On the cohomology mod p of the classifying spaces of the exceptional Lie groups, I

Ву

Mamoru MIMURA and Yuriko SAMBE

Dedicated to Professor A. Komatu on his 70-th birthday (Received July 25, 1978)

§ 1. Introduction

Let p be a prime and G a compact, 1-connected simple Lie group. In general, when $H_*(G; \mathbf{Z})$ has no p-torsion, the cohomology mod p $H^*(BG; \mathbf{Z}_p)$ of the classifying space BG of G is a polynomial algebra. When $H_*(G; \mathbf{Z})$ has p-torsion, however, $H^*(BG; \mathbf{Z}_p)$ is of complicated form.

Let E_i be a compact, 1-connected exceptional Lie group of rank i (i=6,7,8). Then $H_*(E_i; \mathbb{Z})$ has p-torsion for ($i=6; p \leq 3$), ($i=7; p \leq 3$) and ($i=8; p \leq 5$). Of these the module structures of $H^*(BE_i; \mathbb{Z}_2)$ for i=6,7 have already been determined in [5] and [9] respectively.

The purpose of this series of papers is to investigate the structures of $H^*(BE_i; \mathbb{Z}_3)$ for i=6, 7, 8 and also of $H^*(BE_8; \mathbb{Z}_5)$.

Let $\{G:p\}$ be the set of all compact, associative H-spaces X such that $H^*(X; \mathbf{Z}_p) \cong H^*(G; \mathbf{Z}_p)$ as Hopf algebras over the Steenrod algebra \mathcal{A}_p . (We do not necessarily assume the existence of a map between spaces inducing an isomorphism.) For every space X of $\{G:p\}$ we have the Eilenberg-Moore spectral sequence $\{E_r, d_r\}$ such that

(1.1)
$$E_2 \cong \operatorname{Cotor}_A(\mathbf{Z}_p, \mathbf{Z}_p) \text{ with } A = H^*(X; \mathbf{Z}_p),$$

$$(1. 2) E_{\infty} \cong \mathcal{G}_{i}H^{*}(BX; \mathbf{Z}_{p}).$$

(Refer, for example, to [12] and [13] for the construction and the properties of the Eilenberg-Moore spectral sequence.)

In the present paper, Part I of the series, we determine the E_2 -term of the Eilenberg-Moore spectral sequence for X_6 of $\{E_6:3\}$ and for X_7 of $\{E_7:3\}$. The main results are Theorems 4.10 and 5.20.

The paper is organized as follows. In § 2 we construct an injective resolution of Z_3 over $H^*(X_7; Z_3)$. In sections 3 and 4 we determine $\operatorname{Cotor}_A(Z_3, Z_3)$ for $A = H^*(X_7; Z_3)$. In the last section, § 5, we construct an injective resolution of Z_3 over $H^*(X_6; Z_3)$ and determine $\operatorname{Cotor}_B(Z_3, Z_3)$ for $B = H^*(X_6; Z_3)$. The calculation in § 5 is quite similar to but much simpler than

that in §§ 3 and 4.

§ 2. An injective resolution of Z_3 over $H^*(X_7; Z_3)$

First we recall the Hopf algebra structure of $H^*(X_7; \mathbb{Z}_3)$ (over \mathcal{J}_3) from [7]:

(2.1) As an algebra

$$H^*(X_7; \mathbb{Z}_3) \cong \mathbb{Z}_3[x_8]/(x_8^3) \otimes \Lambda(x_3, x_7, x_{11}, x_{15}, x_{19}, x_{27}, x_{35}),$$

where deg $x_i = i$;

(2.2) The coalgebra structure is given by

$$ar{\phi}(x_i) = 0$$
 for $i = 3, 7, 8, 19$,
 $ar{\phi}(x_j) = x_8 \otimes x_{j-8}$ for $j = 11, 15, 27$,
 $ar{\phi}(x_{55}) = x_8 \otimes x_{27} - x_8^2 \otimes x_{19}$,

where $\bar{\phi}$ is the reduced diagonal map induced from the multiplication on X_7 .

Notation.
$$A = H^*(X_7; \mathbb{Z}_3)$$
 and $\overline{A} = \widetilde{H}^*(X_7; \mathbb{Z}_3)$.

We shall construct an injective resolution of Z_3 over A using the same construction and the same notation as those in § 3 of [8].

Take L to be a graded Z_3 -submodule of \bar{A} generated by

$$\{x_3, x_7, x_8, x_{19}, x_{11}, x_{15}, x_{27}, x_8^2, x_{35}\}.$$

Let $\theta: A \to L$ be the projection and $\iota: L \to A$ the injection such that $\iota \circ \theta = 1_A$. We name the set of corresponding elements under the suspension s as

(2.3)
$$sL = \{a_4, a_8, a_9, a_{20}, b_{12}, b_{16}, b_{28}, c_{17}, e_{36}\}.$$

Define $\bar{\theta}: A \to sL$ by $\bar{\theta} = s \circ \theta$ and $\bar{\iota}: sL \to A$ by $\bar{\iota} = \iota \circ s^{-1}$. Let T(sL) be the free tensor algebra over sL with the (natural) product ψ . Consider the two sided ideal I of T(sL) generated by $\operatorname{Im}(\psi \circ (\bar{\theta} \otimes \bar{\theta}) \circ \phi)$ (Ker $\bar{\theta}$), where ϕ is the diagonal map of A. Then I is generated by

(2.4) $[\alpha, \beta]$ for all pairs (α, β) of generators of T(sL) except (a_9, b_j) (j=12, 16, 28), (a_9, e_{36}) and (a_9, c_{17}) , $[a_9, b_j] + c_{17}a_{j-8}$ for j=12, 16, 28, $[a_9, e_{36}] + c_{17}b_{28}$,

where $[\alpha, \beta] = \alpha\beta - (-1) *\beta\alpha$ with $* = \deg \alpha \cdot \deg \beta$.

Put $\overline{W}=T(sL)/I$, that is, $\overline{W}=\mathbf{Z}_3\{a_4,a_8,a_9,a_{20},b_{12},b_{16},b_{28},c_{17},e_{36}\}$. Note that \overline{W} contains the polynomial algebra

$$R = Z_3 [a_4, a_8, a_{20}, b_{12}, b_{16}, b_{28}, e_{36}].$$

We define a map

$$d = -\psi \circ (\bar{\theta} \otimes \bar{\theta}) \circ \phi \circ \bar{\iota} : sL \to T(sL)$$

and extend it naturally over T(sL) as derivation. Since $d(I) \subset I$ holds, d induces a map $\overline{W} \to \overline{W}$, which is again denoted by $d \colon \overline{W} \to \overline{W}$ by abuse of notation. It is easy to check that $d \circ d = 0$ and so \overline{W} is a differential algebra over Z_s . Using the relation

$$d \circ \bar{\theta} + \psi \circ (\bar{\theta} \otimes \bar{\theta}) \circ \phi = 0$$
,

we can construct the twisted tensor product $W = A \otimes \overline{W}$ with respect to $\overline{\theta}$ [14]. Namely, W is an A-comodule with the differential operator

$$\bar{d} = 1 \otimes d + (1 \otimes \psi) \circ (1 \otimes \bar{\theta} \otimes 1) \circ (\phi \otimes 1)$$
.

More explicitly, the differential operators \bar{d} and d are given by

(2.5)
$$\bar{d}(x_i \otimes 1) = 1 \otimes a_{i+1}$$
 for $i = 3, 7, 8, 19$,
 $\bar{d}(x_8^2 \otimes 1) = 1 \otimes c_{17} - x_8 \otimes a_9$,
 $\bar{d}(x_j \otimes 1) = 1 \otimes b_{j+1} + x_8 \otimes a_{j-7}$ for $j = 11, 15, 27$,
 $\bar{d}(x_{35} \otimes 1) = 1 \otimes e_{36} + x_8 \otimes b_{28} - x_8^2 \otimes a_{20}$;

(2.6)
$$da_{i} = 0 \qquad for \ i = 4, 8, 9, 20,$$

$$dc_{17} = a_{9}^{2},$$

$$db_{j} = -a_{9}a_{j-8} \qquad for \ j = 12, 16, 28,$$

$$de_{36} = -a_{9}b_{28} + c_{17}a_{20}.$$

Now we define weight in $W = A \otimes \overline{W}$ as follows:

(2.7) A:
$$x_3$$
, x_7 , x_{19} , x_8 , x_8^2 , x_{11} , x_{15} , x_{27} , x_{35}

$$\overline{W}$$
: a_4 , a_8 , a_{20} , a_9 , c_{17} , b_{12} , b_{16} , b_{28} , e_{36}
weight: 0 0 0 1 2 2 2 2 6

(The weight of a monomial is the sum of the weights of each element.) Define a filtration

(2.8)
$$F_r = \{x \mid \text{weight } x \leq r\}.$$

Put $E_0W = \sum F_i/F_{i-1}$. Then it is easy to see that

$$E_0W \cong \Lambda(x_3, x_7, x_{19}, x_{11}, x_{15}, x_{27}, x_{35}) \otimes \mathbf{Z}_3[a_4, a_8, a_{20}, b_{12}, b_{16}, b_{28}, e_{36}] \otimes C(Q(x_8)),$$

where $C(Q(x_8))$ is the cobar construction of $\mathbb{Z}_3[x_8]/(x_8^3)$. The differential formulae (2.5) and (2.6) imply that E_0W is acyclic, and hence W is acyclic.

Theorem 2.9. W is an injective resolution of \mathbb{Z}_3 over $A = H^*(X_7; \mathbb{Z}_3)$.

By the definition of Cotor we have

Corollary 2.10. $H(\overline{W}:d) = \text{Ker } d/\text{Im } d \cong \text{Cotor}_A(Z_3, Z_3)$.

\S 3. Elements with neither a_9 nor c_{17} in $\mathrm{Cotor}_A(\pmb{Z_3},\pmb{Z_3})$

We define an operator ∂ by

(3. 1)
$$\partial a_i = 0$$
 for $i = 4, 8, 20$, $\partial b_j = -a_{j-8}$ for $j = 12, 16, 28$, $\partial e_{36} = -b_{28}$,

and extend it over $R = \mathbb{Z}_3[a_4, a_8, a_{20}, b_{12}, b_{16}, b_{28}, e_{36}]$ so that it satisfies

(3.2)
$$\partial (P+Q) = \partial P + \partial Q$$
 and $\partial (PQ) = \partial P \cdot Q + P \cdot \partial Q$

for any polynomials P and Q.

Then we have

Lemma 3.3. For a polynomial $P \in R$ we have

$$\partial^{3}P = 0$$
,
 $[a_{9}, P] = c_{17}\partial P$,
 $dP = a_{9}\partial P + c_{17}\partial^{2}P$.

Proof. (By induction.) Suppose that $\partial^3 P = 0$ holds for any polynomial P of degree up to l. Then

$$\partial^3(xP) = \partial^3x \cdot P + x \cdot \partial^3P = 0$$
.

Thus $\partial^3 P = 0$ holds for a polynomial of degree l+1.

Suppose that $[a_9, P] = c_{17}\partial P$ holds for any polynomial P of degree up to l. Then

$$[a_0, xP] = [a_0, x]P + x[a_0, P] = c_{17}\partial x \cdot P + xc_{17}\partial P = c_{17}\partial (xP).$$

Thus the relation holds for a polynomial of degree l+1.

Suppose that $dP = a_9 \partial P + c_{17} \partial^2 P$ holds for any polynomial of degree up to l. Then

$$\begin{split} d\left(xP\right) &= dx \cdot P + x \cdot dP \\ &= \left(a_{9}\partial x + c_{17}\partial^{2}x\right)P + x\left(a_{9}\partial P + c_{17}\partial^{2}P\right) \\ &= a_{9}\partial x \cdot P + c_{17}\partial^{2}x \cdot P + \left(a_{9}x - c_{17}\partial x\right)\partial P + c_{17}x\partial^{2}P \\ &= a_{9}\partial\left(xP\right) + c_{17}\partial^{2}\left(xP\right). \end{split}$$

Thus the differential formula holds for a polynomial of degree l+1. q.e.d.

Lemma 3.4. Let P be non-trivial in R. Then P is a non-trivial cocycle if and only if $\partial P = 0$.

Proof. If P is a cocycle, dP=0. Then by the differential formula, we have $\partial P=0$.

Conversely, if $\partial P = 0$, so does $\partial^2 P$, whence we have dP = 0 by the differential formula. Since P contains no a_9 , it is not in the d-image, hence it is a non-trivial cocycle. q.e.d.

We shall find cocycles in the following steps:

- (i) cocycles in $Z_3[a_4, a_8, a_{20}, b_{12}, b_{16}]$,
- (ii) those in $Z_3[a_4, a_8, a_{20}, b_{12}, b_{16}, b_{28}]$,
- (iii) those in $Z_3[a_4, a_8, a_{20}, b_{12}, b_{16}, b_{28}, e_{36}]$,
- (iv) those in $Z_3\{a_9, c_{17}\}$,
- (v) other cocycles.

(The last two steps will be done in § 4.)

(i) Cocycles in $Z_3[a_4, a_8, a_{20}, b_{12}, b_{18}]$

Clearly, a_4 , a_8 and a_{20} are cocycles.

A cocycle of degree 1 with respect to b_{12} and b_{16} is of the form $P = Ab_{12} + Bb_{16}$ with $A, B \in \mathbb{Z}_3[a_4, a_8, a_{20}]$. The relation $\partial P = -Aa_4 - Ba_8 = 0$ yields an indecomposable cocycle

$$y_{20} = a_8 b_{12} - a_4 b_{16}$$
.

