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Introduction

The purpose of the present paper is to give some results concerned
with the theory of Abelian differentials on open Riemann surfaces with
certain null boundaries. So far almost all the theories of Abelian differ-
entials on open Riemann surfaces have dealt with the meromorphic
differentials which are square integrable outside of compact subsets.
For instance Riemann-Roch’s theorem and Abel’s theorem are formu-
lated in terms of those meromorphic differentials and their integrals
with certain boundary behaviors. (cf. L. Ahlfors [1], Y. Kusunoki
[2] [3], M. Shiba [5] and M. Yoshida [7], etc.)

Recently Y. Sainouchi [4] has introduced some metric conditions
on open Riemann surfaces and meromorphic differentials, and succeeded
in a systematic treatment of meromorphic differentials with an infinite
number of polar singularities under these metric conditions. On the
other hand M. Shiba has generalized the notion of the divisors on open
Riemann surfaces by making use of the notion of behavior spaces
introduced by himself in [5] and proved a duality theorem [6]. This
generalized notion of divisors makes possible to deal with certain infinite
divisors. However Sainouchi’s treatment and Shiba’s one for infinite
divisors are different and it is desirable to unify two approaches.

In the present paper we give a generalization of the notion of
divisors on open Riemann surfaces with certain null boundaries and
prove a duality theorem (Theorem I) which includes the Sainouchi’s
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duality theorem and also, in the case of our surfaces, a duality theorem
analogous to that of Shiba. We also prove an interpolation theorem
for multiplicative meromorphic functions.

§ 1 contains the preliminary facts and the definition of the gener-
alized divisors. In §2 we define a decomposition of meromorphic differ-
entials. This decomposition will play fundamental roles in §§3 and
4. §3 is devoted to prove a duality theorem. The special cases of
this duality theorem will be discussed also in §3. Finally in §4 we
shall be concerned with an interpolation theorem from which we derive
a theorem of Abel type for our divisors.

The author wishes to express his deepest gratitude to Prof. Y.
Kusunoki for his encouragement and comments. The author also
thanks to Prof. Y. Sainouchi for his valuable suggestions. During the
preparation of the present paper the author had useful conversation
with Mr. M. Shiba many times, without which the present paper could
not be appeared. | am grateful to him for hearty and valuable sug-
gestions.

§1. Preliminaries and the definitions of divisors

1.1. Riemann surfaces with certain null boundaries and elementa-
ry differentials.

Let W be an open Riemann surface of genus g (1=<g=<o) and
{W,}>, be a canonical exhaustion of W. We denote by g(n) the genus
of W, and EZ={A;, B;}%-, a canonical homology basis of W whose
restriction to W,,,— W, forms a canonical homology basis modulo
boundary of W,,,—W,. Let oW,= T\(_J")y;', be the decomposition of oW,
into its connected components. We lt—alke a ring domain D,; containing
yi so that D,nD,;=¢ for i#j and we put D,= :\:_J”l) D,;. We assume
that D,NnD,=¢ for n#m. Let v and v, be the harmonic moduli

of D,; and D, respectively, that is to say,

*du,

n

9
) =2 d =g
d, @D)NW,,

where u, is the harmonic function on D, such that it vanishes identically
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on (dD,)nW, and is identically equal to | on dD,—(éD,)nW,. vi
e8]
is defined analogously. We put D= \U D, and define a function u
n=1
on D so that
n=1

u= Y v+vu, on D
=

i

n*

If we denote by v the conjugate harmonic function of wu, then u+iv
maps conformally the domain D with suitable slits onto the domain
D'={(u, v)[I0<u<R= i v;, 0O<v<2m} with suitable slits. In the follow-
ing we only consider‘;]n open Riemann surface satisfying the condition
(A) inf min  vi>0

n 15is1(n)
for suitable choices of {W,}*., and {D,;}. On such a surface we
fix {W,}5-, and {D,;} satisfying the condition (A). There are elementary
differentials with the following properties uniquely on such a surface,
Sainouchi [4], §1:
(I) dw; (1=£j<g): the square integrable semi-exact holomorphic differ-
ential such that

.26..’ '=l~ seen s
SmdwJ i i 2

() dY,,(nz1): the semi-exact meromorphic differential, holomorphic
except at p and square integrable outside each neighborhood of p,
such that

) g dY,,=0 with 1<j<g,
Aj

) dY,,,,,=< — e treg. term)dz

for some local coordinate z about p (z=0p).

(i) dIl,,: the meromorphic differential, holomorphic except at p
and ¢, where dIl,, has simple poles with residues +1 at p and -1
at g respectively. Furthermore dIT,, is square integrable outside each
neighborhood of {p} U {q}, semi-exact in W—C, where C is a path from
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p to g, and
S dn,,=0 with I1<j<g.
Aj

There hold some relations between the above differentials, Sainouchi
[4], propositions 2, 3 and 4:

Proposition 1.1.

1) gB di, = —2nigpdwk,

q

where the path of integration from q to p is chosen in Wy=W-—ZE.

—_2m

(2) SBdep,n_ (n—l)!w“ (P),
P r

3) S dn,,s=g i, ,,
q s

where the two paths of integration are chosen in W, and do not inter-
sect with each other.
(4) If we put

Vi = Ypuls) = Yo=Y, .

where the path of integration is chosen in Wy—{p}, then

1 oMieg (¢
T KL

I aY,, . 1 dv,,
=Dl dgm D= dpr P

From [4], corollary I to theorem 4 we have also the following
lemma.

Lemma 1.1. If dv is a semi-exact holomorphic differential on W
such that it is square integrable and has no non zero A-periods, then
dv vanishes identically.
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1.2. Definitions of divisors. Let W* be the Kerékjart6 — Stoilow
compactification of W and we put IW=W*-W. We denote by P
a regular partition of JOW. Since a regular partition P is induced by
a consistent system {P,} of partitions P,(W,) of W—W,, P induces a
partition of oW, for each n (cf. Ahlfors — Sario [1], chap. I, §6).
Let 0W,,=k.&',8,,j be a partition of W, induced by P. In particular
we denote Jl;): Q the canonical partition of dW and the induced partition
of oW, by Q is assumed to be the partition of dW, into its connected
components. Further we denote by & W) the set of all canonical ends,
that is, the set of complements of closures of canonical regions of W.
We associate with P and Ueeg(W) a complex vector space denoted by
m(P, U) such that each element ¢ of m(P, U) is a meromorphic diffe-
rential defined on U and satisfies the period conditions

S =0 with 1<j<k(n)
By

if oW, is contained in U. We put

Ao(P, Uy={¢p e m(P, U)|(i) ¢ is holomorphic (ii) ¢ has no non-
zero A-periods},

AP, U)={¢p e Ay(P, U)| [¢lly< 0},

where [|¢]ly is the Dirichlet norm of ¢ on U. {m(P, U)}ycow) {Ao(P,
U)}veew) and {A P, U)}ye,w) becomes inductive systems in an obvious
manner. We put their inductive limits

(Pym=Llimm(P, U), (P)Ao=lim Ao(P, U), (P)A,=lim A(P, U).

