V_{1}} \in \partial_{1}\right.$, df has the V_{1}-decomposition

$$
d f=h_{V_{1}^{\prime}}(d f)+t_{V_{1}}(d f)
$$

If $d v$ is an element of $W\left(\Delta_{2}\right)$, then $d v$ has the V_{2}-decomposition

$$
d v=h_{V_{2}}(d v)+t_{V_{2}}(d v)
$$

Since $d f$ has no residues, $h_{V_{1}}(d f)$ is semi-exact and thus

$$
\int_{\gamma_{n}^{\prime}} t_{V_{1}}(d f)=\int_{\gamma_{n}^{\prime}} d f-\int_{\gamma_{n}^{\prime}} h_{V_{1}}(d f)=0 .
$$

From this we see that $d f, h_{V_{1}}(d f)$ and $t_{V_{1}}(d f)$ have single valued integrals on $W_{0}-\left|\delta_{1}\right|$. Now choose single valued integrals $f, \int h_{V_{1}}(d f)$ and $\int t_{V_{1}}(d f)$ on $W_{0}-\left|\delta_{1}\right|$ so that $f=\int h_{V_{1}}(d f)+\int t_{V_{1}}(d f)$. We put $\delta_{1}(n)$ $=\delta_{1} \mid W_{n}$ and $\delta_{2}(n)=\delta_{2} \mid W_{n}$. Let U_{j} and \tilde{U}_{j} be simply connected neighborhoods of $p_{j} \in \delta_{1}(n)$ and $q_{j} \in \delta_{2}(n)$ in $W_{n} \cap W_{0}$ respectively. We assume $U_{j} \cap U_{i}=\varnothing, \tilde{U}_{j} \cap \tilde{U}_{i}=\varnothing$ for $j \neq i$ and $U_{i} \cap \tilde{U}_{j}=\varnothing$ for all i and j. Since $d f$ is semi-exact, by the Stokes' theorem,

$$
\begin{aligned}
0= & \left(d f,{ }^{\left.{ }^{*} h_{V_{2}}(d v)\right)_{W_{n}}-v U_{j}-v \widehat{U}_{j}}\right. \\
= & -\int_{\partial W_{n}} f h_{V_{2}}(d v)+2 \pi i \sum_{p_{j} \in \delta_{1}(n)} \operatorname{Res}_{p_{j}}\left(f h_{V_{2}}(d v)\right) \\
& +2 \pi i \sum_{q_{j} \in \delta_{2}(n)} \operatorname{Res}_{q_{j}}\left(f h_{V_{2}}(d v)\right)+ \\
& +\sum_{j=1}^{g(n)}\left\{\int_{A_{j}} d f \int_{B_{j}} h_{V_{2}}(d v)-\int_{A_{j}} h_{V_{2}}(d v) \int_{B_{j}} d f\right\} \\
= & -\int_{i W_{n}}\left\{\int_{V_{1}}(d f)+\int t_{V_{1}}(d f)\right\} h_{V_{2}}(d v)+2 \pi i \sum_{p_{j} \in \delta_{1}(n)} \operatorname{Res}\left(f h_{p_{j}}(d v)\right) \\
& +2 \pi i \sum_{q_{j} \in \delta_{\delta_{2}(n)}} \operatorname{Res}_{q_{j}}\left(f h_{V_{2}}(d v)\right)-\sum_{j=1}^{g(n)} \int_{A_{j}} h_{V_{2}}(d v) \int_{B_{j}} d f .
\end{aligned}
$$

Since $\left\|h_{V_{1}}(d f)\right\|_{U D_{n}}<\infty$ and $\left\|h_{V_{2}}(d v)\right\|_{U D_{n}}<\infty$, we have

$$
\lim _{n \rightarrow \infty} \int_{i W_{n}}\left(\int h_{V_{1}}(d f)\right) h_{V_{2}}(d v)=0
$$

by lemma 2.2. Here we have used the fact that $\int_{\gamma_{n}^{\prime}} h_{V_{2}}(d v)=0$ for sufficiently large n. Therefore

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left\{-\int_{i W_{n}}\left(\int_{V_{1}}(d f)\right) h_{V_{2}}(d v)+2 \pi i \sum_{p_{j} \in \dot{\delta}_{1}(n)} \operatorname{Res}_{p_{j}}\left(f h_{V_{2}}(d v)\right)+\right. \\
& \left.+2 \pi i \sum_{q_{j} \in \delta_{\delta_{2}(n)}} \operatorname{Res}_{q_{j}}\left(f h_{V_{2}}(d v)\right)-\sum_{j=1}^{g(n)} \int_{A_{j}} h_{V_{2}}(d v) \int_{B_{j}} d f\right\}=0 .
\end{aligned}
$$

From this identity we see the following lemma.
Lemma 3.1. Let $f \in N\left(\Delta_{1}\right)$ and $d v \in W\left(\Delta_{2}\right)$. Let $\int h_{V_{1}}(d f)$ and $\int t_{V_{1}}(d f)$ be single valued integrals on $W_{0}-\left|\delta_{1}\right|$ respectively. Then in order that

$$
\begin{aligned}
& \mathscr{L}_{1}(f, d v)= \\
& \quad \lim _{n \rightarrow \infty}\left\{-\int_{\partial W_{n}}\left(\int_{V_{1}}(d f)\right) h_{V_{2}}(d v)+2 \pi i{ }_{p_{j} \in \delta_{1}(n)} \operatorname{Res}_{p_{j}}\left(f h_{V_{2}}(d v)\right)\right\}
\end{aligned}
$$

converges, it is necessary and sufficient that

$$
\begin{aligned}
& \mathscr{L}_{1}^{*}(f, d v)= \\
& \quad \lim _{n \rightarrow \infty}\left\{\sum_{j=1}^{g(n)} \int_{A_{j}} h_{V_{2}}(d v) \int_{B_{j}} d f-2 \pi i \sum_{q_{j} \in \delta_{\delta_{2}}(n)} \operatorname{Res}_{q_{j}}\left(f h_{V_{2}}(d v)\right)\right\}
\end{aligned}
$$

converges.

