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Introduction

L e t /VI be a connected paracompact smooth manifold and g  a codimension
one foliation on A I without h o lo n o m y. I f  M  is  com pact and g  is class
then g  is topologically equivalent to a condimension one foliation defined
by closed non-singular one form w  (S a c k s te d e r  [1 4 ] )  a n d  th e  structure of

is  very w ell understood  ( [ 5 ] ,  [ 1 1 ] ,  [ 1 2 ] ,  [ 1 5 ] ) .  O f  co u rse  th e  com-
pactness o f M  is essential in  these results, b u t  i f  7r, (ii1 )  is  ab e lian  we can
obtain the Sacksteder's theorem fo r non-compact /V/.

Theorem  I. L e t  g  b e  a  tran sv e rsally  o rie n tab le  c o d im e n s io n  o n e
f o liat io n  o f  c lass  C 2 o n  M . S u p p o s e  th a t  9 "  i s  w i th o u t  h o lo n o m y  an d

(M )  i s  a . f in ite ly  g e n e rate d  ab e lian  g ro u p , th e n  w e  h av e  th e  f o llow ing
tw o  cases.
(1) I f  th e re  e x is ts  n o  c lo s e d  tran sv e rsal cu rv e , th en  th ere  ex is ts  a  topo-
lo g ic al subm ersion f  o f  M  o n to  R  o r S '  which defines g .
(2) I f  th e re  e x is ts  a  c lo se d  tran sv e rsal c u rv e  C , le t  V ,- - - Q ( C )  b e  the
s atu rat io n  o f  C , then
(i) F o r a  su itab le  c h o ic e  o f  d if f e re n tial s t ru c tu re  o n  V ,,  th e re  e x is ts  a
n o n -sing u lar c lo sed  one f o rm  w  an d  g  IV , is  d e f in e d  b y  c o -= O.
(ii) L e t  V , b e  a  connected com ponent o f  M —  V 0 , th en  th e re  ex is ts  a  topo-
lo g ic al su b m e rs io n  f , o f  V ,  t o  R  w h ic h  d e f in e s  g  IV , a n d  a n y  le a f  o f
g IV" sep arate s  M  in to  tw o  co m p o n en ts .

R em ark s  I. (1) I n  (I. 1 )  a n d  (I. 2 . i i) , th e  submersions f  and f ,  are
not necessarily differentiable (see [3 ] ) .  ( 2 )  In  (I. 2 . i)  an d  (I. 2 . ii), co is not
necessarily extendable to V, U V , (see  [ 8 ] ) .  F o r  a  cu rve  c ( t ) ,  where c (t)

E  Ve f o r  0 < t< 1  a n d  c (1) E V „, i f  lim C * ( , )  is  f in it e  th e n  o )  is extendable
0

t o  Vo U V,. ( 3 )  L e t  X ,  b e  th e  leaf space of th e n  (1 . 2 . ii) is  equiva-
len t to  say  th a t X ,  is  a  simply connected (non-Hausdorff) 1  dimensional mani-
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fo ld  w ith  the boundary consisting of one point.

A s  fo r  th e  structure o f codimension on e  foliation g  defined by closed
one form  w , we showed in  [6 ]  that any non-closed leaf is locally dense when
w is  a  closed one form  on a compact manifold M  with isolated singularities

and g  i s  defined on  M— E .  I f  r, (M )  is abelian we can obtain more im-
formations on  g  even i f  A l is  n o t compact.

L e t w be a  closed one form on a manifold A I, a homomorphism i (w )  from

7r1 (.211) t o  R  is d e fin ed  b y  i (w) (a)  = f  w  where c  is  a  representative of

ceEiz i (M ) .  W e denote Per (w ) th e  s e t  o f periods o f  w , i.e ., the im age of
i ( w ) .  T h e  ran k  o f  w is defined by the rank (as Z-module) o f P e r  ( w ) .  I f
Per (w ) is not finitely generated we define rank w  to  b e  00.

T h e o re m  I I . L e t  w be a  non-singu lar c losed  one f o rm  o f  c las s  C1 on
M  a n d  g  a  codim ension one f o liatio n  d e f in e d  b y  w= O. I f  r, (M ) is  abe-
lian , w e  h av e  the  f o llo w in g  tw o  cases.
(1) I f  t h e  ran k  o f  w  i s  0  o r 1 , th e re  is  a su b m ersio n  f  o f  M  onto R or
S1 s u c h  t h a t  g  is  d e f in e d  b y  f .
(2) I f  t h e  ran k  o f  w  i s  g re a te r th a n  one , th e re  e x is ts  a  s atu rate d  open
s e t  V , o f  M  a n d  g  h a s  th e  f o llow ing  properties.
(i) A ll le av e s  i n  V , a re  d e n s e  in  V,.
(ii) L e t  a  b e  a n  e le m e n t o f  7t1 (M , x ) , x E V 0 , a  is represen ted  by  a  closed
tran s v e rs al cu rv e  if  i(o) (a) * 0  and  is  represen ted  by  a  curv e  in  L ,, w here
L s  i s  t h e  le af  p ass in g  th ro u g h  x ,  i f  i(w) (a) O .
(iii) L et I  b e  a  c u rv e  i n  A I  f ro m  x  t o  y ,  x , y E V 0 ,  th e n  L s =1, 5  i f  a n d

o n ly  i f  f o  b e lo n g s  to  Pe r (w).

(iv) S am e  a s  (I. 2. ii) b u t  i n  th is  t im e  f ,  is  d if f e ren tiab le .

