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§ 1. Introduction

As to the hyperellipticity of unramified normal coverings of hyperelliptic
Riemann surfaces, H. M. Farkas [2] firstly showed that any unramified two-
sheeted covering of a compact Riemann surface of genus 2 is necessarily hyper-
elliptic. R. D. M. Accola [1] also obtained this result and proved that an
unramified two-sheeted covering of a hyperelliptic surface of genus 3 is either
hyperelliptic or a ramified covering of a torus.

Later, C. Machlachlan [7] showed using Fuchsian groups that if an z-
sheeted unramified normal covering of a hyperelliptic surface of genus g=2
is hyperelliptic, then n=2 or 4. This was also obtained by Farkas [3] simply
using properties of Weierstral3 points on hyperelliptic surfaces.

Machlachlan [7] also proved that an unramified two-sheeted covering of a
hyperelliptic surface of genus ¢g=>2 is not necessarily hyperelliptic. In this
connection, Farkas [3] proved using Jacobian varieties that there are exactly

<2g;2> different unramified two-sheeted coverings which are also hyper

elliptic.
Following this, T. Kato [5] showed using Hurwitz representations of
2g+2>

automorphisms on hyperelliptic surfaces that there are exactly ( 3

different unramified four-sheeted coverings of a hyperelliptic surface of genus
g which are also hyperelliptic and proved that if an abelian covering of a
compact Riemann surface of genus ¢g=>2 is hyperelliptic, then the basic surface
is also hyperelliptic. Recently, H. H. Martens [8] pointed out that the last
statement is true of any coverings.

In this paper, we shall investigate normal coverings of hyperelliptic sur-
faces which are also hyperelliptic (including the ramified case) and determine
all such coverings by means of Hurwitz representations of automorphisms on
hyperelliptic surfaces following Kato [5].

The auther would like to express his hearty thanks to Professor Y.
Kusunoki for suggesting this investigation and ceaseless encouragement.
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§ 2. Hyperelliptic Riemann surfaces

We recall that a hyperelliptic surface S of genus g=>2 is defined by an
algebraic equation w?=f(z), where fis a polynomial of 2 and has only simple
zeros. S can be considered as a two-sheeted covering of the sphere and 2g
+2 Weierstral} points of S are exactly the branch points of the covering. The
projection from S to the sphere is 2. We denote the set of all Weierstraf
points of S by W. The degree of f is 2¢g+1 or 2g + 2 according as the point
at infinity is a branch point or not. S admits the hyperelliptic involution J
represented as J(z, w) = (2, —w) and as it is central in the automorphism
group of S, every conformal automorphism 7" of S induces an elliptic linear
transformation 7% of the sphere.

Hurwitz [4] showed that a hyperelliptic surface admitting an automor-
phism 7T of order n can be defined by

w'=g(2") or w=zg(2")

where ¢g(2) is a polynomial of 2. The automorphism 7 is represented as
T (z, w) = (62, +w)

in the first case and
T (z, w) = (ez, +e"*w)

in the second case, where ¢ is a primitive 7n-th root of unity.

Our purpose is to determine all hyperelliptic surfaces which are normal
coverings of a hyperelliptic surface. We assume that S is a hyperelliptic sur-
face of genus § which is an n-sheeted normal covering of a compact Riemann
surface Sof genus g=>2. Let G be the covering transformation group of S, then
the order of G is 7 and S/G can be identified with S. By the remark of
Martens [8], S is hyperelliptic. Thus G cannot contain J. For, if G con-
tains J, the genus of S must be 0, which contradicts our hypothesis. Using
the same remark, it is seen that the covering map from S to S can be repre-
sented as

Z=h(z), W=k()w

where S and S are represented as w?=f(z) and W?=g(Z) respectively and
i and % are rational functions of z.

The homomorphism T'—T%* from G to the linear transformation group is
in fact an isomorphism from G to the subgroup G* of the linear transforma-
tion group which contains only elliptic transformations of finite order, since G
does not contain J. It is well known that finite subgroups of the linear
transformation group are cyclic groups, dihedral groups, tetrahedral group,
octahedral group and icosahedral group. Thus we only must look the cases
in which G is one of these five groups.
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§ 3. The cyclic groups

We assume G is a cyclic group of order »n generated by 7. By normalizing
the fixed points of 7% to be 0 and oo and exchanging generator, we may
assume

T*(2) =e=z

where e=¢e*"", From now on, we always assume that this normalization has
been done.

According as 0 and oo belong to (W) or not, we may consider that the
defining equations of S have following forms.

(1) In case 0 and oo do not belong to z(W),
w=[](="—a), where mn=2§+2.
i=1

(2) In case O belongs to 2(W) and oo does not,

3

w=z [ ("—a)), where mn+1=25+2.

1

(3) In case 0 and oo belong to z(W),

[
~

E

,wz

Il

z [[(&"—ay), where mn+2=2§5+2.

s
n
-

Note that in each case, a,0 and if i5~j, then a,5a;.
First we consider case (1). 7T is represented as

T (2, w) = (2, +w),
so that we define 7T, and 7T, to be
T, (2, w) = (e2, w), T,(z, w) = (ez, —w)

and we shall see that the number ¢ of the fixed points of T is 0, 2 or 4.

The number m plays an important role to decide the number of the fixed points
of T.

Lemma 1. Suppose m is odd, then T, has two fixed points lying over
0 and T, has two fixed points lying over oo. Suppose m is even, then T,
has four fixed points lying over 0 and oo and T, has no fixed point.