Proof. We have only to show that $\mathscr{L}_{1}(f, d v)$ and $\mathscr{L}_{1}^{*}(f, d v)$ are independent of the choice of the branches $\int t_{V_{1}}(d f)$ and f. Since $\int_{\gamma_{n}^{i}} h_{V_{2}}(d v)=0$ for sufficiently large n, we see

$$
\int_{\partial W_{n}} h_{V_{2}}(d v)=0 \quad \text { and } \quad \sum_{q_{j} \in \delta_{2}(n)} \operatorname{Res}_{q_{j}}\left(h_{V_{2}}(d v)\right)=0
$$

Hence if $\int t_{V_{1}}(d f)$ and f are replaced by constants in $\mathscr{L}_{1}(f, d v)$, it is easy to see $\mathscr{L}_{1}(f, d v)=0$. This means $\mathscr{L}_{1}(f, d v)$ does not depend on the special branches of $\int t_{V_{1}}(d f)$ and f. By the same reason $\mathscr{L}_{1}^{*}(f, d v)$ does not depend on the choices of the branches of $\int t_{V_{1}}(d f)$ and f. q.e.d.

Lemma 3.2. Let $f \in N\left(\Delta_{1}\right)$ and $d v \in W\left(\Delta_{2}\right)$. Then

$$
\mathscr{L}_{2}(f, d v)=-\lim _{n \rightarrow \infty} \int_{\beta_{n}}\left(\int_{V_{1}}(d f)\right) t_{V_{2}}(d v)
$$

and

$$
\mathscr{L}_{2}^{*}(f, d v)=\lim _{n} \int_{\gamma_{n}}\left(\int_{V_{1}}(d f)\right) t_{V_{2}}(d v)
$$

exist and $\mathscr{L}_{2}(f, d v)=\mathscr{L}_{2}^{*}(f, d v)$.
Proof. If we put $\partial W_{n}=\alpha_{n} \cup \beta_{n} \cup \gamma_{n}$ for large n, then β_{n} and β_{m} are homologous to each other. By the Stokes' theorem

$$
\begin{aligned}
& \int_{B_{m}}\left(\int_{V_{1}}(d f)\right) t_{V_{2}}(d v)-\int_{\beta_{n}}\left(t_{V_{1}}(d f)\right) t_{V_{2}}(d v) \\
& \quad=\sum_{W_{m^{\prime}} W_{n}}^{\prime}\left\{\int_{A_{j}} t_{V_{1}}(d f) \int_{B_{j}} t_{V_{2}}(d v)-\int_{A_{j}} t_{V_{2}}(d v) \int_{B_{j}} t_{V_{1}}(d f)\right\},
\end{aligned}
$$

where Σ^{\prime} means that the sum is taken with respect to A_{j}, B_{j} contained in the part of $W_{m}-W_{n}$ surrounded by β_{m} and β_{n}. This sum vanishes for sufficiently large n and m by proposition 2.3. Thus

$$
\int_{\beta_{n}}\left(\int t_{V_{1}}(d f)\right) t_{V_{2}}(d v)=\int_{\beta_{m}}\left(\int t_{V_{1}}(d f)\right) t_{V_{2}}(d v)
$$

and $\mathscr{L}_{2}(f, d v)$ exists. By the same reason we see that $\mathscr{L}_{2}^{*}(f, d v)$ exists. Again by the Stokes' theorem we have easily

$$
\begin{aligned}
0 & =\left(t_{V_{1}}(d f),{ }^{\left.{ }^{*} t_{V_{2}}(d v)\right)}\right. \\
& =-\int_{W_{n}}\left(\int t_{V_{1}}(d f)\right) t_{V_{2}}(d v)
\end{aligned}
$$

$$
\begin{aligned}
= & -\int_{\alpha_{n}}\left(\int t_{V_{1}}(d f)\right) t_{V_{2}}(d v)-\int_{\beta_{n}}\left(\int t_{v_{1}}(d f)\right) t_{V_{2}}(d v) \\
& -\int_{\gamma_{n}}\left(\int t_{V_{1}}(d f)\right) t_{V_{2}}(d v)
\end{aligned}
$$

Since we have assumed that Supp. $V_{1} \subset \beta$ and Supp. $V_{2} \subset \gamma$, we see by proposition 1.2 that $t_{V_{1}}(d f)$ and $t_{V_{2}}(d v)$ are semi-exact and of finite norm in a neighborhood of α.

$$
\lim _{n \rightarrow \infty} \int_{\alpha_{n}}\left(\int t_{V_{1}}(d f)\right) t_{V_{2}}(d v)=0
$$

by lemma 2.2. On the other hand we see casily

$$
\int_{\alpha_{n}}\left(\int_{V_{V_{1}}}(d f)\right) t_{V_{2}}(d v)=\int_{\alpha_{m_{1}}}\left(\int_{V_{V_{1}}}(d f)\right) t_{V_{2}}(d v)
$$

Thus $\int_{\alpha_{n}}\left(\int t_{V_{1}}(d f)\right) t_{V_{2}}(d v)=0$ and from this fact we have $\mathscr{L}_{2}(f, d v)$ $=\mathscr{L}_{2}^{*}(f, d v)$.
q.e.d.

We introduce the following three spaces.

$$
\begin{aligned}
& N_{0}\left(\Delta_{1}\right)=\left\{f \in N\left(\Delta_{1}\right) \mid \mathscr{L}_{1}(f, d v) \text { exists for all } d v \text { in } W\left(\Delta_{2}\right)\right\} \\
& N_{0}\left(\Delta_{1} \| \Delta_{2}\right)=\left\{f \in N_{0}\left(\Delta_{1}\right) \mid f: \text { single valued, }(f) \geqq \delta_{2}-\delta_{1}\right. \text { and } \\
& \left.\qquad \mathscr{L}_{2}(f, d v)=0 \text { for all } d v \text { in } W\left(\Delta_{2}\right)\right\} \\
& W\left(\Delta_{2} \| \Delta_{1}\right)=\left\{d v \in W\left(\Delta_{2}\right) \mid\left(h_{V_{2}}(d v)\right) \geqq \delta_{1}-\delta_{2}\right. \text { and } \\
& \left.\qquad \lim _{n \rightarrow \infty} \int_{\beta_{n}}\left(\int t_{V_{1}}(d f)\right) d v=0 \text { for all } f \text { in } N_{0}\left(\Delta_{1}\right)\right\} .
\end{aligned}
$$

Theorem I. $\operatorname{dim}_{c} N_{0}\left(\Delta_{1}\right) /\left\{N_{0}\left(\Delta_{1} \| \Delta_{2}\right)+C\right\}=\operatorname{dim}_{c} W\left(\Delta_{2}\right) / W\left(\Delta_{2} \| \Delta_{1}\right)$, where dim_{c} stands for the complex dimension and the above formula permits of infinite dimensions.

