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§ 1. Introduction

The purpose of this paper is to generalize and improve the results
presented in the preceding papers [3] and [4]. In [3] the existence of solu-
tions of mixed problems is considered on the condition that the coefficients
of the boundary operator are independent of z. We will generalize this
existence theorem to the case of a boundary operator with coefficients depending
on ¢ by using the idea of Soga [9] and Tsuji [10]. And concerning the
exponential decay of solutions a results corresponding to Theorem 1 of [4]
may be shown for boundary operators inhomogeneous in ¢ on some suppositions
about the behavior of the coefficients near ¢= oo,

If we impose once more the restriction on boundary operators that all the
coefficients are independent of ¢ Theorems 1 and 2 of [4] can be made bet-
ter in some directions. The essential means for this improvement is a new
estimate of A/ (p), which is presented in Theorem 3.2.

We will explain the problem and state the theorems:

Let O be a bounded object in R® with sufficiently smooth boundary I
Let us set

Q=R—-O-T

and
& 0 0,1
B=3 b,(z,t) —+c(x, ) —+—=30(b,(x,8) —n,;(x)) /ox,
= 0x; 0t 2 7=
+ %ac (z,8) /0t +d (z, )

where b;, ¢ and d are functions belonging to C*(I"X [0, o)) and 7n(z)
= (n,(x), n,(x), ns(x)) denotes the unit outer normal of I" at x&< T
We consider a mixed problem
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0*u & 0'u .

R b axe.

Bu=0 on I"x (0, c0
® )

u (x’ 0) _uo(x)

L (2, 0) =u: (=)

on the following assumptions:
(A-I) The Gaussian curvature of [ is bounded away from zero.
(A-II) b, 7=1,2,3 and ¢ are real valued.

(A-TID) :2_117, (2. ) n;(z) =1 on T'X [0, o).

Theorem 1. In order that (P) is C* well posed and has a finite
propagation speed it must and it suffices to hold

(1.1) c(x,t) <<l on I'X[0,c0).

The following four theorems are concerned with the exponential decay of
solutions of (P).
For u(xz, t) €C* (2 X [0, o)) we set

E,(u,7, )= 2] |D§,z¢(x ) |*’dx

la|<m
2, ={x; x€ 2, |x|<r}.
We denote (12¢ Xthe diameter of O)~' by 0.

Theorem 2. Suppose that all the coefficients of B belong to
B> (' X [0, )) and satisfy

(1.2) sup clx, t)y<1,
(= HET x (0, )
1.3) liminf Re (—d (x, t) ) =d,
t—c0
(1. 4) lim (z )
t—oo \j=1 .

where d, is a constant determined by 2 alone. Then the solution u(z,t)
of (P) for u, u,€Cy(2) decays exponentially,

A-5)  En(u,r, t)<Ch exp{30,(r+26)} -exp(— 5; ) Epys(u, 00,0),

1
where k& denotes the diameter of U supp u; and C, is a constant inde-

j=0
pendent of uy, u,.
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Theorem 3. Consider the case of the boundary condition of the
third kind with time independent coefficients, i.e.

bi(x,t) =m(x), j=1,2,3,
c(z,t) =0
d(zx,t) =d(x).

If d(z) is real valued and satisfies
3
1.6) d(x)<|x—Q|'2jZ_l(xf—qf)nf(x) for all z€l

for some point Q= (q,, ¢, qs) €O, the solution u(x,t) of (P) for initial

data u,, u,eCy (8) satisfies the following inequality

1.7 E, (u,7,t) <C, exp{30,(r+2£)} -exp (—7t) - Epns, (%, 0, 0)

where 7 is a positive constant independent of wu, u,, and k£ denotes the
1

diameter of U supp u;.
j=0

Theorem 4. Suppose that the coefficients of B are independent of t.
Denote by H(x) the mean curvature of I' at x with respect to —n(x).
When d(x) satisfies

a.8) d(x)<min(lx—Q|"2jé:l(x,—q,)n,(x),H(x)), vrerl,

there exists a consant a>0, which depends on £ and d(x), such that if

ORI ITCE TSR B3| LICICELHC IR

6.2:,
holds the solution of (P) for initial data in C?(2) decays exponentially
in the form (1.7).
Theorem 5. Suppose that the coefficients of B are independent of t.