In particular we put (Q)4,=A, Then evidently (P)m>(P)Ao>A,.
9p=(P)m|A;, and 2p=(P)Ay/A, are complex vector spaces and 2}
is a subspace of 2,.

Let V be a subspace of 2% and put 2,/V=2p,(V). Let

np: (Pm — Dp, ng: Dp —> Dp(V)

be the respective natural mapping. To each element ¢ of m(P, U)
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there corresponds an element ¢ of (P)m, and hence an element nhonp
(§) of 2p(V). For simplicity we put nhonp (#)=<¢p>,. Since V is a
subspace of @), there is a subspace ¥ of (P)4, such that ¥ contains
A, and V=V/A, It is easy to see that ¢,em (P, U,) and ¢,em
(P, U,) determine the same element <¢,>,=<¢,>, if and only if
there are a suitable canonical end U, an element di of Ay(P, U) which
determines an element of ¥, and an element 4 of 4,(Q, U) such that

o=, +di+ 1 on U.

From now on we represent elements of (P)m, (P)4, and A, by
their representatives.

Definition 1.1. We call a subspace V of 2, a (P)-divisor at
boundary. An element ¢ of 2p(V) is called a Py,-singularity if and
only if there exist a Ueg(W) and ¢em(Q, U) such that |@]up,ynu
<o and o=<¢>,. The subspace of 2p(V) consisting of all P,-
singularities is called the space of Py-singularities and denoted by
&L(Py). To distinguish a (P)-divisor at boundary and a usual divisor
(a finite or infinite linear combination of points of W with integer
coefficients), we call a usual divisor an inner divisor. The inner divisor
o we shall consider in the following has the support |§| contained in
Wy—D=W—%— @l D,.

Definition 1.2. Let § be an inner divisor and ¢ be a subspace of
P(Py). We call the couple 4=(3,d) a P,-divisor. A multiplicative
meromorphic function f is said to be multiple of 4=(d, 0) if and only
if (f)=6 and <df>,€d. A meromorphic differential ¢ is said to be
a multiple of 4=(5, d) if and only if (¢)=06 and <¢>,€d. We use
the notation 4|f to show that f is a multiple of 4. 4|¢ also means
that ¢ is a multiple of 4. If & is a positive inner divisor and f is an
additive meromorphic function, then f is said to be a multiple of 4
=(—0,0) if and only if (f)=—6 and <df>,ed. We denote by 4|f
this relation.

Let V be a (P)-divisor at boundary and dv be an element of V.
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Let ¢ be a point of dW. If there is an open subset F of W* con-
taining q and dv has a representative db in ¥, i.e. np(db)=dv, such
that the restriction di|F nU of db is semi-exact and square integrable,
then we say that dv is regular at g. Here we have assumed that dp
belongs to Ao(P, U). This definition does not depend on a choice of a
representative dd. Indeed if di’ is another representative of dv in ¥,
then there are a suitable canonical end U'cU and an element 1 of
A[Q, U’) such that d&'=di+4 on U’. Thus di’ is semi-exact on U'nF
and

Ido g np = Ndollynr+ 1Ay 0 p<o0.
The support of dv is, by definition, the set
S(dv)y={q e oW|dv is not regular}.

This is a closed subsct of W.

Definition 1.3. Supp. V= \J S(dv),
where the closure is considered in W"i'"ley

Since dW is closed in W* and S(dv) is a subset of dW, Supp.V
is contained in dW. For a subset B of W* B means the closure of B
and Int B the interior of B.

Proposition 1.2. Let V be a (P)-divisor at boundary and E be a
closed subset of OW such that ENSupp.V=g. Then for a given repre-
sentative di in V of dveV, there exists an integer n, with the follow-
ing property: Suppose {W,}%, is a canonical exhaustion of W and
W— W,,=f\(3)U‘,-"’ is the decomposition of W—W, into its connected
componenlt:s.l Let U™ be the union of UL with U_‘,"_’n E#g. then
dolU™ is semi-exact and square integrable for n=n,.

Proof. Let ¢ be a point of E. Then ¢¢Supp. V= \U S(dv) and
dveV

this means that g¢S(dv) for all dv in V. Therefore for a given dv

there exist an open subsct F, of W* and a representative dd in V

of dv such that di|F,nU is semi-exact and square intcgrable, where
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dv is assumed to belong to Ao(P, U). We may assume that F,cU
and thus Fan'=Fq. The set F=q\€JEFq is an open neighborhood of
E. Let g be a given point of E. To each positive integer n there is
a component U‘j”‘ of W—W, such that ¢ is contained in LT‘JE’_ We
put U‘,-"’=U‘"’(q). Then evidently U™(q)cU)q) for n=m. Thus
{U(q)} determines a boundary component which defines the point

q. Hence there is an integer n(q) such that U q)c=F if n>n(q).

is a finite number of points ¢,,...,q, of E such that {Int U"D}, s,
is an open covering of E, where we put U= (q), Now let

n, be max n(g). If n>ny, and IntU{ nE#g@, then there is an
i with 1I§l§=1§§s such that I/1thl;1tW‘T}¢¢, and thus we have
U cuth,  Therefore U U =U™ is contained in F. Since Uy < U
we may assume that U$" is contained in F,. Thus dB|U{ is semi-

exact and square integrable, and so is dp|U™. q.e.d.

§2. A decomposition of meromorphic differentials

In this section we fix an open Riemann surface W satisfying the
condition (A).

2.1. Some lemmas. The following lemma 2.1 is easily proved by
(4) of proposition 1.1,

Lemma 2.1. (1) If we put

dy dy
h(p, 9)= d;"(q)= d;"(p),

then h(p, q)=h(q, p) and h(p, q)dpdq is a double differential. h(p,
q)dp (resp. h(p, q)dq) has a finite norm outside of each neighborhood
of q (resp. p).