Proof. We define a bilinear mapping of $N_{0}\left(\Delta_{1}\right) \times W\left(\Delta_{2}\right)$ onto C by $T(f, d v)=\mathscr{L}_{1}(f, d v)+\mathscr{L}_{2}(f, d v)$. We denote by K_{r} the right kernel of T and by K_{1} the left kernel of T. We have only to show that

$$
K_{l}=N_{0}\left(\Delta_{1} \| \Delta_{2}\right)+C \quad \text { and } \quad K_{r}=W\left(\Delta_{2} \| \Delta_{1}\right) .
$$

Let f be an element of K_{1}. For simplicity we assume that $\delta_{2} \neq 0$. All the normalized Abelian differentials of the first kind are in $W\left(\Delta_{2}\right)$. Since $t_{v_{2}}\left(d w_{j}\right)=0$, we have $\mathscr{L}_{2}\left(f, d w_{j}\right)=0$ and hence $T\left(f, d w_{j}\right)=\mathscr{L}_{1}(f$, $\left.d w_{j}\right)=0$. Since $\mathscr{L}_{1}=\mathscr{L}_{1}^{*}, \mathscr{L}_{1}^{*}\left(f, d w_{j}\right)=0$. This means that all the B periods of f are zero. Since f is semi-exact, f is single valued. Next we substitute $d Y_{q_{j, n}}$ for $d v$, where $1 \leqq n \leqq n_{j}-1$ and $1 \leqq j \leqq k_{2}$. Since $t_{V_{2}}\left(d Y_{q_{j}, n}\right)=0$, we have $\mathscr{L}_{1}\left(f, d Y_{q_{j}, n}\right)=0$ and this means $f^{(n)}\left(q_{j}\right)=0$ for $1 \leqq n \leqq n_{j}$. If $k_{2} \geqq 2$, then we put $d v=d \Pi_{q_{j}, q_{1}}$. Since $t_{V_{2}}\left(d \Pi_{q_{j}, q_{1}}\right)=0$, $\mathscr{L}_{1}\left(f, d \Pi_{q_{j}, q_{1}}\right)=0$. Therefore we have $f\left(q_{j}\right)=f\left(q_{1}\right)$. In both cases of $k_{2} \geqq 2$ and $k_{2}=1$ we obtain $\left(f-f\left(q_{1}\right)\right) \geqq \delta_{2}-\delta_{1}$. But it is easy to see that $\mathscr{L}_{2}\left(f\left(q_{1}\right), d v\right)=0$ and $\mathscr{L}_{1}\left(f\left(q_{1}\right), d v\right)=0$ for all $d v$ in $W\left(\Delta_{2}\right)$. Therefore

$$
\begin{aligned}
\mathscr{L}_{2}\left(f-f\left(q_{1}\right), d v\right) & =\mathscr{L}_{2}(f, d v)=T(f, d v)-\mathscr{L}_{1}(f, d v) \\
& =-\mathscr{L}_{1}(f, d v)=-\mathscr{L}_{1}\left(f-f\left(q_{1}\right), d v\right)=0 .
\end{aligned}
$$

This means that $f=f-f\left(q_{1}\right)+f\left(q_{1}\right) \in N_{0}\left(\Delta_{1} \| \Delta_{2}\right)+C$. Therefore $K_{l} \subset N_{0}$ $\left(\Delta_{1} \| \Delta_{2}\right)+C$.

It is casy to see that $K_{1} \supset C$. Now assume that f is an element of $N_{0}\left(\Delta_{1} \| \Delta_{2}\right)$. Since f is single valued, all the B-periods of f are zero. Since $(f) \geqq \delta_{2}-\delta_{1}, \sum_{q_{j} \in \delta_{2}(n)} \operatorname{Res}_{q_{j}}\left(f h_{V_{2}}(d v)\right)=0$ for all n. Thus $\mathscr{L}_{1}^{*}(f, d v)=0$ and hence $\mathscr{L}_{1}(f, d v)=0$ for all $d v$ in $W\left(\Delta_{2}\right)$. Of course $\mathscr{L}_{2}(f, d v)=0$. Therefore $T(f, d v)=0$ for all $d v$ in $W\left(\Delta_{2}\right)$ and this means $K_{l} \supset N_{0}\left(\Delta_{1} \| \Delta_{2}\right)$. We have proved $K_{l}=N_{0}\left(\Delta_{1} \| \Delta_{2}\right)+C$.

Now we shall prove $K_{r}=W\left(\Delta_{2} \| \Delta_{1}\right)$. Let $d \tilde{v}$ be an element of K_{r}. It is easy to see that $Y_{p_{j}, m}, 1 \leqq m \leqq m_{j}-1$ belong to $N_{0}\left(\Delta_{1}\right)$. In fact since $\quad t_{V_{1}}\left(d Y_{p_{j}, m}\right)=0, \mathscr{L}_{1}\left(Y_{p_{j}, m}, d v\right)=2 \pi i \operatorname{Res}\left(Y_{p_{j}, m} h_{V_{2}}(d v)\right)$ exists for all $d v$ in $W\left(\Delta_{2}\right)$. Furthermore $\mathscr{L}_{2}\left(Y_{p_{j}, m}, \stackrel{p_{j}}{d v}\right)=0$ for all $d v$ in $W\left(\Delta_{2}\right)$ and therefore $\mathscr{L}_{1}\left(Y_{p_{j}, m}, d \tilde{v}\right)=0$. Therefore $\quad \underset{p_{j}}{\operatorname{Res}}\left(Y_{p_{j}, m} h_{V_{2}}(d \tilde{v})\right)=0$. We conclude that $\left(h_{V_{2}}(d \tilde{v})\right) \geqq \delta_{1}-\delta_{2}$ and