For each 7>0 there exists a constant C, such that the condition

Red(x)<H(x) —27y

Im d(x) |=C,
implies the exponential decay of the form (1.7) of solutions of (P) for
initial data in Cy(R).

§ 2. Existence of solutions (proof of Theorem 1)

The notation and terminology of the preceding papers will be used freely.

Y This condition was introduced in Asakura [1] as a sufficient condition for the local energy
decay of solutions of the problem for a star-shaped obstacle.
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We explain some spaces of functions other than the ones used in the previous
papers.

H™(I'X R"): the space of Sobolev of order m on I'X R!. Denote the
scalar product and the norm by {-, ->, and [-],. respectively.
H™ (2 X R"): the space of Sobolev of order m on £XR' Denote the
scalar product and the norm by (-, Y, and [[:]]. respectively.

Hp (I' X R"): the space of functions #(x, #) defined on I"X R' such that
eu(x,t)y e H"(I'XR"). And for u, ve H7(I' X R") define the

scalar product and the norm by
tty O g =< 1, e 0>y, [t]p = [e "] .

H} (2 X RY): the space of functions u(x, ¢) defined on £ X R' such that
e “u(x,t) e H" (X R"). Define for u, ve Hy (2 X R") the scalar
product and the norm by

Koty VY, =" u, € " VY
[([eeln. . =[[e™*2u]]n -
First we prove Theorem 1 on the following additional condition on B:

The coefficients of B are defined on "X R* and there exists a con-
stant 7>0 and a boundary operator B° with coefficients independent

@1 of ¢ such that

B=DB" for [t|>T.
Let ¢(x) be a real valued function in B=(R®) satisfying

2.2 sup |V (2) <1,
TERS3

and let us set

o 0 0* 0 0
A= —)=01- B2V V-—A—Ap-—
"’<3t’ 6‘x> 1= (o) )6z2 ¢ Vat arr
o 0 3 0 p\ 0
B =35 t) H+ ") —+d t
<P<at’ ax> ,/Z=l J?(x, )axj—l_((:w(x, )+0n>0t+ a’(‘r’ )

where

bio(x,8) =b;(z,t—¢())

o, 0 =[o 1)+ 10 e, ) 722 22 )

t=t—p(z)

d, (@, 8) = | (35,000 (5, ) =1, (2)) /0, + 9 2, £) for')

+d(z, z')]

t=t-¢(z)
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From (A-III) and (2.1) we have
3

2.3) Mo (x,)n;(x) =1 on I'X R},
=1

{ bisy Co d, are independent of ¢ for

(2.4
lﬂZT%—sglp lo(x) |.

Consider the existence and the uniqueness of solutions of a mixed problem
0 0 .
A < >u in 2% (0, 00
55 92 f (0, 00)
<6’ 0
0t 0z
u(x,0) =uy(x)

©) >u A on I'x (0, )

%—’t‘(x, 0) = u(2).

To this end we note some results obtained in [3]. A boundary value
problem with a complex parameter p=u+1k

A, (p, %)v(x) =0 in £

v(x) =9 on I”

(2.5)

has a unique solution in N H"(#) for every g C*(I") when u=p,, where
m=>1

X, is a constant determined by ¢. Denote this v(x) by U,(p,¢g:x). Then

we have an estimate

2.6) AU, (8,05 D)1 \OU *(p,g1 )|
m-—1
=C.l9lx, m=12 -
Define an operator .#,(p) by
_(0 0 |
Ao B)0= (=t 220U, (8,01 2)

and the theorem 1 of [3] shows that
2.7 —Re (A (u+ik) g, ) = (e (9) —Co) 9%

holds for all geC~(I") and u=>u,, where
a(@ = iglf,\/ I—(9)?:  o=Vo— (Ve-n)n.