A cocycle of degree 2 with respect to b_{12} and b_{16} is of the form

$$P = Ab_{12}^2 + Bb_{16}^2 + Cb_{12}b_{16}$$
 with $A, B, C \in \mathbb{Z}_3[a_4, a_8, a_{20}]$.

Then $\partial P = (Aa_4 - Ca_8) b_{12} + (Ba_8 - Ca_4) b_{16} = 0$ gives rise to

$$Aa_4-Ca_8=0$$
 and $Ba_8-Ca_4=0$,

from which we obtain a decomposable cocycle

$$P = a_8^2 b_{12}^2 + a_4^2 b_{16}^2 + a_4 a_8 b_{12} b_{16} = v_{20}^2$$

A cocycle of degree 3 with respect to b_{12} and b_{16} is of the form

$$P = Ab_{12}^3 + Bb_{16}^3 + Cb_{12}^2b_{16} + Db_{12}b_{16}^2$$

Then $\partial P = -Ca_8b_{12}^2 + (Ca_4 + Da_8)b_{12}b_{16} - Da_4b_{16}^2 = 0$ gives rise to C = D = 0. Thus we have two new cocycles

$$x_{36} = b_{12}^{3}$$
 and $x_{48} = b_{16}^{3}$.

A cocycle of degree 4 is of the form

$$P = b_{12}^{3} (Ab_{12} + Bb_{16}) + Cb_{12}^{2} b_{16}^{2} + b_{16}^{3} (Db_{12} + Eb_{16}).$$

Then $\partial P=0$ implies that C=0, since no term with $b_{12}b_{16}^2$ appears except for $Ca_4b_{12}b_{16}^2$. Further $\partial P=0$ gives rise to $\partial (Ab_{12}+Bb_{16})=\partial (Db_{12}+Eb_{16})=0$, that is, P is decomposed in cocycles b_{12}^3 , b_{16}^3 , $Ab_{12}+Bb_{16}$ and $Db_{12}+Eb_{16}$. So no new cocycles are obtained.

Similarly, any cocycles of degree higher than 4 is decomposable.

We have obtained

Result (i). The following are all the indecomposable cocycles in \mathbb{Z}_3 $[a_4, a_8, a_{20}, b_{12}, b_{16}]$:

$$a_4$$
, a_8 , a_{20} , $y_{20} (= a_8 b_{12} - a_4 b_{16})$, $x_{36} (= b_{12}^3)$, $x_{48} (= b_{16}^3)$.

(ii) Cocycles in $Z_3[a_4, a_8, a_{20}, b_{12}, b_{16}, b_{28}]$

A cocycle of degree 1 with respect to b_{28} is of the form $P = Ab_{28} + B$ with $A, B \in \mathbb{Z}_3[a_4, a_8, a_{20}, b_{12}, b_{18}]$. Then $\partial P = \partial A \cdot b_{28} - a_{20}A + \partial B = 0$ gives rise to

$$\partial A = 0$$
 and $\partial B = a_{20}A$.

So by Lemma 3.4, A is a cocycle and thus an element in $\mathbb{Z}_3[a_4, a_8, a_{20}, y_{20}, x_{36}, x_{48}]$, for which we have to find, if any, a B such that $\partial B = a_{20}A$. Note that it is sufficient to choose one such B, since the difference of two cocycles $P = Ab_{28} + B$ and $P' = Ab_{28} + B'$ is a cocycle without b_{28} :

$$P-P'=(Ab_{28}+B)-(Ab_{28}+B')=B-B'$$

Note also that, if there is a cocyle P_i corresponding to A_i : $P_i = A_i b_{28} + \cdots$ (i=1,2), then cocycles corresponding to the sum $A_1 + A_2$ and to the product $A_1 A_2$ exist and are decomposable:

$$P_1 + P_2 = (A_1 + A_2) b_{28} + \cdots$$
, $A_1 P_2 = A_1 A_2 b_{28} + \cdots$.

Now A is an element in $Z_3[a_4, a_8, a_{20}, y_{20}, x_{36}, x_{48}]$. In particular, for $A = a_4$, a_8 and $y_{20}^2 (= \partial^2 (-b_{12}^2 b_{16}^2))$, we can choose $B = -a_{20}b_{12}$, $-a_{20}b_{16}$ and $a_{20}\partial (-b_{12}^2 b_{16}^2)$ respectively, and we have corresponding cocycles

$$\begin{aligned} y_{32} &= a_4 b_{28} - a_{20} b_{12} \,, \\ y_{36} &= a_8 b_{28} - a_{20} b_{16} \,, \\ &- \gamma_{88} &= \partial^2 \left(-b_{12}{}^2 b_{16}{}^2 \right) b_{28} + a_{20} \partial \left(-b_{12}{}^2 b_{16}{}^2 \right) = - \partial^2 \left(b_{12}{}^2 b_{16}{}^2 b_{28} \right). \end{aligned}$$

Thus for $A = a_4 A' + a_8 A'' + y_{20}^2 A'''$, we have a decomposable cocycle $P = y_{32} A'' + y_{36} A'' - y_{68} A'''$.

A monomial in cocycles for A that has no a_4 , a_8 nor y_{20}^2 is of the form $a_{20}^i x_{36}^j x_{48}^k$ or $y_{20} a_{20}^i x_{36}^j x_{48}^k$ (where i, j, k are non-negative integers), for which there is no B satisfying the conditions. Neither is there B for $A = a_{20}^i x_{36}^j x_{48}^k + A'$ and $y_{20} a_{20}^i x_{36}^j x_{48}^k + A'$ whatever a cocycle in $Z_3[a_4, a_8, a_{20}, y_{20}, x_{36}, x_{48}]$ A' is,

We have thus

(3.5) The indecomposable cocycles of degree 1 with respect to b_{28} are y_{32} , y_{36} and y_{68} .

A cocycle of degree 2 with respect to b_{28} is of the form $P = Ab_{28}^2 + Bb_{28} + C$ with $A, B, C \in \mathbb{Z}_3[a_4, a_8, a_{20}, b_{12}, b_{16}]$. Then the relation

$$\partial P = \partial A \cdot b_{28}^2 + (a_{20}A + \partial B)b_{28} + (-a_{20}B + \partial C) = 0$$

gives rise to

$$\partial A = 0$$
, $\partial B = -a_{20}A$ and $\partial C = a_{20}B$.

Again by Lemma 3.4, A is a cocycle, that is, an element in $Z_3[a_4, a_8, a_{20}, y_{20}, x_{36}, x_{48}]$. The difference of two cocycles $P = Ab_{28}^2 + Bb_{28} + C$ and $P' = Ab_{28}^2 + B'b_{28} + C'$ is a cocycle $(B - B')b_{28} + (C - C')$, that is, a cocycle of lower degree with respect to b_{28} . So it is sufficient to choose, if any, one corresponding cocycle for a cocycle A.

Once again, if there is a cocycle P_i corresponding to A_i (i=1,2), then there exist cocycles corresponding to $A_1 + A_2$ and to A_1A_2 , which are decomposable.

For a cocycle A of the form $\partial^2 D$ with $D \in \mathbb{Z}_3[a_4, a_8, a_{20}, b_{12}, b_{16}]$, we have actually a corresponding cocycle $P = \partial^2 (Db_{28}^2)$. So we have a cocycle for each of the following:

(3.6)
$$a_4^2 = \partial^2(-b_{12}^2), \ a_8^2 = \partial^2(-b_{16}^2), \ a_4 a_8 = \partial^2(-b_{12}b_{16}),$$

$$a_4 y_{20} = \partial^2 (b_{12}{}^2 b_{16}), \ a_8 y_{20} = \partial^2 (-b_{12} b_{16}{}^2), \ y_{20}{}^2 = \partial^2 (-b_{12}{}^2 b_{16}{}^2).$$

Cocycles $P=\partial^2(-b_{12}^2b_{28}^2)$, $\partial^2(-b_{16}^2b_{28}^2)$ and $\partial^2(-b_{12}b_{16}b_{28}^2)$ corresponding respectively to a_4^2 , a_8^2 and a_4a_8 are y_{32}^2 , y_{36}^2 and $y_{32}y_{36}$ respectively, and hence they are decomposable.

Now we put

$$y_{80} = \partial^2 (b_{12}^2 b_{18} b_{28}^2) = a_4 y_{20} b_{28}^2 + \cdots,$$

$$y_{84} = \partial^2 (b_{12} b_{18}^2 b_{28}^2) = -a_8 y_{20} b_{28}^2 + \cdots,$$

$$y_{96} = \partial^2 (b_{12}^2 b_{16}^2 b_{28}^2) = -y_{20}^2 b_{28}^2 + \cdots.$$

Lemma 3.7. The cocycles y_{80} , y_{84} and y_{96} are indecomposable and there is no other indecomposable cocycle of degree 2 with respect to b_{28} .

Proof. First we study A in $Z_3[a_4, a_8, y_{20}]$. For $A = a_4$, we have $B = a_{20}b_{12} + (\partial \text{-kernel})$, but no C in $Z_3[a_4, a_8, a_{20}, b_{12}, b_{16}]$ such that $\partial C = a_{20}{}^2b_{12} + (\text{other terms})$, thus there is no cocycle beginning with $a_4b_{28}{}^2$. Similarly, there is none beginning with $a_8b_{28}{}^2$. For $A = y_{20}$, there is no B in $Z_3[a_4, a_8, a_{20}, b_{12}, b_{16}]$ such that $\partial B = -a_{20}y_{20}$, and so there is no cocycle that begins with $y_{20}b_{28}{}^2$. Recall that there is also no cocycle that begins with $y_{20}b_{28}$. And we also see that there is no cocycle beginning with $Ab_{28}{}^2$ whatever a sum of a_4 , a_8 and y_{20} A is. We conclude that the cocycles y_{80} , y_{84} and y_{96} are indecomposable.

We have seen that each monomial of degree 2 in a_4 , a_8 and y_{20} has a corresponding cocycle (decomposable or indecomposable). Therefore any polynomial A in a_4 , a_8 and y_{20} of degree higher or equal to 2 has a corresponding cocycle, which is decomposable except for y_{80} , y_{84} and y_{96} . Thus there is no other indecomposable cocycle for $A \in \mathbb{Z}_3 \lceil a_4, a_8, y_{20} \rceil$.

Now we consider cocycles in $Z_3[a_4, a_8, a_{20}, y_{20}, x_{36}, x_{48}] \cong Z_3[a_4, a_8, y_{20}] \otimes Z_3[a_{20}, x_{36}, x_{48}]$.

As we have noted, there exists a cocycle corresponding to $Aa_{20}^{t}x_{36}^{t}x_{48}^{t}$ provided there is a cocycle corresponsing to A (here in particular, to $A \in \mathbb{Z}_3[a_4, a_8, y_{20}]$), although it is decomposable.

Since a_{20} , b_{12} and b_{16} are not in the image $\partial (\mathbf{Z}_{8}[a_{4}, a_{8}, b_{12}, b_{16}])$ and since $\partial a_{20} = \partial x_{36} = \partial x_{48} = 0$, the elements a_{20} , x_{36} and x_{48} are 'immobile' under ∂ when seeking B or C. It follows that there is no cocycle corresponding to $Aa_{20}{}^{i}x_{36}{}^{i}x_{48}{}^{k} + (\text{other cocycles})$ if there is none corresponding to A. Therefore there is no other indecomposable cocycle of degree 2 with respect to b_{28} . q.e.d.

Finally, $x_{84} = b_{28}^{3}$ is the only indecomposable cocycle of degree 3 with respect to b_{28} . It is easy to see that there is no new cocycle of degree higher than 3.

We have

Result (ii). The following are all the indecomposable cocycles in $\mathbb{Z}_{8}[a_{4}, a_{8}, a_{20}, b_{12}, b_{16}, b_{28}]$:

$$a_{4}, \quad a_{8}, \quad a_{20} = \partial^{2} e_{36},$$

$$x_{36} = b_{12}^{3}, \quad x_{48} = b_{16}^{3}, \quad x_{84} = b_{28}^{3} = \partial^{2} \left(-b_{28} e_{36}^{2} \right),$$

$$y_{20} = a_{8} b_{12} - a_{4} b_{16},$$

$$y_{32} = a_{4} b_{28} - a_{20} b_{12} = \partial^{2} \left(-b_{12} e_{36} \right),$$

$$y_{36} = a_{8} b_{28} - a_{20} b_{16} = \partial^{2} \left(-b_{16} e_{36} \right),$$

$$y_{68} = \partial^{2} \left(b_{12}^{2} b_{16}^{2} b_{28} \right) = y_{20}^{2} b_{28} + \cdots,$$

$$y_{80} = \partial^{2} \left(b_{12}^{2} b_{16} b_{28}^{2} \right) = a_{4} y_{20} b_{28}^{2} + \cdots,$$

$$y_{84} = \partial^{2} \left(b_{12}^{2} b_{16}^{2} b_{28}^{2} \right) = -a_{8} y_{20} b_{28}^{2} + \cdots,$$

$$y_{96} = \partial^{2} \left(b_{12}^{2} b_{16}^{2} b_{28}^{2} \right) = -y_{20}^{2} b_{28}^{2} + \cdots,$$

(Result (i) is included in Result (ii).)

The following will be needed in the calculation in step (iii).