Proof. It is obvious that 7, fixes two points lying over 0. Suppose m
is odd. To see that two points lying over oo are interchanged by T), we
choose a curve L on S which is the lifting of a line z (L) connecting 0 with
oo and so that joins a point lying over 0 with a point lying over oo and does
not pass any Weierstrald points. If two points lying over oo are fixed by
T,, then L-T,(L)"! is a closed curve on S and m is the number of points of
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2 (W) which 2(L-T;(L) ") encircles. This is a contradiction, for 7 is an odd
integer. The rest of the lemma will be proved similarly.

If £=0, then T'=T, and m is even by Lemma 1 and as
(2, w) =T" (2, w) = ("2, (—1)"w),

n=2n', where n’ is a positive integer. The degrees of ramification of four
points which lie over 0 and oo are fixed by 7% are all »”’—1. Thus the
Riemann-Hurwitz formula gives

20—2=2n"(2g—2) +4(n'—1)
and hence

2mn’ =2G+2=2n" (29—2) +4n’,

m=2g.

This agrees with our condition and S is defined by
2
Wr=Z]I[(Z—a) ,
i=1

where the projection 7 is 7w (2, w) = (Z, W) = (2", 2"*w). Note that the two
points on S which lie over 0 and oo are Weierstral3 points.

If t=2, then T (2, w) = (¢z, +w) and m is odd by Lemma 1. We first
examine the case where 7'=7,. By Lemma 1, the two points lying over O are
fixed and the two points lying over oo are interchanged by 7). From this
fact, =2n" and the degrees of ramification of two points lying over 0 are both
n—1 and those of two points lying over oo are both »’ —1. The similar com-
putation as in the case t=0 gives

m=2g+1
and S is defined by
2+1
WE=[1(Z—ay
i=1

where the projection 7 is 7 (2, w) = (Z, W) = (2", w). Note that the two
points on S which lie over 0 are non Weierstral} points and the point which lies
over oo is a Weierstrall point. The case T'=T, can be treated in a similar
manner. This time S is defined by

2g+1
Wi=Z[[(Z—a)) .
i=1

where the projection 7 is 7 (2, w) = (Z, W) = (2", 2**w). The point on S which
lies over O is a Weierstral3 point and the two points which lie over oo are
non Weierstral3 points.
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If t=4, then T (z, w) = (¢z, w) and m is even. The four points lying
over 0 and oo are fixed and their degrees of ramification are all n—1. Hence
m=29g+2 and S is defined by

2942

W=l (Z-a.

where the projection 7 is 7 (2, w) = (Z, W) = (2", w). The four points on S
which lie over 0 and oo are non Weierstral} points and z is an arbitrary in-
teger greater than 1.

Next we consider case (2) and (3). In these cases T is represented as

T(z, w) = (ez, +&"*w), where e*=¢"""

so that we define 7, and 7T, to be
T, (2, w) = (ez, *w), T,(z, w) = (ez, — "’ w).
If T=T,, then
(z, w) =T" (2, w) = ("2 " w)

and hence

1=¢"*=—-1.

This is a contradiction and so T'=T,.

We must as well count up the fixed points of 7.

In case (2), we have mn=2F+1. Thus m and n are both odd. T fixed
the Weierstra3 point lying over 0 and the two points lying over co. For, as
n is odd, the two points lying over oo are not interchanged by 7. The
degrees of ramification of these three points are all z—1. Hence

m=2g+1
and S is defined by

20+1
Wi=Z]1l(Z—-a),

1=1

n-Ds2

where the projection 7 is 7 (z, w) = (Z, W) = (2", 2 w). The point on S
which lies over 0 is a Weierstra3 point and the two points which lie over oo
are non Weierstral} points.

In case (3), we have mn+2=2§+4+2. Hence mn=2§. If n is even,

(2’, w) :Ym(z’ w) = (enz’ (_EI/Z)nw) = (Z, _w)5

which gives a contradiction. Thus 7 is odd and 7 is even. Then T fixes the
two Weierstral3 points lying over 0 and oo and their degrees of ramification
are both n—1. Hence

m=2g



502 Ryutaro Horiuchi
and S is defined by

Wei=Z[(Z—a),
i=1

where the projection 7 is 7 (z, w) = (Z, W) = (2", 2" ?w). The two points
on S which lie over 0 and oo are Weierstrall points.
Most part of the above study is due to Kato [5].

We summarize the obtained results in the next two theorems.

Theorem 1. An n-sheeted (n=2) cyclic covering of a hyperelliptic
surface which is also hyperelliptic can be represented as follows. (a;>0 and
ai¥ay if i%j).

1) n: arbitrary.

T, w) =2 W) =(E"w), T(w) = (2 w).

29+2

S: w=[](z"—a), S: W2=2ﬁ2(Z—ai).
i=1 i=1
(2) =n: even.
n(z) w) = (Z$ W) = (zﬂ-’ zn/zw) ) T(27 w) = (ez’ _w)'
S, w2=]2_g[(z"—a,~), S;: W’=Z]2![(Z——ai)
i=1 i1

29+1

~ 29+1
3, w=1](—a), Se: W=ZII(Z—ay.

i=1 i=1

(3) n: odd.
w(z,w) = (Z, W)= (" """ w), T(z,w)=(cz, —c"*w)
~ 2
S w2=zﬁ(z”—ai), S;: W2=Zi]![(Z—a,)
i=1 1

29+1

~ 29+1
Sy wr=z[[("—a), S T)V‘zZv]i[(Z—a,).
i=1 i=1

Theorem 1’. The types of the coverings in Theorem 1 are as follows

(@) Choose two non Weierstrals points P, and P,, then we have a
covering with four branch points of degree n—1 lying over P,, P,, J(P),)
and J(P,).