$$
0=T(f, d \tilde{v})
$$

$$
=\lim _{n \rightarrow \infty}\left\{-\int_{i W_{n}}\left(\int t_{V_{1}}(d f)\right) h_{V_{2}}(d \tilde{v})\right\}+\lim _{n \rightarrow \infty}\left\{-\int_{\beta_{n}}\left(\int_{V_{1}}(d f)\right) t_{V_{2}}(d \tilde{v})\right\}
$$

for all f in $N_{0}\left(\Delta_{1}\right)$. Since Supp. $V_{1} \subset \beta$,

$$
\lim _{n \rightarrow \infty} \int_{\partial W_{n}}\left(\int t_{V_{1}}(d f)\right) / h_{V_{2}}(d \tilde{v})=\lim _{n \rightarrow \infty} \int_{\beta_{n}}\left(\int_{V_{1}}(d f)\right) h_{V_{2}}(d \tilde{v})
$$

by lemma 2.2 and proposition 1.2. Hence we obtain

$$
\lim _{n \rightarrow \infty} \int_{\beta_{n}}\left(\int_{V_{1}}(d f)\right) d \tilde{v}=0
$$

for all f in $N_{0}\left(\Delta_{1}\right)$. We have proved $d \tilde{v} \in W\left(\Delta_{2} \| \Delta_{1}\right)$, i. e. $K_{r} \subset W\left(\Delta_{2} \| \Delta_{1}\right)$. Conversely let $d \tilde{v}$ be an element of $W\left(\Delta_{2} \| \Delta_{1}\right)$. Then

$$
\begin{aligned}
T(f, d \tilde{v}) & =\lim _{n \rightarrow \infty}\left\{-\int_{\partial W_{n}}\left(\int_{V_{1}}(d f)\right) h_{V_{2}}(d \tilde{v})-\int_{\beta_{n}}\left(\int_{V_{1}}(d f)\right) t_{V_{2}}(d \tilde{v})\right\} \\
& =\lim _{n \rightarrow \infty}\left\{-\int_{\beta_{n}}\left(\int_{V_{1}}(d f)\right) h_{V_{2}}(d \tilde{v})-\int_{\beta_{n}}\left(t_{V_{1}}(d f)\right) t_{V_{2}}(d \tilde{v})\right\} \\
& =-\lim _{n \rightarrow \infty} \int_{\beta_{n}}\left(\int_{V_{1}}(d f)\right) d \tilde{v}=0 .
\end{aligned}
$$

Therefore $d \tilde{v} \in K_{r}$ and this means $K_{r}=W\left(\Delta_{2} \| \Delta_{1}\right)$. This completes a proof.
3.2. Duality theorems for divisors of restricted types. In this section we shall prove two duality theorems by restricting the types of divisors. Let $\delta_{1}=\sum_{j=1}^{k_{1}} m_{j} p_{j}$ and $\delta_{2}=\sum_{j=1}^{k_{2}} n_{j} q_{j}$ be two positive inner divisors in $W_{0}-\bigcup_{n=1}^{\infty} D_{n}$ such that $\left|\delta_{1}\right| \cap\left|\delta_{2}\right|=\varnothing$. We introduce the following two complex vector spaces.

$$
\begin{aligned}
\hat{M}\left(-\delta_{1}\right)= & \{f \mid f: \text { an additive meromorphic function such that } \\
& \text { (1) }(f) \geqq-\delta_{1}, \text { (2) } \int_{\Lambda_{j}} d f=0 \text {, for all } j \text {, (3) } \int_{\gamma_{n}} d f=0 \\
& \text { for all } \left.\gamma_{n}^{i} \text { and (4) }\|d f\|_{U D_{n}}<\infty\right\}
\end{aligned}
$$

$$
W\left(-\delta_{2}\right)=\{d v \mid d v: \text { a meromorphic differential such that }
$$

$$
\begin{aligned}
& \text { (1) }(d v) \geqq-\delta_{2}, \text { (2) } \int_{r_{n}^{i}} d v=0 \text { for all } \gamma_{n}^{i} \text { and } \\
& \text { (3) } \left.\|d v\|_{U_{D_{n}}}<\infty\right\}
\end{aligned}
$$

Then $d \hat{M}\left(-\delta_{1}\right)=\left\{d f \mid f \in \hat{M}\left(-\delta_{1}\right)\right\}$ defines a subspace of $(Q) m$. If we denote by O the zero dimensional subspace of \mathscr{D}_{Q}^{\prime} and if we put $\partial_{1}=\eta_{Q}^{\circ} \eta_{Q}\left(d \hat{M}\left(-\delta_{1}\right)\right)$, then ∂_{1} is a subspace of $\mathscr{S}\left(Q_{o}\right)$. Similarly $W\left(-\delta_{2}\right)$ determines a subspace of $(Q) m$. If we put $\partial_{2}=\eta_{Q}{ }^{\circ} \eta_{Q}\left(W\left(-\delta_{2}\right)\right)$, then ∂_{2} is a subspace of $\mathscr{S}\left(Q_{o}\right)$. Since Supp. $O=\varnothing$ and Q is the finest partition of ∂W, the conditions of theorem I are satisfied for an arbitrary regular partition P_{0} of ∂W into three parts α, β and γ.

