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Introduction

The purpose of this paper is to show that Hirai’s general character for-
mula (in [1]) is reduced to a simpler form for certain discrete series unitary
representations of real simple Lie group of type B, SO,(p,q) (p+gq is odd).
And we write it down by means of the determinants of matrices.

Let G be a connected real semisimple Lie group with Lie algebra g. It
is known that when G has a compact Cartan subgroup B with Lie algebra
b, it has the discrete series unitary representations. We denote by b¥ the
complex dual of b and b} the lattice in b¥ consisting of such A&b¥ that
the mapping &,: BDexp Xi>e’® defines a unitary character of B. Let Wg(b)
be the little Weyl group. Then there exists an invariant analytic function
7y on the set G’ of the regular elements corresponding to a tempered invariant
eigendistribution 7,*’ which is expressed as

= Y sgn(w)é,,) (&, P)™
wEWg(b)

on BNG' (see §1). When A4 is regular, 7, is equal to the character of a
discrete series unitary representation except the known multiplicative sign +1.

In [1], Hirai gave a global formula of 7% on G’ valid for any AEb}.
When a root system canonically attached to a given connected component of
a Cartan subgroup of G is not of class I (for example, of type B or C) (for
the definitions, see [1]), the formula on this component is very complicated.
In the case G=Sp(n, R), he showed in [2] that for the special classes of
A’s, the formula of 7, can be more simplified. Especially, the holomorphic
discrete series representations and their contragradient ones are in such a case.

In this paper, we consider the group G of type B, SO,(»,q). Let K be
a maximal compact subgroup of G. In this case, there exists no G-invariant

* Harish-Chandra denotes this invariant eigendistribution by 6, in his papers.
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Hermitian structure on G/K and G has no holomorphic discrete series repre
sentation except when p or g=2. But we show that when A is dominant
with respect to a special positive system on the root system J of (g.,}.), the
global formula is reduced to a simpler form (Theorem 1~6). A positive sys-
tem on X is called special when only one simple root is singular imaginary
and all the other simple roots are compact.

Let us explain our method. At first, we consider the group G=SO,
(2n,2n+1). Let H®® be a Cartan subgroup corresponding to §®® whose
toroidal part is {0}. By operating suitable Cayley transformations on §H*®
repeatedly, we get a complete collection of Cartan subalgebras not conjugate
mutually under inner automorphisms of G. On a connected component A
of a Cartan subgroup corresponding to a Cartan subalgebra obtained in this
manner, we write down the general formula in [1] by matrix elements of
he ANG’ concretely. Since Wg(b) is generated by the reflections with re-
spect to the compact roots of (g. b.), at first we classify roots in 3 by
means of the property of Cayley transformations, and then we characterize
the elements in W, (b) by certain properties with respect to the permutation
and the changes of signs. Finally, using the fundamental lemmas (Lemma
3~5), we can simplify 7/ for the above A’s. These processes are essential
when we consider the simple Lie groups of type B in general.

In §1, we prepare necessary facts about a Cayley transformation and
definitions and notations. In § 2~§ 5, we consider 7/, on various types of
Cartan subgroups. In § 6, at first we note that the toroidal parts of Cartan
subalgebras (so, Catran subgroups) has no effect on our procedure. Then we
show that the same method is applicable to the group G=SO,(n, n+2m+1),
after changing the root vectors if necessary and modifying the lemmas slightly.

Very recently, Vargas showed similar results for such cases that includes

SO,(n,n+1) by a different method in [6].

§ 1. Preliminaries

Let G be a connected real semisimple Lie group with Lie algebra g. For
a real root a of g with respect to a Cartan subalgebra ) of g, we define
a “Cayley transformation” y, and repeated Cayley transformations on ¢, and
prepare the fundamental results about them in this section,

Denote by X' () the set of roots of (g, ). Here for a Lie algebra 1,
1, means the complexification of n. Let P be an order on 3 () and denote the
totality of positive roots by P(§)). For aeX (), we choose a root vector
X, from g, such that [X,, X _.,]=H,, where H,€l) is the element corre-
sponding to & under the Killing form Bof g.. Put H,=2B(H,, H,) 'H, and
X,=2vVB(H, H,) 'X,. A root « is called real when a(f) CR, and Jx ()
denotes the totality of real roots in 2'(h). Let 0 be a Cartan involution of
g such that 0h=Y. For acZr(h), we can assume that X, belong to g and
0X,=—X_..



Discrete series representations 437

We denote the corresponding Cartan decomposition of g by g=f-+),
where f={Xeq;0X=X} and p={Xegq;0X=—X}. An imaginary root
(that is, B(H) &/ —1R) is called compact (resp. singular imaginary) when
X, belongs to f, (resp. p.).

For €2 (), we define an automorphism of g., v, as follows:

va=exp{—y/ —1mad (X, +X’,) /4}.

Put H%=v,(f.) Ng, then it is a Cartan subalgebra of ¢g. In fact, v,(F)
=v/-1(X,—X.,), so h*=0,+R(X,—X",), where ¢,={Heh; a(H) =0}.
We know that 3 (H%) = {v.BlRc2r (), LB} and v, is a singular imagi-
nary root of (g, bhf). Here v,f=08v"p.

For two roots « and 3, they are called strongly orthogonal if neither
a+p nor ¢—p is a root. When a€z(h) and €2 (l)) are strongly ortho-
gonal, we get v,(X,) =X, because [X%,, X;] =0.

Lemma 1. For acXp()) and €2 ()) such that alf and a+f
€2 (h), we have v,(Xp) = — (V' —1/2)ad (X, + X" ,) X;. Furthermore if f is
is a compact (resp. singular imaginary) root of 1), then v, 8 is a singular
imaginary (resp. compact).

Proof. Since a8 and +2a+ P& 2 (), ad (X)) ad (X)) Xy=ad (X ,)ad
(X)) X;=2X,. Therefore (ad(X,+X.,))*X,=4X, and

Va(Xp) mi @)1 ( ‘/?”)m (ad (X4 + X7.)) ™ X 5
by (2ml+ 1)! (- J?n)“‘“(ad (X4 X)) X,
=L @)t ¢ ~0(2)"x,
= (2m1+1)! <—¢2:A1>(_l)m%)m“ad(X;J’X'—“)Xﬂ

— Vol XL XD X,

\V]

By the choice of X, and X_,, 0(X,+X",) = —X,—X_, so it belongs to p.
Therefore if X;&t,, [Xo+ X ., Xs] €Y, and similarly if X,ep,, [ X, +X ., X,]
€f.. As v,(X;) is a root vector corrresponding to v,0, the required results
are obtained. Q.E.D.

For «a, €3z (h) such that a1 B, we can take a root vector X, , for v,
€2z (H%) as follows:

1) If « and B are strongly orthogonal, X, ,=X,.
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2) Otherwise, X, j=—ev —1v, (Xy) = (—¢/2) [ X+ X, X;], where ¢ is
a sign of @.
Then X, , and X, 4 belong to g and they satisfy [X, 5, X_, 0] = H, s=v,(H,)
=H,; and 0(X,4) = —X_, 5

Next let E= (a;, @, ***, @&,) be an ordered set of real roots of ) and E*
the underlying set of E.

First put Si=a,, D,=0%=v, (§) Ng. If h, and B; are defined for i<j
<s, we put

Bi1=Yp Vs, Vo i-1, Bi-i =04, ((B)e) Ng and finally

[)E‘:[)], yp (or v(E)) =VgVp, Vg, -

When any two roots in E* are mutually strongly orthogonal, vg=y,V,, v,
Furthermore VoVa,=Va Vs, because [X., X..]=0 for ij.

For later use, we prepare some notations and definitions here. For a
Cartan subalgebra f), we denote by HP the Cartan subgroup corresponding to
it. For a€2(h), we define a character &, on HbY by

5

Ad(h) X, =€. (W) X, (he HY).
Let A be a connected component of HY Put
Zr(A) ={aeZr(h);£.(A) >0},

We introduce an order on 2'r(A) by restricting the order P on ' (§)) to 2 (A)
and we denote this order on X(A) by Pr(A). Furthermore put A(P)
={he€ A;&,(h) >1 for any positive a in Jz(A)}.

In general, for a given root system 2 and an order P on it, we define
M’"(P), P(E) and e¢(E) as follows:

Case I) The system 2 is simple and the lengths of all roots in J are uni-
form (e.g. D type). Let E be an ordered set of positive roots satisfying the
following conditions:

1) For E= (a;, &y, **+, @), the underlying set E* is a matximal orthogo-
nal subset in P, where P is the set of all positive roots in J.

2) a>a>->a,.

In this case M°" (P) is defined as the totality of E as above. Put P(E)
=E* and ¢(E) = (—1)°

Case II) The system 2 is simple and the lengths of roots are not uni-
form (e.g. B type). Let E= (a,, s, -, ) be an ordered set of positive
roots satisfying above 1) and the next two conditions:

3) The long roots are placed before the short ones. Put / be the num-
ber of long roots in E, and m=[1/2]. Then a,>as> "+ >Wm-1, Qoz—1>s;
(i=1,2,-,m) and Q41 > >0 >,

4) For i=1,2, -+, m, both (Qp-1+ Q) /2 and (@si-;— ) /2 belong to
P.

In this case M (P) is defined as the totality of E as above. Put P(E)
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=E*U {(an+ @) /2, (n— ) /2, +++, (Qam-1+ Qam) /2, (Qom-1— o) /2} and € (E)
=(=1(=D™

Case III) The system 2 is not simple. Let 2\, 3, ---, 2, be the simple
components of Y and P; be the order on 2; induced by P. In this case
M°"(P) is defined as the totality of ordered set E= (E, E,, -+, E,) with E;
e M’ (P;) for i=1,.--,p. Put P(E)=P(E)UP(E)U---UP(E,) and e(E)
=e(E)e(E,)--e(E,), where P(E,) and e¢(E,) are already defined in case I or
II.

In each case, for E= (ay, a, *+*, &) EM’™(P), we define W(E, P) by
W(E,P) = {weW(Q); wE= (wa,, wa,, -+, wa,) € M (P)}, where W()
denotes the Weyl group of 2.

For case I, an element E in M° (P) is called standard when «; is the
highest root in Xy, ={aed;a; 1l a,i=1,--,j—1}. For case II, an element
Ee M’ (P) is called standard when a,;_; is the highest root in Yu;_;, and
Qly; is the higherst root in Xy, such that 27'(ayu_+ay) €2 for i=1, -, m
and «,; is the highest long root in %, if [ is odd, and «; is the highest short
root in Xy for i=1I141,---,s. In general, an element E= (E, -, E)) € M*"
(P) for case III is called standard when each E; is standard.