) s =<—£)~H§’;,">dp= {S hr, pydrldp,

where the path of integration is chosen in Wy—{p}.



Meromorphic differentials 279

Lemma 2.2. Let ¢ and § be meromorphic differentials defined in
a neighborhood of W such that their poles do not lie in D=\UD,
n=1

and

Svf,(b:()’ Sv‘lp:()

n

for all yi contained in the common domain of ¢ and Y. If D, is

contained in the common domain of ¢ and , then we have an in-

equality
[ Gop=artpivty

The proof of lemma 2.2 is contained in the proof of [4], lemma
3. Next we show a similar inequality as in lemma 2.2. We put
D, n W,=0D'? and oD''=0D,—oD'?,

Lemma 2.3. Under the same conditions as in lemma 2.2, we have

q !
5§00 ’éz”%ﬁ%gﬁ’—n:}%'lff,”'*”"’”"»-”'””"»"

Proof. Let v be the harmonic function on D, such that u|¢D!?
=0 and u|dD'®’=v,. We denote by v the conjugate harmonic function
of u. The function u+iv maps D, with slits conformally onto the
plane domain {(u, v)|0<u<v,, O<v<2n} with slits. We put C(r)
={peD,lu(p)=r} for r with O<r<uv,. C(r) is a union of closed curves
in D, and the component of C(r) contained in D,, is homologous to
yi. The part D,(r) which is surrounded by dD‘¢’ and C(r) is a union
of ring domains in D,. By the Stokes’ theorem

(o (95, (G051, 5
o G011, (G0, 07
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A

’Scqu))d—/l + 1@, Wb

<|{.. ()] +1610,1015,

In exactly the same way as the inequality (2.1) we can show that

i [, (Jo)p| s2el 0¥l
1sist(n)

This completes a proof.

Lemma 2.4. Let Q be a relatively compact subregion of W with

Q=W, for someny,. Then

ldl,, |3 -a=— SV_an;;z,/asvds%

R
is continuous function on (Qn Wy)x(Qn W,). Moreover if we put
Ho(p =5 1hp.o)2dedg
~ JW-2
then JHo(p)|dp| is a continuous invariant form on .

Proof. Since proofs for the cases of dI1,, and Hy(p)|dp| are
same, we give a proof for the latter. We put W,=W,uD,. The
boundary of W, is aD'¢. If n is sufficiently large so that W,>Q,
then by the Stokes’ theorem

_.%—SW,,—Q . q)] 2dqcﬁ=—£—3w£”<gh(p, q)dq>m

~L((no. 9dq i 1.

By lemma 2.3 the first term of the right hand side tends to O for

n—o. Thus wec see

Hol p) = —%Sm(yl(p. q)dq>7l(p. 9)dq.
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Since the integrand is continuous with respect to p and Q2 is compact
we see that Hg(p) is continuous with respect to p. This completes
a proof.

Lemma 2.5. Let y be a dividing cycle and ¢ be a continuous
differential form on y. Then for a fixed branch of IZ:} on vy

dF (1)=d,| 112:10(p)
Y

is a differential on W—y and has a finite norm outside of a sufficiently
large compact subset of W, where d, means the exterior differential
operator with respect to t. Here the points q and s are assumed to
be fixed in W, and do not lie on y.

Proof. We choose W, so large that W, contains y. We show that
the norm of dF(t) on U=W-W, is finitc. We divide y into small arcs
y; (1Zi<1) so that cach y; is contained in a coordinate ncighborhood.
If we put

dF(t)= (I,S 1e-ra(p),

¥

1
then we have dF(f)= 3 dFy(1). Hence it suffices to show that cach

i=1

dF(t) is of finite norm on U. Since y;n U=¢ we obtain
dFAt):{S (Oﬂg,';'/at)a(p)}dt= {S a(p)gph(r, t)dr}dt,
Vi Vi q

where the second equality holds by lemma 2.1. Let f(r)=gra(p) and
pi» q; the end points of y;. then by the integration by parts

ar0=={{ fhtp, odp}di+ £ hir. dr-

—f(q,.)g:ih(r, t)dr}a’t.

We have only to show that the first term on the right hand side is
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of finite norm on U, since we can show in exactly the same way that
the second term is so. We put

dG(1)= {gn.f(p)h(p, Odpldt.

We may assume that y; is a plane curve. By definition of the integral
we may write as

dG(n)={lim 3 f(z)h(z;, )(z;—z;_,)}dt,
m—00 4

where 4 is a division of y; by points z;, 1< j<m, z; being a point on

7: between z; and z;_;. Let Hy(z; z) be the inner product of h(z,

Hdt and h(z,, 1)dt on U, then by the Schwarz's inequality we obtain

|HU(Zja Z)| = \/Hu(zjv Zj) \/Hu(zk» Zi).

We put Hy(z;, z;)=Hy (z;)=H,(z;) for simplicity. Now we put
dc;m(r)=f=jl JEI, (=2, )de
and t=£&+in. Then
|, [Graizdzan = & GO 2G5 -2- ) G- 20)
< 5 & ENEIVHE VHEIz =21 122
= (£ EIVHE |25~z
Thus by the Fatou’s lemma
[ jGiordzanstim| 167, o dzan
<(| 1wV apl)

Since  /H,(p)|dp| is a continuous invariant form by lemma 2.4
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S Ifip)lH,(p)|dp| is finite. Hence the norm of dG(1) on U is finite
al}"l‘d so is the norm of dFy1). q.e.d.

22. A decomposition of meromorphic differentials. In this sec-
tion we define a decomposition of meromorphic differentials and this
decomposition will play important roles in §§3 and 4.

Proposition 2.1. Let dv be an element of 2p with a representa-
tive dd in A¢(P, U). Let fix q in W,, then

N T 5
l((ll’)— Tf—tl‘!ul—[}:odpgp ﬂ dU(J)
is a meromorphic differential on W and is also a representative of
dv, that is, np(i(db))=dv. Here II3' is a single valued branch of
the integral of dIly!, on Wo—C, where C is a path from ¢ to p in
We.