(b) Choose a non Weierstral3 point P and a Weierstral3 point Q.
Suppose n is odd, we have a covering with three branch points of degree
n—1 over P, J(P) and Q. Suppose n is even, we have a covering with
two branch points of degree n—1 lying over P and J(P) and two branch
points of degree n/2—1 lying over Q.

(¢) Choose two Weierstral3 points Q, and Q,. Suppose n is odd, we
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have a covering with two branch points of degree n—1 lying over Q, and
Q,. Suppose n is even, we have a covering with four branch points of
degree n/2—1 lying over Q, and Q,.

Remark. If we set =2 in (c), then we have 2g2+2> unramified

two-sheeted coverings, which were discussed by Farkas in [3]. By consider-
ing two-valued functions v Z and vZ—a; (=1, -+, 2g). it follows that dif-
ferent pairs of Q, and Q, on S give different unramified two-sheeted coverings

of S [5].

As a corollary from our considerations in case (2) and (3), each automor-
phism of even order not generating J cannot fix any Weierstral points on hyper-
elliptic surfaces. This can be generalized: If an automorphism 7T of prime
order p on a compact Riemann surface of genus ¢=>2 fixes the Weierstral}
point whose first non gap is p, then 7T can be represented as a covering trans-
formation of the covering over the sphere associated with the Weierstral3 point
and its first nongap 2.

§4. The dihedral groups

We assume G is generated by 71" of order n and U of order 2.
In case 2 (W) does not contain 0 and oo, since W is invariant under any
automorphisms of S, we may suppose that 7" and U are represented as

T (z, w) = (e2z, w), U(z, w) = (1/z, w/2"™)
and S is defined by

W=

=

1]

(zzu_ (4‘1‘_2) z/l_}_l) (Il-#o, 1 .

1

We shall examine all possible cases of n#, 77 and U and determine the
numbers 72, the defining equations of S and the projections 7 from S to S.
Here we define T, T,, U, and U, to be

T, (2, w) = (ez, w), T,(z, w) = (¢, —w),
U(z,w) = 1/z, w/2"™), Uy(z, w) = (1/2, —w/2"™).

(A) In case n is even and

(A) T=T, and U=U,, then TU (2, w) = (¢/z, w/z"™). T fixes four
points lying over 0 and oo, U fixes two points lying over 1.

If m is even, TU fixes two points lying over &"? and the statements for
U and TU are true of congruent points of 1 and &“? so that the Riemann-
Hurwitz formula gives

25—2=2n(29—2) +4(n—1) +2n(2—1) +22(2—1).
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Now we have

20+2=2mn.

Hence
m=2g+2
and S is defined by
20+2
W2 = H (Z_ af) )
i=1

where the projection 7 is
m(z, w) = (Z, W) = ((z"+1)?/42", w/ (42")°").
If m is odd, TU has no fixed point. Then
m=29+1
and S is defined by
W= szf_[i (Z—ap),
where the projection 7 is
7z, w) = (Z, W)= ((z"+1)%/4=2", (2"+ 1) w/ (42™)'*").

Note that 7 maps =0 and oo, congruent points of 1 and congruent

2 t0 Z=o00, 1 and O respectively.

points of ¢
The corresponding results for the remaining cases are listed belows.
(A;)) T=T, and U=U,, then TU(z, w) = (¢/2, —w/2"™).
m: even.
m=2¢g
Wi=2Z(Z—1) ﬁl(Z—a,-)
7 (2, w) = (Z, W) = (("+1)*/42", (2" —1) w/ (42")").
m: odd.
m=2g+1
wi=z-1 fl Z-a)
(2, w) = (Z, W) = ((z"+1)*/4z", (2" —1)/ (42™)*").

(Ay) T=T, and U=U, then TU (2, w) = (¢/z, —w/2"").



Hyperelliptic Riemann surfaces 505
m: even.
m=2q
2
W*=Z1[(Z—ay)
i=1
m(z,w) = (Z, W) = (("+1)*/42", (z"+1) w/ (2z"")**).
m: odd.

m=2g+1

2941
We= [_]_l(Z—ai)

7(z, w) = (Z, W) = ((2"+1)%/42", w/ (22™) ¥ *Y).
(A) T=T, and U=U, then TU(z, w) = (¢/z, w/z"™)
m:. even,
m=2g
W= Z-D{ (Z—a)
7(z, w) = (Z, W) = ((2"+1)/42", (2" —1) w/ (22™*)¥*!).
m: odd.
m=2g—1
W2=Z(Z—1)i‘i_i:(2—af)
7(z, @) = (Z, W) = (("+1)*/42", (2"~ 1) w/ (22" 7",

Remark. Since the order of T is even, the points lying over 0 and oo
cannot be Weierstral} points by the remark in § 3.

(B) In case n is odd, 7" must be 7, and the same arguments as (A,)
and (A,) are available.