Finally, we describe Hirai’s theorem in [1] in such cases as we consider
later. Let §) be one of Cartan subslgebras and P be the order on J (§) taken
in the succeeding sections. Let {E, E,, ---, E.} be the set of all standard
elements in M" (Pr(A)) and E, be strongly orthogonal. Take a system of
root vectors X,,(r€ Ef) which satisfies Condition 5.1 in [1], and put b=§",
Set Wg(b) = Ny(b) /Zs(b), where Ng(b) ={g=G; Ad(g) (b) Cb}, and Z;(b)
={geG; Ad(g) X=X for any Xe&b}.

For Ee M’ (Pz(A)) and a regular element A€ (b)), we can define
sgnpa (A) by sgn{ e];[(E) (4, vg,7) } because vg 7 is an imaginary root of b. Here

T

B is the Cartan subgroup corresponding to b.

Theorem ([1]). Let ASb} be regular and n, the tempered invariant
eigendistribution on G described in Introduction, and put RO h, P(h))
=4 (h, P(G)) 7y (h) for heHYNG'. then B on a connected componenet
A of HY is given as Sfollows: For he A(P),

B (b P(§) = X e(E) Z(h, By 4, Pa(A),

where

Z(h E, A, PrR(A))= X > sgn(s™)

s€Wq(b) ueW (£, Pr(4))
X sgnpy (57'4) &4 (hy)
X g exp{—ua(X) | g, s7'D|/|al?}, eeee @
a *

where h=hgexp(X) (hx€H"NK and X€hNy), and
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P, PO)=8,0) T Q=6 0=+ = a).
S ) 2

acP B
Note. (1) Since 0 (uh, P(h)) =sgn () B, P 1)) for ueW2r(4)),
0 (h, P(H)) is given on A'={h€A; &, (h)F1(aelr(4))}.
(2) Put ¢g=(dim G—dim K) /2, e(A) =sgn ]_[( ) (4,7). Then (—1)¢
acP b

e(A)m, is the character of the discrete series representation.

In the following sections, we shall reduce the above formula into simpler
form for certain cases.

§ 2. The calculation on H®” (I)

O2n 12n O
Put J=|1,, 0,, 0], where 1,, and 0,, denote the identity matrix and
0 0 -1

the zero matrix of order 22 respectively.
Put G={9gGL4n+1, R);'gJg=J} and we consider its connected com-
ponent G which contains the identity. We denote its Lie algebra by g, then

g=1{Xegl@n+1, R);'XJ+JX=0}.

The map 0 defined by the rule 6X= —'X(Xe&g) is a Cartan involution of g
and we denote the corresponding Cartan decomposition by g=f-+p, where
t={Xeqg;0X=X} and p={Xeq;0X=—X}. Obviously, G=P-S0O,(2n, 2n
+1) - P!, where

ANV2)lw A/V2)1m O
P=| 1/v/2)l, (=1/4/2)1,, 0
0 0 1
Put H*? as follows:

r)<0.0) = {X:diag (h']’ ]129 T 7127» _hl, _/Lzy R _anv O); h’LER}'

Then §H®® is a Cartan subalgebra of g whose toroidal part is trivial, i.e.
I)(O'O)Cp.

For X as above, we define the linear functional e; by ¢;(X) =h; (i=1,
2,+,2n). Then

):R ([)m.o)) :2([)(0.0)) — te =+ € (1§l<]§27l) ,} .

e (1<i<2n)
Then we can take X,(a X (H*”)) as following forms:

Xe, =FE; o1+ Egirznens X-e‘ =F it Erime
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Xe;i—e, = Ei.2n+j - Ej.2n+i (i<j) )
Xet—e, = Ez‘.j - E2n+j.2n+i (1<.7) 5

where E, , denotes the matrix unit of (p, g)-element. Note that [X,, X..]
=X, 1., for i<j and that this choice of root vectors satisfies Condition 5.1 in
[1]. We introduce a lexicographic order in 3 (§™®) with respect to (e, €5, -+
€sn) -

In this case,

i)

h =diag (0,e™, p.e™, ---, 067", pse™", - 1) 5

Hb(oyo) _ .
h.eR, o,=+x1, J[0;=1
i=1
Put o= (0y, 02> ***, ***, 0sn) , then it determines a connected component. In

this section we will treat the connected component A which corresponds to
(1,1,--,1). Therefore J(A®) =3 (H®) and it is of type B,

In this case, the standard maximal orthogonal systems with respect to the
order are as follows:

Ey=(e;+e, ei—e, €1+, €n1—65)

E = (e;+e,e—e, ", s Cons, Con-1, €,),

En= (ela €, *°°, 6270)'

For each E;, §® is a compact Cartan subalgebra. In fact, by calculating
successively we get that for X=diag (hy, -+, hon, — i, =+, — 2w, 0), —+/ —1vg,
(X) = P-diag (Ala Ag, oo, Agpeys tAz, "ty tAzn-zi, 0, Asusivs, =+, Asn) -P7!, where

diag (---) denotes the blockwise diagonal matrix with diagonal entries indicated

h
and Aj=( (I)j> So there exists k;& K such that g [pe.0 = Ad (k") vg,[peo,

—h,
where K is tlj'le maximal compact subgroup of G corresponding to f.

Put b= (h®”)* and B=exp b=H® Note that vz, (e;) €2 (b) is compact
if and only if so is vz, (e;)) €2 (§®"), because k, K. Hence using Lemma 1
repeatedly, we see that yp (e;) is compact if and only if 7 is even and the
other short roots are singular imaginary. For long roots, vg (e;*+e;) is com-
pact if and only if 7 and j have the same parity, because [f, f]Cf, [p, p]Ct
and [t p]Ch.

Denote by b* the dual space of b over € and bF its additive subgroup
consisting of such A€ b} that &,(exp X) =e*® (X&€b) defines a unitary char-
acter of B. Since {—+/ —1vg (H,)} (A=i<2n) forms a basis of b, each
element A in bF is parametrized by the sequence (I, 0, -+, l,,), where [;=
A(g,(H,)). Then they are all integers or half-integers.

Since Wy (b) is generated by the reflections corresponding to compact
roots of b, every element ww in Wg(b) can be expressed as w(vge;) =
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Vi, (616:) (1=j<2n), where g;= +1,]] &;_;=1 and s is an element of the 2x-
=1

th symmetric group S,, such that s({1,3, ---,22—1})C{1, 3, :--,22—1}. Put
S={s€8,,:5({1,3, -, 2n—1}) C{1, 3, -, 22—1}} and S={5=(s,8);s&S,

e= (&, &, ", &n), &==1, |Teu_y=1}. Then Ws(b) is isomorphic to S
o1

and sgn(§) =sgn(s) X &€, &, Here sgn(3) means the signature of § in
W ®)).
For A= (l,, I, -+, l,,) €b§ such that L>L> '">l2n—1>lz>l4>"'>l2n>0

and all [’s are integers, we have the following lemma.
Lemma 2. For $& W;(b), sgn(37")sgnpm, (§7'4) =sgn(s).

Proof. Apparently, §7'4 is parametrized by (&lw, &L, = s Enlsen) -
Since s&S does not change the parity, Lup-1 >Lee for any pand ¢ (1=p,q
<#n). Therefore

n—i 2n

sgnp, (§7'4) =sgn Hl (&3p-1liap—n — Eipliam) sgn 1 €ilsw
p=

=616 € = Ea€  Ean (€185 Epn = 1).

On the other hand, sgn (5§7') =sgn (8) =sgn(s) &€, **&y,. Thus we get the
lemma. Q.E.D.

Note. It follows from the result in [5] that there exists a special order
on X (b). An order on it is called special when the only one simple root is
singular imaginary and the other simple roots are compact. In our case the
set {vg, (e;—e,), Vg, (es—es), =, Vg, (€an-s—€m-1), VE, (ezn-1—€), Vg, (e2—€)), =,
Vg, (€n-2— €3,) , Vi, (€2,) } is a fundamental system of X'(b) and it gives the spe-
cial order on it. In fact vg (€;,-;—e,) is singular imaginary and the others
are compact. With respect to this order A as above is dominant integral.

From now on, we show that &) (h'P(B)) is reduced to simpler form for A
as above. We do not deal with the orders except the lexicographic order
defined by (e, €5, *+*, €:4), so we will omit Py (A) in Z(-+-) and W(E, -++) for
simplicity.

At first, we study the term Z(h, E,, 4) in (1) for h=exp X€ A® (P).
For s€e W (%) and uc W(E,), we have

[T exp{—ua(X)|(7'4, vg,a) |/ll?}

aEE,

=0 h(n)o _315:“(2) X oo X 6,4(2'1."]) )6;&2 l‘!nll(zn) ...... (2)

U

where §;=exp ¢;(X). It follows from Lemma 2, €& -6, =1 and (2) that

Z(h, E,, A) = Z Z sgn s H 6u(zi 500 —m 18245 (20

uEW (E,) §€§ i=1
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=2"_l Z x Z sgn's H 6;&:{(2!1) 61‘(’7;}):( 2t)
sES ucw(Ey) 7 i=1
where 7= (7, 7, -+ 7,) and 7,= +1.
In this case we get that
ue S,,; w(l) <u(3) <---<u@n—1),

W k) = w(2i—1)<u(2) for i=1,2, }

Concerning to this set, we have the following lemma.

Lemma 3. We can divide W (E)\{e} into two subsets W,= {u,, u,, -+,
Ut and Wy= {ttyyy, tmis, =+, Uan} such that u;w; for i5=j and they satisfy
the following condition:

Put t;=ui'u;,n, then it is a transposition of two even numbers.

Proof. We prove this lemma by induction on 7.
I) For n=2, W(E))\{e} consists of two permutations, that is

1234 1234
(10 w230
13214 1423
Then o' 'u= (2,4), where (p,q) means the transposition between p and gq.
II) For »n=3, put W/ (E,)) and W” (E,) as follows:

W’ (Ey) = {ue W (E)\{e}: u(3) =2},
W (Ey) = {uc W(Ey)\{e}; u(3) =3}.
For ue W(E,), u(3) must be equal to either 2 or 3, so we have
W(E)\{e} =W (E) UW" (E;) and W' (E) NW"(E,) =¢.