Proof. First we remark that for n such that dW,cU S 1157 di(s)
does not depend on the point t. For let t' be another Somt of W,
—UD,. Then the difference dI13', —dIl%! is a holomorphic square
integrable differential on W such that all of its A-periods are zero.
By lemma I.I it vanishes identically and therefore [15! —I13 does
not depend on s. Hence

Saw"ﬂ;‘;,;dﬁ(s) =S‘ 1151, dis(s) +S (T3t — 1150 di(s)

cw oW,
=S 3o s).
ow

Choose a sufficiently large n, so that dW, is contained in U for n
=ny. Then it is easy to see that

! ima S 5 dis(s) =
W,

‘)nl n—c0 psq

1 .
2ni dpSc’Wnu[]p”qdv(S) Pe W"O
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__..—‘d,,s_w My4di(s) +dd(p) pgW,,
« IIO

Since [T;% has no non-zero periods along each dividing cycle in
W—C', where C' is a path from s to ¢t in W, and also has no non-
zero A-periods, we see

: : ot I . Syl g —
SV""VTM dpgcw"on w(s1=0, SA. 2ni d"Sow.xonp,qdl(S) 0

for n>ng and for all 1. Therefore
S i(d5)=0 and g i(dd)=0
,an Ay

for n>ny and for all 1. This means that i(di)e Ay(P, W—W,). The

differential '7!75“‘1"8 T3, di(s) is of finitc norm on a neighborhood
= eWn,

of ¢W by lemma 2.5. Hence the above diflerential belongs to ALQ, U’)
for some canonical end U'c W—W, Since

ng*

i(ai) = di+( —-%erPSF )

n,

Mypdics) )
outside of W,, i(db)=dimod A,. Hence np(i(dd))=dv. q.c.d.

Proposition 2.2. Let n be « meromorphic differential on W and

assume that n is represented us
n=c+¢+4

on a canonical end U, where aem(Q, U), pe Ay(P, U) and 7€ ALQ,
U). We put ()= 51 8,5, where 6, and &, are positive inner divisors
ka(n)

and put d,(n)= ¥ n;q;=0,IW,. If the singular part of n is Z “‘dz
=t

at q; then,

ka(n) kaln) n; b. ik gln) 14
H,(p)= Z b”nZ’«I _ z s P _l Yo+ Z (S )S dwj
i=2 = 2 Aj q

__r sol (s
2ni Saw,.””"’a(é)
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converges to a (multi-valued) meromorphic function H uniformly on
compact subsets of Wy—|3,| and

(2.2) nip) = (llmH (p)—lim—— i S ;;;",(/)(s)>

n—o

1 s
=limdH,(p)—lim- i dpgl_’w"nﬂ'-ldd’(s)‘

n=% n—a

Proof. We remark at first that

ka(n)

(2.3) .'=Z| b;; =0

for sufficiently large n. Let p, be an arbitrary point of W, and
and K be a relatively compact simply connected neighborhood of p,
in W, such that Kn|d,|=@. It is sufficient to show the uniform con-
vergence of H,(p) on such K. We choose n, such that KcW,.
Let =, denote the restriction of = to W,. For a fixed q in W,—-Z
—10,(1)] we take a path p from g to p, and a narrow strip K'op
such that KU K’ is simply connected domain in W, —Z, —|5,(n)|. We
denote by U; a simply connected neighborhood of {q;} U{q,} such that
Uin(KuK')=¢ and U;cW, for g;eW, where we have assumed
q,eW,—Z,. Then by the Stokes’ theorem

0=(dIl, .. *Nw,-kuk')- 2(':)U,

~

=_36W"ns "'H-S "“'nu ni’ﬁl”"'gamux')”f’ltq'l+

g(n)
Hsr — s,t>.
+i§1 SAd p'qSB,n SA,”SBjd P4

If we use (2.3) and proposition 1.1, then we see

S k2(n) tq"(s)_zm Z btl qa.qn
2( igz Uy i=

ka(n) ny
—2mi Y 3 YR

iS1 k=2 k ik
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On the other hand

o . p 2 s . ,’
Sn(KUK’)H;;',,n(s)= _2”’Sq"(3)’ Smdﬂb-f‘; —ng dw;.

q

Therefore we have

oo =tum=t mygor— 5 mpae)

2ni

for each sufficiently large n. By lemma 2.2

'S~ I r'](s)‘ _m“dnp alpl4llp,
w 1gis1(n)
Since pe K<W,,, there is an n, such that
|50 T3, 4) | S 2l Vo,

I<1Sl(n)

for each integer n=n,. Since ||dIT,,llw_w,_, is continuous with respect
to p on K by lemma 2.4 and lim |dI, |lw_w,., =0, for a given &'>0
n—aw

there is an integer ny such that
”dnp,q”D,, < ”dnp,q“ W-W,-1 <8’

for each n=n, and for each pe K. Since dIl,, and ¢ have no non-

2]
zero A-periods on their respective domains, it is easy to see that there

is an integer ng such that

o Trab@ = M0

for integers n>m=n{. Therefore for a given £>0,

g n(s)+ ,mg W IIy'd(s) —H,(p) | <e

for each n>max(ny, ny, ny) and pe K. This completes a proof.

Corollary. Let A=(5, 0) be a P,-divisor on W and n be a mero-
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morphic differential such that Aln. 1f n has two representations
n=t+¢,+4=1+P,+4;

on ‘a canonical end U, where t,em(Q,U) with |tllyawp,) <%, ¢
€ Ao(P, U) and A€ A(Q, U), then

kaln) 4 ka(n) n; bik p.a 9(n) p
HuP)= .;z billara, = EZ:': kgz k=1 Yokt jgl SAjn)Sqdwj

1 S .
—_— I3 t,(s i=1.2
27” oW, p,q-t )a LRt

tend to the same limit.

Proof. Since ||7;llyqup,) < and S 1,=0,
y:l

. .
llmr——-lfgawnﬂp;'qr,-(s) =0

n—o 2n

by lemma 2.2. q.e.d.

Let 4=(5,0) be a P,-divisor on W, n be a meromorphic differ-
ential such that A|y. Then n has a representation

(2.3) n=t+¢+4

on a canonical end U, where ¢ e Ay(P, U), Ae A(Q, U) and tem(Q, U)
such that ||tllynp,)<o. If we put

hy(n)(p)= 11330 dH,(p)=d ']ig H,(p),

W) =—rlimd, | e,

then hy(n) and t,(n) do not depend on a representation (2.3) by the
above corollary.

Definition 2.1. The decomposition

n=hy(n)+t,(n)
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is called V-decomposition of 1.