In case 2(W) contains 0 and oo, #» must be odd by the above remark.
S is then defined by

wh=4z" [ (= — (4ai—2) 2" +1) a:5-0,1.
i=1
Since # is odd, T and U are represented as
T(z,w) = (ez, w), Uz, w) = (1/z, £ w/" ™),

C) If Uz, w) = 1Q/z, w/2"™"), TU (2, w) = (¢/2, w/z"™*7).
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T fixes two points lying over 0 and oo and U fixes two points lying over 1.
In case m is even, TU has no fixed point and the Riemann-Hurwitz for-
mula gives

2—2=2n(2¢—2)+2(n—1) +2n(2—1).
In this case, we have
20+2=2mn+2
so that
m=2q.
S is defined by
W2=Zf]i(Z—ai),
where the projection 7 is
m(z,w) =(Z, W) = (("+1)}/42", (2" +1)w/ (42™) 7).
In case m is odd, TU fixes ¢* and then
m=2g+1.
S is define by
we=Tl (Z—a.
where the projection 7 is
n(z,w)=(Z, W)= (("+1)*/42", w/ (42™)?*").

(Cy) If Uz, w) =1/z, —w/2"™*?), TU (2, w) = (¢/2, —w/z"™*?).
U has no fixed point and TU fixes ¢/ in case m is even and has no fixed
point in case m is odd. Thus we have the next results.

m: even,
m=2¢g
We= (Z-D1] (Z—ar)
i=1
n(z, w) = (Z, W) = ((z"+1)*/4=", (z"—1) /(4=")"").
m: odd.
m=2g—1

Wi=Z(Z-1D [l (Z—a).
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We summarize the obtained results in the next theorem.
Theorem 2. An n-sheeted (n>>2) dihedral covering of a hyper-

elliptic surface which is also hyperelliptic can be represented as follows.

(a0, 1 and aixay if i3¢j)
1) 7wz, w) = (Z, W)= ((2"+1)?*/42", w/ (42")°").
T (z, w) = (ez, w), Uz, w) = (1/z, w/z*"?").
n: arbitrary.
- 20+2 2g+2
S: wr=[] & — (4a;—2)z"+1), S: W*=]](Z—a)).
i=1 i=1
n: odd.
~ 20+ 29+1
3: wimdz" [] (2" — (da;—2) +1), S: Wi=[] (Z—a).
i=1 i=1
©2) 7wz, w)=(Z W)= ((z"+1)¥/4z", ("+1)w/ (42™*h).
T(z, w) = (ez, w), Ulz, w) = (1/2, w/z%*"").
n: arbitrary.
o 2941 2941
S: w=[] (" — (4a;—2)2"+1), S: W*=Z][[(Z—a).
i=1 i=1
n: odd.
S: w'=42" ﬁ(z’"—- (4a;—2)2"+1), S: W”=Zﬁ(2—ai).
i=1 i=1
B 7wz, w)=(Z. W) =((z"+1)%/42", (z""—1)w/(42")"*").
T(z, w) = (ez, w), Uz, w) = (1/z, —w/2¥").
n: arbitrary,
- 9
3. w==ﬁ (" — (ay—2) 2 +1), S Wi=Z(Z—1) |1 (Z—ay).
=1 =1
n: odd.

~ 29—-1 29—
S5 w1 (2 — (da—2) 2" +1),  S: Wi=Z(Z-1)T1(Z—a.
i=1

i=1

(4) n: even.
77.'(2’, w) = (Z’ ‘V) — ((z"+1) 2/42", w/ (zzn/z)g“.,)‘
T(z, 'w) = (82, —'w) s U(Z, w) — (1/2:, 'w/z‘”'”’") .

~

2 gt on n 2 kas
S: w =!_'=[1(z — (4a;—2)2"+1), S: W =£II(Z—a,).
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(2, w) = (Z, W) = ((2"+1)%/42", (=" +1) w/ (22™?) ¥+,
T(z,w) = (ez, —w), Uz, e) = 1/z, w/2¥").

S: w’:f[ (" — (da;—2)2"+1), S: S: szZig[ (Z—ay).
Tz, w) = (Z, W) =((2"+1)%/42", (™ —1)w/ (22 ¥+,
T(z, w) = (e2, —w), Uz, w) = 1/z, —w/z¥ "),

~ 20— -
S: w2=le(zz"—(4a,-—2)z"+l), S: W2:Z(Z-—1)20H1(Z——ai).
i=1 i=1

Here we set #=2 and we get the four group. Since abelian groups in our
groups are only cyclic group and the four group, we have the next theorem.

Theorem 2'. All types of the non-cyclic abelian coverings of a
hyperelliptic surface which are also hyperelliptic are as follows.

(@) Corresponding to the choices of three Weierstral3 points, we have
<2g;— 2> unramified four-sheeted coverings.

(b) Corresponding to the choices of two Weierstral3 points, we have
<2g2+ 2> four-sheeted coverings with four branch points of degree 1 lying

over P and J(P), where P is a non Weierstral3 point.

(¢c) Corresponding to the choices of one Weiestral3 point, we have
29+2 four-sheeted coverings with eight branch points of degree 1 lying
over P,, P,, J(P)) and J(P,), where P, and P, are non Weierstral3 points.

(d) We have a four-sheeted covering with twelve branch points of
degree 1 lying over P,, P, P,, J(P), J(P,) and J(P,), where P,, P, and
P, are non Weierstral3 points.

Remark. Case (a) was shown by Kato [5]. The number of cover-
ings in each case is justified by the same reasoning as the remark in § 3.

§ 5. The tetrahedral group

It is known [6] that the tetrahedral group G* can be generated by T*(2)
= ({—2)/(+2) of order 3 and U*(2) =i(2—1)/(2+1) of order 3. Invar-

iant functions for G* are

(2'—2 izt +1)°
—12/ 322 (=*—-1)*

f(=)=

and

1 (&'+2y3iz?+1)°
A —12/3 iz (' — 1)*
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which we shall verify.