R em ark s  II. (1) I f  rank o = 1 and there exists a  closed transversal
curve C  then, putting V, -=Q (C ) ,  th e  properties (II. 2. ii, iii, i v )  h o l d .  (2)
since r 1 ( V 0 ) is not necessarily abelian, we cannot apply directly Theorem II

to  the structure of g  IV , in  (I. 2). But the properties o f (II . 2 ) hold in the
case o f (I. 2 )  i f  w e  replace i (w ) by th e  linear characteristic homomorphism
(see § 3). (3) I f  OM  is not empty, suppose that, on each component of OM, g
is transverse or tangent to OM then theorems I  and II hold under trivial modi-
fications of (I. 2. ii) and  (II. 2. iv ). (4) W hen 7r1 (A I) is  not abelian, i f  any
commutator o f  rt, (M )  is represented by curves in leaves o f g  (more precisely,
i f  any commutator of r 1 (M ) is represented by a  curve which is simply bor-
dant to  a  family o f curves in  leaves o f g  (see [ 9 ] ) ) ,  then Theorems I and II
hold.

A s an  application we show that "almost all" free  R " actions on (n +1) -
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manifolds w ith abelian  fundamental group are "essentially" linear actions on
T k  X RI . (F o r th e  precise statement see § 5).

(I. 1 )  and (II. 1 ) are proved in section 1  by using the results o f  Haefliger-
R e e b  [3 ]  and a lemma o f  K o ik e  (Lem m a 1. 2) . (I. 2 .  i )  is proved by the
same method a s  [5 ].

In  [5 ]  the proof o f th e  theorem o f  Saksteder was devided in three steps.
A t th e  first step we took a  closed transversal curve C and showed that the
domain o f an  element o f th e  holonomy pseudogroup acting on C is extendable
to  the whole o f  C and the pseudogroup is really a group acting on C without
fixed poin t. In  the second s tep  w e  re la ted  th is  g rou p  to  th e  fundamental
group o f M  and showed that the group is fin itely generated. A t  th e  third
step, by using the theorem of Denjoy, we showed that there exists a  metric
on C which is invariant under the holonom y pseudogroup. T h e  theorem of
Sacksteder follows from  this invariant metric.

In  the present case w e prove the first step by using singular foliations
on T 2 a s tis fy in g  some conditions (see §  2 ) .  In  §  3  we prove the second step
by considering a  subspace M (9 . , c )  of the space of maps o f T 2 into M and by
introducing the notion o f th e  characteristic homomorphism x (y ) .  T h e  third
step is the same as  in  [ 5 ]  and w e  p rove  (I. 2 . i )  in  § 3.

Th e rest o f Theorem s I and II are proved in § 4. Here the essential tool
is Lemma 4 . 4 . which is a  consequence o f  th e  V a n  Kam pen's theorem . In
§  6  w e  show examples which show that the statements o f  theorems I and II
fa il i f  w e  omit the abelian  assumption on  7r1 (/1//).

§  1 .  P ro o f o f  (I . 1 )  and (II. 1)

T h e  following lemma is trivial.

L e m m a  1 . 1 . L e t  co be a  closed one f r o m  o n  a  manifold M  If the
rank o f  co is o n e  then there exist t h e  smallest Po s itiv e  number s  in  P e r
( w ) .  I f  t h e  rank o f  co is greater than one then Per ( w )  is  d e n s e  in  R.

P ro o f o f  (II. 1 ) .  I f  th e  rank o f to is zero , then  th e  resu lt is  trivial.
If th e  rank o f  co is  one, choose a point x o  in  M  and define f : M—>S1 =R/ sZ

by f (x ) =  co where /  is a  curve from  x , to  x .  Then f  defines the folia-
tion 9 .

T h e  following, easy but u sefu ll, lemma is due to  T .  K o ike  [7 ].

L em m a 1 . 2 . L e t M  be a  connected manifold with a b e l ia n  fu n d a m e ta l
group a n d  L „ L , connected c o d im en s io n  one closed su b m a n i fo ld s  o f  M  I f
L, n L , is  v id e  then M— (L,U L 2)  is disconnected.

P r o o f  I f  M— (L 1 UL 2 ) is connected then we can take a  closed curve
(i =1, 2 )  in  M —  ( j * i )  with base point xE  M— (L, U L , )  which inter-
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sects transversally w ith L 1 a t  o n l y  o n e  p o in t .  S ince 7r, (M )  i s  abelian,
1 1*/ 2 *1,- '*1 2

- '  is  homotopic t o  z e r o .  T h is  im plies a contradiction b y  the
method of mod 2  degree theory as  in  [10].

P ro o f  o f  (I. 1). L e t  TC: .214-,m /g  =x  be the projection t o  th e  space of
leaves of F .  S in ce th ere  ex ists  no closed transversal curve and y  is trans-
versally orientable, X  is an orientable one dimensional m an ifo ld . If all leaves
o f  g  separate M  into two connected components then X  is simply connected
and there exits a  topological submersion h  o f  X  on to  R  (s e e  [ 3 ] ) .  So f
=h•rc  is a  topological submersion which defines 9 . . I f  there exists a  leaf
L  such that 11.47  = —  L  is connected then by (1.2) any leaf o f g '
separates M '. H ence th ere  ex ists  a  topological submersion f '  o f  M ' onto
R  which defines L e t  c ( t )  b e  a transverse segum en t in  M  passing
through c (0) L .  b y  the p ro o f o f Proposition 1  o f  [ 3 ] ,  it is possible to
choose f '  so that a, f '  (e (t)) e x is t s .  I f  a ÷ = a _  w e can  extend f  to

t- ± o
the submersion f: 111— >R. I f  a_i_* a _  then we define f : M — >S '= R /la + — a_IZ
by f  ( x )  = f  ( x )  fo r  x E  and f  (x ) = a  ,  fo r  x E  L .  Then f  defines F.