Proposition 2.3. 1,(n) has no non-zero A-periods. hy(n) is semi-

exact if n has no residues. S.h,,(r))=0 for every sufficiently large
y'll

n. Furthermore hy(n) has a finite norm on \U D,.
n=1
Proof. From the constructions of h,(n), all the A-periods of h,(n)
and those of n are equal, and h,(n) is semi-exact if n has no residues.
Therefore

g tv('i)=g n—S hy(n) =0.
Aj Aj Aj

To show that [hy(n)llyp,<oo it is sufficient to prove that hy(n) has a
finite norm on Uy=(\U D,)n U, where U is a canonical end on which

n=1

n is represented as n=t+¢+41.

Iy (M o= ln=te(Mllye S ltllve + 1@ —2v (M llys + 1Ay,

From proposition 2.1 ¢=t,(n)mod A, and thus |[¢—1p(n)lly,< 0.
Therefore ||hy(n)|y,<oo0. On the other hand if yi,cU, then

[ mn={ @+ire-nm

Now let & be a positive inner divisor and 0 be an arbitrary sub-
space of #(P,), where &(P,) is the space of Pj-singularities. If 7
is a semi-exact meromorphic differential which is square integrable
outside of a compact subset, (y)=—9 and furthermore has no non-zero
A-periods on a canonical end, then clearly 4=(—9, d)|n. This means
that such a differential as above has V-decomposition.

Proposition 2.4. dw;=hy(dw)), dY,,=hy(dY,,) and dIl, ,=h,(dI], ).
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§3. Duality theorems

As in §2, we fix an open Riemann surface W satisfying the condi-
tion (A).

3.1. The main duality theorem. Let 0W=oUBUy be a regular
partition of dW such that fUy#¢ and o may be empty. We denote
this partition by P,. Since P, is regular, «, # and y are closed sub-
sets of W*=WUdJdW. W* is a compact Hausdorff space and there-
fore W* is a normal space. Hence a, f and y are separated by open
subsets of W*. Let U(a), U(B) and U(y) be open neighborhoods of
o, B and 7y respectively such that they are mutually disjoint. U(a)
UU(B)U U(p) is an open neighborhood of oW and if we put (0W,)
nU()=a,, @W,)nUPB)=p, and (dW,)nU(y)= y,, then oW,=a,U B, Uy,
is a partition of dW, induced by P,. Let §,= Z m;p; and 6,= kzz nq;,

1<k,, k;<00, be positive inner divisors in W0 \JD,, such that 16,]
N|6,/=@. Q is the canonical partition of dW. Let Vl be a (Q)-divisor
at boundary such that Supp.V,cf. 4,=(-§,,0,) is a Q, -divisor.
Let P be a regular partition of 0W which is a refinement of Py, that
is to say, each part of P is contained in a part of P,. Let V, be a
(P)-divisor at boundary such that Supp.V,cy and let 4,=(—0,, 0,)
be a P, ,-divisor. We consider the following two complex vector spaces.

N(4,)={f|f: an additive meromorphic function such that
() 4,1f ) Sy,.df:O for all 7 and (3)& df=0
n Aj

for all j},

W(4,)={dv|dv: a meromorphic differential such that
(1) 4,]dv and (2) S dv=0 for all f,},
#nj

where oW,= Uﬂ,,, is the partition of 0W, induced by P which is
used to deﬁne (P)m and (P)A,, etc.. We assume that the partition of
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0W, induced by P is a refinement of the partition of dW, induced by
Py,

Let f be an element of N(4,). Since <df>, €d,,df has the
V,-decomposition

df=hy (df)+1, (df).
If dv is an element of W(4,), then dv has the V,-decomposition

dv=hy (dv)+ty(dv).

Since df has no residues, Iy (df) is semi-exact and thus
[ wian={ ar={ nw@n=o.
7 vh vk

From this we see that df, hy (df) and t, (df) have single valued inte-
grals on W,—16,]. Now choose single valued integrals f, Sh,,l(df) and

St,,,(df) on Wy—|86,] so that f=ShV,(df)+StVl(df). We put 8,(n)
=6,|W, and &,(n)=6,|W,. Let U; and U; be simply connected neigh-
borhoods of p;ed,;(n) and q;ed,(n) in W,n W, respectively. We as-
sume U;nU;=¢, U;,nU;=¢ for j#i and U;nU,=¢ for all i and j.
Since df is semi-exact, by the Stokes’ theorem,

0=(df, *hy (dv)w,-vu;-vi,

=—SW fhy(do)+2ni S Res(fhy,(dv))

pjed(n) pj

+2ri ¥ Res(fhy,(dv)+
q4;

qjeda(n

y(n)]

# 24,0, a0 = o, o}

=—Sm”{ghv,(deStm(df)}hyz(dv)ﬂni T Res(fhy,(dv))

pjedi(n) p;

(n)
+o ¥ Res(fh,,l(dv))—gzg hyz(dv)g df.
) ay J=1JA4; B;

qjeéz(n
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Since [[hy (df)lyp, <o and [hy (dv)]yp, <o, we have

lim S,« n(ghy,(df))hyz(du)=o

n-o Jow

by lemma 2.2, Here we have used the fact that Sy,. hy,(dv)=0 for

sufficiently large n. Therefore

lim { - Saw"<gt,,l(d N )iy (do)+2mi 5 Res(fhy. () +

n—o pj€d (n)

9(n)

20 3 Res(fhy (@) =% | (o) dff=0.

qj€d2(n) q; Jj=

From this identity we see the following lemma.

Lemma 3.1. Let feN(4,) and dveW(d4,). Let ghyl(df) and
StVn(df) be single valued integrals on Wy—|8,| respectively. Then in
order that

Z\(f, dv)=

lim { - gawn<gtyl(¢1f))l1,,2(du)+ i Y Res( th,(du))}

n—-o pjedi(n) pj
converges, it is necessary and sufficient that

L1/, dv)=

. 9(n)
tim {8 { hyz(dv)g df-2ni % Res(fhy,(do)k
1J4y B; ) ay

n—o {j= qjedz(n
converges.
Proof. We have only to show that 2 ,(f, dv) and Z*(/, dv) are

independent of the choice of the branches gtyl(df) and f. Since
Sv‘h“(dv)=0 for sufficiently large n, we see |

gw hy(d0)=0 and S Res(hy,(dv))=0.

qjedaln) qy
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Hence if Stv.(df) and f are replaced by constants in Z,(f, dv), it is
easy to see .Z(f, dv)=0. This means 2 ([, dv) does not depend on
the special branches of S’V.(‘lf) and f. By the same reason Z*(f, dv)
does not depend on the choices of the branches of Sty,(df) and f.

q.e.d.