Lemma 3.8. The elements y_{68} , y_{80} , y_{84} , y_{96} and the following elements appear in the image $\partial^2(\mathbf{Z}_3[a_4, a_8, a_{20}, b_{12}, b_{16}, b_{28}])$:

$$\begin{split} &a_{4}^{\ 2}=\partial^{2}\left(-b_{12}^{\ 2}\right), \qquad a_{8}^{\ 2}=\partial^{2}\left(-b_{16}^{\ 2}\right), \qquad a_{20}^{\ 2}=\partial^{2}\left(-b_{28}^{\ 2}\right), \\ &a_{4}a_{8}=\partial^{2}\left(-b_{12}b_{16}\right), \qquad a_{4}a_{20}=\partial^{2}\left(-b_{12}b_{28}\right), \quad a_{8}a_{20}=\partial^{2}\left(-b_{16}b_{28}\right), \\ &a_{4}y_{20}=\partial^{2}\left(b_{12}^{\ 2}b_{16}\right), \qquad a_{8}y_{20}=\partial^{2}\left(-b_{12}b_{16}^{\ 2}\right), \\ &a_{4}y_{32}=\partial^{2}\left(-b_{12}^{\ 2}b_{28}\right), \quad a_{20}y_{32}=\partial^{2}\left(b_{12}b_{28}^{\ 2}\right), \\ &a_{8}y_{36}=\partial^{2}\left(-b_{16}^{\ 2}b_{28}\right), \quad a_{20}y_{36}=\partial^{2}\left(b_{16}b_{28}^{\ 2}\right), \\ &a_{20}y_{20}-a_{8}y_{32}=-a_{20}y_{20}-a_{4}y_{36}=a_{4}y_{36}+a_{8}y_{32}=\partial^{2}\left(b_{12}b_{16}b_{28}\right), \\ &y_{20}^{\ 2}=\partial^{2}\left(-b_{12}^{\ 2}b_{16}^{\ 2}\right), \quad y_{32}^{\ 2}=\partial^{2}\left(-b_{12}^{\ 2}b_{28}^{\ 2}\right), \quad y_{36}^{\ 2}=\partial^{2}\left(-b_{16}^{\ 2}b_{28}^{\ 2}\right), \\ &y_{20}y_{32}=\partial^{2}\left(b_{12}^{\ 2}b_{16}b_{28}\right), \quad y_{20}y_{36}=\partial^{2}\left(-b_{12}b_{16}^{\ 2}b_{28}\right), \\ &y_{32}y_{36}=\partial^{2}\left(-b_{12}b_{16}b_{28}^{\ 2}\right), \end{split}$$

and $P \cdot \partial^2 Q = \partial^2 (P \cdot Q)$ for any cocycle P and any polynomial Q.

Proof is by direct calculation.

(iii) Cocycles in $Z_3[a_4, a_8, a_{20}, b_{12}, b_{16}, b_{28}, e_{86}]$

A cocycle of degree 1 with respect to e_{36} is of the form $P = Ae_{36} + B$ with $A, B \in \mathbb{Z}_3[a_4, a_8, a_{20}, b_{12}, b_{16}, b_{28}]$. Then $\partial P = \partial A \cdot e_{36} - Ab_{28} + \partial B = 0$ gives rise to $\partial A = 0$ and $Ab_{28} = \partial B$.

Thus A is a cocycle, for which it is sufficient to find, if any, one corresponding cocycle just as in (ii). For a cocycle A of the form $\partial^2 C$ with $C \in \mathbb{Z}_3[a_4, a_8, a_{20}, b_{12}, b_{16}, b_{28}]$, we have actually a corresponding cocycle $P = \partial^2$ (Ce_{36}) and for A of the form $\partial^2 (Ce_{36})$ with C as above, we have a corresponding cocycle $P = \partial^2 (-Ce_{36}^2)$.

Result (iii-1). We have the following indecomposable cocycles of degree 1 with respect to e_{36} :

$$\begin{split} z_{56} &= \partial^2 \left(e_{36}^2 \right) = -a_{20}e_{36} + \cdots, \\ z_{44} &= \partial^2 \left(b_{12}^2 e_{36} \right) = -a_4^2 e_{36} + \cdots, \\ z_{48} &= \partial^2 \left(b_{12}b_{16}e_{36} \right) = -a_4a_8e_{36} + \cdots, \\ z_{52} &= \partial^2 \left(b_{16}^2 e_{36} \right) = -a_8^2 e_{36} + \cdots, \\ z_{52} &= \partial^2 \left(b_{16}^2 e_{36} \right) = y_{32}e_{36} + \cdots, \\ z_{68} &= \partial^2 \left(b_{12}e_{36}^2 \right) = y_{32}e_{36} + \cdots, \\ z_{72} &= \partial^2 \left(b_{16}e_{36}^2 \right) = y_{36}e_{36} + \cdots, \\ z_{60} &= \partial^2 \left(b_{12}^2 b_{16}e_{36} \right) = a_4y_{20}e_{36} + \cdots, \\ z_{64} &= \partial^2 \left(b_{12}b_{16}^2 e_{36} \right) = -a_8y_{20}e_{36} + \cdots, \\ z_{76} &= \partial^2 \left(b_{12}^2 b_{16}^2 e_{36} \right) = -y_{20}^2 e_{36} + \cdots, \\ z_{104} &= \partial^2 \left(b_{12}^2 b_{16}^2 b_{28}e_{36} \right) = y_{68}e_{36} + \cdots, \\ z_{116} &= \partial^2 \left(b_{12}^2 b_{16}b_{28}^2 e_{36} \right) = y_{80}e_{36} + \cdots, \\ z_{120} &= \partial^2 \left(b_{12}^2 b_{16}^2 b_{28}^2 e_{36} \right) = y_{84}e_{36} + \cdots, \\ z_{132} &= \partial^2 \left(b_{12}^2 b_{16}^2 b_{28}^2 e_{36} \right) = y_{96}e_{36} + \cdots. \end{split}$$

Proof. We have indecomposable cocycles $-z_{56}$, z_{68} , z_{72} , z_{104} , z_{116} , z_{120} and z_{132} corresponding respectively to a_{20} , y_{32} , y_{36} , y_{68} , y_{80} , y_{84} and y_{96} . Therefore, if each term of a cocycle A contains one of a_{20} , y_{32} , y_{36} , y_{68} , y_{80} , y_{84} or y_{96} , a cocycle beginning with Ae_{36} is decomposable.

Cocycles that we have to consider next as A are polynomials in a_4 , a_8 , y_{20} , x_{36} , x_{48} and x_{84} . Recall that x_{36} and x_{48} as well as $x_{84} = b_{28}^3$ are 'immobile' under $\hat{\theta}$ as before and so there is no cocycle corresponding to $Ax_{36}^i x_{48}^j x_{84}^k + (\text{other cocycles})$ if there is none corresponding to A. In particular, we have none corresponding to $x_{36}^i x_{48}^j x_{84}^k$.

We have now only to consider those A in $\mathbb{Z}_3[a_4, a_8, y_{20}]$.

For A a sum of a_4 , a_8 and y_{20} , there is no B satisfying $Ab_{28} = \partial B$, whence there is no cocycle that begins with a_4e_{36} , a_8e_{36} or $y_{20}e_{36}$. So the cocycles corresponding to a_4^2 , a_4a_8 , a_8^2 , a_4y_{20} , a_8y_{20} and y_{20}^2 are all indecomposable. Any monomial A in a_4 , a_8 and y_{20} of degree higher than 2 has one of a_4^2 , a_4a_8 , a_8^2 , a_4y_{20} , a_8y_{20} or y_{20}^2 , whence any cocycle corresponding to such A is decomposable.

We have shown that the cocycles in (iii-1) are all the indecomposable

ones of degree 1 with respect to e_{30} .

q.e.d.

A cocycle of degree 2 with respect to e_{36} is of the form $P = Ae_{36}^2 + Be_{36} + C$ with $A, B, C \in \mathbb{Z}_3[a_4, a_8, a_{20}, b_{12}, b_{16}, b_{28}]$. Then $\partial P = 0$ gives rise to

$$\partial A = 0$$
, $Ab_{28} = -\partial B$ and $Bb_{28} = \partial C$.

Therefore A is a cocycle, for which it is again sufficient to find, if any, one corresponding cocycle. We have actually

(3.9) There is a cocycle $P = \partial^2 (De_{36}^2)$ corresponding to a cocycle A of the form $\partial^2 D$ with $D \in \mathbb{Z}_3[a_4, a_8, a_{20}, b_{12}, b_{16}, b_{28}]$.

Result (iii-2). The following are the indecomposable cocycles of degree 2 with respect to e_{36} :

$$\begin{split} v v_{80} &= \hat{o}^2 \left(b_{12}^2 e_{36}^2 \right) = -a_4^2 e_{36}^2 + \cdots, \\ v v_{84} &= \hat{o}^2 \left(b_{12} b_{16} e_{36}^2 \right) = -a_4 a_8 e_{36}^2 + \cdots, \\ v v_{88} &= \hat{o}^2 \left(b_{12}^2 b_{26} e_{36}^2 \right) = -a_8^2 e_{36}^2 + \cdots, \\ v v_{96} &= \hat{o}^2 \left(b_{12} b_{28} e_{36}^2 \right) = -a_4 a_{20} e_{36}^2 + \cdots, \\ v v_{100} &= \hat{o}^2 \left(b_{12} b_{28} e_{36}^2 \right) = -a_4 a_{20} e_{36}^2 + \cdots, \\ v v_{100} &= \hat{o}^2 \left(b_{12}^2 b_{16} e_{36}^2 \right) = a_4 y_{20} e_{36}^2 + \cdots, \\ v v_{100} &= \hat{o}^2 \left(b_{12}^2 b_{16} e_{36}^2 \right) = a_4 y_{20} e_{36}^2 + \cdots, \\ v v_{100} &= \hat{o}^2 \left(b_{12}^2 b_{16}^2 e_{36}^2 \right) = -a_8 y_{20} e_{36}^2 + \cdots, \\ v v_{102} &= \hat{o}^2 \left(b_{12}^2 b_{16}^2 e_{36}^2 \right) = -a_4 y_{32} e_{36}^2 + \cdots, \\ v v_{112} &= \hat{o}^2 \left(b_{12} b_{16} b_{28} e_{36}^2 \right) = \left(a_{20} y_{20} - a_8 y_{32} \right) e_{36}^2 + \cdots, \\ &= \left(-a_{20} y_{20} - a_4 y_{36} \right) e_{36}^2 + \cdots, \\ v v_{116} &= \hat{o}^2 \left(b_{12}^2 b_{16}^2 e_{36}^2 \right) = -a_8 y_{36} e_{36}^2 + \cdots, \\ v v_{116} &= \hat{o}^2 \left(b_{12}^2 b_{16}^2 e_{36}^2 \right) = -y_{20}^2 e_{36}^2 + \cdots, \\ u v_{112} &= \hat{o}^2 \left(b_{12}^2 b_{16}^2 e_{36}^2 \right) = y_{20} y_{32} e_{36}^2 + \cdots, \\ u v_{124} &= \hat{o}^2 \left(b_{12}^2 b_{16}^2 b_{28} e_{36}^2 \right) = y_{20} y_{32} e_{36}^2 + \cdots, \\ v v_{128} &= \hat{o}^2 \left(b_{12}^2 b_{16}^2 b_{28} e_{36}^2 \right) = y_{20} y_{36} e_{36}^2 + \cdots, \\ p v_{140} &= \hat{o}^2 \left(b_{12}^2 b_{16}^2 b_{28}^2 e_{36}^2 \right) = y_{80} e_{36}^2 + \cdots, \\ p v_{152} &= \hat{o}^2 \left(b_{12}^2 b_{16}^2 b_{28}^2 e_{36}^2 \right) = y_{84} e_{36}^2 + \cdots, \\ p v_{156} &= \hat{o}^2 \left(b_{12}^2 b_{16}^2 b_{28}^2 e_{36}^2 \right) = y_{84} e_{36}^2 + \cdots, \\ p v_{168} &= \hat{o}^2 \left(b_{12}^2 b_{16}^2 b_{28}^2 e_{36}^2 \right) = y_{96} e_{36}^2 + \cdots. \\ \end{pmatrix}$$

Proof. By virtue of (3.9) we have 23 cocycles corresponding to the 23

elements in Lemma 3.8. Of these cocycles 17 are indecomposable and the 6 corresponding to a_{20}^2 , $a_{20}y_{32}$, $a_{20}y_{36}$, y_{32}^2 , y_{36}^2 and $y_{32}y_{36}$ are decomposable.

The cocycles p_{140} , p_{152} , p_{156} and p_{168} corresponding respectively to y_{68} , y_{80} , y_{84} and y_{96} are indecomposable, and any cocycle which corresponds to a monomial A having one of y_{68} , y_{80} . y_{84} and y_{96} is decomposable.

Note again that there is no cocycle corresponding to $Ax_{36}^i x_{48}^j x_{84}^k +$ (other cocycles) if there is none corresponding to A. In particular, there is no cocycle corresponding to $x_{36}^i x_{48}^j x_{84}^k$. Thus we have only to consider polynomials in a_4 , a_8 , a_{20} , y_{20} , y_{32} and y_{36} as A.

For $A=a_4$ and a_8 , there is no B satisfying the conditions, that is, there are no cocycles beginning with either $a_4e_{36}^2$ or $a_8e_{36}^2$. Recalling that there is no cocycle beginning with either a_4e_{36} or a_8e_{36} , we conclude that $w_{80}=-a_4^2e_{36}^2+\cdots$, $w_{84}=-a_4a_8e_{36}^2+\cdots$ and $w_{88}=-a_8^2e_{36}^2+\cdots$ are indecomposable.