R e m a r k .  In  the above proof the case a a_  actually occurs. In  fact
consider the foliation on R 2 — (0 ,0 ) defined  by the family of curves xy -- con-
stant fo r  y < 0  and 0= constant fo r  y > 0  where 0  is the angle from the posi-
tive sem i x-axis. I n  [ 8 ] ,  this possibility is missed.

Proposition 1. 3. L e t  g  b e  a  codim ension o n e  f o lia t io n  def ined by
c lo sed  one f o rm  w. S u p p o se  th at 7r, (M )  i s  abelian  a n d  t h e  ran k  o f  w  is
g re ate r th an  o n e  th e n  9 -  h a s  a  c lo sed  tran sv ersal cu rv e .

P r o o f .  W e  use the notations of the a b o ve  p ro o f. Suppose g  has no
closed transversal curve, then X  is a one dimensional m an ifo ld . If X  is simply
connected then we can take the submersion f  o f  M  onto R  by using the in-
tegral w  (see the proof of Proposition 1  o f  [ 3 ] ) .  So the rank o f w is  zero.
I f  X  is not simply connected we can take a leaf L  so that X ' = M—  L / (g l iu
— L) is simply connected and the rank o f  (DIM —  L  is zero . B u t if th e  rank
o f w  is greater than k  then the rank o f (001—  L  is  greater than k - 1 .  S o ,
under the assumption, the rank o f w  is  one or zero.

§  2 .  S in g u la r  fo liations on 2-torus

L e t w  be a one form  on a manifold M  w ith  s ingu larity  E . For x E I ,
i f  there exist a  neighborhood V  o f x , a non-zero function g on V  and a Morse
function f  o n  V  satisfying gw iV  = df , then  w e call x  a M orse  ty p e  s in gu lar
point.

L e t T 2 b e  the two dimensional torus, w  a  on e  form  on  T 2 w ith  Morse
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type singularity 2', 9" a  codimension one foliation on  T 2 - 7  defined by o) =0
and X  a  vector field  on  T 2 satisfying ix -f2=w, where ,S2 is  a volume form on

T 2 and i  is  the inner product operation. L e t  ço, b e  th e  f lo w  generated by
X  then a  lea f o f  g  is  an orbit of ç ,. W e  s a y  th a t  a  lea f o f  F  is  singular
if th e  w- (o r  a - )  lim it set o f th e corresponding orbit is a singular point. A
singular leaf L  i s  called a  sepratrix if th e  co- and  a-lim it s e ts  o f th e  cor-
responding orbit are singular points.

In  this section we m ake the following assumptions.

A. 1. X  h as  n e i th e r l im it  cycle n o r lim it  p o ly g o n  ( i.e . a co- (o r  a -) lim it
set o f  X  com posed  o f  separatrice and sing u lar po in ts) .
A. 2. T h e re  e x is ts  a sim ple closed curv e c ( t )  of  period l  i n  T 2 - 2  w hich
i s  transverse t o  g .

I f  (A. 2 )  is satisfied we take the coordinate o f  T 2 s o  th a t c (t) =  (t, 0)
E R 2 / Z X Z = T 2 .

Under the assumptions A. 1 and A. 2, we define th e  holonomy m ap  H:
S1 -->S1 a s  fo l lo w s . I f  there exists a positive number r  such that p, ((t, 0 ))

S ' x l c T 2 ,  we define r ( t )  the smallest o f such r  and  define H (t) E  R/ Z
S ' b y  ço ,,, (t, 0) (H (t) , 1) . We define th e t-m a P  ,: [0, 1] ---->T 2 by I  (r)

= ços ((t, 0 ) ) ,  s z - (t) X r. H  and I ,  are defined on a subset D  (H ) o f S' but
w e have

P ropos ition  2. 1. L e t  D (H )  b e  the d om ain  o f  H , then  S ' — D (H ) is
a f in i t e  set a n d  H  is  u n iq u e ly  e x te n d e d  to  a  homeomorphism o f  S1. W e
u se  the sam e  n o ta tion  H  fo r th e  ex ten ded  m ap  th en  H  has no  fixed point
u n less  H  i s  the id e n t i ty  o f  S'.

P ro o f .  B y  (A . 1) and the Poincaré-Bendixon theorem, if H  is not defined
a t t  then the w-limit set of ça.„ ( (t, 0 ))  is a singular point of saddle t y p e .  Hence
S' — D (H )  is a  finite set. S u p p ose  that H  i s  not defined at t, then it is easy
to see that the limits t ,==  l im  H (t )  exist. I f  t + -7L  t_ , consider X = — X  and

t-1,±0
the corresponding holonomy map H ' .  Then X '  also satisfies the assumption

(A . 1 ) and the domain o f  H ' is open and dense. But on an interval r=
CS ', H ' is not defined. Thus t,=- t_ and we can extend H  by defining H (t o)
= t , .  Th is H  is a  homeomorphism. I f  H  i s  not the identity then th e  ex-
istence o f a  fixed point o f  H  implies the existence of a lim it cyc le  (or limit
polygon ) o f X .  So H  has no fixed point.