Lemma 3.3. If we put $\Delta_{1}=\left(-\delta_{1}, \partial_{1}\right)$ and $\Delta_{2}=\left(-\delta_{2}, \partial_{2}\right)$, then

$$
N\left(\Delta_{1}\right)=\hat{M}\left(-\delta_{1}\right), \quad W\left(\Delta_{2}\right)=W\left(-\delta_{2}\right)
$$

Proof. First we show that $N\left(\Delta_{1}\right)=\hat{M}\left(-\delta_{1}\right)$. Let $f \in N\left(\Delta_{1}\right)$, then, by definition of $N\left(\Delta_{1}\right)$, we see $(f) \geqq-\delta_{1}$ and $<d f>_{o}=\| \eta_{Q} \eta_{Q}(d f) \in \partial_{1}$. Therefore, as is easily seen, $d f=h_{o}(d f)$ and thus $\|d f\|_{U D_{n}}=\left\|h_{O}(d f)\right\|_{U D_{n}}$ $<\infty$. It is evident that f has no non-zero A-periods. Furthermore $d f$ has no residues. This shows that $\int_{\gamma_{n}^{i}} d f=0$. Hence we conclude f $\in \hat{M}\left(-\delta_{1}\right)$, i.e. $N\left(\Delta_{1}\right) \subset \hat{M}\left(-\delta_{1}\right)$. Conversely if we take any element g of $\hat{M}\left(-\delta_{1}\right),<d g>_{o} \in \partial_{1}$ and $(g) \geqq-\delta_{1}$. Hence $\Delta_{1} \mid g$. Furthermore $\int_{A_{j}} d g=0$ and $\int_{\gamma_{n}^{i}} d g=0$ by definition of $\hat{M}\left(-\delta_{1}\right)$. Hence $N\left(\Delta_{1}\right) \supset$ $\hat{M}\left(-\delta_{1}\right)$, i. e. $N\left(\Delta_{1}\right)=\hat{M}\left(-\delta_{1}\right)$.

Next we show that $W\left(\Delta_{2}\right)=W\left(-\delta_{2}\right)$. It is clear that $W\left(-\delta_{2}\right) \subset$ $W\left(\Delta_{2}\right)$. Let $d v$ be an element of $W\left(\Delta_{2}\right)$. By definition of $W\left(\Delta_{2}\right)$, we see $(d v) \geqq-\delta_{2}$ and $<d v>_{o} \in \eta_{Q} \circ^{\circ} \eta_{Q}\left(W\left(-\delta_{2}\right)\right)=\partial_{2}$. If we choose a canonical end U, then

$$
d v=d w+\lambda
$$

on U, where $d w \in W\left(-\delta_{2}\right)$ and $\lambda \in A_{d}(Q, U)$. Therefore

$$
\|d v\|_{U \cap\left(\cup D_{n}\right)} \leqq\|d w\|_{U \cap\left(U D_{n}\right)}+\|\lambda\|_{U}<\infty
$$

This means that $\|d v\|_{u b_{n}}<\infty$. Furthermore $\int_{y_{n}^{\prime}} d v=0$. Hence $d v$ belongs
to $W\left(-\delta_{2}\right)$, i.e. $W\left(\Delta_{2}\right)=W\left(-\delta_{2}\right)$.
q.e.d.

In the present case of Δ_{1} and Δ_{2} the bilinear mapping $T: N_{0}\left(\Delta_{1}\right)$ $\times W\left(\Delta_{2}\right) \rightarrow C$ degenerates to \mathscr{L}_{1} since Supp. $O=\emptyset$.

$$
\begin{aligned}
& T(f, d v)=\mathscr{L}_{1}(f, d v) \\
& \quad=\lim _{n \rightarrow \infty}\left\{-\int_{i W_{n}^{\prime}}\left(\int t_{o}(d f)\right) h_{o}(d v)+2 \pi i \sum_{p_{j} \in \delta_{1}(n)} \operatorname{Res}\left(f h_{p_{j}}(d v)\right)\right\} \\
& \quad=\lim _{n \rightarrow \infty} 2 \pi i \sum_{p_{j} \in \delta_{1}(n)} \operatorname{Res}_{p_{j}}\left(f h_{o}(d v)\right)
\end{aligned}
$$

since $t_{0}(d f)=0$ for all f in $N\left(\Delta_{1}\right)$. We put $\delta=\delta_{1}-\delta_{2}$. If we put
$\hat{M}_{0}\left(-\delta_{1}\right)=\left\{f \in M\left(-\delta_{1}\right) \mid \mathscr{L}_{1}(f, d v)\right.$ exists for all $d v$ in $\left.W\left(-\delta_{2}\right)\right\}$
$M_{0}(-\delta)=\left\{f \in M_{0}\left(-\delta_{1}\right) \mid f\right.$ is a single valued meromorphic function such that $(f) \geqq-\delta\}$
then the space $M_{0}(-\delta)$ is nothing but $N_{o}\left(\Delta_{1} \| \Delta_{2}\right)$. Similarly $W(\delta)$ $=\left\{d v \in W\left(-\delta_{2}\right) \mid(d v) \geqq \delta\right\}$ is $W\left(\Delta_{2} \| \Delta_{1}\right)$. With these notations we have the following duality theorem.

Theorem II. (Sainouchi [4], theorem 5)

$$
\operatorname{dim}_{c} \hat{M}_{0}\left(-\delta_{1}\right) /\left\{M_{0}(-\delta)+C\right\}=\operatorname{dim}_{c} W\left(-\delta_{2}\right) / W(\delta) .
$$

Next we shall be concerned with another divisor. Let P_{0} be a regular partition of ∂W into three parts α, β and γ. Further let P be a regular partition of ∂W which is a refinement of P_{0}. Let V_{Q} be a (Q)-divisor at boundary and V_{P} be a (P)-divisor at boundary such that Supp. $V_{Q} \subset \beta$ and Supp. $V_{P} \subset \gamma$. We put
$\mathscr{M}\left(V_{Q}\right)=\{f \mid f$ is a semi-exact holomorphic additive function such that $\eta_{Q}(d f) \in V_{Q}$ and $\int_{A_{j}} d f=0$ for all $\left.j\right\}$
$\mathscr{D}\left(V_{P}\right)=\left\{d v \mid d v\right.$ is a holomorphic differential such that $\int_{\beta_{n j}} d v=0$
and $\left.\eta_{P}(d v) \in V_{P}\right\}$.
Further we put

$$
\begin{aligned}
\mathscr{M}\left(V_{Q} \| V_{P}\right)= & \left\{f \in \mathscr{M}\left(V_{Q}\right) \mid f \text { is single valued and } \lim _{n \rightarrow \infty} \int_{V_{n}} f t_{V_{P}}(d v)=0\right. \\
& \text { for all } \left.d v \text { in } \mathscr{D}\left(V_{P}\right)\right\} \\
\mathscr{D}\left(V_{P} \| V_{Q}\right)= & \left\{d v \in \mathscr{D}\left(V_{P}\right) \mid \lim _{n \rightarrow \infty} \int_{\beta_{n}}\left(\int t_{V_{Q}}\left(d f^{\prime}\right)\right) d v=0 \text { for all } f \text { in } \mathscr{M}\left(V_{Q}\right)\right\} .
\end{aligned}
$$