Consider a problem
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o . ,
Aq,<a—t,£>u(x,t)—0 in @xR
2.8) (0 D B 1

lB¢<at,a>u(x,t)—h on I'xR
supp « C 82 X [t,, ©0)

for he Hy (I' X RY) such that supp AC "X [#, o0). Theorem 2 of [3] says
that there exists a solution u(x,?) in Hy(2X R') uniquely and that an
estimate

[[«]]n. . <C0 (7] m.u

holds for u=J,, where i, is a constant determined by £ and B’
To prove Theorem 1 of this paper it is essential to show

Proposition 2.1. Suppose (2.1). Let ¢ satisfy
2.9 inf V1—(p)?> sup (lg:(@)|v(x, t) +c(x, 1))
zETr (z,)Erx R!

where

3

v(x, t) = (3 (b (x, t) —ny(x))*)

i=1

Then for he Hy (I'X RY), m=1, such that
supp hC I'X [t 00), =0,

there exists a solution wu(x,t) in Hp (2X RY) wuniquely of the problem

A,,(a _a_)u@,x):o in QxR

ot 0x
2.10 o 9
2.10) [B¢<a—t,5;>u(x,t)=h on I'x R’
u(x,t) =0 for t<<0,

when =, Moreover u(x,t) satisfies
2.11) supp u (x. ) C 2 X [t,, o0)
(2.12) [[o (2. ) N w <Cn [A] -

We show this proposition in the following. Let u&R. For any g (x, t)
eCy (I'X RY) there exists uniquely a solution w(x, ) €C” (2 XRY) of the
problem

0 0 . 1

o 9 = R
Aw<at+/,ax>w(x,t) 0 in 2X
w(x, t) =g (x,t) on I"'XR'

w(x, ) =0 Vi< —¢, for some ¢,.
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We denote this solution by Gf, (%, ¢;x.£). Then it can be represented as

W 05,0 = [ U, Gurik g(,i8); 2) b

(2-13) )
§(x, ik) = j -t (z, £)dt .

Remark that it follows from (2. 6) that
, 0 2
@1 W02 0 et [ LW 02,0
<C.l9]%, m=1,23.

Define an operator B,(u) by

0
B.(09=B,(L 41, L)W, (1,05 2,0)
0t 0x
and it is a continuous mapping from C¢(I"XR') into C*(I'XRY). In the
same way we define N,(#) and B) (%) for N,,,=i+a—(pi and B respec-
On 0On Ot

tively. Then it holds that
N, (1) g = r N (-t ik) § (x, k) dk .

Note that we have
[N, (1) 91 n=<Cr[glm+:

which follows from an estimate
A7 (4 ik) )| <Cpltt] sy for all u€C=(I).
Since it follows from (A-III) that
(2.15) B, (1) = N, (1) +a differential operator of first order on I'X R',
we have
(2.16) (B, (1) 9] 2 <Cnlg]ns1, YgECTI'XRY).

Therefore B,(#) can be extended to a continuous operator from H™*'(I" X R")
into H™(I'X RY). With the aid of (2.7) we have

217 —Re<N,(Dg.g>= |~ —Re (A (u+ibg (-, k), G (. ik)) dk

=@~ [ lgC.ibiak

= (a, () —Cy [gli.

Taking account that an estimate holds for any /ER
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[([A, Gr+ ). (IDIP+E)*] (| DIP+ &) ™ %u, ) |
<C{—Re (A, (u+ik)u,u) +C |u||?}, YucsC=)
it follows from (2.17) that for any me R
(2.18) —Re (N, (1) 9. ¢>u=> (c1 (9) 1—Cy) [915% -

Note that in the representation (2.15) all the coefficients of B, (x)
— N, () —pc,(x, t) are independent of g and those of the principale part are
real valued. Therefore it follows that

[Re {(B, (1) — N, (1) —ptcy(x, ) g, gon<Cp[9]n .