As to W (E,), we can divide it into two subsets W/ and W,, where

={ucW (E);u@) <u(d)} and W, ={ucsW (E);u(@) >u(4)}. Put
s=(2,4), then W/ =W, -s.

For ue W”(E,)), u(1) =1 and #(2) =2. So by the hypothesis of induc-
tion, we can divide W” (E;) into two subsets W{ and W, such that they
satisfy the required conditions. Put Wy=W, U W} and W,=W; U W7. Then
the pair W, and W, is a required one. Q.E.D.

Then

Z (h, E,, A) =21 Zm > sgn (s) H 61‘}&(‘::--) u;z(:zlix)(m
7

€S j=1

m

n—1 \ '\ Y WAl
+2 = sgn (s) I[ §u,(z,(zt 1))0u,(z,(22z‘)))
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n
+2n-—1 Z Z sgn (S) H 62—1:1_31(21:-1)62—1:7”1:(21)

sES v i=1

=21 Z Z {(sgn(s) +sgn(st;)) Z H 0oy atiy 05 TEln
+2n-! s%}s ; sgn(s) l1':[l Olefringyreteeo
=2n_1§s ; sgn (s) 11; Oplsgengombco L 4
Next we consider Z(h, E;, A). In this case

W(E) = {uESzn; u(l) <<u3) <---<<u(@n-—3), l
w2i—1) <u2) 1<i<n) |’

W(E);u(1 —-2),
Put Wie {ue (E);u( )<u(2? <u(B) <o <u(@n—2) Then the
u(@n—1) is odd and «(2n) =u(@2n—1) +1

following lemma holds.

Lemma 4. We can divide W (E)\W' into two subsets Wi = {u,, u,, -+-,

tn} and Wi= {tty 41, Un 42, ***. Usn,} Such that u;u; for i==j and they satisfy
the next condition:

Put t;=u"tty, s, then t;= (2p; 2¢q;) ©:<q<n—1) or t;=2p;,—1,2q;
_1) (1§PL<QL§71) ) fO?" i:1’ 27 R ’nl'

Proof. Put W'={uc Sy u (1) <u(2) <--<u(2n— 2),u@n—1) <<u(@n)}.
By Lemma 3, W(E)) \Wl =Wy U Wi, where W, and W}, have the above
properties. Put

Wh={uc W\W"; u(2n—1) =2i—1}
and

Wh={ue W‘\W‘; u(2n—1)=2i}, for i=1,2,--,n—1.
Then W‘\W%‘IL_JI Wh TLJW#Z and they are mutually disjoint. Put ¢;= (2{—1,
2n—1), then {/I_fliltlzl_lml for ¢=1,2,--,n—1. So put VW:?[):WL and

n—1
W= U Wi, then they have the required properties. Q.E.D.

Then it follows from Lemma 4 and & +6,,-;=1 that
Z(h, E,, 4)

22 Z sgn (S) H 611.(2121) 1:(522{! 1€2¢ls (21) X 6 (thnz ])1 611,([2‘75)”)

€8 uew(Ey)

\ —7ils (e -1 -
=2"2) Z L sgn (s) H 61@,(3(@‘“1')) u}l(tzis)('“ X 0g, & u,(z(vf))

&S j=1
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my n—1
Lo —nils e —~ls(an- =)
+ 2" ; sgn (s) Hl: ) u,&‘f&i‘lnﬁu;’& JE8) X 0 u,(‘z(f(zn')—l))a uy By
1=

sES j=1 y(n)

ls(en 1
_|_ 2” Z sgn (5) H 6u(lzsi(2il)l)6u(ﬂ2itl),(”) Xau 23752 1)1)611, 23()27»). ,,,,,, (5)

S uew! ()

I3

Here 7™ = (%, %5, **» Mu_y) and 7;= £1. The sum of the first two summations

in (5) turns out to be zero through the same argument as for Z(h, E, A).

Furthermore we note that for any we& W', it belongs to S and sgn(w) =1.

The subset W* consists of 7 elements and for each even number 2p(<2n),

there exists a unique element %, in W* such that «,(2n) =2p. Then, for each p
n—1

lg l 12 —1ls
21 21san (8) |1 0w B0ueh X 00 don0u, s’
sES ()

n
— Z Z sgn (S) H 62115'10( -0 H 62—1:7tlsw(2t) X 62_;:10(217)

=) i=1,i%p

= X Ssen @ [oster [T s xogioon, ©

seS 7(p)

where w=u;* and 7? = (7, -*-, ¥, -**, %) and %, means that 7, is absent.
In general, for a subset [ of I,=4{1,2,---,n}, s

4 (h, n, A, I) — 2 Z sgn (S) f_[ 6&5‘{“'" f‘[ 62—!:!5(20 H 62}“(2” ,
h=r13) i=1 ieT \I i€l
where 7= (9;;i€ IL\I),7,= £1. Then,
Z(h, Ey A) =202 d(h, n, A, {}).
p=1
For general E;, by definition
wue Sy u(l) <<u@@) <---<<u@n—25—1)
W(E;) = u(2i—1)<<u(2i) for i=1,2, -, n—j
u@n—27+1) <<u@n—25+2) <---<u(@n)

Put

ue W(Ey);u(l) <u@) <---<u(@n—2j),
W= u(2i—1) is odd and w(2i) =u(2i—1) +1
for n—j+1<i<n

Then the following lemma holds.

Lemma 5. We can divide W(E)\W into two subsets Wi = {u,, u,, -+,
u,,} and Wi = = {tt,,41, Uiz s Uayy SUCh that w=Fuy for 557 and they satisfy
the following condz'tio;r

Put t;=ui'tty, 11, then t;= (2p;, 2q;) (AZp;<qg:<n—j) or t;=2p;—1,
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2¢;—1) for 1<i<n—j.

Proof. Using Lemma 3 and Lemma 4 repeatedly, we can prove this
lemma eassily.

Then following the same way for Z(h, E,, A), we get that

Z(h, Ej, A) =270 3 A(h,n, A, D).

ICIqa, | I=]

Here |I| denotes the number of elements of I.
Now we calculate the alternating sum of Z(h, E;, A)’s for j=0,1, ---, n.
We determine the coefficient of the term

n
sgn (s) (!:I: rlspingymtseo)

in it. Let p be the number of §,’s which have the positive exponent and
denote by ay,, the coefficient of the above term in Z(h, E;, A). Then

<”;-"> PH for 0<j<n—p

0 for n—p+1<j<n.

Ay,p=

Therefore we get that

S (=Dfay,= 2 (-7 P
) 7=0 J

~——

e MO (e B G i
7=0 J

~——

Since ¢(E;) = (—1)", the following theorem holds.

Theorem 1. Let A= (1,1, -, L,,) be an element of b} such that I,
>SL> >l >L>10 > >10,>0 and all [’s are integers. For h=diag (d,,
627 R 621" 1_17 2—1’ °tty 2_nla 1) EA(O) (P)

61—1161—13,,.61-‘”-1 6;’1_65:’ 2—54___6;4...62-11“:_6;“
E(h, P) =27-1x Ot eeenns Opten-t| |07t —0keeeenenennnns Ot — Qi .
6.2‘:_1_1 ...... Oles z_nl' _ Ol eerienneeennns O5im — Olen
(Here and in the following, we denote K (h, P) for 7 (h, P(§)) since it
cannot be misunderstood.)

§ 3. The calculation on H®"” (II)

In § 2, we considered the character formula for A only on A®. In this

section, we study it on the other connected comporents of ", We denote
0,0 .

by A% the connected component of H9 (=I9"") which corresponds to
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2k
[
of=(-1,—-1,.-,—1,1,1,---,1). Then we get that

tete (1<i<j<2k or 2k+1<i<i<2n),

2 A(k) —
2 (A7) {ie,— 2k +1<i<2n)

That is, Sz (A®) is a root system of type Dy X By,_». We introduce an order
on it by restricting that on Xp(H®”) in §2. Then the standard maximal
orthogonal systems are as follows:

Ey= (e, + e, e,—€,, +++, €n.F Coky €ap—1— €oky ***, €an—y T E2ny €3n-1— €20)

E = (e,+e,e,—e, -, Coumy—Cons Con 1, €2n)

E, = (e;+e.e,—e, -, eni1— €, €yy, 5 €2n)
Lemma 6. Let s& W5(b), then sgn(5™") sgnpw, (§7'4) =sgn(s) &€ - Ex.

Proof. Since Zp(A™) is of type Dy X Bapom, P (E) =EFU {€m41, €orrer
-+, e.}. On the other hand, l,;_,>[l; for any i and j. Therefore

sgn(s7) SgNpE;) (s FIA) =5gN ($) 64 €200k + 182k +2° " En

/

=sgn(s) 66 e (7 E& Ep =1). Q.E.D.

Put AP =A% NK, then an element in A® can be expressed uniquely as
h=hgexp X, where Ax=diag (—lu, lon-sk» — Lok, lon-2es1) E AL and XehO.
Furthermore, Ax=exp[n{(X, _.,—X.,e) + -+ (X0 —eos— Xer—en.) } ] Eexp b.
So we get that

5§-u (hx) =exp (— 77\/——1 (lsu) —Lo+ o F lo-n — Lew))

— (_ 1) sy Hlsy +o-+lsGny

Here we denote W(E;) by W(E) . Since Zp(A®) is of type Dy
X Byu-p, we get that

u€ Sy u(1) <u(d) <--<u(@n-—-1),

W(EY) (= .
() { u(2i—1) <u(2) A<i<n), 1<u () <2k 1<5<2k)

Put W (E) = {u€ W (Ey) a;u(@) =1 for i=1,2,---,2k}. Applying Lemma 3
for W(Ey) w\W (E,) and W (E)\{e}, we can divide W (E) w\{e} into two
subsets Wi, and W, 4, where W, 4= {uy, -, ttp,} and Wy oy = {815 =5 Upm,}
such that u;5~u; for i%j and the following condition holds:

Put t;=u;"u,, . then #;= (2p;, 2q;), where 1=p,<q;Zkor k+1Zp,<q;
<#n. Therefore for h=hgxexp X€ A® (P), we have
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Z(h,EyyA) =3 3 sgn(3 D) sgnpgy (' A)E514(hk)

;€8 uEW(E))

—ls(2i- 01} “52t 182ils 20)
X (H u(@-n )

mgy

—on= l\‘{L ) sgn(s)m ﬂk(_1)1‘<.)+~--+1s<zk)