Then we can prove the following theorem.
Theorem III. $\operatorname{dim}_{c} \cdot \mathscr{M}\left(V_{Q}\right) /\left\{\mathscr{M}\left(V_{Q} \| V_{P}\right)+C\right\}=\operatorname{dim}_{C} \mathscr{D}\left(V_{P}\right) / \mathscr{D}\left(V_{P} \| V_{Q}\right)$.
Proof. Let $\{O\}_{Q}$ and $\{O\}_{P}$ be the zero dimensional subspaces of $\mathscr{D}_{Q}\left(V_{Q}\right)$ and $\mathscr{D}_{P}\left(V_{P}\right)$ respectively, and consider the $Q_{V_{Q}}$-divisor Δ_{1} $=\left(0,\{O\}_{Q}\right)$ and $P_{V_{P}}$-divisor $\Delta_{2}=\left(0,\{O\}_{P}\right)$. It is easy to see that $N\left(\Delta_{1}\right)$ $=\mathscr{M}\left(V_{Q}\right)$ and $W\left(\Delta_{2}\right)=\mathscr{D}\left(V_{P}\right)$. For these Δ_{1} and Δ_{2}, the bilinear mapping $T: N\left(\Delta_{1}\right) \times W\left(\Delta_{2}\right) \rightarrow C$ is written as

$$
T(f, d v)=\lim _{n \rightarrow \infty}\left\{-\int_{i W_{n}}\left(\int t_{v_{Q}}(d f)\right) t_{v_{p}}(d v)-\int_{\beta_{n}}\left(\int t_{V_{Q}}(d f)\right) t_{V_{p}}(d v)\right\}
$$

and this exists for all $(f, d v)$ in $N\left(\Delta_{1}\right) \times W\left(\Delta_{2}\right)$. In fact if n and m are sufficiently large, then

$$
\int_{i W_{n}}\left(t_{V_{Q}}(d f)\right) h_{V_{P}}(d v)=\int_{i W_{m}}\left(\int_{V_{Q}}(d f)\right) h_{V_{P}}(d v)
$$

since $h_{V_{p}}(d v)$ has no non-zero A-periods outside of a large $W_{n_{0}}$ and $t_{V_{\mathrm{Q}}}(d f)$ has no non-zero A-periods. Thus $N_{0}\left(\Delta_{1}\right)=N\left(\Delta_{1}\right)=\mathscr{M}\left(V_{Q}\right)$. Therefore

$$
\begin{aligned}
N_{0}\left(\Delta_{1} \| \Delta_{2}\right)= & \left\{f \in \mathscr{M}\left(V_{0}\right) \mid f \text { is single valued and } \mathscr{L}_{2}(f, d v)=0\right. \\
& \text { for all } \left.d v \text { in } \mathscr{D}\left(V_{P}\right)\right\}
\end{aligned}
$$

and

$$
W\left(\Delta_{2} \| \Delta_{1}\right)=\left\{d v \in \mathscr{D}\left(V_{P}\right) \lim _{n \rightarrow \infty} \int_{\beta_{n}}\left(\int t_{V_{Q}}(d f)\right) d v=0 \text { for all } f \text { in } \mathscr{M}\left(V_{Q}\right)\right\}
$$

But if $f \in N_{0}\left(\Delta_{1} \| \Delta_{2}\right)$, then the V_{Q}-decomposition of $d f$ is

$$
d f=h_{V_{Q}}(d f)+t_{V_{Q}}(d f)=t_{V_{\mathbf{Q}}}(d f)
$$

since $\left\|h_{V_{Q}}(d f)\right\|_{U_{D_{n}}}<\infty$ and $\int_{A_{j}} h_{V_{Q}}(d f)=0$ for all j. From this fact we see $\mathscr{L}_{2}(f, d v)=\lim _{n \rightarrow \infty} \int_{\gamma_{n}} f t_{V_{p}}(d v)$. Therefore we have proved $N_{0}\left(\Delta_{1}\right.$ $\left.\| \Delta_{2}\right)=\mathscr{M}\left(V_{Q} \| V_{P}\right)$ and $W\left(\Delta_{1} \| \Delta_{2}\right)=\mathscr{D}\left(V_{P} \| V_{Q}\right)$. Theorem I completes a proof.

§4. Interpolation theorems

As in the preceeding sections we fix an open Riemann surface W satisfying the condition (A).
4.1. An interpolation theorem for multiplicative meromorphic functions. Let P be a regular partition of ∂W and V be a (P)-divisor at boundary. Let σ be a P_{V}-singularity and δ be an inner divisor in $W_{0}-\bigcup_{n=1}^{\infty} D_{n}$ such that the degree of $\delta(n)=\delta \mid W_{n}$ is zero for each n. We may put $\delta(n)=\sum_{j=1}^{k(n)} p_{j}--\sum_{j=1}^{k(n)} q_{j}$. Let γ_{j} be a singular 1 -chain in $W_{n}-\Xi$ such that $\partial \gamma_{j}=q_{j}-p_{j}$ and put $C(n)=\sum_{j=1}^{h(n)} \gamma_{j}$.