For $A=a_{20}$ we have $B=-b_{28}^2+(\partial\text{-kernel})$ but no C in $\mathbb{Z}_3[a_4,a_8,a_{20},b_{12},b_{16},b_{28}]$ such that $\partial C=Bb_{28}=-b_{28}^3+$ (other terms). Thus there is no cocycle beginning with $a_{20}e_{36}^2$ and we conclude that $w_{96}=-a_4a_{20}e_{36}^2+\cdots$ and $w_{100}=-a_8a_{20}e_{36}^2+\cdots$ are indecomposable. However, a cocycle beginning with $a_{20}^2e_{36}^2$ is decomposable, since z_{56}^2 begins with $a_{20}^2e_{36}^2$.

There is no cocycle corresponding to y_{20} as there is no B such that $\partial B = -y_{20}b_{28}$, and there is no cocycle beginning with $y_{20}e_{36}$. Therefore, $v_{96} = a_4y_{20}e_{36}^2 + \cdots$, $v_{100} = -a_8y_{20}e_{36}^2 + \cdots$ and $u_{112} = -y_{20}^2e_{36}^2 + \cdots$ are indecomposable.

For $A=a_{20}y_{20}$ we have $B=-y_{20}b_{28}^2+(\partial\cdot\text{kernel})$ but no C such that $\partial C=-y_{20}b_{28}^3+(\text{other terms})$. Thus there is no cocycle beginning with $a_{20}y_{20}e_{36}^2$. On the other hand, we have a cocycle $v_{112}=(a_{20}y_{20}-a_8y_{32})\,e_{36}^2+\cdots=(-a_{20}y_{20}-a_4y_{36})\,e_{36}^2+\cdots$. Hence we conclude here that there is no cocycle beginning with either $a_8y_{32}e_{36}^2$ or $a_4y_{36}e_{36}^2$, and also that v_{112} is indecomposable.

For $A = y_{32}$ and y_{36} , we have $B = b_{12}b_{28}^2 + (\partial \text{-kernel})$ and $b_{16}b_{28}^2 + (\partial \text{-kernel})$ respectively but no C, that is, there is no cocycle corresponding to y_{32} or y_{36} . We conclude that v_{108} , v_{116} , u_{124} and u_{128} corresponding respectively to $-a_4y_{32}$, $-a_8y_{36}$, $y_{20}y_{32}$ and $-y_{20}y_{36}$ are indecomposable.

One can easily see that cocycles corresponding to $a_{20}y_{32}$, $a_{20}y_{36}$, y_{32}^2 , y_{36}^2 and $y_{32}y_{36}$ are decomposed in terms of the elements $z_{56} = -a_{20}e_{36} + \cdots$, $z_{68} = -y_{32}e_{36} + \cdots$ and $z_{72} = -y_{36}e_{36} + \cdots$.

We have proved that the cocycles in (iii-2) are all the indecomposable ones of degree 2 with respect to e_{36} . q.e.d.

Obviously we have

Result (iii-3). The element $x_{108} = e_{36}^3$ is the only indecomposable cocycle of degree 3 with respect to e_{36} .

It is easy to see that there are no indecomposable cocycles of degree higher than 3. Thus we have shown

Proposition 3. 10. Cocycles in Results (ii), (iii-1), (iii-2) and (iii-3) are all the indecomposable ones with neither a_9 nor c_{17} . Any cocycle that has neither a_9 nor c_{17} is trivial if and only if it is 0 as a polynomial in $\mathbf{Z}_{8}[a_4, a_8, a_{20}, b_{12}, b_{16}, b_{28}, e_{36}]$.

We see

Remark 3.11. (1) The generators are in the ∂^2 -image except a_4 , a_8 , y_{20} , x_{86} , x_{48} and x_{108} ;

- (2) a_{1} and a_{2} are in the ∂ -image, but not in the ∂^{2} -image;
- (3) y_{20} , x_{36} , x_{48} , x_{108} are not in the ∂ -image.

Using the above and Lemma 3.8 we see that

- (3.12.1) A cocycle is in the ∂^2 -image if and only if it has no term of the form $a_4x_{36}^i x_{48}^j x_{108}^k$, $a_8x_{36}^i x_{48}^j x_{108}^k$, $x_{36}^i x_{48}^j x_{108}^k$ or $y_{20}x_{36}^i x_{48}^j x_{108}^k$;
- (3.12.2) A cocycle is in the ∂ -image but not in the ∂ -image if and only if it is a sum of $a_4x_{36}^i x_{48}^j x_{108}^k$, $a_8x_{36}^i x_{48}^j x_{108}^k$ and ∂ -image;
- (3.12.3) A cocycle is not the ∂ -image, if it is a sum of $x_{36}^{i}x_{48}^{j}x_{108}^{k}$, $y_{20}x_{36}^{i}x_{48}^{j}x_{108}^{k}$ and any other terms.

§ 4. Elements with a_9 and c_{17} in $Cotor_A(Z_3, Z_3)$

Now we study cocycles with a_9 and c_{17} .

(iv) Cocycles in $Z_3\{a_9, c_{17}\}$

Clearly a_9 is a cocycle and $a_9^2 = dc_{17}$. It is easy to see that $x_{26} = [a_9, c_{17}]$ is also a cocycle. The following lemma provides a convenient manner of writing elements in $\mathbb{Z}_3\{a_9, c_{17}\}$.

Lemma 4.1. An element α_n in $\mathbb{Z}_3\{a_9, c_{17}\}$ of degree n can be written as follows:

$$\alpha_{2k-1} = d\alpha_{2k-2} + \sum_{i=0}^{k-1} x_{2i}^{i} c_{17} \alpha_{2k-2i-2} + \varepsilon x_{2i}^{k-1} a_{9} ,$$

$$\alpha_{2k} = d\alpha_{2k-1} + \sum_{i=0}^{k-1} x_{26}^{i} c_{17} \alpha_{2k-2i-1} + \varepsilon x_{26}^{k},$$

where α_j are elements in $Z_s\{a_9, c_{17}\}$ of degree j and α_0 , $\varepsilon \in Z_s$.

Proof. (By induction.) Suppose that the lemma is true for degrees up to 2k. Then

$$\begin{split} \alpha_{2k+1} &= \alpha_{2k}c_{17} + \alpha'_{2k}a_{9} \\ &= (d\alpha_{2k-1} + \sum_{i=0}^{k-1} x_{26}^{i}c_{17}\alpha_{2k-2i-1} + \varepsilon x_{26}^{k})c_{17} \\ &+ (d\alpha'_{2k-1} + \sum_{i=0}^{k-1} x_{26}^{i}c_{17}\alpha'_{2k-2i-1} + \varepsilon' x_{26}^{k})a_{9} \\ &= d(\alpha_{2k-1}c_{17} + \alpha'_{2k-1}a_{9}) + \sum_{i=0}^{k-1} x_{26}^{i}c_{17}(\alpha_{2k-2i-1}c_{17} + \alpha'_{2k-2i-1}a_{9}) \\ &+ \varepsilon x_{26}^{k}c_{17} + \varepsilon' x_{26}^{k}a_{9} + \alpha_{2k-1}a_{9}^{2}. \end{split}$$

Now the last term $\alpha_{2k-1}a_9^2$ can be rewritten as follows:

$$\alpha_{2k-1}a_9^2 = (d\alpha_{2k-2} + \sum_{i=0}^{k-1} x_{26}^i c_{17}\alpha_{2k-2i-2} + \varepsilon'' x_{26}^{k-1}a_9) a_9^2$$

$$= d(\alpha_{2k-2}a_9^2 + \varepsilon'' x_{26}^{k-1}c_{17}a_9) + \sum_{i=0}^{k-1} x_{26}^i c_{17}\alpha_{2k-2i-2}a_9^2.$$

Thus α_{2k+1} can be written in the required form. Similarly,

$$\begin{split} \alpha_{2k+2} &= \alpha_{2k+1}c_{17} + \alpha'_{2k+1}a_9 \\ &= (d\alpha_{2k} + \sum_{i=0}^k x_{26}^i c_{17}\alpha_{2k-2i} + \varepsilon x_{26}^k a_9) \, c_{17} \\ &\quad + (d\alpha'_{2k} + \sum_{i=0}^k x_{26}^i c_{17}\alpha'_{2k-2i} + \varepsilon' x_{26}^k a_9) \, a_9 \\ &= d \, (\alpha_{2k}c_{17} + \alpha'_{2k}a_9 + \varepsilon' x_{26}^k c_{17}) \, + \varepsilon x_{26}^{k+1} - \varepsilon x_{26}^k c_{17}a_9 \\ &\quad + \sum_{i=0}^k x_{26}^i c_{17} \, (\alpha_{2k-2i}c_{17} + \alpha'_{2k-2i}a_9) - \alpha_{2k}a_9^2, \end{split}$$

and the last term $\alpha_{2k}a_9^2$ can be rewritten as

$$\alpha_{2k}a_{9}^{2} = d\alpha_{2k-1} + \sum_{i=0}^{k-1} x_{26}^{i}c_{17}\alpha_{2k-2i-1} + \varepsilon''x_{26}^{k})a_{9}^{2}$$

$$= d(\alpha_{2k-1}a_{9}^{2} + \varepsilon''x_{26}^{k}c_{17}) + \sum_{i=0}^{k-1} x_{26}^{i}c_{17}\alpha_{2k-2i-1}a_{9}^{2}.$$

Hence, α_{2k+2} can also be written in the required form.

q.e.d.

Proposition 4.2. The elements a_9 and x_{28} are the only indecomposable cocycles in $\mathbb{Z}_3\{a_9, c_{17}\}$.

Proof. Writing an element α_{2k-1} in $\mathbb{Z}_3\{a_9, c_{17}\}$ of degree 2k-1 as in Lemma 4.1, we have

$$d\alpha_{2k-1} = \sum_{i=0}^{k-1} x_{2i}^{i} (a_{9}^{2} \alpha_{2k-2i-2} - c_{17} d\alpha_{2k-2i-2}).$$

Thus $d\alpha_{2k-1}=0$ gives rise to $\alpha_{2k-2i-2}=0$ $(0 \le i \le k-1)$ (and also $d\alpha_{2k-2i-2}=0$). Conversely, if $\alpha_{2k-2i-2}=0$ $(0 \le i \le k-1)$, then $d\alpha_{2k-1}$ is clearly 0. So α_{2k-1} is a cocycle if and only if it is $\pm x_{26}^{k-1}a_9$.

Similarly,

$$d\alpha_{2k} = \sum_{i=0}^{k-1} x_{20}^{i} (a_{9}^{2} \alpha_{2k-2i-1} + c_{17} d\alpha_{2k-2i-1}) = 0$$

if and only if $\alpha_{2k-2i-1}=0$ $(0 \le i \le k-1)$ if and only if $\alpha_{2k}=\pm x_{2k}^{k}$.

Therefore a_9 and x_{28} are the only indecomposable cocycles in $\mathbb{Z}_3\{a_9, c_{17}\}$.
q.e.d.

(v) Other cocycles

We shall find other cocycles with a_9 and c_{17} . We shall use the letter f to denote elements in \overline{W} .

Lemma 4.3. An element f_n of degree n with respect to a_9 and c_{17} can be written as

$$\begin{split} f_{2k} &= \sum_{i=0}^{k-1} x_{28}^{i} c_{17} f_{2k-2i-1} + x_{28}^{k} P + (d\text{-image}), \\ f_{2k+1} &= \sum_{i=0}^{k-1} x_{28}^{i} c_{17} f_{2k-2i} + x_{28}^{k} (c_{17} P + a_{9} Q) + (d\text{-image}), \end{split}$$

where P and Q are elements of $R = \mathbb{Z}_3[a_4, a_8, a_{20}, b_{12}, b_{18}, b_{28}, e_{36}]$.