By combining the above estimate to (2.18) we have

—Re (B, (1) g, gOn=(c:(p) £—C,) [9]%

where
c:(p) =c1(p) —supc,
>infv1—[@,P—sup (c(x, £) +|vl|@).

Thus we have

Lemma 2.2, Suppose that ¢ satisfies (2.9). For any me R it holds
that

(2.19) [B,(w)g).=1g]),. for all g H™'(I'XR")

when U=l n, where l,, is a constant depending on ¢ and m.

By taking account of (2.15) and the properties of N,(#) we have

(030 <Cu (LB, (D) | 20] + [03:}.

And by using (2.19) it follows immediately that

@200 [olhasClB. e+ 2]} wecraxry

if u=pym.
Let us set

Il

(0 0 L 0 0, 57—~
B (G o) =R @ 0 om0 5 +d G0
(32000 () —by @, ) /02, +0c (2, ) /08,

j(x, 8) =2n;(x) —b;(x,t).
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it can be verified easily that

(2.21) <AW<%+,U, %)u, v>—<u. A_¢<—%+ U, 6_(1_> 'v>

= <B°’<é%+ﬂ’ %>u, v> - <u, B'_¢<—%+/1, 5?;) v>

holds for any pair of functions u, v&C™ (2 X R') such that supp N supp v is
compact in 2 X R. Denote by Y, (¢, h:x. t) the solution for a boundary
data heCy (I' X RY) of the problem

0 0 :
A—¢<—87+ﬂ’a;)zu=0 mn .QXRI

w=h on I'x R
supp wC 8 X (— 00, ty] for some #,< oo .

Then it turns out
CW(; (,U, h; x, t) =CW—¢(L‘, i;';xy _t)

where & (x, t) =h(x, —1).
Let us set

(B () o, =) =By (Dt ) W5 i, b ) e

We have from the above remark

. , (0
By (0 h) (x, =) =BL, (-
= (B0 (2,0,

For g, heCy (I' X R') set

0 i
+ 4, ﬁ)cw_w (U, h:z,t)

wlx, t) =9, (u, g x, t), v(x, t)y =W5 ( h; x, t)
and we have
(2.22) B, () g, hy=<g, B;” (1) h)

by substituting these # and v into (2.21) because supp #/Nsupp v is compact.
Since B’ satisfies the condition (A-II) and (A-III) it holds that for u>u,.,

(2. 23) B, (i) B0 =By (1) B> R >0 ={hDn, YhEC(I'X RY).

Now we have

Lemma 2.3. Let m&R be fixed. When u is large to some extend
the equation
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@. 24) B,(wg=h

has a unique solution in H™(I'XR") for every he H*(I'X R"), and

(2. 25) supp hC I" X [ ¢,, o)
implies
(2. 26) supp g C I X [¢o, 00).

Proof. First let us show that

2.27) {B,()g;9€Cy (I'x R)} is dense in H™(I'X R")
when y>p_,_,, Suppose that there exists f& H™(I"X R") such that
B, g, f>,=0 for all geCy(I"X RY).
Then we have for all g Cy (I' X RY)
0=LUD. P+ D +1)"B, () g, f>
=<g. B,” () U DL+ D +1)" >,
which implies
B, (1) (ID.P+ID+1)"f=0 in D' (I'xRY).

On the other hand (|D.|*+|D,*+1)"fe H ™ (I"XR"). Applying Lemma 2.2
we have (|D,I*+|D,*4+1)"f=0if 4=, 1, from which f=0 follows. This
shows that (2.27) holds.