P ropos ition  2. 2. L e t  L  b e  a  n o n -s in g u lar le af  o f  g  and C  b e  the
im ag e  o f  c  o f  (A . 2) , th e n  L n  c i s  v id e  if  a n d  o n l y  i f  L  i s  a compact
leaf  w h ich  is  h o m o lo g o u s to  z e ro .
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P r o o f .  Clearly L  f l C----- ç5 i f  L  is compact and homologous to z e r o .  Con-
versely i f  L  is not compact then , by (A . 1) , L  is  not contained in a plannar
domain o f  T 2 and  L n C * 0 .  I f L  is compact and L n C =0  then by consider-
ing the intersection number we see that L  is homologous to n .0  and, since
L  is a simple curve, n =- 0 o r  1. I f  n = 1  then C  and L  bound a domain dif-
feomorphic to  S' X  [0, 1]. This contradicts to (A . 1).

Suppose that (t) is a  closed on e  fo rm  w ith  M orse  type  singularity and
satisfying (A. 2). In  th is case we parametrize c  ( t)  so that co ( e  ( t ) )  .1  and

put a =  fo). Then we consider T ° as R 2 /  aZ x  Z  and S ' as R/ aZ.

Proposition 2. 3. U n d e r the abov e  conditions, H  i s  th e  ro ta t io n  o f
an  an g le  27rb and Per (o)) is  g e n e rate d  b y  a and b.

P r o o f .  F o r  t o , t, E  D  (II) ,  pu t c 1 = c l[H  (to) , 11 ( t 1 ) ]  a n d  c1 = c [t o, .
Consider the curve /  = l io *c i *I; -;1 *c i  then is homologous to z e r o .  Hence
w e  have

=  f  =  f  — = (H (t) — 1- 1(4 )) — (t, — to)c, c,

So 11(t 1) =- t1+ b. b  = H ( t 0 ) —  t o . Put co =  cl [t 0 , I 1 (to)] ,  then -=.co id o
l and  c

generate 7r1 (r )  and Per (0)) is generated by f o)=.- a  a n d  f  =b.

§ 3. Characteristic homomorphistn

In  this section w e  suppose that r1 (M ) i s  abelian, g  a  codimension one
foliation without holonomy o f  class C 2 o n  M  defined by one form w and c (t)
a  closed transversal curve o f  period o n e .  W e denote by C  the im age of c.

L e t  114- (g , be the set of maps f  of T 1 to  M  which satisfy the following
conditions.

C. 1. T h e re  e x is t s  s > 0  s u c h  t h a t ,  f o r  —  e <r<E , f  ( t ,  r) . c  ( t )  w here
(t, r) E R 2 / Z x T 2 .
C. 2. S in g u lar p o in ts  o f  f *o ) are M o rse  type.

For an  element f  of M ( 9 ',  c ) ,  le t  g  ( f )  be the foliation on T 1 defined
by f* co then g  ( f  )  satisfies (A . 1 ) and (A . 2). W e d en o te  b y  1 1 (f )  t h e
holomomy map o f  g  (f ) . For f i , f 2 E  1(g ,  C )  we define 1'0,1'2 = f E m  (g , c)
b y  f  (t, r) f 1 (t, 2 r ) ,  0 < r < 1 .  and f  (t, r) = f ,(t, 2 r-1 ), - ,1,,< r < 1 .  Similarly

we define f  - 1  fo r  fE /1/(g, c ) .  Then clearly 1- 1(f  i*f2) =- ( f  o  ( f 1 )  and
I 1 (f  -') =11 ( f ) - ' . Therefore the image of the map H : M ( 9 ',  c)-->SC (S') is
a  subgroup G ( 9 ' ) w h e re  SC (S 1)  is the group of orientation preserving home-
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omorphisms o f  S'.

Lemma 3. 1 . L e t  / :  [0, 1] —>M be a c u rv e  satis f y in g  /  ( r )  =  /  (0 )  f o r
r < 6  and /  ( r) =/  ( 1 )  f o r  r>1 — s  then
(i) i f  /  (0 )  =  (1 )  =  c  (t o)  th e n  th e re  e x is ts  an elem ent f  o f M ( ,  c )  such
th at  f  (t o , r )  =  (z- ) , and
(ii) i f  /  i s  a  c u rv e  in  a  le a f  o f  g  f ro m  c (t o)  t o  c  ( t,)  th e n  th e re  e x is ts

f e l l f ( g  , c )  su c h  th at  /  ( f ) , o = i  w h e r e  ( f ) t o  i s  d e f in e d  b y  f  0/ to fo r th e
t o -c u rv e  o f  g  ( f ) .

T h is  lem m a fo llow s from  the assumption that r, (M ) i s  a b e lia n .  The
following lemma is easy.

Lemma 3. 2 . F o r a n  elem ent f  o f  M ( g  ,c ) ,  let L t ( f )  be the le af  o f
( f )  P as s in g  th ro u g h  (t, O). I f  L ,  ( f )  is  s in g u lar th e n , f o r  an y  n e ig h -

b o rh o o d  V  o f th e  s in g u larity  o f  f *co, th e re  e x is ts  f '  M ( g . , c )  such  that
f =  f '  on r — V  and L , ( f ' )  is  n o n -s in g u lar.

Lemma 3. 3 . F o r  tw o  e lem en ts  f ,  and .1; o f  M ( . i f  H ( f
i )  (to)

--- 11 (f 2) (t o)  f o r s o m e  t o E  S ' th e n  1 1 ( f 1) H ( f 2 )  •

P r o o f  Consider f  = f ,* then H ( f )  ( t e ) = t o . Hence, by (2. 1) , H ( f )
is the identity o f  .5' and w e  have H (f i )  =- H(f 2) •

Lemma 3. 4 . F o r a n  elem ent f  o f  M  (g  , c )  , 1 1 ( f )  i s  a  diffeonzor-
Phism  o f  c las s  0 .