Theorem IV. Let $\left\{\chi_{A_{j}}, \chi_{B_{j}}\right\}_{j=1}^{g_{j=1}}$ be a sequence of complex numbers. Then there exists a multiplicative meromorphic function f on W such that

$$
\begin{equation*}
(f)=\delta, \quad<d \log f>_{V}=\sigma \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{A_{j}} d \log f=\chi_{A j}, \quad \int_{B_{j}} d \log f=\chi_{B_{j}}, \tag{4.2}
\end{equation*}
$$

if and only if the following conditions (4.3), (4.4) and (4.5) hold:

$$
\begin{equation*}
M_{n}(p)=\sum_{j=1}^{k(n)} \Pi_{p j}^{p, q}, q_{j}+\sum_{j=1}^{g(n)} \chi_{A_{j}} \int_{q}^{p} d w_{j} \tag{4.3}
\end{equation*}
$$

converges uniformly on compact subsets in $W_{0}-\sum_{i=1}^{\infty} C(i)$, (4.4) $\|d M\|_{U D_{n}}$ $<\infty$ and $<d M>_{v}=\sigma$, where $M(p)=\lim _{n \rightarrow \infty} M_{n}(p)$, (4.5) there is a holomorphic differential ϕ such that
(i) $\int_{A_{j}} \phi=0$ for all $j, \int_{\beta_{n j}} \phi=0$ for all $\beta_{n j}$ and $\eta_{P}(\phi) \in V$,
(ii) $\lim _{n \rightarrow \infty}\left\{2 \pi i \int_{C(n)} d w_{j}+\sum_{i=1}^{g(n)} \tau_{i j} \chi_{A_{i}}\right\}=\chi_{B_{j}}+\int_{B_{j}} \phi$,
where $\tau_{i j}=\int_{B_{j}} d w_{i}=\int_{B_{i}} d w_{j}$.
If the conditions (4.3)-(4.5) hold, then one of the desired function f is given by $\exp \left(M+\int \phi\right)$.

Proof. Let us assume that there exists a function f satisfying the conditions (4.1) and (4.2). Then $d \log f$ has V-decomposition

$$
d \log f=h_{V^{\prime}}(d \log f)+t_{V^{\prime}}(d \log f)
$$

Then $\eta_{P}\left(t_{V}(d \log f)\right) \in V$ and $\left\langle h_{V}(d \log f)\right\rangle_{V}=\sigma$. By definition of $V-$ decomposition

$$
M_{n}(p)=\sum_{j=1}^{k(n)} \Pi_{p_{j}, q_{j}}^{p, q}+\sum_{j=1}^{g(n)} \chi_{A_{j}} \int_{q}^{p} d w_{j}
$$

converges uniformly on compact subsets of $W_{0}-\left|\delta_{2}\right|$ and $h_{v}(d \log f)$ $=d \lim _{n \rightarrow \infty} M_{n}(p)$. Therefore $M_{n}(p)$ converges uniformly on compact subsets of $W_{0}-\sum_{i=1}^{\infty} C(i)$ and $\|d M\|_{U D_{n}}=\left\|h_{V}(d \log f)\right\|_{U D_{n}}<\infty$. Furthermore $<d M>_{V}=\sigma$. Let U_{j} be a simply connected neighborhood of $\left\{p_{j}\right\}$ $\cup\left\{q_{j}\right\}$ such that if $p_{j}, q_{j} \in|\delta(n)|$, then $U_{j} \subset W_{n}$. We assume $U_{i} \cap U_{j}=\emptyset$ if $i \neq j$. We put $t_{V}(d \log f)=\phi . \quad \phi$ satisfies the conditions (4.5), (i). By the Stokes' theorem

$$
\begin{aligned}
& 0=\left(d w_{j},{ }^{*} d \log f\right)_{W_{n}}-\underset{j=1}{k(n)} v_{j} \\
& =-\int_{i w_{n}}\left(\int d w_{j}\right)\left(h_{V}(d \log f)+t_{V}(d \log f)\right)+\sum_{i=1}^{k \prime n} \int_{\partial U_{i}}\left(\int d w_{j}\right) d \log f+
\end{aligned}
$$

$$
+\sum_{i=1}^{g(n)}\left\{\int_{A_{i}} d w_{j} \int_{B_{i}} d \log f-\int_{A_{i}} d \log f \int_{B_{i}} d w_{j}\right\} .
$$

Since $\left\|h_{V}(d \log f)\right\|_{U D_{n}}<\infty$,

$$
\lim _{n \rightarrow \infty} \int_{i W_{n}}\left(\int d w_{j}\right) h_{V}(d \log f)=0
$$

by lemma 2.2. On the other hand

$$
\sum_{i=1}^{k(n)} \int_{\partial U_{i}}\left(\int_{j} d w_{j}\right) h_{V}(d \log f)=-2 \pi i \int_{\boldsymbol{C}(n)} d w_{j} .
$$

Moreover since $\int_{A_{i}} \phi=0$ for all i, we see

$$
\lim _{n \rightarrow \infty} \int_{i W_{n}}\left(\int d w_{j}\right) \phi=-\int_{B_{j}} \phi .
$$

Therefore

$$
\lim _{n \rightarrow \infty}\left\{2 \pi i \int_{C(n)} d w_{j}+\sum_{i=1}^{g(n)} \tau_{i j} \chi_{A_{i}}\right\}=\chi_{B_{J}}+\int_{B_{j}} \phi .
$$

Hence we have shown that (4.3), (4.4) and (4.5) hold.
Conversely assume that (4.3)-(4.5) hold. By making use of $M(p)$ of (4.4) and ϕ of (4.5) we put $d F=d M+\phi$ and $f=\exp \left(\int d F\right)$. Then it is clear that $(f)=\delta$ and $<d \log f>_{V}=\left\langle d M+\phi>_{V}=\left\langle d M>_{V}=\sigma\right.\right.$, since $\langle\phi\rangle_{V}=0$. Since the A_{j}-period of M is $\chi_{A_{j}}$,

$$
\int_{A_{j}} d F=\int_{A_{j}} d M+\int_{A_{j}} \phi=\int_{A_{j}} d M=\chi_{A_{j}} .
$$

By the Stokes' theorem

$$
\begin{aligned}
0 & =\left(d w_{j}, \bar{*} d F^{*} W_{n}-{ }_{\substack{k \\
i=1}}^{k(n)} U_{i}\right. \\
& =-\int_{\partial W_{n}}\left(\int d w_{j}\right) d F-2 \pi i \int_{C(n)} d w_{j}+\sum_{i=1}^{g(n)}\left\{\int_{A_{i}} d w_{j} \int_{B_{i}} d F-\int_{A_{i}} d F \int_{B_{i}} d w_{j}\right\} .
\end{aligned}
$$