Then for he H"(I"X R") there exists a sequence ¢g;€Cy (I'X RY), j=1,
2,3+ such that

B,(u)g;—h in H"(I'XRY).
By using (2.19) we have
gi—gon<<B, (1) g;— B, (1) g5, —0 as j,l>o0,

which shows that ¢g; converges to some g€ H" ("X R") when j—oo. This
implies that B,(x)g; converges to B,(#)g in H™ '(I'X R"). Therefore we

have
B,(wyg="h.
Suppose that (2.25). By(w)g=h+ (By() —B,(w))g=h €H" ' (I'XR")

and
supp h' T 1"X [, o)

where ¢, =min(—7, #). From the consideration on (2.8) we have
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supp ¢ C I' X [#, o0).

Then for all >0 e’ g H*(I'X R"). From the definition of B,(x) it
follows

B,(n+7) (e7g) =B, () g =" 0.
Applying (2.19) to e77“"“¢g we obtain

<g—v(t —to)g>mg<e—q(t—Ln)h>m’ V77>O .

Here the right-hand side of the inequality rests bounded for all %>0 since
(2.25) holds. Then we have

(et gs <<C  for all >0,
from which (2.26) follows. Q.E.D.

Proposition 2.1 follows immediately from the above lemmas. Indeed, by
using Lemma 2.3 for h€ H™(I" X R") there exists uniquely a function satisfy-
ing

B,(wyg=e"h

when g is large to some extend. And supp hC I X [¢, o) implies supp ¢
cI'X [#,00). It is very easy to verify that a function

u(x, t) =e" W, (1, g5 x, t)
belongs to H (£X R') and satisfies (2.10) and (2.11). Lemma 2.2 shows

<g>m—<—<e-mh>m =D -

Applying (2.14) to GY,(u#, g; x, t) we have (2.12) from the above inequa-
lity. Thus Proposition 2.1 is proved.
We have immediately

Proposition 2.4. On the condition (2.1) the mixed problem (P) is
C>-well posed and has a finite propagation speed.

Indeed, we may show the finiteness of propagation speed of (P) through
the same reasoning done in §2 of [3]. On the other hand Proposition 2.1
assures the existence of solution u(x,t) € H} (22X (0, )) of the problem
(P,) for ¢ =0 for any given data u, v, H"**(2), f€ H;**(2X (0, o)) and
he Hp+*(I'x (0, 00)) satisfying the compatibility condition. The finiteness of
propagation speed and the existence of solution in Hp (£X (0, c0)) implies
the well posedness in the sense of C™.

We set about to prove Theorem 1 with the aid of Proposition 2.4. Let
x(2) be a real valued function in C*(R') verifying
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1 for <1
a8 ={ 0 for £>2.
For a(x,t) eC*(I'X R") we set
a®(x. 1) =a(x,0) + (a(x, 1) —a(x.0))y (|t|/N).
Evidently we have a¥eC*(I'x R") and

a(xz.t) for [t|<N

(2, 1) = {
a(x,0) for [t|=2N.

Let us denote by BY an operator made by replacing the coefficients &,,
¢, d of B by b, ¢c™, d respectively. Consider the problem

Ou=f in £x (0, o0)

B*u=g  on I'x (0, o)
®") u(x,0) =u,

0u

—(x,0) =u,.

5 t( ) =u,

Since BY satisfies the condition (2.1) (P*) is well posed in the sense of

C=. Suppose that given data (u,, 2, f, g) satisfy the compatibility condition
for (P). Then they satisfy also the compatibility condition for (P¥) for all
N>1. Therefore Proposition 2.4 assures the existence of the solution #*(z, )

eC* (2 %[0, 00)) of the problem (P¥).
Let M >N and set v(x,t) =u"(x,t) —u"(x, ). Tt satisfies

Ov=0 in £x (0, 00)
v (x,0) =0

v
— 0)=0.