T A-ls l lg
X (] 0568900 kne” + I[ Oyt 0 i)
i #) J SFASH SACH

+ 2n-! Z Z‘ sgn (s) 771...7“(_1) Ls @)+ +1s ok

sES 7
% (11 6—lx( i- 1)O—wl:< n)’ ...... (9)
where 6L=exp (e (X)), 7= 0y, Yo *+-. 7)., M= 1. Since each ¢; transform

{2,4, .-+, 2k} and {2k+2 2k+4 -, 2n} into themselves respectively, 7,
Neyaire =Ty and le,‘(,,—le, for any s&S. For each ¢t=¢; and u=u,

zejs Z sgn (s) /A 77k( 1) Ly ++lsen) H §u(t(2 ix) (’7Li( 1():):)
5 7
__..2_" Z‘, sgn (S) /R 7]1«:( 1) Lye(o) ++lse2i) H 6—(123:(2{) 1)6;&%”(“)
sES 9

L 1'_.1 sgn (S) Nyee 77,‘( 1) Lsy+-+lsce k) II Ou(l;l( il)l)o ’71%(2») .

sE

Therefore the summstion Z in (9) turns out to be zero. Hence
j=1

Z(h’ EO’ A) :2”"1 }_“ Z sgn (S) 7]1"'7710(_‘ 1) Lyy+-+lsar) H 6;}_%2{-1)6&7{“(2{)
sES 9 i=1
=9n- 1 L L sgn (5) REe 11 (_6”_1) —ls(2i-1) ("‘621') —7ils (21)

X ll :( =0 srbsen (1())

Secondly, we consider Z(h, E;, A) for 1<j<n—k. In this case,
ue S, ;u(l) <<u(3) <<---<u@n—2j-1),
W(E) = w(2i—1) <u(2) AZiZn—j ), 1Zu(@) Z2k(1:i<2k),
wu@n—=27+1)<<u(@n—2j4+2) <---<u(@n)
As in §2, put
ue WE)g:u(@) =i AZiZ2k),
uk4+1) <u(2k+2) <o <u(@n—2j), u(2n—2j+2r—1)
is odd and u(2n—2j42r—1)+1=u(2n—2j42r)
for 1<r<j

g

Then using Lemma 3, Lemma 4 and the results for W (E,) ), we can divide
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W (E;) ;\Wh, into two subset W{={u,, u, -+, t4p,} and Wi = {tn 41, th,s0, ***,
Um,t such that w;7u; for i~j and that the following condition holds:

Put t;=u;'tn,+;, then t; is a transposition either between two even num-
bers 2p; and 2¢; (1<p;<<q;:<k or k+1<p;<q;<n—j) or between two odd
numbers 2p;+1 and 2¢,+1 ;C<p,<qgi<n—1).

For a positive integer m, put I,={1,2, -, m}. For £<n and a subset
Iof INI,=4{k+1, 242, -, n}, set

A(h’ n, A, I‘ k) =L Z sgn (S) 771"'77k(_1) Lsiy +o+ls2i) I 62—{"_51(21-1)
i=1

M
2> s€8

X ]l 62—iwls(:i) l‘l 6;{“(:0 .
i€l \I ier

The cancellation in Z(h, I, A) is caused by the term
QE [exp{—ua(X) | (e,c. s |/|c|?}]
a I'

in it. Therefore we can trace the argument in § 2 step by step and we get

that for he A® (P),

Z(h, E;, A) =2"! > A, n, A, I k),
e\, 1=j
where h=hg-exp X and 0;=exp (¢,(X)), 7" = ;i€ I\D, 71.= +1.
Let a$¥),, be the coefficient of

n
Nl (oi ) N —7ilg(oi
11 O‘)i_’}"i [)O‘Zim 2(z20)
1

i=

k
sgn (s) il___[l (= 02_1) “lein (— () “nls

in Z(h, E;, A), where p is the number of J,’s which have the positive ex-
ponent among {0, *-+, 0} and ¢ is the number of those among {Gura, =**, Osn} .
Then

i pq

— n—k—q nt -1 ) . 1

a® ={ ( 1),,< j >2 for 0<j<n—k—gq
0 for n—k—qg+1<j<n.

Therefore

n—k ":f n—/e—q
2 (~DYaf= 2 (- DY (=7 (T )2
i=0 j=0 J

— (_1) pon-1 (_ 1)n—k—q — (_ 1) pragn-1 ( _ 1)n—lc.

By definition, &¢(E,) = (—1)""* Hence we obtained the following
theorem.
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Theorem 2. Let A= (l,. 1, -, 1,,) be an element of b¥ such that
L>L>>h, ( >L>L>>0L,>0 and all l’s are integers. Fix k such
that 1=<k<n. For h=diag(0,, 0s ***, Oom 01" 05", ==, 0sr, 1) €AY (P), the
Sunction K (h, P) is expressed by the same formula as in Theorem 1. (Note
that for h=hygexp X, the 0;s in this theorem are expressed as 0;= —exp

(¢(X)) for j<2k and d;=exp(e;(X)) for j>2k.)

Note. For a conected component A of H®™” except {A®};_q1..n let
m be the number of negative matrix elements of any g in A. Then there ex-
ists an element % in K such that Ad (k) A= A", because for any 7 and j(5~7)
w;;=exp((1/2) (X.,..,—X.,.)) €K and Ad(w;;) induces a replacement be-
tween (i,7)-element and (j,j)-element in H®®. Thus the function £ (4, P)
on A(P) can be reduced to that on A™ (P), for the character is invariant
under inner automorphisms.

§ 4. The calculation on H™® and H™®’

In this section, we consider the character formula on another type of
Cartan subgroups.

Let E™ and E™’ be the following ordered sets of positive roots in

oy .
Zr(H™7):
(m)

E™ = (e;,4ene,—e, ;o1 Com, Comoy— €2n) for m=<n,

(m)
E™ = (e;+e;, e,— €, ***, Canoi+ €rm, Com—1— €2, €25) for m<n-—1.

Put h™® =H@OE™ and h™* =Hh@OF™’  Since any two roots in E™ (resp.
E™") are strongly orthogonal, for H=diag (h,, hs, ***, Ron, — Py — oy **+,— Py,
O) El')(o.o)

v (E™) (H) =V =1 2 {Craicat had) (X = X s /2

+ (h”—l_h”) (X:21-|—€=t~Xieci-1+enl) /2}
-+ dlag (Ogm, th+1~ LA hzn, OZm, - h2m+l) tty T h?") O)y

(l'eSp. v(E(m)/) (H) = \/__1 2 {(h2i—l+ hzi) (X:z{-H fzt_X/—e:tq—ezl) /2
i=1

+ (hﬁ—l_ hu) (X:n«l“ezt - X,—ezt-|+¢zl) /2} + \/;71 (X:zn _Xl—enn)
+ diag (Ozm, /lzm+1, ey, hzu—l, 02m+1, - 122m+17 - h?n—ly Os O)) .

Therefore a general element in §H*® 0’ has the following form respec-

or |
tively:
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Al Bl O
: 2n—1
A, B.
H 0 =x
X=| B, A, 0 s
. P 2n—1
B An
0 —-H —x
Qeevnre 0 —x 0-en-- 0 = 0
2n—1 2n—1

where

A= (— (hh._lo — hay) /éh%_l; " /2> B= (_ : hu_]"+ by ;h 4(—) hat) /2>’

H=diag (hsm+1, ***» h2n) and =0 for H™°, and H=diag (hym+1, ***, h2a-r. 0) and
x=h,, for H™".

The corresponding Cartan subgroups, which we denote by H™" and
H™? respectively, consist of the elements of the following form;

¢, D, 0
Cn D, 0
M 0
H™%: p= D,' C,. 0
D, Cn.
0 M1 0
Ocervenns O Oeveeeven- 0 0
C, D, 0 )
c, ."Dm : 2n—1
M’ 0 0
(A+ca)/2 A=ca)/2 sa/V2
H™Y: h=| D, C, 0
T el 2n—1
0 M’ 0
(I—ca)/2 A+en)/2 —sa/V2
Oevvvennns 0 —52/4/2 0eeveennnn 0 s./V72 Cn
2n—1 2n—1

where s,=sin h,,, ¢,=-cos h,,, and
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c < (cos Nyi—+cos hy;) /2 (sin fiy;_y —sin hy;) /2 )
- (sin Ay—y—sin hy) /2 (cos Ay +cos hy) /2)]

D - ( (cos hy;—y—cos hy) /2 (sin hy;—y +sin hy,) /2 >
' — (Sin hy;_y+5in hy) /2 (cos hyy—cos hy) /2)]
M=diag (0, +,€"™", +++, Psp€™")
M = diag (0pm 41", -+, Ozn—r€"m7)
Here p;=+1 and [] o;=1.

We know that y(E™) () (resp. v(E™’) (a)) is a root of h™® (resp.
H™0%) for a€F(H”). In fact

h; for 2m+1<i<2n,
OE) () (X0 = |
—+/=1h; for 1<i<2m;
N for 2m+1<i<2n—1,

Em . X)) =
W ) (e0) (%) [—\/_1}1[ for 1<i<2m or i=2n.

For simplicity, we denote it again by @. Then

2([)(m,o)) — { teiie/ (1§l<j§277)’}

+e; (AZKi<2n)
As in § 2, we introduce a lexicographic order on it. Furthermore

S0 (50 { tete (Cm+1Zi<i<2n),
Y a +e; Cm+1<1<2n J’

and

Sa(h ™0y = { te;te, (Cm+1i<G<2n-1), ]
te, (Cm+1<i<2n—1) |

At first, we consider the character formula on H™”, For convenience
we assume that m<n.
Let H{™" be the connected component of H™® containing the identity.
0 y
Then Xp(H{™") =X (H™) and the standard maximal orthogonal systems of
it are as follows:
Ef™ = (€ym+1+F Comsss Coms1— Coman, **s Con— 1T €n, Cony— €5,)
E™ = (eym+1+ €mezs ***» Conos— €, €31, €3n)

Efl"i)m = (ezm-H’ Com+2y ***s eZn)

Then P(Egm)) = (E§m)) *U {om+1r Comsa s e} .
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Since v (E;) =y (E™) -y (E™), we have v (Ef™)H™"Ng=0. So the way
in this section is quite similar to that in §2 except the treatement of the
toroidal part of §H™?.