P r o o f  L e t  D ( H ( f ) )  be the domain of 1 1 ( f )  th en  c lea rly  1 1 ( f )  is
class C 2 o n  D ( 1 1 (f )) • For t o E  Si

 —  D ( H ( f ) )  choose t i  E D (II  (f ) )  and U
in  (3 . 2 )  so that U f l l ( f ) , ,  ( [0, 1] ) -= . Th en  t o is contained in  D ( H ( f ') )
where f '  satisfies (3 . 2 )  and H ( f 1)  is class C 2 n e a r  t o . B u t, since H ( f )
( t )  =  1 1 ( f ')  ( t 1 )  H ( f )  = 1 1 ( f ') .

W e  denote by DM' (S ')  the group of orientation preserving Cr-diffeomor-
phism s o f  S'. T h en  b y  (2 . 1 ) , (3 . 1 ) and  (3 . 4 )  w e  have the following

Proposition 3 . 5 . G ( g )  i s  a  su b g ro u p  o f  D O ' (S ')  w h o se  action on
S ' is  f r e e .  M oreov er f o r  an y  le a f  L  in  Q (C ). C n L  is  an o rb it  o f  G ( g )
u n d e r the id en tif icatio n  o f  C  and S'.

L e t  7r: R — >S ' R / Z  b e  th e  natural projection, Dill' (R) 2,  th e  group of
periodic Cr-diffeomorphisms o f  R  where "periodic" m eans r ( t+ i)  = - r ( t)  + 1
and n- X 1 the covering map o f  R X .9' on  S' =  r .  F o r  a n  element f  of
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M (g  ,  c )  le t  f  f o  ( 7 r x l )  be the map o f  R x  S i  in  /V/ and  consider the
foliation -g  ( f )  on  R X S i defined by f * w .  Then we can define an element
R  ( f )  of Diff ( R )  analogously to H ( f )  .  It is clear that n o  (f ) = H (f ) 07r
and R (f i*.f;) = R  (f2) o  R  (f 1).

W e define a  map p  from  /1/(g, c ) to (M , x )  ,  x  c (0 ) , by p ( f ) =  f 1(0
X S l ) . T h en  c lea r ly  p ( f 1 * f2 ) ( f  i ) d - p ( f 2 ) ,  p ( f - ' )  = — p ( f )  and p  is
surjective b y  (3. 1. i) .

P ro p ositio n  3. 6 . T h e re  e x is ts  a  homomorphisnz  z  o f  n ,( M ,x )  into
DiJP (R) 7,  s u c h  th a t  R  = r p .  W e call z  the c h arac te ris t ic  homomorPhisnz
o f  E .

P ro o f .  It is sufficient to show that p ( f )  =-0 im plies f l ( f )  ( t )  = t  for
any t e R .  Suppose that p ( f )  = 0  and R  ( f )  is not identity then there exists
t  su ch  th a t / ( f ) t  is  w e l l  d e f in e d  and 14 ( f )  (t) ± t .  Consider th e  map
1 = 1  (f ),*  (c l  [t, R  ( f )  (O D  - 1  th en  /  is  homotopic t o  f  x S ' and by as-
sumption /  is  homotopic to zero. Hence, by m odifying / , w e  have a closed
transversal curve which is homotopic to  ze ro . T h is  implies the existence of a
lea f w ith  non-trivial holonomy group.

L e t  -6  (g  )  be th e  im age  o f R  and w e define th e  order in  G ( g )  by
R  ( f ) .H-  (g )  i f  11(f ) (t) >11  (g) (t) fo r  o n e  (and a l l )  t e R .  then it is
easy to see that 

-6-' ( g )  is  an Archimedean ordered group and there exists an
injective homomorphism i  o f  

-6 ( g )  into R  b y  the theorem of Holder where
i  is unique up to multiplication by positive num bers. W e define th e  lin ear
c h arac te ris t ic  hom om orphism  x'=  x ' (g, c )  o f  7r1 (M , x )  t o  R  b y  x' (a )
=i0x (ce) where i  is chosen so that x' ( c )  = 1 .  The following lemma follows
from  the proof o f the theorem o f Holder and the definition of rotation num-
ber.

Lemma 3.7. L e t  (R ) - ->D ir (S 1) b e  the m ap induced  by  7 :

R—>S1 and y: D if f 2 (S 1 ) -->S' the rotation num ber then  w e  have 7ro X' = ro7r * o

I f  g  is  de f ined  by  c losed  one  f orm  w th en  z ' =i( o )  w here  w is  n o rm aliz ed

s o  t h a t  f w =1 .

Lemma 3. 8. I f  th e  im ag e  o f  y '  c o n tain s  a  irratio n al n u m b e r th e n
th e re  e x is t  hom eom orphism s h  a n d  f i  o f  S ' and R  resp ec tiv e ly  su ch  th at
7/G (g )h 'c  S O (2 )  a n d  z ' (a)  = (T10 x (a) (o ) re s p e c t iv e ly . W e  c all  h
and -I t  the lineariz ation  m aps.

This follows immediately from the theorem  of D en joy  ( fo r  more detail
see  [5 ]) .
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P ro o f  o f  (I. 2. i). Since r . ,(114) is finitely generated, the image of z '  is
isomorphic to Z  o r  contains a  irrational number. In  any case there exists a
linearization map h. I f  we define the metric on  C  b y  h  we obtain a  metric
which is invariant under the holonomy pseudogroup. Therefore as in [5 ] we
have the result.

W e rem ark that the closed one form co is differentiable (without changing
the differential structure on Q (C)) if and on ly if th e  linearization map h  is
differentiable. T h e re fo r e  b y  the result of Herman announced in  [4 ], we have
the following

P ro p o s it io n  3 .  9 .  S uppose g  i s  c la s s  C°' th e n  th e re  e x is t s  a  subset
A  o f  m easu re  zero o f  R  su c h  th at IQ (C ) i s  d e f in e d  b y  a  c lo sed  one
f o rm  o f  class C s" if  th e  im a g e  o f z ' is  n o t  c o n tain e d  in  A .