Hence

$$
\lim _{n \rightarrow \infty}\left\{2 \pi i \int_{C(n)} d w_{j}+\sum_{i=1}^{g(n)} \tau_{i j} \chi_{A_{i}}\right\}=\int_{B_{j}} d F+\int_{B_{j}} \phi .
$$

If we compare the above identity with (ii) of (4.5), we see

$$
\int_{B_{j}} d F=\chi_{B_{j}} \text {, i.e. } \int_{B_{j}} d \log f=\chi_{B_{j}} \text {. }
$$

Corollary. Let V be a (Q)-divisor at boundary and σ be a $Q_{V^{-}}$ singularity. Let δ be an inner divisor in $W_{o}-\bigcup_{n=1}^{\infty} D_{n}$ such that $\operatorname{deg} . \delta(n)$ $=0$ for each n. Then there exists a meromorphic function f such that

$$
\begin{equation*}
(f)=\delta, \quad<d \log f>_{V}=\sigma \tag{4.6}
\end{equation*}
$$

if and only if there exist a sequence $\left\{n_{A_{j}}, n_{B_{j}}\right\}_{j=1}^{g}$ of integers and a semi-exact holomorphic differential ϕ satisfying the following properties:

$$
\begin{equation*}
M_{n}(p)=\sum_{j=1}^{k(n)} \Pi_{p_{j}, q_{j}}^{p, q}+\sum_{j=1}^{g(n)} 2 \pi i n_{A_{j}} \int_{q}^{p} d w_{j} \tag{4.7}
\end{equation*}
$$

converges uniformly on compact subsets of $W_{0}-\sum_{j=1}^{\infty} C(j)$,

$$
\begin{equation*}
\|d M\|_{U D_{n}}<\infty \text { and }<d M>_{V}=\sigma, \text { where } M(p)=\lim _{n \rightarrow \infty} M_{n}(p), \tag{4.8}
\end{equation*}
$$

(i) $\int_{A_{j}} \phi=0$ for all j and $\eta_{Q}(\phi) \in V$,
(ii) $\lim _{n \rightarrow \infty} 2 \pi i\left\{\int_{C(n)} d w_{j}+\sum_{i=1}^{g(n)} \tau_{i j} n_{A_{i}}\right\}=2 \pi i n_{B_{j}}+\int_{B_{j}} \phi$.
4.2. An interpolation theorem for a singularity of restricted type. In theorem IV we substitute the zero dimensional subspace of \mathscr{D}_{Q}^{\prime} for V. Then we have the following theorem due to Sainouchi [4].

Theorem V. In order to exist a meromorphic function f such that $(f)=\delta$ and $\|d \log f\|_{U D_{n}}<\infty$, it is necessary and sufficient that there is a sequence $\left\{n_{A_{j}}, n_{B_{j}}\right\}_{j=1}^{g}$ of integers such that

$$
\begin{equation*}
M_{n}(p)=\sum_{j=1}^{k(n)} \Pi_{p_{j}, q_{j}}^{p, q}+\sum_{j=1}^{g(n)} 2 \pi i n_{A_{j}} \int_{q}^{p} d w_{j} \tag{4.10}
\end{equation*}
$$

converges uniformly on compact subsets of $W_{0}-\sum_{i=1}^{\infty} C(i)$,

$$
\begin{gather*}
\|d M\|_{\cup D_{n}}<\infty \text {, where } M(p)=\lim _{n \rightarrow \infty} M_{n}(p) \tag{4.11}\\
\lim _{n \rightarrow \infty}\left\{\int_{C(n)} d w_{j}+\sum_{i=1}^{g(n)} \tau_{i j} n_{A_{i}}\right\}=n_{B_{j}} . \tag{4.12}
\end{gather*}
$$

Proof. Suppose that there exist a desired function f. We define
 a sequence $\left\{n_{A j}, n_{B_{j}}\right\}_{j=1}^{g}$ of integers and a semi-exact holomorphic differential ϕ satisfying the conditions (4.7)-(4.9). Since $\eta_{Q}(\phi) \in V=\{0\}$ from (i) of (4.9), ϕ is square integrable, semi-exact and has no nonzero A-periods. Thus $\phi=0$. Therefore (ii) of (4.9) is of the form (4.12) in the present case. Conversely assume that (4.10)-(4.12) hold. If we put $\left\langle d M>_{o}=\sigma\right.$, then by corollary to theorem IV we have a meromorphic function such that $(f)=\delta$ and $<d \log f>_{o}=\sigma$. On a canonical end $U, d \log f=d M+\lambda$, where $\lambda \in A_{d}(Q, U)$. Therefore $\|d \log f\|_{U D_{n}}<\infty$. This completes a proof.

Aichi University of Education

References

[1] Ahlfors, L. and Sario, L., Riemann surfaces. Princeton Univ. Press. Princeton. 1960. 382 pp .
[2] Kusunoki, Y., Contributions to Riemann-Roch's theorem. Mem. Coll. Sci. Univ. Kyoto Ser. A. Math. 31 (1958) 161-180.
[3] Kusunoki, Y., Theory of Abelian integrals and its applications to conformal mappings. Ibid. 32 (1959) 235-258.
[4] Sainouchi, Y., On meromorphic differentials with an infinite number of polar singularities on open Riemann surfaces. J. Math. Kyoto Univ., 14 (1974) 499-532.
[5] Shiba, M., On the Riemann-Roch theorem on open Riemann surfaces. J. Math. Kyoto Univ. 11 (1971) 495-525.
[6] Shiba, M., A formulation of the Riemann-Roch theorem in terms of differentials with singularities at the ideal boundary. Ibid. 15 (1975) 1-18.
[7] Yoshida, M., The method of orthogonal decomposition for differentials on open Riemann surfaces. J. Sci. Hiroshima Univ. Ser A-I. 8 (1968) 181-210.