Define
g(2) ==2(z'-1),
h(z) = (2"+£2¢/ 342 +1),
then
g(T* @) = 2 _g()
E+2)°
" 21+ Y3%)
h(T (2))—;——(”%)‘ h(z)
% _ 87
g(U*(2)) = (ZH)Gg(z)

21FV39)
R(U*()) =22 1Y "V h(z
U*(=)) (1) (2)
Substituting these into f(T™(2)) and f(U*(2)) gives the invariance of f(z) for
G*.
Since the order of (UT)*(2) = —z is 2, it cannot fix any points of 2(W).
Thus we only have to examine the following cases.
(A) In case T*, U* and their conjugates do not fix any points of z(W),
S is defined by

w'= (—12¢/ 32" (' =) " [1 (f (2) —as)

t=1

and as T3 (z, w) =U%(z, w) = (2, w), T and U are represented as

=5 ()

.z—1 m 8¢ "
e =k )
and then UT (2, w) = (—z, (—1)"w).
T fixes two points lying over 2 which T* fixes and U fixes two points
lying over 2z which U* fixes. These are true of congruent points.
If m is even, UT fixes two points over 0 and the Riemann-Hurwitz for-
mula gives

25—2=12(29—2) +8(38—1) +8(3—-1) +12(2—-1).
Now we have 2§+2=12m. Then m=2¢9+2 and S is defined by

. 20+2
W = H (Z_ai) >

i=1
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where the projection 7 is

. _ N w
(2, w) = (Z, W)= (f(~>, (_12\/?1-22(2_4:“1) 2)g+1‘>.

If m is odd, UT has no fixed point and then m=2g+1. S is defined by
2+1

We=[] (Z—ay).

where the projection 7 is

7 @) =2, W) = (£, g i i gy )

(B) In case T* and its conjugates fix points of z(W), S is defined by
w= (2'4+2¢/ 3+ 1 (— 12/ T it (2 =1)H)™ ﬁ (f(2) —ay) a;5#0,1
i=1

and 7 and U are represented as

= (52 ()

i+z’ \(i+2)°
U(z, w)= <i§—;—i, (—1)"‘“( (iiiz)6>m+lw>.

Then UT (2, w) = (—z, (—1)""'w).
If m is even, m=2¢ and S is defined by

W= (Z-D ] (Z—a).

where the projection 7 is

B _ w
T(z,w)=(Z, W)= <f(z), ((—12d—3ri)’/22(2‘—1))2”+1>'

If m is odd, m=2¢9+1 and S is defined by
29+1

W= (Z-1]I(Z—a)),
i=1

where the projection 7 is

—_— f— 2 w
wlzw)=(Z,W) _<f( ): (—12¢?iz2(z‘—1))20+!>'

(C) In case U* and its conjugates fix points of z (W), S is defined by
w'= (2 2/ Ti+ 1) (— 12V Big (DY [ (F () —a) a0, 1
=1

and 7 and U are represented as
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rew =2 (s

U(z, w) = (;zﬁ (—1)m+‘<(iiiz)e)m+'w>.

Then UT (z, w) = (—=z, (—1)""w).
If m is even, m=2g and S is defined by

2
Wi=Z[l(Z—a)),
i=1
where the projection 7 is

w

(e, w) = (2, W) = (FO, 5 i 19y #)

If m is odd, m=2¢g+1 and S is defined by
2q+1
W:=ZTl1(Z—a),
i=1

where the projection 7 is

o = = k4 e
71’(‘., w) = (Z, W) —(f( ), (_12‘/3—izz(24_1)2)a+1>.

(D) In case T*, U* and their conjugates fix points of z(W), S is de-

fined by

w= (P4 142+ 1) (—12¢/ T i (' = 1)) ™ :'1_]1 (f (2) —a) 4,50, 1

and 7T and U are represented as

T (2, w) = (z_;z_ ( e fi)_‘,)m”w)

U (2, w) = (zi—i% (—1)m+2<.(;_:82 F)’"”w).

Then UT (z, w) = (—=z, (—1)""w).
If m is even, m=2g and S is defined by

Wi=2z(Z- DT (Z—a).

where the projection 7 is

(z, w)=(Z,W) = (f @ (CiayFi 1o )

If m is odd, m=2¢g—1 and S is defined by
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2g—-1
W:=Z(Z-1]l(Z~ay,
i=1
where the projection 7 is

N _ _ w
" w) =W = (10, ¢y gy

Theorem 3. A 12-sheeted tetrahedral covering of a hyperel-liptic
surface which is also hyperelliptic can be represented as follows. (a;%0,1

and a;>ay if icj)

_ w
@ A = (1), (—12J_3—izz(z‘—1)’)°+‘>

mew =55 (6150 )

Uz, w)= <i§T—i’ <_(£z_z?_>2v+2w>

S wi= (— 12y T - 1Y I (f @) ~a)

S,: W2=jij(2—ai)

Sy wh= (2'— 2/ Tiz +1)° (= 12¢/ Fiz* (' — 1)) Wiff (F @) —a)
S,: W2=Zzz=]i[:(Z—a,~,)

Sy wi= (24142 + 1) (— 12/ T iz (' — 1)) Zviﬁ (F (2) —a5)

S,: W2=Z(Z—1)f](Z—a,-)

_ w
(2) ﬂ(z, w) = <f(z) ((_12\/—3—0 1/22(24_1))20“)