And we have B'v= — (B"— BY)u" =gy C>(I'X [0, 00)) and
gy=0 for t<N

since BY and BY coinside with for |#|<{N. The finiteness of propagation speed
shows that v=0 for <N, i.e.

u=u" for t<N.
Then we may define a function u(x, ) by
w(r,t) =limu"(z, t),
Noseo

which belongs to C= (2 X [0, 00)) and u(x, t) =u"(x, t) for t<<N. Therefore
it holds that
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Ou=f in £x (0, N)
Bu=g on I'x (0, N)
w(x,0) =u,

%l:_(x) 0) =y

for any N. Then u(x, t) is the required solution of (P). The continuity of
the mapping (0, uy, f, 9) —u(x, t) from C=(2) X C=(2) X C*(2 X [0, o0))
X C=(I'X [0, 00)) into C=(2 X [0, 0)) follows immediately from that of
(o, 1y, f, @) > (x,2). And the finiteness of propagation speed of (P) is also
derived from that of (P¥). Thus Theorem 1 is proved.

§ 3. Preparations for proofs of the exponential decay of solutions

In order to consider the exponential decay of solutions we prepare some

results. Let the origin 0 of R*e (. Set for >0

Ae=a+20-0 4524 20
0|x| |z
3
No—0 151 S (Da,
0n |x| =1

and we have
e A u (x) = As (777 0)

T
e-0lzl

— N® (g0l
o (e™%"lu)

r

A boundary value problem for a data g&C> ("X R") satisfying supp g 1[I’
X [a, o)

(Z+n) -a)wn=0 i oxm

w(x,t) =9 (x,t) on I'x R!

supp wC 2 X [a, )
has a unique solution in C* (2 X R?). Denote this solution by ¥ (4, g; x, £).
For every g€ C~(I'X R") an estimate

Cn

3.1 WD (u, 95 -, ) I
3.1) Il (u, 9 M But g

[91n, Vte (— o0, o0)

holds if §=0,+1, #>—08,, which is a consequence of considerations of Mora-
wets in [5] and follows immediately from Proposition 3.2 of [4].
Hereafter we fix 6=0,+1. Let us set

N®g=NCW® (u, q; 2, ) |1« g
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B? () g=BP) W (1, g5 2. ) | r g

where

BO (1) =B<aa 4, aa >+6—Zb,(x Dz, .

From (3.1) the operators N (#) and B® (1) may be extended to continuous
mappings from H™"™'(I"X R") into H"(I'XR"). And by using (3.1) once
more we can define for each heC*(I") an H™(£)-valued analytic function
U®(p,h;x) in Rep>—0, such that
G*—=A)U® (p.h:2) =0 in £
{ U@, h;x)=h on I’

and an estimate

C
U, h: D) n<=—=— 1|,
TS (B, h: 2)lln = pan 60“ I

holds for all heC=(I") and Re p>—0,?
Define an operator 4?9 (p) by

AP PYh=NCU® (p, h: ) |,

and when all the coefficients of B are independent of z, B (p) by

BO(p)h= < <zk+/z, a>+a

)40l S @ U, b D) s
e

|
Then A#~® (p) and B? (p) are defined in Re p>—3, and they are continuous
mapping from H™"'(I') into H™(I').

Proposition 3. 1. Consider an equation in I' X R' with a parameter
U
3.2) B®(wg=h.

If there exists pu<<O such that for any heCy(I'X R') wverifying supp h
CI'X(0,0) (3.2) has a wunique solution in (\ H*(I'X R") satisfying

m=1
supp ¢C "X [0, 00) and for some [>>0
(3' 3) [g] mSCm [h] m+l s

the solution of (P) decays exponentially, i.e. when u, u,cC?(2) and
U supp i, C {x; |x|<<k}, the solution u(x,t) of (P) for initial data u,, u,
satisfies the inequality

E, (t,u, R)<C, eFr. e 2"’{Illuolllfn+u-1+llluxlllfnu}

» See §2 of [4].
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for all t=0, m=1,2, -,

Proof. Take v, v, Cy(R*) in such a way
u; (x) =v;(x) in £ 7=0,1.
Let v(x,#) be the solution of
Ov=0 in R*x (0, o0)
v (x, 0) =v,(x)

%(x, 0) =, (2).