Lemma 3.2. Let fe N(4,) and dve W(4,). Then

Zaf doy=—lim | (§1v.(a) 1y, (do

and

23(f doy=tim| (§1v.(a))1v,(a0
exist and ZL,(f, dv)=L3(f, dv).

Proof. If we put 0W,=«,Up, Uy, for large n, then B, and B,
are homologous to each other. By the Stokes’ theorem

Sp,,,(StV‘(df ))tyz(dv) - g,,"<’V.(df)>lv2(dv)

= = T, wianf wan=§ oo w.@n).

Wn=Whn

where X' means that the sum is taken with respect to A; B; con-
tained in the part of W, —W, surrounded by B, and B,. This sum
vanishes for sufficiently large n and m by proposition 2.3. Thus

§, (Jn@ ) ={, (fo@n))pntan

and Z,(f, dv) exists. By the same reason we see that £%(f, dv) exists.
Again by the Stokes’ theorem we have easily

0=(ty,(df), *ty,(dv))w,

- So w,.(gry'(df)>th(dv)
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= _Sa,,<gt“(df)>'”(dv)-Sa,(S""(‘lf)>’h(d”)

_ S,,,(Sty‘(df))"l(d”) .

Since we have assumed that Supp.V,<=f and Supp.V,cy, we see by
proposition 1.2 that ¢, (df) and t,,(dv) are semi-exact and of finite

norm in a neighborhood of a.

lim Su"(grm(f))ryz(du)=0

n-—0

by lemma 2.2. On the other hand we see casily

[ (nianotan=S, (fnosin.

n

Thus S <\'t,rl(df)>t,,2(dv)=0 and from this fact we have 2,(f, dv)
=2%(f. dv). q.e.d.

We introduce the following three spaces.
No(d,)={fe N(4)|Z ([, dv) exists for all dv in W(4,)}
No(d,14,)={fe No(4)|f: single valued, (f)=d,—0, and
Z,(f, dv)=0 for all dv in W(4,)}

W(4,l4,)={dve W(4,)|(hy,(dv)) 29, —9J, and

Iimg <St,,|(df)>dv=0 for all f in No(4,)}.
n—o Jf,

Theorem 1. dimc No(4,)/{No(4,]4,)+C}=dimc W(4,)/W(4,]4,),
where dim¢ stands for the complex dimension and the above formula

permits of infinite dimensions.

Proof. We define a bilinear mapping of Ng(4,)x W(4,) onto C
by T(f, dv)=2,(f, dv)+.Z,(f, dv). We dcnote by K, the right kernel
of T and by K, thc left kerncl of T. We have only to show that
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K,=No(4,14,)+C and K,=W(4,]4,).

Let f be an element of K,. For simplicity we assume that J,#0.
All the normalized Abelian differentials of the first kind are in W(4,).
Since 1y,(dw;)=0, we have Z,(f, dw;)=0 and hence T(f, dw;)=2(/,
dw;)=0. Since &Z,=2% Z¥(f, dw;)=0. This means that all the B-
periods of f are zero. Since f is semi-exact, f is single valued. Next
we substitute dY, , for dv, where I=n<n;—1 and 1< j<k,. Since
ty(dY,, )=0, we have &,(f dY, ,)=0 and this means f™(q;)=0
for 1SnZn; If k;22, then we put dv=dIl,, . Since t,(dIl, ,)=0,
£,\(f. dll,, ,)=0. Therefore we have f(q;)=f(q,). In both cases of
k,=2 and k,=1 we obtain (f—f(q,))=0,—0,. But it is easy to see
that Z,(f(q,), dv)=0 and £,(f(q,), dv)=0 for all dv in W(4,). There-
fore

Lo f=fq)), dv)y=2L,(f, dv)=T(f, dv)—Z(f, dv)
=—2,(/, dv)=—-2,(f-f(q,), dv)=0.

This means that f=f—f(q,)+f(q,)e Ny(4,|4;)+C. Therefore K,=N,
(4,114)+C.

It is casy to sec that K,>C. Now assume that f is an element
of No(4,14,). Since [ is single valued, all the B-periods of f are
zero. Since (f)=0,—9,, > Rqes(fh,,z(du))=0 for all n. Thus

i

qjedaln)

L*f, dv)=0 and hence Z,(f, dv)=0 for all dv in W(4,). Of course
Z,(f. dv)=0. Therefore T(f, dv)=0 for all dv in W(4,) and this means
K,oNy(4,4,). We have proved K,=Ny(4,]4,)+C.

Now we shall prove K,=W(4,[4,). Let di be an element of K,.
It is easy to see that Y, ,,1Smsm,—1 belong to Ny(d,). In fact
since  ty,(dY,,,)=0, £ (Y, ., dv)=2niRes(Y, /i, (dv)) exists for all
dv in W(4,). Furthermore 2Z,(Y, d’;j)=0 for all dv in W(4,) and
therefore & ((Y,, ., dB)=0. Therefore Res(Y,, /1y (dD))=0. We con-
clude that (I, (dv))=6,—6, and "

0=T(f, di)
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-t - G o i -, Gt

for all fin Ny4,). Since Supp.V,cp,

lim SW"(SI,,‘((U')y:,,Z(dﬁ)= lim Sﬁ"(gt,,l(df)>h,,z(dﬁ)

by lemma 2.2 and proposition 1.2. Hence we obtain

i, (=

for all f in Ny(4,). "We have proved dive W(4,|4,), i.e. K,cW(4,|4,).
Conversely let di be an element of W(4,|4,). Then

T(f, di)=lim | - Saw"<gt,,,(df')>l1y2(d5) - Sﬂ"thl(df)) ty (o)

n—oo

= tim (= (St =S, (1v0ar) ) )

=~ lim Sﬂ"<gt,,l(df)>db=0.

Thercfore dioe K, and this means K,=W(4,|4,). This completes a
proof.

3.2. Duality theorems for divisors of restricted types. In this
section we shall prove two duality theorems by restricting the types of

. . kl kl .. . .
divisors. Let 6,= 3 m;p; and d,= Y n;q; be two positive inner di-
=1 j=1

(=}

visors in W,— \U D, such that |6,|n|d,|=0g. We introduce the follow-
n=1

ing two complex vector spaces.

M(—=8,)={flf: an additive meromorphic function such that
1) (Nz=8,, @ | dr=0. for all j 3 df=0
Aj 7'.'-
for all yi and (4) [ldf|lyp, <o}

W(—9,)={dv|dv: a meromorphic differential such that
2)=1 P
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(1) (dv)= —38,, (2) g_'dv:O for all i and

JVh

(3) lideflup,<o0j.