For he H™", put

5 { exp(—+/—1h), for i=1,2, .-, 2m,
i Lexp(h), for i=2m+1,2m+2, -, 2n

It follows from y(EM™) (Y) =Y (YE)h™?N{) and the definition of A that

Es l'(/11() _H ()‘eils(n

Since P(E§M)) = (Egm)) * U {62n1+17 Com+2, **"s ezn}* we have that fOr ‘?E WG’ (b) ’

sgn(s7Y) SgNpg,my) (3 TIA) =8N (5) €284 Eonam+1€amra’ " Eon

=sgn (s) &6 8, (V7 E& G =1).

For the treatment of W (E{™), we can use the same method as in §2.
Thus we get for he H™" (P),

Z(h, E§, A) =277 30 5 S sgn () 6,6, 64
seES e 7

X i 6 sl S ( gy 12)
=1 F=m+1
where e¢= (817 € °0y EZm) and 7= (77m+!y Mm+2s **°s 7727&)’ &= +1 and M= +1.
Similarly, for 1=1,2, =<, n—m,
Z(h EM A) =2"""%"1% 0% 3 sgn(s) €8 -Eom
SES ¢

ICI\In
[T)=%

X H 65113(1) {L H l:(zj) H 62—]7/1:(21) H 62—;:(21)} ,
7I) j=m+1 JeI \NUInUI) JEeI
where 7P = (9, i€ L\(IUL)).
As in § 2, we take the alternating sum of Z(h, E{™, A)’s for {=0, 1,

n—m. Then for each triplet (s,¢,7), the coefficient of sgn(s) H (& 6““‘")

X H Ozt {x+0 057t e0 in it is equal to 2" ™ ' (—1)"""*9 where q is the number
i= m+1
of 0,’s which have the positive exponents among {0sm+s, ***, O2np. For m=n,

we have H™® =B and the signs (&) must vary under &&-+-&,_;=1. Since
e(Ey) =(—1)" ™, we get the following theorem.

Theorem 3. Let A= (I, L, -, l,,) be an element of b} such that [,
>SLE> >l >L>0L>>0,>0 and all l’s are integers. Let m<n.
Then for he H™" (P),
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&l eily, ., eilen-g
€101 €101 €101

626;#2 526;“"1‘ e 826;#2’:
8365111 8365'“'"8365'1’"" .

~ eZm
/C(h, P) :2”—7"—1 Z ezm_lb\‘! cCom— 16‘27'1 1len-y . 2m 61 6 6
e b Al
2m+2 2m+2° 2m+2 2m+2
1
02m+1 ............... 62"‘?11 .
—l, [ R iy Alz
_ll ............... lzn-n 6 62" 2n " "n
2n—1 2n—1
...... (14)

Secondly, we consider & on H™®'. Then Sz (H{™") =X (H™"") and the

standard maximal orthogonal systems of it are as follows:

(m)’
E™ = (éyms1+ €amras €2ms1— Camizs ", Con—st Cons, €on_s— €an—s, €n-1)
m)’ __
EM™ = (Esm+1t €amazs ***, €Con5— €on_y, Con_s, €on_s, €n-1)
,
EM™ 1= (€ms1 Comsas ***s Conr)

Clearly, P(EM™") = (E{™)*U {€m+1, Coms2» ***» €on-1}. Since Jp(H™®") is of
type Bj._sm-1, we get that

ueSEmlu@Cm+1) <<u@m+3) <---<<u(@n—2i—3)
W(EM™") = wu@Cm+2—-1D)<<u@m+2j5) j=1,2,--,n—m—i—1,;,
u(2n—2i—1) <u(@n—27) <---<<u(2n—1)

where S™*! denotes the permutation group of {2m+1,2m~+2, .-, 2n—1}.
Now we prepare the following analogous lemmas concerning to W (E{™")’s.

Lemma 3. We can divide W(E{™)\{e} into two subsets W,
= {ty, thy, +*, Uy} and Wy = {thm s1, Unosz, =, Usm,} SUCh that w;u; for i) and
they satzsfy the following condition:

Put t,=ui'tp,+i, then t;= (p;,q;), where 2m+1<p;<q;<2n—1 and
they have the same parity.

Proof. Put W={ueW(EM): u@m+1)<<u@m+2)<--<u(2n—2)}.
By Lemma 3, we can divide W(E™)\W into two subsets W] and W, such
that each # chosen as above is a transposition of two even numbers less than
or equal to 2n—2. Put W,= {uc W\{e}; ©(2n—1) is even} and W,=
{uc W\{e};u(2n—1) is odd}. For each ue W, put su= @ @2n—1),2n—1).
Then s, is a non-trivial transposition of two odd numbers and «- s, belongs to
W,. Obviously, this correspondence is a one-to-one mapping from W, to W,
So we get to the conclusion. Q.E.D.

Let W® be the subset of W(E{’) consisting of « which satisfies that
u@m+1) <u@m+2) <---<u@n—2k—2), u(2j—1) is odd and u(Zj) =u(2j
—1) 41 for n—k<j<n—1, and u(2n—1) =2n—1.
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Lemma 4'. We can divide W (E{M)\W® into two subsets W® = {u,,
Uy, oy Umyy and W = {ty, 41, Umprss **s Usm,y Such that the w,u; for i5=j and
the following property holds:

Put ti=u;'pysi, then t,= (2p;, 2q;), where m+1<p,<qg;<n—k—1 or
t, is a transition between two odd numbers.

Proof. Put
WE = {fucWEM);u@m+1) <u@m+2) <--<u@n—2k—2)},
WE={ueW®;u(2j—1) is odd and «(2f) =u(2j—1) +1
for n—k<j<n—1}.

Then by Lemma 3 we can dividle W(EM)\W® into two subsets W
and W which hold the required properties. Next by Lemma 4, W\ W
can be divided into two subsets W and W which satisfy the condition.
Furthermore WE\W® can be divided into W and W by the analogous

way in Lemma 3’. Hence the two subsets W®=W®UW» U W® and
WE=WHUWLUW® satisfy the required properties. Q.E.D.

For he H{™Y (P), put

{ exp(—+/—1h) for 1<i<2m or i=2n,
h exp(hy) for 2m+1<i<2n—1.

Put b’ =y (E{™)H™" Ng. Then since vy (E™") -y (E™") =y (E)) =Ad (&) v(E,),
we have b’=Ad (k)b and Wg(b’) is isomorphic to Wy (b). Furthermore, for
ueW®, we can regard it as an element in Wy (b’) which never changes the
signs and its signature is equal to +1.

It follows from these remarks that sgn($7")sgnpgm~ (371 Ad (k) A)
=sgn ($) £, Eyp€sy and

Z (h, E™’, Ad (k) A) =21 ZS 3337 sgn(s) €162+ Eamban
€S ¢ 9

X ﬁ (65.¢l:(()) ﬁl (5{;1_’{2“"52}””"“)) X 62—"2(121»-1)6;;“1:(2")
=i i=mil ’
and
Z (}l, E;m)" Ad (k!) A) = 2n—m—l—j ;g Z sgn (S) €182 E2mEon
H 4

2m
X H 6:111(1)62-1‘11(1:1:-1)6;;‘»’:(21-) X (

i=1 ICIn-\Im, | I]=7
Sben H Oyt % H Oghfen), el (15)
D) i€1n~|\(1mUI) i=1+m

where ¢’ = (81’ €2 s Eom, e‘Zn) , M= (ﬁm-\‘-l? R 7711—1) and 77(1) ("7{’ ZEIn 1\ (I U I))
and g==+1, 7,= +1.

As in §2, we take the alternating sum of Z(h, E™’, Ad(k)A)’s for
0<j<n—m—1. Then for each triplet (s,¢,7) the coefficient of
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1 - anls (e
ni(lzn 1 X €2n6;hn s(zn)

2m n—1
sgn(s) I (e 03 @) I (@nlf05"")0;,
i=1 t=m+1

in it is equal to 2" ™7 !'(—1)""™"1"% where ¢ is the number of 6,;s which have

the positive exponents among {0sm+z, ***» Osn_s}-
get the following analogous theorem.

Theorem 3’. Let A= (I, 1,, ---

Since ¢(E™") = (—1)""", we

) be an element in b} such that [

S>> >h,  >L>0 > >0,>0 and all 1’s are integers. Let m<n.
Then for he H™" (P),
g,0%t: il g,08ten
€05t i g,0%ten-t e 22
E : e 652mlx ,,,,,, e 652mlzn
Com_ 10550t -+ Eap Ogpren e e
= —m—1 - - - - —1 ! —1 1
E(h, P)=—2""T" Z 1, lgnns X| Ozmio— O3npsr " Oam¥a — 033ty
3 g e P . K
: . -1 lo 1, ]
1, lenes Opn2y— 0%z 0523 — 0,
Th Siken
62n6§;"lf~ ........ 52"6;;312"

§ 5. The calculation on H™*¥

Lastly, we treat the character formula on the remaining Cartan subgroups.
Let E™ %% and E™ %®" be the following ordered sets of positive roots in
Z(I)(o, 0)) .

YO (e1+e5,e1— €5, Comsk -1+ Com—2ks Cam—2k-1— Com—sk> Com—2t 41T Com—2it2s
oty €1+ €n) for 0<k<<m=<n, and EmBe = (e1+ e, 61—, " €0m sk -1+ Com—s2us
Com—2k-1— Com—sks Com—sk+1 T Cam—skras ***s Com—17F €om, €3,) for 0<b<m<n—1.

Put b(m—k.k) =y (E(m—k.lc)) [)go,o) I’\I g and g(m—k,lc)' =y (E(m—lc,k)') I)C(O,O) m g Then
their general elements have the following forms respectively:

A, B, 0\
Am—-k .-.
Fo ks 0 Zn—1
F. B, 0
H 0 z
B, A, 0f)
X= . : ,
". Am—k E
. .,..'. _FT,;—’IH—l g 2n—1
B, —F, 0 )
0 0 —H s
Oeverrrneenienennns O — 2 Oevereennteeeneie s 0z 0)
L —
2n—1 2n—1
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where F;=diag ((hy—1—ha:) /2, — (hpi-1—hs) /2), and for [ *®, H=diag
(Rems1 ***» hen) and =0, for H™**" H=diag (hym+1, =", an-1, 0) and z =y,

We denote the corresponding Cartan subgroups by H™ % and H™ *#’
respectively. Put 7;= (hy_1—hs:) /2 and 0,= (hy_1+ hy) /2 G=m—k+1, -,
m). Here we give the form of a general element in H™ ** only.