T (2, w)= (i;i’ (zl iiz)e>2”+‘w>

UG w =200~ ( iiz)‘*yww)

S wi= (~12v T izt = DY I (£ (2) —a)
20+1
S;: W”:J_Il (Z—a;)

Sy wh= (2*— 2/ T iz +1)* (—12¢/ Tiz? (' —1)?) 2°fi1 (f () —ay)
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29
Sy: Wi=ZT] (Z—a))
i=1
29—-1
Sy wh= (P 4142+ 1) (—12¢/ T iz (2 — 1)) ® 7 [] (f () —ay)
i=1

Sy: W2=Z(Z— 1)2ﬁ1(Z—af)
i=1

§ 6. The octahedral group

It is known [6] that the octahedral group G* can be generated by T* (2)
= ({—=2)/(i+2) of order 3 and U*(2) =iz of order 4. Invariant function for

G* are

(2°4+142'+1)°
f=) = 108z (z*—1)*
and

12 8 4 2
2) 1= (2" —332°—332'+1)
S 10824 (= —1)*

’

which can be verified using the transformation formula of ¢ (2) and A (2) in § 5.
Since the orders of U* and (TU)*(2) = (1—2)/(1+2) are even, they
cannot fix any points of 2(W). Thus we have only to examine the following

cases.
(A) In case T* and its conjugates do not any points of 2 (W), S is de-

fined by
w?= (1082 (' —1)H™ f[l (f (=) —=z) a; 70,1

and T and U are represented as

= (2 0 2 )
U(z,w) = (iz, +w).

@ If Uz, w)=(iz, w), then TU (=, w)—< (=)™ <(1+6)12>mw>°

T fixes two points lying over 2 which T* fixes and U fixes four points lying
over 0 and oo. These are true of congruent points.

If m is even, TU fixes two points lying over z which (TU)* fixes.
Now we have 29+4+2=24m and the Riemann-Hurwitz formula gives

25—2=24(29—2) +16(3—1) +12(4—1) +24(2—1).

Then m=2§+2 and S is defined by
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2942
W=[1(Z—a),

i=1

where the projection 7 is

12 8_ 4
(2 —332%—332'+1) 'w>

m(ew) = (2, w) = (f @ (1082 - 1)he

(b) If U(z, w) = ({2, —w), then
1—=2 mat 28 m
TU (2, w) = <1+_z (—1) <m) w>.

U has no fixed point and the degrees of ramification of the points which lie
over 0 are 1.
If m is even, TU has no fixed point and then m=2g. S is defined by

W= (Z-DI(Z-a).

where the projection 7 is

12 8 4
(2" —332° — 332"+ 1) w)

7T(Z, ‘ZU) = (Z’ W) = <f(z)’ (GJ_3_22 (zd_l) 2)q+1

If m is odd, TU fixes two points lying over 2 which (TU)* fixes. Then
m=2g+1 and S is defined by

29+1

Wz:;[:[(Z_ai)’

where the projection 7 is

w
(e w) = (2, W) = (@), (6¢?zf(z‘—1)2)2v+1>'

(B) In case 7% and its conjugates fix points of 2(W), S is defined by
w= (P + 142+ 1)°(1082* (*—~ D) " [[ (f (2) —a))  a=£0, 1
i=1
and 7T and U are represented as

7w = (2, (oo (2 ) )

U(z, w) = (iz, + w).

(c) If U (2, w) = (iz, w), then

TU Gz 0) =(1, % (-0 fz) o) ).

T fixes two points lying over 2 which 7* fixes and U fixes two points lying
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over 0.
If m is even, TU has no fixed point and then m=2g. S is defined by

Wt=Z(Z-D]] (Z-a),

where the projection 7 is

w
77:(2, w) = (Z, W)= (f(z)’ (6\/?22(2‘—1)2)2”').

If m is odd, TU fixes two points lying over 2 which (TU)* fixes. Then
m=2¢g+1 and S is defined by

241
W=Z[1(Z—ay),
i=1

where the projection 7 is

. _ w
7 w) = (2,W) = (£O, quama e

(d) If U (2, w) = (iz, —w), then

TU (z, w) = (i%; (—1)'"“((1 f’z) 12>m“w>.

U has no fixed point and the degrees of ramification of the points which lie
over 0 are 1.

If m is even, TU fixes two points lying over = which (TU)* fixes. Then
m=2g and S is defined by

W’=Zﬁ<2—ai>,

where the projection 7 is

n(z, w) = (Z’ W) = (f(z), (6\/_522(2“—1)2)2”1)'

If m is odd, TU has no fixed point and then m=2g—1. Sis defined by
29—1
Wr=Z(Z-1) ]l (Z—a).
i=1

where the projection 7 is

n(z,w) =(Z, W)= <f(z)’ (2¥—332°—332'+1) w)

6V3EE DY

Theorem 4. A 24-sheeted octahedral covering of a hyperelliptic-
surface which is also hyperelliptic can be represented as follows. (a;=c0, 1

and a;>a; if i%j)
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w
7z, w) = (f(z) 7 (10824 (2*—1)% "“)

T (2, w) = <:;z, <%E> Zﬁzw)

Uz, w) = (iz, w)

~ 20+2
8,: wh= (1082 ('~ 1) %" (] (f (=) —ay)
i=1
29 +2
S;: WE=11(Z—a))
i=1
~ 29+1
Si w'= (214 142! +1)° (1082 (= 1)) ** [ (f =) —a0)
=1
2g9+1