Then dM(—8,)={df|fe M(—=4,)} defines a subspace of (Q)m. If we
denote by O the zero dimensional subspace of 2, and if we put
61=;180r7Q(d1\71(—51)), then 0, is a subspace of &(Qy). Similarly W(—4,)
determines a subspace of (Q)m. If we put d,=nony(W(—9,)), then 0,
is a subspace of £(Q,). Since Supp.O=g and Q is the finest partition
of 0W, the conditions of theorem I are satisfied for an arbitrary regular
partition P, of dW into three parts a, f§ and y.

Lemma 3.3. [f we put 4,=(-90,, ) and 4,=(-96,, 0;), then
NA)=M(=3,).  W(d,)=W(-3,).

Proof. First we show that N(4,)=M(—-3,). Let feN(4,), then,
by definition of N(4,), we sec (f)=—0, and <df>,=ngny(df)ed,.
Therefore, as is easily seen, df=hy(df) and thus [df|lyp,=ho(d)lup,
<o0. It is evident that f has no non-zero A-periods. Furthermore df
has no residues. This shows that S ,df=0. Hence we conclude f
e M(=35,), i.c. N(4,)=M(—5,). Conversely if we take any element g
of M(=9,). <dg>,€d, and (g)=—6,. Hence 4,|lg. Furthermore
S“dg=0 and gyidg=0 by definition of M(—3,). Hence N(4,)>

S

M(—6,), i.e. N(4,)=M(=3,).

Next we show that W(d4,)=W(-4,). It is clear that W(-9,)c
W(4,). Let dv be an element of W(4,). By definition of W(4,), we
see (dv)= -9, and <dv>,engony(W(—90,))=0,. If we choose a
canonical end U, then

dvo=dw+ 2
on U, where dwe W(—0,) and 1€ A,Q, U). Therefore
ldvlleacupn S ldWlyap,) + 114y < oo.

This means that [[dv]ly,, <. [Furthermore S ,dv=0. Hence dv belongs

n



Meromorphic differentials 297
to W(=90,), i.e. W(d,)=W(--9,). q.e.d.

In the present case of 4, and 4, the bilinear mapping T: Ny(4,)
x W(4,)—C degenerates to &, since Supp.0O=g.

T(f, dv)=2 (f, dv)

= lim {— Scwn<5ro(df)>lro(du)+ i Y Res( fho(dv))}

n-w pyeditn) pj

=1lim2#i >  Res(fho(dv))
Pj

noo  piedi(n)
since ty(df)=0 for all fin N(4,). We put 6=06,—9,. If we put
Mo(—=8,)={fe M(=3)|Z (. dv) exists for all dv in W(—=0,)}
My(=d)={fe Mo(—=0d)|f is a single valued meromorphic func-
tion such that (f)= -0}

then the space My(—dJ) is nothing but N, (4,]|4,). Similarly W(0)
={dve W(—§,)(dv)=6} is W(d,]|4,). With these notations wc have
the following duality thcorem.

Theorem II. (Sainouchi [4], theorcm 5)
dim¢ M o(—8,)/{M o(—6)+ C} =dimc W(—03,)/W(9).

Next we shall be concerned with another divisor. Let P, be a
regular partition of OW into three parts o, f and y. Further let P
be a regular partition of éW which is a refinement of P,. Let V,
be a (Q)-divisor at boundary and V, be a (P)-divisor at boundary
such that Supp.V,<=f and Supp.Vp<y. We put

M(Ve)={flf is a semi-exact holomorphic additive function
such that no(df)e V, and S df=0 for all j}
Aj

2(Vp)={dv|dv is a holomorphic differential such that S dv=0
) Bnj
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and np(dv)e Vp}.
Further we put
MVpllVp)={fe u(Vp)|f is single valued and lim S Sty (dv)=0

n—0

for all dv in 2(Vp)}
2(VplVo)=1dve 2(Vp)llim Sﬂ'.(gtyq(clj')>du=0 for all f in .4(V,)}.
Then we can prove the following theorem.
Theorem 111 dim¢ . #Z(Vp)/[{t(VollVp)+ Cy=dime 2(Vp)/2(Vp( Vo).

Proof. Let {0}, and {0}, be thc zero dimensional subspaces of
20(Vy) and 2p(Vp) respectively, and consider the Q -divisor 4,
=(0, {0}¢) and Py -divisor 4,=(0, {O}p). It is casy to see that N(4,)
=M(Vy) and W(4,)=2(Vp). For thesc 4, and 4,. the bilincar map-
ping T: N(4,)x W(4,)-C is written as

T(f, doy=lim | — g w..< g:,,q((4,-)>/,,,P(<zl))— Sﬂ"(gr./Q(df)>t,,l,(dv)}

n-—ao

and this exists for all (f, dv) in N(4,)x W(4,). In fact if n and m are
sufficiently large, then

Se w,.(tyq(df)>h voldo)= Sa w,,.(gtvo(df)>h ve(dv)

since Iy (dv) has no non-zero A-periods outside of a large W,, and
tyo(df) has no non-zero A-periods. Thus No(4))=N(4,)=#(Vy).
Therefore

No(d,14)={fe #(V)lf is single valued and Z,(f, dv)=0
for all dv in 2(Vp)}
and

W(d,)ld,)={dve -@(Vr)“ﬂggﬁ (glyq(dj')>dv=0 for all f in (V)
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But if fe No(d4,(4,), then the Vy-decomposition of df is

df=hy J(df) +ty (df) =ty (df)
since | hy ,(df)llyp, <0 Aand SA,hVQ(df):O for all j. From this fact

o

[4;)=(VylVp) and W(4,[|4,)=2(Vp|Vy). Theorem I completes a
proof.

we see Z,(f, dv)=1im& Sty (dv). Therefore we have proved Ngy(4,
n-= Tn

§4. [Interpolation theorems

As in the preceeding sections we fix an open Riemann surface
W satisfying the condition (A).