§  4 .  P roo f o f t ile  res t o f T h eo rem s  I a n d  I I

In  this section g  is  a  transversally orientable codimension one foliation
without holonomy on  M  with abelian fundamental group and we suppose that
9" has a  closed transversal curve C  with parametrization c (t).

Lem m a 4 .  1 .  L e t  C , and C , b e  c lo se d  tran sv e rsal c u rv e s . I f  Q(C,)
(1 Q (C ,)  i s  n o t  v ide th e n  Q (C ,)=Q (c ,) .

P r o o f .  Let [0, 1] —>M be a  parametrization o f C i  (i= 1, 2 ) .  We can
suppose c, (0 )  = c , (0 ) .  Then  there  ex ists  a  map f  o f  r  t o  M  such that
f  (t, 0) =c, (t) , f  (0 , r) = c (r) and the singular points of f *  are Morse type.
Then S ' x  0 and O X  S ' are transverse to f  *  .  Therefore by (2. 2) all leaves
o f f * g  which intersect with S' X 0 also intersect with OX S ' and  w e  have
Q (CD =  ( C2)

Lemma 4. 2. Q (C) i s  a  union  o f  c losed  leav es.

P r o o f .  I f  L c 19Q (C) is  not c losed  there ex ists  a  closed transversal
curve C ' passing through L. T h e n  b y  (4. 1 )  we have Q (C) = Q (C' ) . This
is a contradiction.

Lem m a 4 .  3 .  L e t  C ' b e  a one cycle in  M — Q (C ) th e n  C and C ' are
not hom ologous.

P r o o f .  Assume that C  and C ' are homologous then there exists a  com-
pact orientable two manifold S in M  such that OS= CU C ' and S  is  transverse
to  8Q (C) . Moreover since 7r1 (M )  is abelian we can suppose that S  is genus
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z e ro . Consider the connected component S ' of S n Q (C ) which contains C  then
O S ' C U  C " . g  is transverse to  C  and tangent to  C " .  Then, since S ' is  a
planner domain, b y  the Poincaré-Bendixon theorem there exists a  lim it cycle
(o r  polygon ) in  g  IS'. T h i s  i s  a contradiction.

Lemma 4 . 4 . L e t  A ,, A , be connected codim ension z e ro  subnianifolds
o f  M  s u c h  th at  M = A , U A , a n d  A , -= A , fl A2= O AI O A, is connected  then
a t  l e a s t  o n e  o f  H ,(A ,, ( i =  I, 2 )  is  z ero .

T h e  proof is immediate from th e  Van Kam pen 's theorem  (see f o r  ex-
am ple [2 ] ) .

Proposition 4 . 5 . L e t  L  b e  a  c lo se d  le af  in  M — Q (C ) then  M — L  is
n o t  c o n n e c te d . In p art ic u lar le t  V , be a  connected com ponent o f  M— Q (C)
th e n  w e  h av e  I n t  V,  I  0  a n d  OV , i s  a  le a f  L,.

P ro o f .  W e  assume that the dimension of 111 is greater than tw o (tw o
dimensional case is  e a s y ).  I f  ./1/1 —L is connected then there exists a simple
closed curve s u c h  t h a t  n c= 0 and /  intersects transversally with L  only
o n e  t im e . L e t A , b e  a  neighborhood of L  U  such that L U  is a  deforma-
tion retract o f A , and A, n C =  0 .  Put .42 = M — Int A, then A, and A, satisfy
the condition o f  (4. 4). It is easy to see that a cycle in  A ,=  OA, is homolo-
gous to a  cyc le  in  L  and  /  represent a  n o n  zero elem ent o f  H, (A 1 , .
Therefore  by  (4 . 4 )  C  must be homologous to a  cy cle  in  A ,  and to  a cycle
in  L .  Th is contradicts to (4. 3). T h e  second statement follows from (4. 2).

Proposition 4 . 6 . T h e re  e x is ts  no  c losed  transv ersal curv e  in  V,. In
p art ic u lar a ll  le av e s  i n  V , a re  closed.

P r o o f .  I f  there exists a closed transversal curve C ' in  v, then, by (4. 3),
C ' represent a non zero element o f H 1 (V ,,L 1) . Similarly C represents a non
zero elem ent of H, (1t1 — Int V i , L ,) . T h i s  contradicts to (4. 4).

P r o p o s it io n  4 . 7 . L e t  a  b e  a n  e lem en t o f  7:,(M ,x ) ,  x =c  (0 ) , th e n  a
is  re p re se n te d  b y  a  c u rv e  i n  L ,  i f  x ' (a)  = 0  an d  b y  a  c lo sed  tran sv ersal
c u rv e  i f  x' (a)  0 .

P ro o f .  Take an element f  of M ( ,  such that  p ( f )  = a  a n d  (f) 0
is  w e ll d e fin ed . T h en  a  is represented by /  =  (f ) ,* (cl [0, f l  ( f )  (0 )  ])  .
By the definition o f  x', (f ) (0) o r  =*0 accord ing to  z' (a )  = 0  o r  -PO.
Therefore i f  x' (a ) 0  7  is  a  cu rve  in  L ,  a n d  if  z' (a )  0 , b y  m o d ific a t io n

o f  7 , w e obtain  a  closed transversal cu rve  homotopic t o  7.
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W e suppose that g  is defined by closed one form w of rank greater than
o n e .  T h en  b y  (1. 3) th ere  ex ists  a  closed transversal curve c (t) . W e param-
etrise c  ( t )  so  th a t w  ( t ) )  =1  an d  le t  a  b e  th e  period o f c (t) .