Proof. We shall use the letter α to denote, as before, elements of \mathbb{Z}_{8} $\{a_{9}, c_{17}\}$ and the letter P to denote elements with neither a_{9} nor c_{17} . Now, the following identities will be needed in the calculation:

$$\begin{split} d\alpha_{2k-1} \cdot P &= d\left(\alpha_{2k-1}P\right) + \alpha_{2k-1}dP \\ &= d\left(\alpha_{2k-1}P\right) + \left(d\alpha_{2k-2} + \sum_{i=0}^{k-1} x_{26}{}^{i}c_{17}\alpha_{2k-2i-2} + \varepsilon x_{26}{}^{k-1}a_{9}\right)dP \\ &= d\left(\alpha_{2k-1}P + \alpha_{2k-2}dP - \varepsilon x_{26}{}^{k-1}a_{9}P\right) \\ &+ \sum_{i=0}^{k-1} x_{26}{}^{i}c_{17}\alpha_{2k-2i-2}\left(a_{9}\partial P + c_{17}\partial^{2}P\right) \\ &= \sum_{i=0}^{k-1} x_{26}{}^{i}c_{17}f_{2k-2i-1} + \left(d\text{-image}\right), \end{split}$$

and

$$\begin{split} d\alpha_{2k} \cdot P &= d(\alpha_{2k}P) - \alpha_{2k}dP \\ &= d(\alpha_{2k}P) - (d\alpha_{2k-1} + \sum_{i=0}^{k-1} x_{2i}^{i} c_{17}\alpha_{2k-2i-1} + \varepsilon x_{2i}^{k}) dP \\ &= d(\alpha_{2k}P - \alpha_{2k-1}dP - \varepsilon x_{2i}^{k}P) - \sum_{i=0}^{k-1} x_{2i}^{i} c_{17}\alpha_{2k-2i-1} (a_{9}\partial P + c_{17}\partial^{2}P) \end{split}$$

$$= \sum_{i=0}^{k-1} x_{26}^{i} c_{17} f_{2k-2i} + (d-image).$$

Consider now an element of the form $\alpha_{2k}P$:

$$\begin{split} \alpha_{2k}P &= (d\alpha_{2k-1} + \sum_{i=0}^{k-1} x_{26}^{i} c_{17} \alpha_{2k-2i-1} + \varepsilon x_{26}^{k}) P \\ &= d\alpha_{2k-1} \cdot P + \sum_{i=0}^{k-1} x_{26}^{i} c_{17} (\alpha_{2k-2i-1}P) + x_{26}^{k} (\varepsilon P) \\ &= \sum_{i=0}^{k-1} x_{26}^{i} c_{17} (f_{2k-2i-1} + \alpha_{2k-2i-1}P) + x_{26}^{k} (\varepsilon P) + (d\text{-image}). \end{split}$$

Thus an element f_{2k} of degree 2k can be written in the required form. Similarly,

$$\alpha_{2k+1}P = (d\alpha_{2k} + \sum_{i=0}^{k} x_{26}{}^{i}c_{17}\alpha_{2k-2i} + \varepsilon x_{26}{}^{k}a_{9})P$$

$$= \sum_{i=0}^{k-1} x_{26}{}^{i}c_{17}(f_{2k-2i} + \alpha_{2k-2i}P) + x_{26}{}^{k}(c_{17}\alpha_{0}P + \varepsilon a_{9}P)$$

and an element f_{2k+1} can also be written in the required form. q.e.d.

Writing an element of \overline{W} as in the previous lemma, we have

$$(4.3.1) df_{2k} = \sum_{i=0}^{k-1} x_{26}^{i} a_{9}^{2} f_{2k-2i-1} - \sum_{i=0}^{k-1} x_{26}^{i} c_{17} df_{2k-2i-1} + x_{26}^{k} (a_{9} \partial P + c_{17} \partial^{2} P).$$

Thus $df_{2k}=0$ gives rise to $f_{2k-2i-1}=0$ $(0 \le i \le k-1)$ (and $df_{2k-2i-1}=0$) and $\partial P=0$ (that is, P is a cocycle), and the converse is clear. Therefore we have

(4.4.1) $df_{2k} = 0$ if and only if f_{2k} is of the form $f_{2k} = x_{26}^{k} A$, where A is a cocycle with neither a_9 nor c_{17} .

Similarly,

$$(4.3.2) df_{2k+1} = \sum_{t=0}^{k-1} x_{26}^{t} a_{9}^{2} f_{2k-2i} - \sum_{t=0}^{k-1} x_{26}^{t} c_{17} df_{2k-2i} + x_{26}^{k} a_{9}^{2} (P - \partial Q) - x_{26}^{k} c_{17} (a_{9} \partial (P - \partial Q) + c_{17} \partial^{2} P) - x_{26}^{k+1} \partial^{2} Q.$$

Thus $df_{2k+1}=0$ if and only if $f_{2k-2i}=0$ $(0\leq i\leq k-1)$, $P=\partial Q$ and $\partial P=\partial^2Q=0$. That is,

(4.4.2)
$$df_{2k+1} = 0$$
 if and only if f_{2k+1} is of the form
$$f_{2k+1} = x_{26}^{\ \ k} (c_{17} \partial Q + a_9 Q) \text{ with } \partial^2 Q = 0.$$

Thus we have only to determine cocycles of the form

$$f_1 = c_{17}\partial Q + a_9Q$$
 with $\partial^2 Q = 0$.

In case $\partial Q = 0$, f_1 is a product a_9Q with Q a cocycle. We obtain no new cocycle.

In case $\partial Q \neq 0$, ∂Q is a cocycle as $\partial^2 Q = 0$. If there is another Q' such that $\partial Q' = \partial Q$, then the difference of $f_1 = a_9 Q + c_{17} \partial Q$ and $f_1' = a_9 Q' + c_{17} \partial Q$ is a decomposable cocycle $a_9(Q - Q')$. Thus, it is sufficient to choose one Q for a cocycle ∂Q .

Now, if ∂Q is in the ∂^2 -image, say $\partial Q = \partial^2 R$, we can choose $Q = \partial R$, but then

$$f_1 = a_9 \partial R + c_{17} \partial^2 R = dR$$
.

By (3.12.2), the only cocycle of the form ∂Q but not of the form $\partial^2 R$ is a sum of

In particular, for $\partial Q = a_4$ and a_8 , taking $Q = -b_{12}$ and $-b_{16}$ respectively, we have

$$-y_{21} = -a_9b_{12} + c_{17}a_4$$
 and $-y_{25} = -a_9b_{16} + c_{17}a_8$

For $Q = \sum \alpha(i, j, k) a_4 x_{36}^i x_{48}^j x_{108}^k + \sum \beta(i, j, k) a_8 x_{36}^i x_{46}^j x_{108}^k + \partial^2 R'$ $(\alpha(i, j, k), \beta(i, j, k) \in \mathbb{Z}_3$ and $i, j, k = 0, 1, 2, \cdots)$ we have a decomposable cocycle

$$f_1 = -\sum \alpha(i, j, k) y_{21} x_{36}^{i} x_{48}^{j} x_{108}^{k} - \sum \beta(i, j, k) y_{25} x_{36}^{i} x_{48}^{j} x_{108}^{k} + dR'.$$

Thus we have

Result (v). We obtain in (v) two new cocycles

$$y_{21} = a_9 b_{12} - c_{17} a_4$$
 and $y_{25} = a_9 b_{16} - c_{17} a_8$.

Now we can express (4. 4. 2) more concretely as follows (incidentally we repeat (4. 4. 1) just for convenience).

Lemma 4.4. (1) For an element f_{2k} of degree 2k, $df_{2k} = 0$ if and only if f_{2k} is of the form $x_{26}^{k}A$ with A a cocycle with neither a_{9} nor c_{17} . (2) For an element f_{2k+1} of degree 2k+1, $df_{2k+1} = 0$ if and only if f_{2k+1} is a sum of

$$x_{26}^{k}a_{9}A$$
, $x_{26}^{k}y_{21}x_{36}^{i}x_{48}^{j}x_{108}^{h}$ and $x_{26}^{k}y_{25}x_{36}^{i}x_{48}^{j}x_{108}^{h}$,

where A is a cocycle with neither a_9 nor c_{17} .

Now that we have found all generators of $Cotor_A(Z_3, Z_3)$, we shall check the commutativity among them and seek relations between generators.

Proposition 4.5. Cotor_A (Z_3, Z_3) is commutative.

Proof. To begin with we have the following d-images:

$$\begin{aligned} \textbf{(4. 6. 1)} & \quad a_9^2 = dc_{17}, \quad y_{21}^2 = d\left(c_{17}b_{12}^2\right), \quad y_{25}^2 = d\left(c_{17}b_{16}^2\right), \\ & \quad a_9y_{21} + x_{26}a_4 \quad = y_{21}a_9 - x_{26}a_4 \quad = -\left[a_9, y_{21}\right] = d\left(c_{17}b_{12}\right), \\ & \quad a_9y_{25} + x_{26}a_8 \quad = y_{25}a_9 - x_{26}a_8 \quad = -\left[a_9, y_{25}\right] = d\left(c_{17}b_{16}\right), \\ & \quad y_{21}y_{25} + x_{26}y_{20} = y_{25}y_{21} - x_{26}y_{20} = -\left[y_{21}, y_{25}\right] = d\left(c_{17}b_{12}b_{16}\right), \\ & \quad \left[a_9, x_{26}\right] = d\left(c_{17}^2\right), \\ & \quad \left[y_{21}, x_{26}\right] = d\left(c_{17}^2b_{12}\right), \quad \left[y_{25}, x_{26}\right] = d\left(c_{17}^2b_{16}\right). \end{aligned}$$

In \overline{W} , $[a_9, P] = c_{17}\partial P$ holds. If A is a cocycle with neither a_9 nor c_{17} , we have

$$(4.6.2)$$
 $[a_9, A] = 0.$

Since A commutes with a_9 , c_{17} , a_4 , a_8 , b_{12} and b_{18} , we also have

(4. 6. 3)
$$[y_{21}, A] = 0$$
, $[y_{25}, A] = 0$ and $[x_{26}, A] = 0$.
Therefore commutativity holds in $Cotor_A(Z_3, Z_3)$.

Recall that the differential operator d augments the degree with respect to a_9 and c_{17} by 1. Therefore, $\sum f_i \in d$ -image occurs with different degrees l only when each $f_i \in d$ -image.

Lemma 4.7. The following elements are non-trivial:

$$x_{26}^{\ k}x_{36}^{\ i}x_{48}^{\ j}x_{108}^{\ h}, \qquad x_{26}^{\ k}y_{20}x_{36}^{\ i}x_{48}^{\ j}x_{108}^{\ h}, \\ x_{26}^{\ k}a_{4}x_{36}^{\ i}x_{48}^{\ j}x_{108}^{\ h}, \qquad x_{26}^{\ k}a_{5}x_{36}^{\ i}x_{48}^{\ j}x_{108}^{\ h}, \\ x_{26}^{\ k}a_{9}x_{36}^{\ i}x_{48}^{\ j}x_{108}^{\ h}, \qquad x_{26}^{\ k}a_{9}y_{20}x_{36}^{\ k}x_{48}^{\ j}x_{108}^{\ h}, \\ x_{26}^{\ k}y_{21}x_{36}^{\ i}x_{48}^{\ j}x_{108}^{\ h}, \qquad x_{26}^{\ k}y_{25}x_{36}^{\ i}x_{48}^{\ j}x_{108}^{\ h}$$

and they are linearly independent, where k, i, j, h are non-negative integers.

Proof. By Lemma 4.4 a cocycle
$$f_{2k+1}$$
 of degree $2k+1$ is of the form
$$f_{2k+1} = x_{26}^{k} a_9 A + x_{26}^{k} \sum \alpha(i,j,h) y_{21} x_{36}^{i} x_{48}^{j} x_{108}^{h} + x_{26}^{k} \sum \beta(i,j,h) y_{25} x_{36}^{i} x_{48}^{j} x_{108}^{h}$$

$$= x_{26}^{k} (a_9 (A + \sum \alpha(i,j,h) b_{12} x_{36}^{i} x_{48}^{j} x_{108}^{h} + \sum \beta(i,j,h) b_{16} x_{36}^{i} x_{48}^{j} x_{108}^{h})$$

$$+c_{17}(-\sum_{\alpha}\alpha(i,j,h)a_4x_{36}^ix_{48}^jx_{108}^h-\sum_{\beta}\beta(i,j,h)a_8x_{36}^ix_{48}^jx_{108}^h)),$$

where $\alpha(i,j,h)$, $\beta(i,j,h) \in \mathbb{Z}_3$, A is a cocycle with neither a_9 nor c_{17} and $\sum \alpha(i,j,h) a_4 x_{36}^i x_{48}^j x_{108}^h + \sum \beta(i,j,h) a_8 x_{36}^i x_{48}^j x_{108}^h$ is not in the ∂^2 -image by (3.12.2). On the other hand any element f_{2k} of degree 2k is written as in Lemma 4.3:

$$f_{2k} = \sum_{i=0}^{k-1} x_{26}^{i} c_{17} f_{2k-2i-1} + x_{26}^{k} P + (d-image),$$

and its d-image is calculated as in (4.3.1):

$$df_{2k} = \sum_{i=0}^{k-1} x_{26}^{i} a_{9}^{2} f_{2k-2i-1} - \sum_{i=0}^{k-1} x_{26}^{i} c_{17} df_{2k-2i-1} + x_{26}^{k} (a_{9} \partial P + c_{17} \partial^{2} P).$$

Comparing our cocycle f_{2k+1} with df_{2k} , we see that f_{2k+1} is not in the *d*-image so long as it has a term $x_{26}^k y_{21} x_{36}^i x_{48}^j x_{108}^h$ or $x_{26}^k y_{25} x_{36}^i x_{48}^j x_{108}^h$. That is to say, $x_{26}^k y_{21} x_{36}^i x_{45}^j x_{108}^h$ and $x_{26}^k y_{25} x_{36}^i x_{45}^j x_{108}^h$ are non-trivial, and they and $x_{26}^k a_{25}^j A_{36}^j a_$

Comparing $x_{26}{}^i a_9 A$ again with df_{2k} , we see that $x_{26}{}^k a_9 A$ is in the *d*-image only when $A = \partial P$ and $x_{26}{}^k a_9 \partial P = d(x_{26}{}^k P)$. Referring to (3.12.3), we see that

$$x_{26}^{k}a_9x_{36}^{i}x_{48}^{j}x_{108}^{h}, \quad x_{26}^{k}a_9y_{20}x_{36}^{i}x_{48}^{j}x_{108}^{h}$$

and their sum are non-trivial.