Set

hix,t) = —Bv(x, t) |rxp
and we have

heCy (I’ X RY), supp hC I' X [0, o)
since v;(x) has compact support. Then

e e h(x,t) eCy(I' X RY).
From the assumption on the equation (3.2) we have

g(x,t) emr;lH’"(FxR‘), supp ¢ C I' X [0, o)

satisfying

B® ()yg=e"e " h(x,t).
By combining (3.3) and (3.1) we have that a function @ (z, £) =Y (4, g;

z,t) satisfies

~ (0w e C. \
3.4 @ (-, ) 5= 2L <(—=m —mg-olziple
3.9 i@ (-, ol 1+m 5 ¢ )“'m_ (6.,4- ﬂ) Le™e™ " h]n

On the other hand it follows directly from the definitions of Y and B®
that

w(x, t) =e” e\ (x, t)
verifies

Ow (x, t) =0 in 2xXR!
Bw(x,t)=—h on I'x R!
supp wC 2 X [0, 00).

Now the form of w and the inequality (3.4) give an estimate
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(3.5) Epur(w,R,8)= 3 L D (a,0) [fdz+ S L |D.D.“w(z, £)|'dx

la|<m+1 al<m
2>
m

e e (1@ (2, Dl | 5 (@0

2, 20R —pt ,—0 2
<e&ePE[e e ]k i .

1
The condition U supp #,C {x; |x|<t} implies that
J=0

supp hC I"' X [0, £+ 5]

because

(3. 6) v(x,t) =0 for |x|<t—&k.
Therefore
(3' 7) [e—/lte—lﬂllh] m+l+1

<Co (letallmsrvz+Netalllmera) €0,
Note that the solution # of (P) is represented as
u=v+w.
Then from (3.5), (3.6) and (3.7) we obtain the desired energy estimate.

Q.E.D.

Next consider the case where the coefficients of B are independent of z.
Admit the following theorem, whose proof will be given in § 6.

Theorem 3.2. For any €0 and s real there exists a constant C,,
such that an estimate

3.8) —Re (' AP (p) g, 9)s

> (@ (u+ H (2) — €)1, g)s—l—pcﬁ_‘—lll eMelg|?

holds for all geC=(I") and Re p>—0,.

Proposition 3.3. Suppose that all the coefficients of B are indepen-
dent of t. If there exists ™0 such that
(3.9 11 B2 @) gllo=coll €"'gllo, ¢e>0
holds for all g C>(I") and Re p> —7, the solution of (P) has an estimate
(3.10) E,(t,u, R)<C,é® - e®F . E, (0, u, o0).
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Proof. As we see it in [3] and [4], B?®(p) is a pseudodifferential
operator in I" with the following property:

Let I, be a open neighborhood of the origin of R?* and I, is a neigh-
borhood of s,&l’, and 1,2 (0, 0,) »>s(0) €I’y be a local coordinate patch.
Denote the symbol of B (p) by B?®(s,&;p) and we have

B (s, &) |I=Cl§|  for all [§]=2]p],
where &= (£, §,) are dual variables of 0. Therefore it holds that
BAD)  lgl=c| B° B)gl.+Coullgl, YgeC= ()

where ¢ is a positive constant independent of » and s. With the aid of an
estimate

[Re ("' B (p) g, 9)s—Re (e®*' AP () g, 9)|<Cillgl:
it follows from Theorem 3.2

(8.12) —Re(e""(BP @) =N g, 9) =gl

for a large positive number A. This shows that, for each s and p fixed
(BP(p) —A) ! exists as an operator F'(I") >H' (I'") when 1 is sufficiently
large. Moreover taking account of (3.11) we see that (BP () =)' is a
continuous mapping from I (I") into H'*'(I"). Since I' is compact (B (p)
—2)7' is a completely continuous operator in I (I'). By the theory of
Riesz-Schauder in order to show the existence of B (p) 7! it suffices to verify
that I+2(B?® (p) —2) ! is injective. Suppose that there exists g& I (I") veri-
fying
{+2(BP () —H hg=0.