Lem ma 4 . 8 . c (t 1)  a n d  c  (t , ) b e lo n g  to  t h e  s am e  le a f  o f  g  i f  an d
on ly  i f  t, — t, i s  a  pero id  o f  w.

P r o o f .  "O n ly  if"  p a r t is clear. Suppose th a t  4 - 1 ,  i s  a  period  o f w

th en  th ere  ex ists  a  c lo se d  c u rv e  g  w ith  b a s e  p o in t x  s u c h  th a t  f w =t.
c

Consider fE.111(9', c )  o f  (3. 1. i) then Per ( f * w )  is  g e n e ra te d  b y  a  a n d  t.
therefore c (t 1 ) an d  c  (4 ) belong to  th e  saine le a f  o f  g  b y  (2. 3) .

Proposition 4. 9. I f  t h e  ran k  o f  w is  g re ate r th an  o n e  th e n  an y  le af
o f  g  Q ( C )  i s  dense  in  Q  (C)

T his is im m ed iate  from  (1. 1) a n d  (4. 8).

Proposition 4. 10. F o r x 1 ,  x ,E Q (C ),  l e t  I  b e  a  c u rv e  f ro m  x ,  to

x ,  th e n  x ,  an d  x ,  b e lo n g  to  t h e  s am e  le a f  i f  an d  o n ly  i f  fw i s  a  p erio d
t

o f  0).

P r o o f .  Let b e  a  c u rv e  in  a  le a f  of 9 ' f r o m  I f t o  c (t 1) (i = 1, 2).
D efin e  a  c lo sed  cu rv e  1 ' by = (1*1 2)* (1 1*c I [ t 1 , t 2 ] ) t h e n  f

t'
(t, — t 2 )  i s  a  period  o f w and t ,  is  a  p erio d  o f w  i f  a n d  o n ly  if

E Per (w). (4 . 1 0 ) fo llo w s fro m  (4. 9) .

T hus T heorem s I  an d  II a r e  proved  by the p ropositions o f th is  section
together w ith  th e  argum en ts in  th e  s e c t io n  o n e . W e  r e m a rk  th a t , for the
proof o f  (4. 8) (4. 9) a n d  (4. 10) , it  is  su ff ic ien t th a t w  is  d e f in ed  o n ly  on

(C ).

§ 5. Free le-actions o n  (n +1) -manifolds

Theorem  5. 1. L e t  y  b e  a  tran sv e rsally  o rie n tab le  codimension one
f o liat io n  o f  c las s  C 2 o n  M .  S u p p o se  th at  all le av e s  o f  g  are  diffeomor-
ph ic  t o  R "  an d  r 1 (M )  i s  abelian.
(1) I f  g  h as  no c lo sed  tran sv ersal cu rv e  th en  th e re  ex is ts  a  codimension
o n e  f o liatio n  g  o n  122 o r  S i x R  s u c h  th a t  g  i s  th e  Pro d u c t o f  9' ' w ith

(2) I f  g  h as  a  c lo se d  tran sv e rsal cu rv e  C, le t  LT, be a  connected com po-
n e n t  o f  M — Q (C ) .  T h e n  th e re  e x is ts  a  codimension o n e  f o liat io n  g i  o n
th e  h a lf  p la n e  H = -{ (x ,y )ly > 0 1  w h ic h  is  tan g e n t  to  th e  x -ax is  su ch  th at
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ILT, i s  the Pro d u c t  o f  g ,  w ith  Rn - 1 .

P r o o f .  Th is theorem is a  consequence o f th e results of Palm aire [13].
I f  g  has no closed transversal curve then 7r: M -4X -=-214/9" is  a liberation
and g  is the product o f a  foliation g ' on a two dimensional manifold S  with
K l - ' ( [ 1 3 ] ) .  B y the proof o f  (I, 1), 7r1 (X ) = 0  o r  Z  and  w e  m ust have S
=12 2 o r  R  X S'. I f  9 " has a  closed transversal cu rve then  X 1 -=- Ud (91E/ )
is a  simply connected manifold whose boundary is on e  p o in t. Therefore by
[1 3 ] we obtain the results.

L e t  go: Rn 1 1 1  be a free action o f  R n o f  class C -  on an orientable
(n+1)-m anifold M .  Then  the orbits of go defines a foliation on M  whose
leaves are R n .  I f  7r1 (M )  is  abelian and S ,, has a closed transversal curve C
it is easy to see that 7r, (Q (C ) )  is isomorphic to r1 (M ) a n d  w e  sa y  the re-
strion o f  v  to  Q (C )  the essen tial p a rt o f  v.

W e say that v  is  a  l in e ar action i f  there exists a  diffeomorphism h  of
M  on to  R n 'x T k +1 a n d  a  (n+1, n)-matrix o f  real numbers A  such that
hov(y, x ) = h (x ) + A  .y  where .z.E M , yE R n and R i"  X  T  =  R 1/ Z" 1 1 , Z"+
= •••, 0, 771,•••,nk+i),n1EZ} .

Theorem 5. 2. L e t  ça b e  a  sm ooth f r e e  R n-action on an orientable
(n+1)-m an if o ld  M .  S u p p o se  r, (M )  is  abelian  a n d  z': 7r1 (111)--->R b e  the
l in e ar c h arac te ris t ic  hom om orphism  o f  g „ .  T h e re  e x is t s  a  su b se t A ' o f
m easu re  zero  o f R  and i f  the image of  z ' is  no t con tained  in  A ' th e n  the
essen tial part of ça  i s  a  l in e ar action.