A cocycle of degree 2k+2 is, by Lemma 4.4, of the form $x_{20}^{k+1}A$ where A is a cocycle with neither a_9 nor c_{17} . And any element f_{2k+1} of degree 2k+1 is written as in Lemma 4.3:

$$f_{2k+1} = \sum_{i=0}^{k-1} x_{26}^{i} c_{17} f_{2k-2i} + x_{26}^{k} (c_{17} P + a_{9} Q) + (d-image),$$

and its d-image is calculated as (4.3.2):

$$\begin{split} df_{2k+1} &= \sum_{i=0}^{k-1} x_{26}^{i} a_{9}^{2} f_{2k-2i} - \sum_{i=0}^{k-1} x_{26}^{i} c_{17} df_{2k-2i} + x_{26}^{k} a_{9}^{2} (P - \partial Q) \\ &- x_{26}^{k} c_{17} (a_{9} \partial (P - \partial Q) + c_{17} \partial^{2} P) - x_{26}^{k+1} \partial^{2} Q \; . \end{split}$$

Comparing $x_{26}^{k+1}A$ with df_{2k+1} , we see that $x_{26}^{k+1}A$ is in the *d*-image only when $A = \partial^2(-Q)$, and then

$$x_{26}^{k+1} \partial^2 (-Q) = d(x_{26}^{k} (a_9 Q + c_{17} \partial Q)).$$

So by (3. 12. 2) and (3. 12. 3) we see that

$$x_{26}^{k}x_{36}^{i}x_{48}^{j}x_{108}^{h}, \quad x_{26}^{k}y_{20}x_{36}^{i}x_{48}^{j}x_{108}^{h},$$

$$x_{26}^{k}a_4x_{36}^{i}x_{48}^{j}x_{108}^{h}, \quad x_{26}^{k}a_8x_{36}^{i}x_{48}^{j}x_{108}^{h}$$

and their sum are non-trivial.

q.e.d.

We prove

Lemma 4.8. A cocycle with a_9 and c_{17} is either trivial or a linear combination of cocyles in Lemma 4.7.

Proof. Recall from (4.6.1) the relations:

$$\begin{split} a_9^2 &= dc_{17}, \quad y_{21}^2 = d\left(c_{17}b_{12}^2\right), \quad y_{25}^2 = d\left(c_{17}b_{16}^2\right), \\ a_9y_{21} &= -x_{26}a_4 + d\left(c_{17}b_{12}\right), \quad a_9y_{25} = -x_{26}a_8 + d\left(c_{17}b_{16}\right), \\ y_{21}y_{25} &= -x_{26}y_{20} + d\left(c_{17}b_{12}b_{16}\right). \end{split}$$

Thus any cocycle is reduced to a cocycle, each term of which has at most one of a_9 , y_{21} or y_{25} .

We have shown that

$$(4.9.1) x_{26}\partial^2 Q = d(-a_9 Q - c_{17}\partial Q),$$

and $a_9 \partial P = dP$, in pariticular,

(4. 9. 2)
$$a_9 \partial^2 Q = d(\partial Q)$$
, $a_9 a_4 = d(-b_{12})$, $a_9 a_8 = d(-b_{16})$.

Finally, we have the following d-images:

$$\begin{aligned} (\textbf{4. 9. 3}) \qquad & y_{21}\partial^2 Q = d\left(a_4Q + b_{12}\partial Q\right), \qquad y_{25}\partial^2 Q = d\left(a_8Q + b_{16}\partial Q\right), \\ & y_{21}a_4 = d\left(b_{12}^2\right), \qquad \qquad y_{25}a_8 = d\left(b_{16}^2\right), \\ & y_{21}a_8 + a_9y_{20} = y_{25}a_4 - a_9y_{20} = d\left(b_{12}b_{16}\right), \\ & y_{21}y_{20} = d\left(-b_{12}^2b_{16}\right), \qquad \qquad y_{25}y_{20} = d\left(b_{12}b_{16}^2\right). \end{aligned}$$

Using these relations we see that any monomial in cocycles is either trivial or equivalent to one of cocycles in Lemma 4.7. q.e.d.

Theorem 4.10. For
$$A = H^*(X_7; \mathbb{Z}_3)$$
, we have as algebra

$$\begin{aligned} \text{Cotor}_{A}\left(\boldsymbol{Z}_{3},\,\boldsymbol{Z}_{3}\right) &\cong \boldsymbol{Z}_{3}\big[a_{9},\,y_{21},\,y_{25},\,x_{26},\,a_{4},\,a_{8},\,a_{20},\,x_{36},\,x_{48},\,x_{84},\,x_{108}\,,\\ &y_{20},\,y_{32},\,y_{36},\,y_{68},\,y_{80},\,y_{84},\,y_{96},\,z_{56},\,z_{44},\,z_{48},\,z_{52},\,z_{68},\,z_{72},\,z_{60}\,, \end{aligned}$$

$$z_{64}, z_{76}, z_{104}, z_{116}, z_{120}, z_{132}, w_{80}, w_{84}, w_{88}, w_{96}, w_{100}$$

$$v_{96}, v_{100}, v_{108}, v_{112}, v_{116}, u_{112}, u_{124}, u_{128}, p_{140}, p_{152}, p_{156}, p_{168}]/\rho$$
 ,

where ρ is the ideal generated by

- i) elements which are 0 as polynomial in $\mathbb{Z}_{3}[a_{4}, a_{8}, a_{20}, b_{12}, b_{16}, b_{28}, e_{36}],$
- ii) a_9^2 , y_{21}^2 , y_{25}^2 ,

 $a_9y_{21} + x_{26}a_4$, $a_9y_{25} + x_{26}a_8$, $y_{21}y_{25} + x_{26}y_{20}$,

iii)
$$a_9 \partial^2 Q$$
, $y_{21} \partial^2 Q$, $y_{25} \partial^2 Q$, $x_{26} \partial^2 Q$,
$$a_9 a_4$$
, $a_9 a_8$, $y_{21} a_4$, $y_{25} a_8$, $y_{21} y_{20}$, $y_{25} y_{20}$,
$$y_{21} a_8 + a_9 y_{20} = y_{25} a_4 - a_9 y_{20} = y_{21} a_8 + y_{25} a_4$$
.

(See Results (ii), (iii-1), (iii-2), (iii-3) and (v) for the expression of the generators in terms of a_i 's, b_j 's, c_{17} and e_{36} . See also Remark 3. 11 for practical use of the ∂^2 -image.)

§ 5. Cotor_B(
$$Z_3$$
, Z_3) with $B = H^*(X_6; Z_3)$

The Hopf algebra structure of $H^*(X_6; \mathbb{Z}_3)$ is very alike that of $H^*(X_7; \mathbb{Z}_3)$ ([6] and [7]):

(5.1)
$$H^*(X_6; \mathbf{Z}_3) \cong \mathbf{Z}_3[x_8]/(x_8^3) \otimes \Lambda(x_3, x_7, x_9, x_{11}, x_{15}, x_{17}),$$
where $\deg x_i = i$;

(5. 2)
$$\bar{\phi}(x_i) = 0$$
 for $i = 3, 7, 8, 9,$ $\bar{\phi}(x_j) = x_8 \otimes x_{j-8}$ for $j = 11, 15, 17,$

where $\bar{\phi}$ is the reduced diagonal map induced from the multiplication on X_{6} .

Notation.
$$B = H^*(X_6; \mathbb{Z}_3)$$
 and $\overline{B} = \widetilde{H}^*(X_6; \mathbb{Z}_3)$.

We construct an injective resolution of Z_3 over B quite similarly to that in § 2, taking M to be a graded Z_3 -submodule of \overline{B} generated by

$$\{x_3, x_7, x_8, x_9, x_{11}, x_{15}, x_{17}, x_8^2\}$$

and naming the set of the corresponding elements under the suspension s as

(5.3)
$$sM = \{a_4, a_8, a_9, a_{10}, b_{12}, b_{16}, b_{18}, c_{17}\}.$$

Now, we put

$$\overline{V} = T(sM)/J$$

= $Z_3 \{a_4, a_8, a_9, a_{10}, b_{12}, b_{16}, b_{18}, c_{17}\}/J$,

where J is the ideal generated by

(5.4) $[\alpha, \beta]$ for all pairs (α, β) of generators of \overline{V} except (a_9, b_f) (j=12, 16, 18) and (a_9, c_{17}) ,

$$[a_9, b_j] + c_{17}a_{j-8}$$
 for $j = 12, 16, 18,$

where $[\alpha, \beta] = \alpha\beta - (-1) *\beta\alpha$ with $* = \deg \alpha \cdot \deg \beta$.

We construct the twisted tensor product $V = B \otimes \overline{V}$ as in § 2. Then the differential operators \overline{d} in V and d in \overline{V} are given by

(5.5)
$$\bar{d}(x_i \otimes 1) = 1 \otimes a_{i+1}$$
 for $i = 3, 7, 8, 9,$
 $\bar{d}(x_8^2 \otimes 1) = 1 \otimes c_{17} - x_8 \otimes a_9$
 $\bar{d}(x_j \otimes 1) = 1 \otimes b_{j+1} + x_8 \otimes a_{j-7}$ for $j = 11, 15, 17;$

(5. 6)
$$da_i = 0$$
 for $i = 3, 8, 9, 10,$ $dc_{17} = a_9^2,$ $db_j = -a_9 a_{j-8}$ for $j = 12, 16, 18.$

Note that \overline{V} contains the polynomial algebra $S = \mathbb{Z}_3[a_4, a_8, a_{10}, b_{12}, b_{16}, b_{18}]$. Quite similarly as before one can show

Theorem 5.7. V is an injective resolution of \mathbb{Z}_3 over $B = H^*(X_6; \mathbb{Z}_3)$.

Corollary 5.8. $H(\overline{V}:d) = \text{Ker } d/\text{Im } d \cong \text{Cotor}_B(Z_3, Z_3)$.

Before we calculate $H(\overline{V}:d)$ we observe that the Hopf algebra $H^*(X_6; \mathbb{Z}_3)$ is obtained by replacing x_{19} and x_{27} in $H^*(X_7; \mathbb{Z}_3)$ with x_9 and x_{17} respectively and by omitting x_{35} in $H^*(X_7; \mathbb{Z}_3)$. This corresponds to the fact that \overline{V} is obtained by replacing a_{20} and b_{28} in \overline{W} with a_{10} and b_{18} respectively and by omitting e_{36} in \overline{W} . Thus the calculation of cocycles is done almost similarly to but more simply than the case of X_7 .

Parallel to the case of X_7 we shall find cocycles in the following steps:

- (i) cocycles in $Z_3[a_4, a_8, a_{10}, b_{12}, b_{16}]$,
- (ii)' those in $Z_3[a_4, a_8, a_{10}, b_{12}, b_{16}, b_{18}]$,
- (iii) ' (this is not necessary, since there is no e_{36}),
- (iv)' those in $Z_3\{a_9, c_{17}\}$,
- (v)' other cocycles.

In order to calculate $H(\overline{V}:d)$ we define an operator which we denote also by ∂ :

(5.9)
$$\partial a_4 = 0$$
, $\partial a_8 = 0$, $\partial a_{10} = 0$, $\partial b_{12} = -a_4$, $\partial b_{18} = -a_8$, $\partial b_{18} = -a_{10}$,

and extend it over $S = \mathbb{Z}_3[a_4, a_8, a_{10}, b_{12}, b_{16}, b_{18}]$ by (3.2). Lemmas 3.3 and 3.4 again hold for P in S.

(i)', (ii)', (iii)' Cocycles in $Z_3[a_4, a_8, a_{10}, b_{12}, b_{16}, b_{18}]$

The calculation of cocycles with neither a_9 nor c_{17} is as above except that we have no step (iii):

Proposition 5.10. We have the following indecomposable cocycles with neither a_9 nor c_{17} :

$$a_{4}, a_{8}, a_{10},$$

$$x_{36} = b_{12}^{3}, x_{48} = b_{16}^{3}, x_{54} = b_{18}^{3},$$

$$y_{20} = a_{8}b_{12} - a_{4}b_{16}, y_{22} = a_{4}b_{18} - a_{10}b_{12}, y_{26} = a_{8}b_{18} - a_{10}b_{16},$$

$$y_{58} = \partial^{2} (b_{12}^{2}b_{16}^{2}b_{18}), y_{60} = \partial^{2} (b_{12}^{2}b_{16}b_{18}^{2}),$$

$$y_{64} = \partial^{2} (b_{12}b_{16}^{2}b_{18}^{2}), y_{76} = \partial^{2} (b_{12}^{2}b_{16}^{2}b_{18}^{2}).$$

Lemma 5. 11. The elements y_{58} , y_{60} , y_{64} , y_{76} and the following products appear in the ∂^2 -image:

$$\begin{split} &a_4^2 = \partial^2 \left(-b_{12}^2 \right), \qquad a_8^2 = \partial^2 \left(-b_{16}^2 \right), \qquad a_{10}^2 = \partial^2 \left(-b_{18}^2 \right), \\ &a_4 a_8 = \partial^2 \left(-b_{12} b_{16} \right), \qquad a_4 a_{10} = \partial^2 \left(-b_{12} b_{18} \right), \qquad a_8 a_{10} = \partial^2 \left(-b_{16} b_{18} \right), \\ &a_4 y_{20} = \partial^2 \left(b_{12}^2 b_{16} \right), \qquad a_8 y_{20} = \partial^2 \left(-b_{12} b_{16}^2 \right), \\ &a_4 y_{22} = \partial^2 \left(-b_{12}^2 b_{18} \right), \quad a_{10} y_{22} = \partial^2 \left(b_{12} b_{18}^2 \right), \\ &a_8 y_{26} = \partial^2 \left(-b_{16}^2 b_{18} \right), \quad a_{10} y_{26} = \partial^2 \left(b_{16} b_{18}^2 \right), \\ &a_4 y_{26} + a_8 y_{22} = -a_8 y_{22} + a_{10} y_{20} = -a_{10} y_{20} - a_4 y_{26} = \partial^2 \left(b_{12} b_{16} b_{18} \right), \\ &y_{20}^2 = \partial^2 \left(-b_{12}^2 b_{16}^2 \right), \quad y_{22}^2 = \partial^2 \left(-b_{12}^2 b_{18}^2 \right), \qquad y_{26}^2 = \partial^2 \left(-b_{16}^2 b_{18}^2 \right), \\ &y_{20} y_{22} = \partial^2 \left(b_{12}^2 b_{16} b_{18} \right), \quad y_{20} y_{26} = \partial^2 \left(-b_{12} b_{16}^2 b_{18} \right), \quad y_{22} y_{26} = \partial^2 \left(-b_{12} b_{16} b_{18}^2 \right), \end{split}$$

and $P \cdot \partial^2 Q = \partial^2 (PQ)$ for any cocycle P with neither a_9 nor c_{17} .