C, 0 D, 0 0
.Cm—k Dm—k
Lm—k+1 _tDm—lc+1
0 .
. 0
L, i
M 0o
H(m—lc,k): h= Dl C1 ' ,
. 0 0 :
Dm—k, Cm—k
/’ /’
m—k+1 m—k+1
0 .. 0
Dy, z, :
0 M7 0
[ T N 0o 1
0 e "t sin 0, . L,
where Dj= < . > L,=diag (e"* cos 0;, e""* cos ;) L; =diag
—e'tsin 0, 0

(e " cos O, e cosl;), and C;, D;, and M denote the same matrices as in § 4.
Since Yy (E™®®) (@) (resp. (E™*P) (a)) (@€ (H®”)) is a root of
H™ R (resp. h™*®"), we denote it also by a. Then

ZOHTER) ={tete; ASi<GS2n), e (1<i<2n)}.

As in § 2, we introduce a lexicographic order on it. Furthermore

+ (epio1— ) (m—k+1<i<m),
STy =1 te;+e, Cm+1<i<j<2n), ,
+e, Cm+1<:i<2n)

* (esi-1—en) (m—k+1<i<m).
ZR([)“"'_’C',‘V) = ieiiej (27)1+1§z'<j§2n—1),
+e Cm+1<i<2n-1)
k

2\
Hence 3 (H™**) (resp. Sr(H™*P")) is a root system of type A;X -+ X A,
k

( ’
X Byp_sm (resp. A;X X A;X Byp_pm-1). Both H™ ¥ and H™ ®% can be
treated completely likewise, so we consider H™ ¥ only in the following.
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For convenience, we assume that m<(zn.

Let H™ %" be the connected component of H™ ** containing the iden-
tity. Then Xp(H™ *®) =Xp(H™*?), and as to the above order, we have
the following standard maximal orthogonal systems:

E™ %8 = (eyn_sk+1— Com—-2k+2> "> €2m—1— Com> Coms1+ Camy2 »
Comi1— €omis ***y €an—1F €an, €2y —€),

(m—k, k) — — —
Ef = (€am-2k+1— Com—2k42, ***» €2am—1— €am» Com+1T Camsa s

“ety €onog— €on—s, €n1, €2n)

(m—Fk, k) —_ cee — e
ErF® = (ym-sk+1— Com—2t+20 ***> €2m—1— €om, Coms1s ***» €2n)

Then P(E’gm_k'k)) = (E?n_k'k)) *U {ezm+17 Erm+2y """y ezn}o
Since y(E,) =y (E™ %)y (E™ ), we have y(E™*9)ph "D Ng=>o.
Now we consider the character formula term by term. For §& W;(b), we

have
sgn (37 SENp(E -k k)) G744
=5gn (S) 264" Eonam—2k+182m—2k+3" " Cam—1Cam +1€2m+2° " E2n
=sgn () (616 Cam-2x) (Eam—s2k+2Em—26+4"""E2m)
For he H™ %" (P), put
exp(—+/—1h)  for 1<i<2m—2k,
exp(h;) for 2m+ 1<i<2n.

Under the decomposition H™*¥ = (H™ *®) N K) -exp(Hh™** Np), we have
h=hgexp X, where

(A, B, 0
'Am_k .Bm .
Oz(n—m+k) Oen—m :
hx=exp| B, A, s
.Bm .Am—k
ozn—Zm Oz(n—m+k)
L D treeerrat i i e i e 0

delag (Ozm—zka Fm—k+1, Tty Fm» h2m+l, ]7'2m+2’ R th s
OZm—zk’ _Fm—k-i—ly Tty _me _h2m+1, _h2m+2’ EY _h2m O)-

Therefore for each j=0,1, «--, n—m,

2m -2k m
§514(hx) = iII=1 65'1'(“1. 1T leXP (— =10 (e2i-slszi—n + 2:lsey))

=m—k+
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and

exp{—ua(X) | (W (E™"P) (@), $7'4) /]a|}

ae(E,(m-k,k))‘

m

= I ] exp (— 7 (Useiny — €2i-182ils2)) )

t=m—k+

-7
L l
X H {6 (2t 1))611,(52“)152‘ x(zt)} X H 6 (% 1)‘)6u(2‘t()“) .

i=41-1 i=nsj

Put 8-, =exp (r;++/—=10;) and 0,y =exp (r;—+/ —10,) for i=m—k +1, -,
m, then

Z €y exp (—v/ —10; (Caim1lsci-v + &ailsen) ) - exp (— 7 (lsizp — Esi-1E2:bs0p) )

( 1)' 82i02i 1+r1)6¢5¢‘x( 20

[/

t=

Let a={a(Q),a (@), ---,a(k)} (resp.b={b(1),b(2), ---,b(k)}) be a sub-
set consisting of 2 odd (resp. even) numbers such that 1<a () <2n—1 (resp.
2<b(5)<2n). We define a subset S,, of S as follows:

Seo=1{s€8S;s@m—2k+2i—1)€a, sCm—2k+2{) €b(1<i<k)}.

Obviously, S= U S,,, (disjoint union). In each subset, there exists a
(a,b)

unique element G ; such that 0,5 (Z) <<OCw@wn (Z+2) holds for any 7. Then by
easy computation, sgn 0gp»=(—1)" with N={31(a(@) +b@%)) +£}/2}. In
i
the following, we denote the permutation group of {¢,, -+, £,} by S(#, -+, ¢,).
Put

TE=S(1, 3, -, 2m—2k—1, 2m+1, -, 22 —1),

Ti=5(2,4, -, 2m—2k,2m+2,2m+4, -+, 2n),

Ti=S@Cm—2k+1,2m—2k+3, -+, 2m—1),
=S@m—2k+2,2m—2k+4,--,2m), and T*=TF X TsXT§ X T¥ .

Then for any (a,b), S.o=0wun- 1T

In our case, only the simple component of type B in Zz(H™ **) con-
tributes the simplification of the character formula. The treatement of that
part can be carried through the same way as in § 2. Therefore we can calu-
culate the alternating sum of Z(h, E*~%® A)’s for he H{™ 5" (P) similarly
as we could in § 2 and § 3.

Paying attention to the changes of parities in the subindeces of §’s, we
get that for any (Tp—g+1, Tmks, 5 Tn) (=0 or 1) and (Fmss, ==, %) (W
= +1), the coefficient of

zm]-:fk (e‘o‘:tls(l)) (,__ 1) Sy i’l (6216;;[ f_‘fr;) ,ils(zt)) [I (627[:{2#1)62}%‘:(2{))
i=1 i=m—k+1

i=m+1
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in E(h, P) is equal to 2" ™ 'sgn(s) (—1)" ™" where ¢ is the number of
0»’s which have the positive exponents among {0em+s, ***, Opnt.

We denote the complementary set of a (resp. ) in {1,3, -, 2n—1}
(resp. 12,4, -+, 2n}) by a’'={a’Q),a’ (@), -, a" (n—k)} (resp.b’'={6"(Q1),
b’ (2), -, b’ (n—k)}). In each subset, we assume, the elements are arranged
in order. Since &(E™®®) = (—1)"""** and S=(Ub)0'<a.b)'Tk, we get the fol-

lowing theorem.

Theorem 4. Let A= (l,1,, -, L,,) be an element in b} such that

L>0>>h,  >L>0 > >1,>0and all I;’s are integers.
For he H™ %" (P),

F(h Py = (=127 50 5157 det (ar) det (b7)

3 T
X sgn (a, b)sgn (v) det (¢;/) det (&), .- an
where

a = { g 105341te for i=1,2,---,m—*Fk,

D, for i=m—k+1, -, n—Fk,
B { 2,053 D for i=1,2,--- m—*k,

e AP — OB, for i=m—k+1, -, n—k,

¢’ =6Lf_"£a—glj’g+2i—l+fm-k'l 1§i ’ ]gk ’
Ay’ = Camsus 205 R0 L 1<i, i<k,

and e= (sls 0y Com—2k> Sam—2k+2> 775 "7y Cam-2, ezrn) , T= (fm—k+17 R fm) , &= ila Ty =
k
0 or 1, and sgn(a, b) = (—1) ", sgn(r) = (—1)V with 2N=>(a () +6 (1)) +k
k t=1
and N' =3 Chirs
=

Note: For each i1=2m—2k+1,2m—2k+3, -+, 2m—1, if &;_,= —1 then
7;=1 and vice versa. So when m=n, for each (g, &, &n_s) the sequences
(Tu—ts1s Tnowszs ***» Tn) must vary under the condition that (—1) =g -,_.
So for he H" %" (P), we get the expression of £ (%, P) by replacing 2"~ ™!
with 1 and (Thoket, Tmtszs ** s Tn) With (Tuopii Tuokses **°» Ty) satisfying (—1) %
=885 Ean-zk— in (17).

Remark 1. As to H™ %®’ we can get the expression of £ (A, P) by
replacing 05% — 0% with .05 and > with (—1) >, where &' = (g, -,
€ 4

Com—2k> E2n) -

Remark 2. The function E(h, P) is expressed in the same way on the
other connected components of ™ *® and H™ **’ by changing the signs of
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. . . R
0;s which correspond to the negative matrix elements among {0,,+.€"*™",

U Ron- h
02m+2e 2””27 Ty pzn—le o 17 (pZne 2")}‘

Remark 3. It follows from Theorem 5 in [4] that the set {H®?”; for
0<7,j<n and 0<i-+j<n, H*""; for 0<i,j<n—1 and 0<i+j<n—1} ex-
hausts the totality of Cartan subgroups modulo conjugation by G. Therefore
we can express 7y concretely on G’, because each element in G’ is conjugate
to an element in some Cartan subgoup of G.

§ 6. The case of SO,(n,n+2m+1)

Put
o 1, 0 1 1, 1. 0
= = -_— O
Jom=|1l, 0 0 |, P 7| b 1.
0 0 — 12m+1 0 0 \/?12m+1

and
G= {eGL2n+2m+1, R);'gJyng=dnn (m=0).

We consider the connected component G of G containing the identity. Then

G=P-SO,(n,n+2m+1)-P~'. Let g be the Lie algebra of G then
g={Xegl@n+2m+1, R);'XJ, n+ Jn.X=0}.