St W=Z[](Z—a)

i=1

_ (2% —332*—332'+ D w
7 (2, w) = <f(z) T (10824 (2t —1) % et! >

T (2, w) = <z;§ _ ((if‘;) 12>20+‘zv>
Ul(z, w) = (iz, w)

S;: wh= (1082 (z*—1)%) ”“ﬁ(f (2) —a)
S;: W2=(Z—1)2af;Ij (Z—a)
S, wh= (24142 +1)*(1082* (z* — 1) %) 2”@1 (f(z) —ay)

24
S,: Wi=Z ili(Z—ai)

w
n(z, 'w) = <f(z) ’ (6\/?22 (24__1) 2) 2g+1>

Tz mw) =<:§ B <(i+2:)'2>2mw>

U(z, w) = (iz, —w)

S;: wr= (1082* (2*—1) “)zg“zij[:(f (2) —ay)
S,: Wzijjz(Z—a,)
3,: wt= (24142 +1)* (1082 (24—1)4)wiﬁ (f ) —a)

S, W2=Zﬁ (Z—ay)
i=1
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§7.

It is known [6] that the icosahedral group G* can be generated by

of order

of order

F@= 17282° (2 + 112°— 1)°
and
f@) —1=" (("+1) +522 (2" —=%) —10005 (2" +2'))"
17282° (2 +112° —1)°
If we define

Hyperelliptic Riemann surfaces

7 (2, w) = <f(z) (23323324 1) w>

(643 2 (2! — 1))
_(iz=E (2 )

T(z,w)—<i+z,<(i+z)u> w)

U(z, w) = (iz, —w)

8y wt= (1082 (=~ 1)) [T (£ (2) —a0)

S W= (Z—1) r[ (Z—a)

S, wt= (28+142*+1)*(1082* (z*—1)%) zg‘ljﬁll(f (2) —a;)

S W=2Z-1) 11 (Z—a).

The icosahedral group

where ¢ =e

T*(2) = (1—ez+ (e'—¢)
(e—e%z+ (—¢Y

3 and
U* (2) =ez
5. Invariant functions for G* are

(= (@¥+1) +228(z" —2°) —4942")°

2=x1/5
>

V=TUTU'T,
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the order of V is 2 and thus V* cannot fix any points of 2(W). We there-
fore have only to examine the next cases.
In case T*, U* and their conjugates do not fix any points of z (W),
S is defined by

(A)

wh= (17282° (2° + 112°—1)%) ™ fl (f (2) —a)

and T and U are represented as
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—(A—eHz+ (') 5" "
T(z’w)_<(e—e’)z+(az—sa)’<((6—€°)z+(82—58))30> w)

U(z, w) = (ez, w).

Then

P4

and T fixes two points lying over = which 7% fixes and U fixes two points
lying over 0. Of course, these are true of conguruent points.

If m is even, V fixes two points lying over 7¢ and the Riemann-Hurwitz
formula gives

25—2=60(29—2) +40(3—1) +24(5—1) +60(2—1).

Now we have 2§+2=60m and then m=2g+2. S is defined by

29+2

wi=[1(Z-a,

where the projection 7 is

w
T = .
(Z, 'LU) (f(Z), (172825 (z10+1125_1) 5)q+1>
If m is odd, V has no fixed point and then m=2g+1. S is defined by
29+1
W= (Z-D][[(Z—-a),
i=1

where the projection 7 is

(294 1) +228(2" —2°) —4942") w>

7 (2, w) = <f @7 rases (= +112°—1)%) o+

(B) In case T™ and its conjugates fix points of z(W), S is defined by

W= (— (294 1) +228 (25— 25 — 494z™)?
X (172828 (2" + 112~ 1)) ™ [T (F (=) —as) @50, 1
i=1

and T and U are represented as

> — A—-ez+ (e*—¢) 51 o
T( ,w) ((8_63)2_’_(82_83)’<((e_53)z+(82_63))30> w)

U(z, w) = (ez. w).

Then
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e w
V (z, w) =<_? W>

and T fixes the point lying over 2 which 7% fixes and U fixes two points
lying over 0.
If m is even. V has no fixed point and then m=2g. S is defined by

wi=2Z-D{ (Z-a),

where the projection 7 is

. 1((2°+1) +228(" —2%) —4942")
7z, w) = <f @, (17282 (2° + 112°— 1) %) 7+ w) :

If m is odd, V fixes two points lying over i and then m=2¢g+1. S'is
defined by

2941
W*= Z]:[l(Z—ai),

where the projection 7 is

B w
n(z, w) = (f(z) 7 (17282° (2 +112°— 1)) ”l).

(C) In case U* and its conjugates fix points of 2(W), S is defined by
70t = (17282° (2 +112°— 1) %) ™! ﬁ (f(=z) —ay) a; 0,1
i=i

and T and U are represented just same as in (B). Consequently similar argu-
ments as in (B) are applicable and we only list the results.
m: even

m=29

W= (Z-D] (Z—a)

_ i ((2°+1) +228 (2 — 2°) —4942")
7, w) = (£, 7285 (o 4 17— D e )

m: odd
m=2g+1

» 2g+1
w =iI=Il(Z—ai)

_ w
(2, w) = <f(z)’ (17282° (2 + 112°— 1) n+1>’

(D) In case T%, U* and their conjugates fix points of 2 (W), S is de-
fined by
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w'= (— (2¥+1) +228 (2" —2°) —4942")*
X ((17282° (2 + 1122~ D))" [T (f () —a)  a#0,1
i=1

and 7T and U are represented as
1—e9z+ (e'—¢) 518 m+2
T (<
=, w) <(e—s")z+(ez—sa)’<((e—e’)z+(e*—e"))’°> )
Uz, w) = (ez, w).