Lemma 5.11 is just the interpretation of the corresponding Lemma 3.8. Note the following:

- (5.11.1) The generators a_{10} , y_{22} , y_{28} and x_{54} correspond to $a_{20} = \partial^2 e_{36}$, $y_{32} = \partial^2 (-b_{12}e_{36})$, $y_{36} = \partial^2 (-b_{16}e_{36})$ and $x_{84} = \partial^2 (-b_{28}e_{36}^2)$ respectively in the case of X_7 , but they are not in the ∂^2 -image;
- (5. 11. 2) In Lemma 5, 11 we have a ∂^2 -image

$$a_{10}y_{20} - a_8y_{22} = -a_{10}y_{20} - a_4y_{26} = a_4y_{26} + a_8y_{22} = \partial^2(b_{12}b_{16}b_{18}),$$

though $a_{10}y_{20}$, a_8y_{22} and a_4y_{26} are not in the ∂^2 -image, which did not occur in the final résumé of ∂^2 -image in X_7 (Remark (3.5)).

Remark 5.12. Of the generators,

(1) y_{58} , y_{60} , y_{64} and y_{76} are in the ∂^2 -image;

- (2) $a_4 = \partial(-b_{12})$, $a_8 = \partial(-b_{16})$ and $a_{10} = \partial(-b_{18})$ are in the ∂ -image, but not in the ∂ -image;
- (3) y_{20} , y_{22} , y_{28} , x_{38} , x_{48} and x_{54} are not in the ∂ -image.

Using the above and Lemma 5.11 we see that

(5. 12. 1) Monomials in cocycles with neither a_9 nor c_{11} except the ones in (5. 12. 2) and (5. 12. 3) are in the ∂^2 -image;

(5. 12. 2)
$$a_4 x_{36}^i x_{48}^j x_{54}^k$$
, $a_8 x_{36}^i x_{48}^j x_{54}^k$, $a_{10} x_{36}^i x_{48}^j x_{54}^k$, $a_{4} y_{26} x_{36}^i x_{48}^j x_{54}^k$, $a_8 y_{22} x_{36}^i x_{48}^j x_{54}^k$ and $a_{10} y_{20} x_{36}^i x_{48}^j x_{54}^k$

are in the ∂ -image, but not in the ∂^2 -image;

(5.12.3) $x_{36}^i x_{48}^j x_{54}^k$, $y_{20} x_{36}^i x_{48}^j x_{54}^k$, $y_{22} x_{76}^i x_{48}^j x_{54}^k$ and $y_{26} x_{36}^i x_{48}^j x_{54}^k$ are not in the ∂ -image.

Note (cf. (5.11.2)) that

$$\begin{split} &a_4 y_{26} x_{36}{}^i x_{48}{}^j x_{54}{}^k = - \, a_{10} y_{20} x_{36}{}^i x_{48}{}^j x_{54}{}^k + (\partial^2\text{-image})\,, \\ &a_8 y_{22} x_{36}{}^i x_{48}{}^j x_{54}{}^k = a_{10} y_{20} x_{36}{}^i x_{48}{}^j x_{54}{}^k + (\partial^2\text{-image})\,. \end{split}$$

From now on until the end of the calculation of $\operatorname{Cotor}_B(Z_3, Z_3)$, we shall always replace $a_4y_{26}x_{36}{}^ix_{48}{}^jx_{54}{}^k$ and $a_8y_{22}x_{36}{}^ix_{48}{}^jx_{54}{}^k$ by the right hand sides of the above relations.

Such replacement done, we have the following:

- (5.13.1) A cocycle is in the ∂^2 -image if and only if each term of the cocycle is in the ∂^2 -image;
- (5.13.2) A cocylce is in the ∂ -image but not in the ∂ -image if and only if it is of the form

$$\begin{pmatrix} a & sum & of & a_4x_{36}^i x_{48}^j x_{54}^k, & a_8x_{36}^i x_{48}^j x_{54}^k, \\ a_{10}x_{36}^i x_{48}^j x_{54}^k & and & a_{10}y_{20}x_{36}^i x_{48}^j x_{54}^k \end{pmatrix} + (\partial^2\text{-image});$$

(5. 13. 3) A cocycle is not in the ∂ -image if and only if it is of the form (a sum of monomials in (5.12.3)) + (any cocycle).

(iv)' Cocycles in $Z_3\{a_9, c_{17}\}$

No change is needed in step (iv) and we obtain

Proposition 5.13. The elements a_9 and $x_{26} = [a_9, c_{17}]$ are the only indecomposable cocycles in $\mathbb{Z}_3\{a_9, c_{17}\}$.

(v)' Other cocycles

The argument is almost the same as in (v) and we have

(5.14.1) For an element f_{2k} of degree 2k with respect to a_9 and c_{17} , $df_{2k} = 0$ if and only if f_{2k} is of the form

$$f_{2k} = x_{26}^{k} A$$
 with A a cocycle with neither a_9 nor c_{17} ;

(5.14.2) For an element f_{2k+1} of degree 2k+1 with respect to a_9 and c_{17} . $df_{2k+1}=0$ if and only if f_{2k+1} is of the form

$$f_{2k+1} = x_{26}^{k} (a_9 Q + c_{17} \partial Q)$$
 with $\partial^2 Q = 0$.

Using these formulae we see that we have only to determine cocycles of the form

$$f_1 = a_9 Q + c_{17} \partial Q$$
 with $\partial^2 Q = 0$.

In case $\partial Q = 0$, f_1 is a decomposable cocycle $a_{\theta}Q$ with Q a cocycle.

In case $\partial Q \neq 0$, ∂Q is a cocycle as $\partial^2 Q = 0$. If $\partial Q = \partial^2 R$ for some R, then choosing Q to be ∂R , we have $f_1 = a_9 \partial R + c_{17} \partial^2 R = dR$, which is a trivial cocycle. By (5.13.2) a cocycle of the form ∂Q but not of the form $\partial^2 R$ is a sum of

$$a_4x_{36}^ix_{48}^jx_{54}^k$$
, $a_8x_{36}^ix_{48}^jx_{54}^k$, $a_{10}x_{36}^ix_{48}^jx_{54}^k$, $a_{10}y_{20}x_{36}^ix_{48}^jx_{54}^k$ and $(\partial^2$ -image).

In particular, for $a_4 = \partial(-b_{12})$, $a_8 = \partial(-b_{16})$ and $a_{10} = \partial(-b_{18})$, we have

$$y_{21} = a_9 b_{12} - c_{17} a_4$$
, $y_{25} = a_9 b_{16} - c_{17} a_8$ and $y_{27} = a_9 b_{18} - c_{17} a_{10}$.

And for ∂Q of the form of a sum above, we have a sum of

$$\begin{aligned} &-y_{21}x_{36}^{i}x_{48}^{j}x_{54}^{k}, \quad -y_{25}x_{36}^{i}x_{48}^{j}x_{54}^{k}, \\ &-y_{27}a_{10}x_{36}^{i}x_{48}^{j}x_{54}^{k}, \quad -y_{27}y_{20}x_{36}^{i}x_{48}^{j}x_{54}^{k} \text{ and } (d\text{-image}). \end{aligned}$$

Thus we have three new indecomposable cocycles with a_9 and c_{17} , namely, y_{21} , y_{25} and y_{27} .

Remark. The cocycles y_{21} and y_{25} are the same as in (v), and the cocycle in (v) that corresponds to y_{27} is a trivial one $a_9b_{28}-c_{17}a_{20}=d(-e_{36})$.

Looking at $(5.12.1) \sim (5.12.3)$, we see that we have found all cocycles to be found in (v)'.

Result (v)'. We have three cocycles in step (v)':

$$y_{21} = a_9 b_{12} - c_{17} a_4$$
, $y_{25} = a_9 b_{16} - c_{17} a_8$ and $y_{27} = a_9 b_{18} - c_{17} a_{10}$.

We have seen also

Lemma 5.14. (1) For an element f_{2k} of degree 2k, $df_{2k} = 0$ if and only if f_{2k} is of the form $x_{26}^{k}A$ where A is a cocycle with neither a_{9} nor c_{17} :

(2) For an element f_{2k+1} of degree 2k+1, $df_{2k+1}=0$ if and only if f_{2k+1} is of the form

$$x_{26}^{k} \left\{ a_{9}A + \begin{pmatrix} a & sum & of & y_{21}x_{36}^{i}x_{48}^{j}x_{54}^{h}, & y_{25}x_{36}^{i}x_{48}^{j}x_{54}^{h} \\ y_{27}x_{36}^{i}x_{48}^{j}x_{54}^{h} & and & y_{27}y_{20}x_{36}^{i}x_{48}^{j}x_{54}^{h}, \end{pmatrix} \right\}$$

where A is a cocycle with neither a_9 nor c_{17} .

Here we have the following d-images:

(5.15.1) In addition to the d-images in (4.6.1) we have

$$\begin{aligned} y_{27}^2 &= d\left(c_{17}b_{18}^2\right), \quad \left[y_{27}, x_{28}\right] &= d\left(c_{17}^2b_{18}\right), \\ a_9y_{27} + x_{26}a_{10} &= y_{27}a_9 - x_{26}a_{10} &= -\left[a_9, y_{27}\right] &= d\left(c_{17}b_{18}\right), \\ y_{21}y_{27} - x_{26}y_{22} &= y_{27}y_{21} + x_{26}y_{22} &= -\left[y_{21}, y_{27}\right] &= d\left(c_{17}b_{12}b_{18}\right), \\ y_{25}y_{27} - x_{26}y_{26} &= y_{27}y_{25} + x_{26}y_{26} &= -\left[y_{25}, y_{27}\right] &= d\left(c_{17}b_{12}b_{18}\right). \end{aligned}$$

In addition to the relations (4.6.2) and (4.6.3) we have similarly

(5.15.2) $[y_{27}, P] = 0$ for P with neither a_9 nor c_{17} .

Thus we have

Proposition 5. 16. Cotor_B(\mathbb{Z}_3 , \mathbb{Z}_3) is commutative.

Lemma 5.17. The following elements are non-trivial and they are linearly independent.

$$x_{26}^{k}x_{36}^{i}x_{48}^{j}x_{54}^{h}, \quad x_{26}^{k}a_{4}x_{36}^{i}x_{48}^{j}x_{54}^{h}, \quad x_{26}^{k}a_{8}x_{36}^{i}x_{48}^{j}x_{54}^{h}, \quad x_{26}^{k}a_{10}x_{36}^{i}x_{48}^{j}x_{54}^{h}, \quad x_{26}^{k}x_{20}x_{36}^{i}x_{48}^{j}x_{54}^{h}, \quad x_{26}^{k}x_{20}x_{20}x_{36}^{i}x_{48}^{j}x_{54}^{h}, \quad x_{26}^{k}x_{20}x_{20}x_{36}^{i}x_{48}^{j}x_{54}^{h}, \quad x_{26}^{k}x_{20}x_{20}x_{36}^{i}x_{48}^{j}x_{54}^{h}, \quad x_{26}^{k}x_{20}x_{20}x_{36}^{i}x_{48}^{j}x_{54}^{h}, \quad x_{26}^{k}x_{20}x_{20}x_{36}^{i}x_{48}^{j}x_{54}^{h}, \quad x_{26}^{k}x_{20}x_{20}x_{36}^{i}x_{48}^{j}x_{54}^{h}, \quad x_{26}^{k}x_{20}x_{20}x_{36}^{i}x_{48}^{j}x_{54}^{h}, \quad x_{26}^{k}x_{20}x_{20}x_{36}^{i}x_{48}^{j}x_{54}^{h}, \quad x_{26}^{k}x_{20}x_{20}^{i}x_{20}^{i}x_{20}^{i}x_{20}^{i}x_{20}^{i}x_{20}^{i}x_{20}^{i}x_{20}^{i}x_{20}^{i}x_{20}^{i}x_{20}^{i}$$

Proof. The argument is the same as in the proof of Lemma 4.7. A cocycle f_{2k+1} of degree 2k+1 is, by Lemma 5.14, of the form

$$x_{26}^{k} a_{9} A + \begin{pmatrix} \text{a sum of } x_{26}^{k} y_{21} x_{36}^{i} x_{48}^{j} x_{54}^{h}, & x_{26}^{k} y_{25} x_{36}^{i} x_{48}^{j} x_{54}^{h}, \\ x_{26}^{k} y_{27} x_{36}^{i} x_{48}^{j} x_{54}^{h} & \text{and } x_{26}^{k} y_{27} y_{20} x_{36}^{i} x_{48}^{j} x_{54}^{h}, \\ = x_{26}^{k} (a_{9}Q + c_{17}\partial Q),$$

where the ∂Q was taken not to be in the ∂^2 -image and A is a cocycle with neither a_9 nor c_{17} . Comparing f_{2k+1} with df_{2k} as in the proof of Lemma 4.7, we see that such an f_{2k+1} is not in the d-image so long as it has a term $x_{26}^k y_{21} x_{36}^i x_{48}^j x_{54}^h$, $x_{26}^k y_{25} x_{36}^i x_{48}^j x_{54}^h$, $x_{26}^k y_{27} x_{36}^i x_{48}^j x_{54}^h$ or $x_{26}^k y_{27} y_{20} x_{36}^i x_{48}^j x_{54}^h$. In other words, $x_{26}^k y_{21} x_{36}^i x_{48}^j x_{54}^h$, $x_{26}^k y_{25} x_{36}^i x_{48}^j x_{54}^h$, $x_{26}^k y_{27} x_{36}^i x_{48}^j x_{54}^h$ and $x_{26}^k y_{27} y_{20} x_{36}^i x_{48}^j x_{54}^h$ are non-trivial and they and $x_{26}^k a_9 A$ (if it is non-trivial) are linearly independent.