4.1. An interpolation theorem for multiplicative meromorphic
functions. Let P be a regular partition of dW and V be a (P)-divisor
at boundary. Let ¢ be a P,-singularity and 6 be an inner divisor in
W, — GD,, such that the degrec of d(n)=96|W, is zero for each n.

n=1
k() k(n)
We may put o(n)= 3 p;— ¥ q;. Lety; be a singular I-chain in W,=&
= i=
k)
such that dy;=q;—p; and put C(n)= ¥ y;.
i=1

Theorem IV. Let {x4, xp,}%=1 be a sequence of complex numbers.
Then there exists a multiplicative meromorphic function f on W such
that

(4.1) (f)=9, <dlogf>,=0

and

(4.2) [ diogr=r,, | diogr=ys,
Aj J

if and only if the following conditions (4.3), (4.4) and (4.5) hold:

k()

gln) p
(4.3) My(p)= ¥ Mt + % 1, S dw,;
J= J= q
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converges unifornly on compact subsets in Wy— i C(i), (4.4) |dM|lyp,
, i=1

<o and <dM>,=a, where M(p)=lim M, (p), (4.5) there is a holo-

morphic differential ¢ such that

(i) SA_¢=0 for all j, S $=0 for all B, and np(d)e V.

nj

. . . gtn) g
(“) Ilm {27'“ SC(H)de-l- i=Zl T"jZA"} = XBJ+ SBAd)’

n—00

Bj B J

If the conditions (4.3)-(4.5) hold, then one of the desired function
fis given by cxp(l\/l+g</)).

where ‘t,-j=g dw,-=S dw;.

Proof. Let us assume that there exists a function f satisfying the
conditions (4.1) and (4.2). Then dlogf has V-decomposition

dlogf=h,(dlogf)+t.(dlogf).

Then np(t(dlogf)eV and <hy(dlogf)>,=0g. By definition of V-
decomposition

gtn)

k(i) < p
M,(p)=23 Ny + 3 XA’S dw;
Jj=1 Jj=1 q

converges uniformly on compact subsets of Wy—|d,| and hy(dlogf)
=dlim M, p). Therefore M, (p) converges uniformly on compact

-0

subsets of W,— f: C(i) and {[dM|yp,=l1y(dlogf)llup,<co. Furthermore
<dM>,=o. L:a_tl U; be a simply connected neighborhood of {p;}
U{q;} such that if p;, q;eld(n)|, then U;cW, We assume U;nU;=9¢
if i#j. We put t,(dlogf)=¢. ¢ satisfies the conditions (4.5), (i). By
the Stokes’ theorem

0=(d\Vj, *d logf)wn_k(dll)u
ji=

)

==, (Jaw; Y arognr+taropm+ £ (faw;)atogs+
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9(n)

+ i; {SA.»dijs,(”ng_ SA.(HngSB.-dWJ} .

Since |hy(dlogf)|lyp,< oo,

,l,Ln; Snw"<gdwj>hy(d logf)=0

by lemma 2.2. On the other hand

k(n)

0 (fawrcdronn = =2 a,

i=1

Moreover sinceg ¢=0 for all i, we see

'!i—r»?ogaw,,<gdwj>¢ T Ssqu'

Therefore

a(n)

lim {2711'& dw;+ 3 TijA.} =XB/+S ¢
c(n i=1 Bj

n—00

Hence we have shown that (4.3), (4.4) and (4.5) hold.

Conversely assume that (4.3)-(4.5) hold. By making use of M(p)
of (44) and ¢ of (4.5 we put dF=dM+¢ and f=exp<SdF>. Then
it is clear that (f)=J and <dlogf>,=<dM+¢>,=<dM>, =0,
since <¢>,=0. Since the A;-period of M is y,,

g ¢1F=S dM+S ¢=S dM=y,..
Aj Aj Aj Aj

By the Stokes’ theorem

0=(dw1, *dF)W""‘:y,) U,

g9(n)

T S‘wyﬂ(SClWJ.)dF—27.“8‘:(")dWi-|- igl {SA(dWJSBidF—SAidFSBtdW'i} ’
Hence
g9(n)

tim 2| dw;+ 'S wpaf={ daF+{ 9.
c(n) i=1 B By

n—+00
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If we compare the above identity with (ii) of (4.5), we see
S dF=yy,, i.e. g dlogf=yp, q.e.d.
B; JBj

Corollary. Let V be a (Q)-divisor at boundary and o be a Q-
0
singularity. Let &6 be an inner divisor in W,— \U D, such that deg.d(n)

n=1

=0 for each n. Then there exists a meromorphic function f such that
(4.6) (f)=94, <dlogf>,=0

if and only if there exist a sequence {n,, ng}%-, of integers and a
semi-exact holomorphic differential ¢ satisfying the following proper-
ties:

k(n) g(n) . P
4.7) M, (p)= 2 1137, + '21 27rmAjg dw;
J= q

=1
converges uniformly on compact subsets of Wy— % C()),
=1
(4.8) |dM|yp, <0 and <dM>,=a, where M(p)=lim M,(p),
n—ao

49) (i) SA.¢=0 for all j and nyd)eV,

9g(n)
(i1) lim2m’{g dw;+ ZI,-jnAl.}=27rinBj+S ¢.
n—oo C(n) i=1 Bj
4.2. An interpolation theorem for a singularity of restricted type.
In theorem IV we substitute the zero dimensional subspace of 2
for V. Then we have the following theorem due to Sainouchi [4].

Theorem V. In order to exist a meromorphic function f such that
(f)=6 and ||dlogfllyp,<oco, it is necessary and sufficient that there
is a sequence {n,,ng}%_, of integers such that

k(n) 9(n) p
4.10) M (p)= £ M50, + % 2miny, |,
j=1 j=

q

0
converges uniformly on compact subsets of Wo— 3 C(i),

i=1
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4.11) ldM |y p, < oo, where M(p)= lim M, (p)
n—0
. 9(n) l
(4.12) lim g dwy+ B n b=,
n— C(n) i=1

Proof. Suppose that there exist a desired function f. We define
Qo-singularity ¢ by <dlogf>,. By corollary to theorem IV, there are
a sequence {n,,ng}%; of integers and a semi-exact holomorphic
differential ¢ satisfying the conditions (4.7)-(4.9). Since no(¢)e V={0}
from (i) of (4.9), ¢ is square integrable, semi-exact and has no non-
zero A-periods. Thus ¢=0. Therefore (ii) of (4.9) is of the form (4.12)
in the present case. Conversely assume that (4.10)-(4.12) hold. If we
put <dM>,=o0, then by corollary to theorem IV we have a mero-
morphic function such that (f)=0 and <dlogf>,=06. On a canonical
end U, dlogf=dM+2, where 2e A (Q, U). Therefore |dlogfl|yp, <.
This completes a proof.
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