P r o o f .  T h e  proof o f  this theorem is exactly the same as the proof o f D.
Ticshler and R . T isch ler [16 ]. I f th e  rank o f Im  x' is one then 7t,(M ) = Z
and we can choose C  so that cnL  is  one po in t for a n y  le a f L  in  Q (C)
Using such C  we can extend the action v  to  an R"'-action on Q (C ) and we
see that Q  (C ) R n  x  S 1 . I f  t h e  rank of Tm x ' is greater than on e  then, by
(3. 9) if th e  im a ge  o f x '  is not contained in  A ,S 8,1Q ( C )  is  de fin ed  by  a
smooth closed o n e  fo rm . Therefore the return functions o f  [16] are smooth.
(In  [16] the differentiability o f  return functions is used without proof. This
gap  is  saved  by  th e  resu lt o f  Herm an [ 4 ] )  M oreover i f  there exists an
element of Tm x ' which satisfies the Liouville inequality  (see [1 6 ] )  we can
extend v  to  an R"'-action on  Q (C ) and we obtain the result (for more detail
see  [16]).

§  6 . Counter examples

Theorem 6. 1 . T h e re  e x is ts  a  codim ension on e  fo lia tion  g  on M
o f  c las s  C -  w ith  e x c e p t io n al le av e s  u n d e r th e  f o llow in g  assu m p tio ns o n
S  a n d  M .
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g  is w ithout holonom y  an d  r, (A l)  is  ab e lian  b u t  n o t f in ite ly  gene-
rated.
(ii) g  is w ithout holonom y  a n d  7r, (M )  is f initely  generated but not abe-
lian.
(iii) g  is  de f ined  by  a  closed one form  an d  r, ( M ) is neither abelian  nor

f initely  generated.

P r o o f .  (i) In  [5 ]  (p. 614) we constructed a countable abelian subgroup
G  o f  Diff°*(S ') whose action on S ' is  free  a n d  has exceptional orbits. Let

N  be a manifold such that n i  (N )  is isomorphic to G and consider M = gr X  S '

where KT is the universal covering o f  N  and G  acts o n  KT X S ' by diagonal

action . We consider the codimension one foliation g  on M  induced by the pro-
duct foliation on  Kr X Sq . Then (M , g )  has the desired properties. (ii) Cher-
ry [1] constructed a  vector field on T 2 w ith  one source and one saddle point
as singularities which has exceptional orbits and has no periodic orbit. Thus
we obtain the desired g  on T 2-{two points}. ( i i i )  W e  d e f in e  L: S'—>S1 by

M t )  = t + - - ,  n =0 , 1, 2, •••, where Si = R / 4Z  and consider open sets h  and
3

n

r„ defined as fo llow s . P u t h =  (0, 1) , (2, 3) and we define I n , inducti-
2n 2 . 1v e ly .  Put 1-„_, U Z_1 -= U (a i , Ili ) then define in = U — )  and =

3n 1=1

(

b ,  b i) .  Put H = { (x , y ) ly > 0 } and consider M ' = H X  U  [  U  ( {  (x , 0) I
3 n - n=0

n <x <n-1-
1
U  (x , 0) In + —

1 <x<ii+11 x f ) ]  and we identify (x , 0)
4 2 4

1X t  with ( x  I ,  0) X f n ( t )  fo r  n < x < n d - - .  Th en  th e  obtained manifold
2 4

M  has the foliation g  induced by the product structure of M '.  Clearly
g  is defined by closed one form and has exceptional leaves.

R em a rk s . (1 ) B y  u s in g  the example o f C h erry  [1 ]  it is easy to con-
struct a  codimension one foliation 9" without holonomy of class C°' which has
a  closed transversal curve homologous to z e ro . T h is  gives a negative answer
to a conjecture of Lamourex [9].
(2) T h e  authore does not know whether there exists a  codimension one
foliation defined by closed one form of finite rank which has exceptional leaves.

To construct counter examples to Theorem I I  we define codimension one
foliations g  (b, b': 6), b, O E R  and 6 > 0 , on the orientable closed surface
V  o f genus two defined by closed one form with two saddle singular points.
L e t  g  ( b )  be th e  codimension one fo lia tion  on  T 2 /  r  defined by bdx 1

— dx2 . We define 9" (12, b' ; (I) as a  "connected s u m " o f g  ( b )  and g  (b ')
along transversal segments of length 6  as is shown in the figure.
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B y  the construction g  (b, b ' ; 6 ) is defined by closed one form w and the
cohomology class o f w  is determined (up to m ultip lication b y  non-zero num-
bers ) b y  b  and b '.  B u t  t h e  qualitative structu re  o f g  (b , b ' : 6 ) heavily de-
pend o n  th e  length ô  an d  properties o f Theorem I I  does not h o ld . I n  parti-
cu lar we have

Theorem  6. 2. (i) I f  b  is  irrat io n al th e n  g  (b, — b; 6) is def ined by
c lo sed  one f o rm  o f  ra n k  t w o .  B u t a l l  le av e s  a re  c lo s e d  i n  172 - { singular
points}  .
(ii) S uppose b  i s  ra t io n a l  an d  b '  is  i r ra t i o n a l .  I f  0 < 6 < b  th e n  g  ( b ,b '  ;
(7) h as  a  c lo sed  t ran s v e rs a l  c u rv e  w h ic h  m e e ts  b o th  c lo s e d  le av e s  an d
lo c ally  d e n s e  le av e s . I f  6 > b  th e n  all  le av e s  are  dense .
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