Comparing $x_{26}^{\ \ k}a_9A$ again with df_{2k} , we see that $x_{26}^{\ \ k}a_9A$ is in the *d*-image only when $A=\partial P$, and then $x_{26}^{\ \ k}a_9\partial P=d(x_{26}^{\ \ k}P)$. Referring to (5.12.3), we see that $x_{26}^{\ \ k}a_9x_{36}^{\ \ i}x_{48}^{\ \ j}x_{54}^{\ \ k}$, $x_{26}^{\ \ k}a_9y_{22}x_{36}^{\ \ i}x_{48}^{\ \ j}x_{54}^{\ \ k}$, $x_{26}^{\ \ k}a_9y_{22}x_{36}^{\ \ i}x_{48}^{\ \ j}$, $x_{26}^{\ \ k}a_9y_{22}x_{36}^{\ \ i}x_{48}^{\ \ j}$, $x_{26}^{\ \ k}a_9y_{22}x_{36}^{\ \ i}x_{48}^{\ \ j}$, $x_{26}^{\ \ k}a_9y_{26}x_{36}^{\ \ i}x_{48}^{\ \ j}$

Again by Lemma 5.14, a cocycle of degree 2k+2 is of the form $x_{26}^{k+1}A$, where A is a cocycle with neither a_9 nor c_{17} . Comparing $x_{26}^{k+1}A$ with df_{2k+1} as in the proof of Lemma 4.7, we see that $x_{26}^{k+1}A$ is in the d-image only when $A = \partial^2 (-Q)$, and then

$$x_{26}^{k+1} \partial^2 (-Q) = d(x_{26}^{k} (a_9 Q + c_{17} \partial Q)).$$

By $(5.12.1) \sim (5.12.3)$ we see that

$$x_{26}^{k}x_{36}^{i}x_{48}^{j}x_{54}^{h}, \qquad x_{26}^{k}a_{4}x_{36}^{i}x_{48}^{j}x_{54}^{h}, \quad x_{26}^{k}a_{8}x_{36}^{i}x_{48}^{j}x_{54}^{h}, \quad x_{26}^{k}a_{10}x_{36}^{i}x_{48}^{j}x_{54}^{h}, \\ x_{26}^{k}y_{20}x_{36}^{i}x_{48}^{j}x_{54}^{h}, \quad x_{26}^{k}y_{22}x_{36}^{i}x_{48}^{j}x_{54}^{h}, \quad x_{26}^{k}y_{26}x_{36}^{i}x_{48}^{j}x_{54}^{h}, \quad x_{26}^{k}y_{26}x_{36}^{i}x_{48}^{j}x_{54}^{h}, \quad x_{26}^{k}y_{26}x_{36}^{i}x_{48}^{j}x_{54}^{h}, \quad x_{26}^{k}y_{26}x_{36}^{i}x_{48}^{j}x_{54}^{h}, \quad x_{26}^{k}y_{26}x_{36}^{i}x_{48}^{j}x_{54}^{h}, \quad x_{26}^{k}y_{26}x_{36}^{i}x_{48}^{j}x_{54}^{h}, \quad x_{26}^{k}y_{26}x_{36}^{i}x_{48}^{j}x_{54}^{h}, \quad x_{26}^{k}y_{26}x_{36}^{i}x_{48}^{i}x_{54}^{i}, \quad x_{26}^{k}y_{26}x_{26}^{i}x_{26}^{i}x_{26}^{i}x_{26}^{\phantom{$$

and their sum are non-trivial.

We have shown that the elements in the lemma are non-trivial and that they are linearly independent. q.e.d.

Finally,

Lemma 5.18. A cocycle with a_9 and c_{17} is either trivial or a linear combination of the cocycles in Lemma 5.17.

Proof. Recall from (4.6.1) and (5.15.1) the relations

$$a_9^2 = dc_{17}, \quad y_{21}^2 = d(c_{17}b_{12}^2), \quad y_{25}^2 = d(c_{17}b_{16}^2), \quad y_{27}^2 = d(c_{17}b_{18}^2),$$

$$a_9y_{21} = -x_{28}a_4 + d(c_{17}b_{12}),$$
 $a_9y_{25} = -x_{28}a_8 + d(c_{17}b_{18}),$ $a_9y_{27} = -x_{28}a_{10} + d(c_{17}b_{18}),$

$$y_{21}y_{25} = -x_{26}y_{20} + d(c_{17}b_{12}b_{16}), \ y_{21}y_{27} = x_{26}y_{22} + d(c_{17}b_{12}b_{18}), \ y_{25}y_{27} = x_{26}y_{26} + d(c_{17}b_{16}b_{18}).$$

Therefore, any monomial in cocycles is reduced to a monomial that has at most one of a_9 , y_{21} , y_{25} or y_{27} .

We have shown that

(5. 19. 1)
$$x_{26}\partial^2 Q = d(-a_9 Q - c_{17}\partial Q)$$
,

and $a_9 \partial Q = dQ$, in particular,

(5. 19. 2)
$$a_9\partial^2 Q = d(\partial Q)$$
, $a_9a_4 = d(-b_{12})$, $a_9a_8 = d(-b_{16})$, $a_9a_{10} = d(-b_{18})$.
Finally we have the following *d*-images:

$$\begin{aligned} \textbf{(5. 19. 3)} \qquad & y_{21} \partial^2 Q = d \left(a_4 Q + b_{12} \partial Q \right), \quad y_{25} \partial^2 Q = d \left(a_8 Q + b_{16} \partial Q \right), \\ & y_{27} \partial^2 Q = d \left(a_{10} Q + b_{18} \partial Q \right), \\ & y_{21} a_4 = d \left(b_{12}^2 \right), \qquad y_{25} a_8 = d \left(b_{16}^2 \right), \qquad y_{27} a_{10} = d \left(b_{18}^2 \right), \\ & y_{21} a_8 + a_9 \, y_{20} = y_{25} a_4 - a_9 y_{20} = d \left(b_{12} b_{16} \right), \\ & y_{21} a_{10} - a_9 y_{22} = y_{27} a_4 + a_9 y_{22} = d \left(b_{12} b_{18} \right), \\ & y_{25} a_{10} - a_9 y_{26} = y_{27} a_8 + a_9 y_{26} = d \left(b_{16} b_{28} \right), \\ & y_{21} y_{20} = d \left(-b_{12}^2 b_{16} \right), \qquad y_{25} y_{20} = d \left(b_{12} b_{16}^2 \right), \\ & y_{21} y_{22} = d \left(b_{12}^2 b_{18} \right), \qquad y_{27} y_{22} = d \left(-b_{12} b_{18}^2 \right), \\ & y_{25} y_{26} = d \left(b_{16}^2 b_{18} \right), \qquad y_{27} y_{26} = d \left(-b_{16} b_{18}^2 \right), \\ & y_{27} y_{20} - y_{25} y_{22} = y_{25} y_{22} + y_{21} y_{26} = -y_{27} y_{20} - y_{21} y_{26} = d \left(-b_{12} b_{16} b_{18} \right). \end{aligned}$$

Using these relations we see that any monomial in cocycles with a_9 and c_{17} is either trivial or equivalent to one of the elements in Lemma 5.17.

q.e.d.

Thus we have

Theorem 5.20. For $B = H^*(X_6; \mathbb{Z}_3)$, we have as algebra

$$\operatorname{Cotor}_{B}(\boldsymbol{Z_{3}},\boldsymbol{Z_{3}})\cong\boldsymbol{Z_{3}}[a_{9},\,x_{28},\,y_{21},\,y_{25},\,y_{27},\,a_{4},\,a_{8},\,a_{10},\,x_{38},\,x_{48},\,x_{54},$$
 $y_{20},\,y_{22},\,y_{26},\,y_{58},\,y_{60},\,y_{64},\,y_{76}]/\eta$,

where \eta is the ideal generated by

i) elements which are 0 as polynomial in $\mathbb{Z}_3[a_4, a_8, a_{10}, b_{12}, b_{16}, b_{18}]$;

ii)
$$a_9^2$$
, y_{21}^2 , y_{25}^2 , y_{27}^2 ,
 $a_9y_{21} + x_{26}a_4$, $a_9y_{25} + x_{26}a_8$, $a_9y_{27} + x_{26}a_{10}$,
 $y_{21}y_{25} + x_{26}y_{20}$, $y_{21}y_{27} - x_{26}y_{22}$, $y_{25}y_{27} - x_{26}y_{26}$,

iii)
$$a_9 \partial^2 Q$$
, $y_{21} \partial^2 Q$, $y_{25} \partial^2 Q$, $y_{27} \partial^2 Q$, $x_{28} \partial^2 Q$, $a_{9} a_{4}$, $a_{9} a_{8}$, $a_{9} a_{10}$, $y_{21} a_{4}$, $y_{25} a_{8}$, $y_{27} a_{10}$, $y_{21} a_{8} + a_{9} y_{20} = y_{25} a_{4} - a_{9} y_{20}$, $y_{21} a_{10} - a_{9} y_{22} = y_{27} a_{4} + a_{9} y_{22}$, $y_{25} a_{10} - a_{9} y_{26} = y_{27} a_{8} + a_{9} y_{26}$, $y_{21} y_{20}$, $y_{25} y_{20}$, $y_{21} y_{22}$, $y_{27} y_{20}$, $y_{25} y_{20}$, $y_{21} y_{22}$, $y_{27} y_{22}$, $y_{25} y_{26}$, $y_{27} y_{20} - y_{25} y_{22} = y_{25} y_{22} + y_{21} y_{26} = -y_{27} y_{20} - y_{21} y_{26}$.

(See Result (v)' and Propositions 5. 10 and 5. 13 for the expression of the generators in terms of a_i 's, b_j 's and c_{17} . See also Remark 5. 12 for practical use of the ∂^2 -image.)

INSTITUTE OF MATHEMATICS
YOSHIDA COLLEGE
KYOTO UNIVERSITY;
FACULTY OF MANAGEMENT
SENSHU UNIVERSITY

References

- [1] S. Araki: On the non-commutativity of Pontrjagin rings mod 3 of some compact exceptional groups, Nagoya Math. J., 17 (1960), 225-260.
- [2] E. H. Brown Jr.: Twisted tensor product I, Ann. Math., 69 (1959), 223-246.
- [3] A. Iwai A. Shimada: A remark on resolutions for Hopf algebras, Publ. RIMS of Kyoto Univ., 1 (1966), 187-198.
- [4] A Kono: Hopf algebra structure of simple Lie groups, J. Math. Kyoto Univ., 17 (1977), 259-298.
- [5] A. Kono M. Mimura: Cohomology mod 2 of the classifying space of the compact connected Lie group of type E₆, J. Pure and Applied Algebra, 6 (1975), 61-81.
- [6] A. Kono M. Mimura: Cohomology mod 3 of the classifying space of the compact, 1-connected Lie group of type E₀, Preprint Series 1974/75 No. 30., Matematisk Institut, Aarhus Universitet.
- [7] A. Kono M. Mimura: Cohomology operations and the Hopf algebra structure of the compact exceptional Lie groups E₇ and E₈, Proc. London Math. Soc., (3) 35 (1977), 345-358.
- [8] A. Kono M. Mimura N. Shimada: Cohomology of classifying space of certain associative H-spaces, J. Math. Kyoto Univ., 15 (1975), 607-617.
- [9] A. Kono M. Mimura N. Shimada: On the cohomology mod 2 of the classifying space of the 1-connected exceptional Lie group E_7 , J. Pure and Applied Algebra, 8 (1976), 267-283.
- [10] M. Mori: A note on Steenrod operations in the Eilenberg-Moore spectral sequence, Proc. Japan Acad., 53 (1977), 112-114.
- [11] M. Mori: The Steenrod operations in the Eilenberg-Moore spectral sequence, Hiroshima Math. J., 9 (1979), 17-34.
- [12] M. Rothenberg N. E. Steenrod: The cohomology of classifying spaces of H-spaces, Bull. AMS, 71 (1965), 872-875.
- [13] M. Rothenberg N. E. Steenrod: The cohomology of classifying spaces of H-spaces, (mimeographed notes).
- [14] N. Shimada A. Iwai: On the cohomology of some Hopf algebra, Nagoya Math. J., 30 (1971), 103-111.