Then

Vi) =<—i o)

z =z

and T fixes the point lying over 2 which T%* fixes and U fixes the point lying
over 0.

If m is even, V fixes two points lying over 7¢ and then m=2g. Sis de-
fined by

W= Z[[(Z a;),

where the projection 7 is

w
(2 = . .
( ’ 'w) <f(z), (1728z5(zm+ 1125_1)5)”1)
If m is odd, V has no fixed point and then m=2g—1. Sis defined by
Wr=2Z(Z— 1)H(Z a;).

where the projection 7 is

_ (@0 +1) +228(2° —2°) —4942") >
7'[(3, ‘ZU) (f(z)a (172825 (Zw+ 112 1)5)g+1 w
Theorem 5. A 60-sheeted icosahedral covering of a hyperelliptic
surface which is also hyperelliptic can be represented as follows. (a;:0, 1
and a;>a; if 1))

(1) 7'[(2, 'ZU) = <f(z) 5 (172825 (Z]0+ 1125: i)'-‘i) 7+l>
. _ (1 _ 84) z+ (64_ 8) 515 2a+2'zv
TG, w)—<(e—s“)z+(e”—8“)’<((€—€3) 2+ (e'— “)>”°> >

Uz, w) = (ez, )

N 2942
Siwf= (17282° (20 + 1122 —1) %) *2 j_]l (f(z) —ay)
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29+2

S W”=£[(Z—ai)

~ 2041
S,: w?= (17282°%(2°+112°—1)%)*** tH:l (f(2) —ay)

29+1

S, W=l (Z—a))
i=1
Syt w0f=(— (2®4+1) +228(2*—2%) —4942")°

29+1
X (17282° (29 +112" = 1)) ¥ [] (f (2) —a0)

2g+1
Sy: Wei=Z [ (Z—a)

i=1

S wr=(— (2P4+1) +228(2" —2°) —4942")°

X (17282 (2 +112°— 1) %) #*! ﬁ (f (2) —a)

2
S,: W’=Zi]:[l(Z—ai)

_ P((2°+1) +228 (2 —2°) —4942")
(2, w) = <f @, (17282° (2" + 112° — 1)) **! w>

P _(A=eH=z+ (e*—¢) 518 2+1
T = (s e (e amm®) )

Uz, w) = (ez, w)

8. wi= (17282 (2 + 112~ 1)) "1 ] (f (2) —ar)
i=1
29+1
S Wi=Z-D]l(Z-a)
=1
S,: wt= (17282° (2" +112°—1) %) #*! ﬁ (f(z) —a)
i=1
2
Sy Wi= (Z—D T (Z—a)
i=1
2
5, = (— (241) +228(2" — 2% —4942")° [] (f (2) —a)
i=1

2
Sy Wi=2Z(Z—1) [ (Z—ay)
i=1
S,: w=(— (2¥+1) +228(2P®—2% —4942")°

X (17282° (2" +112°—1)°%) 2”2'1;11 (f(®) —ay)

S W= Z(Z— 1)2:1f(2—a,.)
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§ 8. We list all the types of dihedral, tetrahedral, octhafedral and icosahedral
coverings of a hyperelliptic surface which are also hyperelliptic in the next
Table. As a corollary from this Table, it can be seen that if an n-sheeted
unramified covering of a hyperelliptic surface is hyperelliptic, then n=2 or 4.
(Machlachlan [7])

Table
P: non WeierstraB point, Q: Weierstrall point.
o } Dihedral group (27) N 7 Tetrahedral group (12)
n: even, odd even odd
P, J(P): 2(n—1) . 4@6-1
Pz, J(Pz): 72(2“1) 4(3‘—1)
Py, J(Py): J n2-1) - 6@-D
Py JPY: | 2mi-1)  m@—1)  n@—1) 4B-1)  46-1D
Py J(PY:  n@-1)  al-1) -1 43-1)  6(2-1)
Q : 0 4(-.’2’_—1) 2(n—1) 0 43-1)
P, J(P) : 2(n—1) n(2—1) n(2—1) 43-1) 6(2—-1)
Qi S0 4(325—1) 2(n—1) 43B-1)  46-1)
o) S0 0 0 0 4(3-1)
0 : 4(-?25—1) 2(n—1) 43-1)
Q. : 0 0 4G3-1)
Qs : ‘ 0 0 ! 0
‘ Octahedral group (24) ; Icosahedral group (60)
P,JPY:  6(4—1) C126-D)
Py J®):  8GB-D) 206-1)
Py, J(Py): ‘ 12(2—1) C30@2-1)
Py, J(P): 6(4—1) 8(3—1) 6(4—-1) | 12(6-1) 208—1) 12(6—1)
Py, J(P2): | 83B—-1) 12(2—1) 12(2-1) 30(3—-1) 30(2—-1) 302-1)
Q : 0 12(2—-1) 83B—-1) 0 12(6—1) 20B8—1)
P, J(P) : 8(3—-1) 6(4—1) 12(2—-1) 20(3—-1) 12(6—1) 302-1)
Q: : 12(2—1) 8(3—1) 833—-1) 12(5—-1) 203—1) 12(6—1)
Q: : 0 0 12(2—-1) 0 0 203—1)
Q : 8(3—1) C126-1)
o) Do1202-D) 20(3—1)
Qs : 0 0
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