Let §H®” be a Cartan subalgebra of g consisting of the elements of the form
X=diag (hy, -+, hny —hyy =+, —hp, 0, Ly, Ly, -+, L),

where diag (---) denotes the blockwise matrix with diagonal entries indicated

0
and L;= <

_Iln-fi
for Xeg is a Cartan involution of g such that 0H®®=5H"". The vector part
of H™” has the maximal dimension.

hn i
* > for 1<<i<<m, ;€ R. The map 0 defined by 0X=—'X

Let H™® be the Cartan subgroup corresponding to §®®, then it consists
of the elements of the form

/I :diag (pleh', eee (},,(’,’h". ple~’ll, ety ‘Onﬂ_h", 1, K,H,], A K"v+m) )
cos fi; sin i, )
where K;= . , 00==+1, [l o:=1 and ;e R. Let A® be the
—sin h; cos /iy

0,0

connected component of F corresponding to the signs gy =0, =+ =pyp=—1

and Oppq1 ="+ == 1.
Let e; be the complex linear functional on §H*” defined as

e;(X) =h; for 1<i<n, or =—+/—1h; for n+1<i<n-+m.
Then
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JOO) ={teteg(1li<j<nt+m), te;(1<i<n+m)},
ZR (b(0.0)) = {'_L‘ei'._'e_, (1§i<j§n), iei (lgign)}.

We introduce a lexicographic order on 5 ()”) by e, €, +**, €,sm. We choose
a root vector X, for a€Xp(§™”) as follows:

Xq = Ei,2n+1 + E2n+1.i+m X—et = Lon+1,¢ + E£+n.2n+l (lgién) >
Xe;+e, = (=D"Eines— Epne)  AZi<GZn),
Xc,-e, = Ei,j - En+j.n+i (1§Z<J§”) s
where E,, is the matrix unit of (p, g)-element. Note that [X,, X, ]=(-1)"
Xeprep [Xepy Xoo)] = Xo ¢, for i<j, whence Condition 5.1 in [1] is satisfied.
Put p=[n/2]. Then the stndard maximal orthogonal systems in 'z (A®)
=3p(H*?) is as follows:
E,= (e +e,e,—e, -, €rp_1+ €ap, €251 — €, [en])
E=(e;+e,e—e,- -, €3p-3— €3p—3, €sp_1, Eap, [en])

......

Epz (ely ez, AR esz [en]) .

In each E;, the last element e, appears only when 7 is odd.

Under Cayley transforms, the toroidal part of §®® is invariant. So for
each E;, h™”% is a compact Cartan subalgebra. In fact we get that when
n=2p+1,

_\/:—I”Et (X) = P-diag (‘thzy "t —th—ztlz, 0, th—zt+2lz, "t
thIz, hlIZ» ]1312, ot hnlzs hn+lI27 R hn+mIZ) -p?

and when n=2p,

-\/."“‘_ivEl (X) = P'diag (hlIza hSIb R th—b _thz, R
_th—ziIz, Oa h2p—2i+212, R h2127 hn+1-[2, ttty hn+m12) P_ly

0
where Izz( 1 O>. Therefore for any 7, there exists k&K such that

Ad (k) vg, |y =pg lpeo, where K is the maximal compact subgroup of G
corresponding to f={Xegq;0X=X}.

Using lemma 1 repeatedly, we get that when 7 is even, the root vz, (e;)
of H®®% is compact if and only if j is even or j=n+1 and all the other
short roots are singular imaginary. When 7 is odd, the root vg, (e;) is com-
pact if and only if j is even and j<n.

Put b=H"% and B=exp b=H®. Then every element A in b} is param-
etrized by (I, b, -, lysn), where ;=A(vg, (H,,)). Here H, is the element
of h” corresponding to the root e; with respect to the Killing form of g,
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that is, H,, = E; ;— E,1i,n+: for 1<i<n and H, =+ —1(Ess1,2002— Erian,ziv1) for
n+1<:i<n+m.

Let S,,, be the (n+4m)-th symmetric group. According to the parity of
n, we define the set S as follows:

I) When #n=2p,
S={s=(50;5€8,,m and s({1,3, -, 2p—1}) C {1, 3, ---, 2p—1},

P
e= (8, &, Epam), & =FE1, }'Ilez,_1=1}.

II) When n=2p+1,

S={s=(5.8):;5ESn and s({2,4, -+, 2p}) =42, 4, -, 2}

P

. n+m
&= (El) ezy R 6n+m)’ i H 2 [:_[ }

i=1

Then Wy (b) can be identified with S under the correspondence w (Vg, (€;))
n+m
=g, (€i6,0) for 1<i<n+m (we W5 (b)). Furthermore, sgn (w) =sgn(s) [] &
i=1
We consider the character formula corresponding to A= (I, L, -+, Lisn)
such that all [s are integers and [, >0, >0, >L> >0, >l >lhin
>0 (when 7 is even) or [ >L> >0, (>0 >0 > >l >L>0> >,
>0 (when 7 is odd). For these A, we get that

sgn (&—l) Sgnl’(b‘t) (g—lA) =sgn (S) en+l€n.+2“ “Cutm s

where 58 and P(E) =E¥U{e,e, -, e,} as in §1.

Since A®=AQ-exp(b®®Np), each element h& A® (P) can be expressed
as h=hxexp X (hx€ AP =AYNK and X€§h®” Np). Furthermore APC B,
so there exists an element Y in §®” N such that Ax=exp Y. Then we have,

53'1A(hK) =6;r$ill(ml)_.,6;:::;::(n~m) s
LI exp{—ua(X)] G4, ve, ) /|l
a ¥

-1

2p
_ —Lly(2g-1) ) —€24-16240 -1 s (n
- 614,(‘2‘,1(2—3’13)611,(22;)1 heleh) X H 611(;)(]) [611(7:)(
=1 F=2p—21+1

3

|

where 0;=exp ¢;(X) for 1<i<n and 0;,=exp ¢;(Y) for n4+1<i<n+m, and
usW(E;). The last term 07" appears only when 7 is odd.

Since the signs {¢;} vary under the condition &g -&,-;=1 (when 7 is
even) or €& Ep-18a€ns1*Enem =1 (when 7z is odd), we get that

Z(h By )=2""00 20 30 X H (e,074)

s ucW(E;) scS j=

p—i 2p
X sgn (s) jII_1 (61&([1'1(”15) u&/};(u)) ; H u(llx)m X [261&(")(")]

where 7= <77|’ T "/P-i)? e= (8n+1, T 8n+m) and M= il, &= il.
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When # is even, the division of W(E;)\W?* into two subsets Wi and Wi
in Lemma 3, 4, and 5 causes the cancellations in Z (A, E;, A). When 7 is odd,
put

Wie {IIES".: wu(l) <<u@) <o <u@p—27), u(n)=n, uCr—1)
B is odd and «(2r) =u2r—1) +1 for p—i4+1<r<p )

Then using Lemma 3’ and 4, we have the division of W (E;)\W" into two
subsets Wi= {u,, #5, -+, ut,,} and Wi= {u,,,‘ﬂ, Umytzs **s Upm,y SUch that %2, .,
= (2p;, 2¢q;) where 1=p;<q;<p—i or tj'un,.;= (2p;—1,2g;,—1) where 1<p,
<g;=p+1 for j=1, -, m,.

Thus for any 7, we get that

Z(h'? Ei’ A) =2p+i_1 2 LI Z 2_1 { [[ (5 6;’1‘(/))

e ucWi se€S j=

Xsgn(s) | —] 02 lfs a2 1[ 5u(’})‘” X [2051 @]},

F=2p—-2i+

Now we take the alternating sum of Z(h, E;, A)’s for 0<i<p asin § 2.
For any s&S8 and &= (Eu11s Cntas ***5 Enam), DUt

Zye, (h, E;y A) =sgn (s) H 05w (2P41-1 37§

7 uEW?
p-i 2p
CH 0gasspoeie”) C 11 dap®))  (when #2=2p), or,
7=t j=2p-2i41
n+m
=sgn (s) n (( 10‘71.(1)) —Ls(w) (2p+zL 3!
7 uEW!

(ﬁ@;&ﬂ;i’m};‘“’)( ﬁ 025”))  (when n=2p+1).
i=1 f=2p—2i+41
Then
» . — P‘
N D Z0E D=3 5 Q) (D Zueh B ). (18)

We can apply the results in § 2 to the alternating sum of Z, . (&, E;, A)’s
in (18) for any s€.S and ¢. Therefore for any s&Sand g = (€,41, **, Ensm)
and 7= (7,. -*+, %,). the coefficient of

n4m

sgn (s) 1’_1 s( J- |)0—’le( N H;lsjb‘éjﬂs(n [6;1.«")]

in (18) is equal to 227'(—1)7"% (when n=2p) or 2°(—1)?"? (when n=2p
+1). Here ¢ is the number of §,’s which have the positive exponents among
{02 04, ++-, 0ap and the last term §;%™ appears only when 7 is odd.

Thus the following theorem holds.

Theorem 5. Let A=, 1, . 1,,,) be an element in b} such that all
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l’s are integers. Moreover, when n=2p, we assume that it satisfies the
inequalities [,>1> >l >p,>0> >0, >0, > >1,,,>0 and when n
=2p+1, we assume that it satisfies [,>0,> >0, >, >0 > >0, >
>[4>"'>12p>0-

Then when n=2p,
R (h, P)= EZ 2P det (¢)) 1i j<p det (d)) i<i, j<pim »
where
¢! =051
and
0x'v—ow  (1=i, j=p),

4= 0z'rr =0y (ISisp, p+1=<j=p+m), (19)
Eun083 (pH1SiSp+m, 1S7<p),
i p0ii2 (P +1<i, J<p+m),
and when n=2p+1,

E(h, P) = (—1) 3] 27 det (¢i?) i1<i, s<p det (di7) 1<, j<mapa1 »

where

¢! =05"— 0Ly
and
0n2 (A<, jSp+1),
Ok (A<Ki<p+1, p+2<j<p+m+1),
Spri0iptt (AZj<p+1, p+2<i<p+m+1),
SpriOiiie!  (p+2<i, j<p+m+1).

dil = - (199

Here ey= (€pi1, ***> Ensnw) and &=+1 and h is an element in A®(P) of
Sform:

— 13 '3 h -h ~h s
h—dlag(e Leesem,e e, 1,Kn+1y’“7]\n+m >
where

cos iy sin hi;
Ki:< > .

—sin iy cos i

For any integer £=1,2, ---, p, we get that
+e +e (1<i<j<2k or 2k+1<i<j<n),
ZR(AU”) =[ 7 ( IS A S o = <.7___ ) } .

+e, (2k4+1<i<n)

So it is of type Dy X B,_s. We introduce an order on Y,(A%®) by restrict-
ing that on 2 (§)™®) defined before. Then the collection {E,, E,, -+, E,_;} is
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the totality of the standard maximal orthogonal system in Xz (A%®) and for
any i, P(E;)) =E¥U {ey+1, €x42, =+, €, 1n this case.

Following the way in § 3 step by step, we get the concrete expression
of §(h, P) on A®(P) for k=1,2,-.-,p. That is, by changing the signs of
07s for i=1,2, -+, 2k in (19) or (19”), &£ (1, P) has the expression on A%® (P)
as on A (P).

We define the ordered sets of positive roots in Xz(§*®), E* %2 and
E®-297 a5 follows:
(k—-q,q) __
E¢ 20 < (e, +e,e,—e, -, Cok—2q—1T Cox—2q> Cok—2q—1— Cak-2qs

Cop—2qr1T ak—zqias s €rq—1F €g) for 0Zg=k=<p,

k—q. @)’ _
E =(e,+e,e,—e, -, Cor—9q-17F €ok—2qs Cab—2q-1— €2k—2q »

Cok—2q+1t Cok—zqiar ***s €2q—1 T €5q, e,) for qugké [ (n— 1/2] .

Then any two elements in E* %% or E%"%?" are strongly orthogonal and
any such subset of positive roots in I (h”) is conjugate to some E*"%? or
some E%* %% under the action of Weyl group of J(§h®”). Put Hh* 22
=y (E*"%?) (p*”) Ng and h* "+ =p (E*"*?") (h*”) Ng. Then the collection
{H* 22 (0<g=<k=<p), H* 2" (0<g<ik<[(n—1)/2])} is the totality of Car-
tan subalgebras of g modulo conjugacy under inner automorphisms. Let
H* %? and H* *?’ be the Cartan subgroups corresponding to H* ¢? and

b(k-q. Q)

Put

A, 0 B, 0
A(j):( ) B(j)=(
0 A, 0 B,

Ccos 6,;+112 0 sin 0£+112 0
L(Z9J)= .'. ’ L/(i’j)Z ‘°. ’
0 cos 0,1, 0 sin 0,1,

respectively.

G 0) (D, 03
>, C(J)=<O .'C,)’ D(J)=(O S

il

where 0;= (hy—1+ hy) /2 and A;, B;, C;, D; denote the same matrices in the
preceding sections. Then §* ¢? and Hh* %?" are of the following forms:

peE-e0 =hk-eo ¢,

Ak—a) (=D"B (k)
On—2k+2p O 0
v (=1)"B (k) A(k—q)
- 0 Onskr2q41 ’
An-H
0
Anim

[)gc—q.q) =b<k—q'l1> N p:
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X=diag (Ozk—-zq’ Fk—q+l, AR Fk» h2k+17 °cty hm 02k—2q 5
_Fk—q+1, Tty _Fk» _h2k+n R _hm Ozm+1),
[)Srk—q.q)’:b(k—q.q)'n f:

AGk—a) (—)"B®) o] w
0n—2k+2q 0 O
ho/V 2
(—=D"B(k) A(k—q) 0 0
: n—1
Y= 0 On—2k+2q 0
07 "" ’ n/\/—Z' O 0 hn/\/_Z' 0
n—1 n—l A,y
0 .,
An+m

b(k—Q.Q)’ =[)<k—q.qv N p:
X=diag (Ozk—zq’ Fk—q+h ETIN PR TN N Ozk-2q+19 ,
_Fk—q+l’ Tty _Fky —h2k+ly R _hn—l» 02m+2)-

Therefore we see that H}é“q"’)— U h, exp (§¢~%?) (disjoint), where 0= (041,

n

Qaks2s =, On)  With ;= %1, 11 pi— 1 and h,=diag (1s, O2k+1s Ozk+2s ***> On> Loks

i=2k+1
Osics1s ***> On> loms1), and moreover that HE %9 = U K, exp (HF+9") (disjoint),

where 0= (Oak+1, Opk+2, ***» On-1) With ;= £ 1, H 01*1 and h, =diag (1ox, Ozr+1s

t=2k+1
k-0, @) _ Fy(k— k—
Oek+2s > On—1> Loks1> Ozkt1s ** s On—15 1,m+2). Moreover H* *? = HE=*9.exp [)(- “0

and H* 49 =exp h¥~+2.exp h*~+?, and similarly for H* ",

We consider the formula of &(h, P) on H* %%and H* %9, We denote
the root v (E*"%?) (a) (resp.v(E* %) (@)) of h* *? (resp. h* #?") again
by a for a2 (H“®). Then

+ (€y-1—€) (R—gq+ 1<i<k),

Zr(*e0) =] tete (Ck+1=ilj=n), ,
+e (CR+1Zi<n)

+ (ey-1—en) (k—p+1=i<k),
Sa® ) =] tete (RHISI<<n-—1),
te Ck+15i<n—1)
For the standard maximal orthogonal systems in the positive roots of X

(5*~*?), we can apply Lemma 3, 4, and 5 when n—2k is even and Lemma
3’ and 4 when n—2k is odd. For those of J(H* *?") we apply Lemma 3’
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and 4’ when n—2k is even and lemma 3, 4, and 5 when #—2k is odd. There-
fore for

Ei = (ezlc-2q+1 — Cok—pq+2> """y Cok—1— €oky Copr1t Copiny Copy1— Copyp,

0ty Coponi—1 T €opsiy €apozi1— €ap_2is €op_sis1, "t Eap, [en]) ,
we get the following:
for h=exp Yexp X (Yeh§ 2?2, Xeph¥-e2),

Z(h,E, A) =

. 2k —-2q n4+m
273 5 fsgn (5) TT 6,05 11 6,85}
SES ¢ ji=1 i

=n+1

k
X —1 "16_11(21-1)652 _l_x(zj)
J=k]'—l[q+1(e,§ji1( ) A 2/ ¥ )
r4=0,

p—1 p—i n
X[ 20 CII ougssy I 0zgpe 11 dags»1 x[2].
F=k+1 J=k+1 F=2p—2i+1

7 uEW? p—21

(The last facter X [2] appears only when 7 is odd.) Here 0,’s are given by
the coordinates of Y and X as follows:

0=V M 1<j<2k—2q or n+1<j<n+m),
Oy=em (k+1<j<n), 0Oy =€/,

gy =€V (k—q+1<j<k).

€= (&1, ***\ Eok-2gr Entnr """ Enkm)

= (errs =+ Mp-0) =1, ==+1,

and # runs over the following subset W* of the permutation group S(2k+1,
2842, -+, n):
- {u;u(Zk—!-l) <uk+2)<--<<u@p—2i),u(2j—1) is odd and }
B u(2f) =u(2i—1) +1 for p—i+1<i<p, (u(n) =n if n=2p+1)/"
The alternating sum of Z(h, E,, A)’s (0<i<p—Fk) is reduced to that of the
last parts in the brackets [-:-]. For H¥ %9’ the the situation is completely

parallel. Therefore we get the following theorem which includes the theorems
in the preceding sections.

Theorem 6. Let A= (I, 1, -+, 1l,,,) be an element in b} such that all
I7s are integers and 1, >1>>hL, \>SL>L>>5,>0,,>>10,,,>0
(when n=2p) or L>L>->ly SL>Lo>>hin>0L>0>>10,>0
(when n=2p+1). Then for h=exp(Y)exp(X) € H* %9 (P), when n=2p,

E(h, P)=(=1)%277""" 5} 3] det(c{)det ()
(a,b) ¢

Xsgn(a,b) {23(—1D*tdet(x)det (v}, oo (20)
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and when n=2p—+1,
B(h. P) = (—1)*1277% 37 S det (ci?) - det (d}?)
(a,b) 3

xsgn(a, b) {3](—1) "t det(x{)det (y))}  -oeee (20)’

Here

cf—{ €103} @ (1<i<k—q, 1Sj<p—0a),

04 (k—q+1<i<p—q, 1<j<p—a),
e05 v (I=Zisk—gq, 1<j<p—q+m),

di={ 034, =0 (k—q+1<i<p—q, 1ISj=<p—q+m),
Cirnopro0ianted’® (p—q+1<iZp—q+m, ISj<p—q+m)

=02 501 tepequs 5

Vi =€apzqrulspiiyld . (1<, j=<q),
¢ (AZiZp—q, 1Sj<p—q+m+1),

cii=1 0p® (F=p—q+], 1<j<p—q+m+1),

-prgerla’ ()
Eign— P+q— 161+n ppq+q+

(p—q+2<isp—qg+m+l, 1ISj<p—q+m+1),
di’=dl (1<i,j<p—q),

e= (&, ***, Eak-2qs Cok—2q+2> ***> E2ks Ent1> Entas **"s Cntm)

T= (Tp—ge1- = T) &§=11,5=0or 1.

When n=2p, a=(a(1), ---,a(q)) runs over the subsets consisting of g num-
bers in {1,3,:--,2p—1} and b= (b(1),5(2), --+,b(g)) runs over the subsets
of ¢ numbers in {2, 4, -+, 2p, n,n+1, ---,n+m}. When n=2p+1,a= (a(1),

-,a(q)) runs over those in {1,3,-,2p—1,272,n4+1, ---,n+m} and & does
over those in {2, 4, ---,2p}. In both cases, a (resp. d) and its complementary
set a’=(a’ (1), ---,a’(q")) (resp. b'=(&'Q), :-+,b'(q¢’))) are arranged in or-
der and let f be the number of a(i)’s (when n=2p) or b(i)’s (when =
=2p+1) that are greater than or equal to n+1. Then sgn(a,b) =(—1)"*
with

2N=:2=1(a(i)+b(i))+( b(@) +q—2p(q—f) (when n=2p),

=33 @) +6@) + (3 a@) +f~2a(@— ) (when n=2p+1).

Note. We have a similar expression of §(h, P) on H* %9, The signs
(Tp—q+ » ==+, Tp) runs under the condition that (—1) ¥4 =g,64' Eyp-pqr1 When =z
=2k=2p. On the other connected component of * "2 after changing the
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necessary signs of ;s in (20) and (20’) among {0u+1, -, 0.}, we can also
see that £ (A, P) has the same expression as above on these connected com-
ponents.
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