Then we have g€ ﬂlem (I") and B? (p)g=0. From the assumption (3.9)

Re p=>—7 implies ¢ =0, which assures the existence of B? (p)~! in I (I")
for all s. From (3.9) we have | B? (p) !|<c, for Re p=>—7. Now by using
(8.11) and (3.12) we have for all positive integer m

(3.13) [ B2 @) || cama, mman<Cn, Rep=>—7.
Let h(x,t) e H"(I' X R"),supp hCI' X [0, c0). Set

R (x,ik) = .E,e—mh (z, t) dt
and we have
=, j.ilk'””’;(wik) 18, dk< + oo .
Define g (x,t) by

9z, &) = r ¢ BV (— oy ik (x, ik) dE .
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Then ge H*"(I'X R") and supp gC I X [0, 00). Moreover it holds that
B® (~1)g=h

and [¢],<C,[h],.. Thus we may apply Proposition 3.1 to this case by
taking /=0 and (3.10) follows.

Corollary. Let B, be a boundary operator with coefficients independ-
ent of t. Suppose that B, satisfies the assumption of Proposition 3.3 and
that B= B, for |t|=T. Then the equation

B (~1g=h
Sfor heCy(I'X (0, 0)) has a solution gemg1 H™(I'X R") satisfying
supp gC I' X [0, o0)
and
[0]n<Cpr[h]ms1, m=1,2, ---.

Proof. Let us decompose N as h=h,+h, supp i, CI'X [0, T+1] and
supp h,CI'X [T, o). Consider the solution of the problem

Ou=0 in £2x (0, o)
Bu=¢"""-e"h, on I' X (0, o)
u(x,0)=0

0u
== 0) =0.
0 (2,0)

From Theorem 1 we have always u(z, ¢) in C*(2 X R") and there exists a
constant R independent of / such that

(3. 14) suppu(.,T+1)Usupp%’ti(-,Tﬂ)c:?R.
Take v;€C~(R®, j=0,1 in such a way

vy (x) =u(x, T+1) for z€ 2

v, (x) =%—Z:(x,T+1) for ze@
From the consideration in § 2 it holds that

(3.15) llwo (@) llm+s + 1o (@) [n < Con [ M) ma: < Con [A] s -

Let us denote by w(x, ¢) the solution of
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Oov (x,2) =0 in R°X (T +1, o0)
v(x, T +1) =v,(x)

%;}—(x, T+1) =v,(x).

It follows from (3.14) that

v(z,t) =0 for |x|<t—T—-1—R,
which implies

Bv(x,t) =0 for t=T+2R+1+4p,.
Set

u(z,t) for (x,2)€8x[0,T+1]
w(x, t) = {

We see that w(x, ) €C~(2 X [0, o)) and

Bue { eleh, for t=>T+1
0 for t=T+1406,+R.
If we set ¢,(x, t) =e . e"w(x, t) |;xp we have
et e". Biw=BY (—7)¢g,.

Set

hy=—BY (=1 g+
and we have h,&€Cy (I"X RY), supp hsC I'X (T, o0) and
(3.16) [As] n<Cp[h]ms:-
From the assumption on B, the equation

BY (=7)g2=h,

has a solution g, N H™ ("X R") satisfying
m=1

(3.17) supp ¢, C I" X [T, o0)
and

(3.18) [0:] n<<Cpn[hs]nm.
Let us set

g(x’ t) =g! (.’E, t) +g2 (xy t)'

v(x,t) for (z,£) €2 X (T+1, ).

393

Evidently ge N H™"(I"X R") and supp gCI'X [0, o). Taking account that

B® (—7)g.= B9, we have



394 Mitsuru Ikawa
B? (—1Ng=B® (=) a+B>(—1ng.=h

The required estimate for ¢ follows immediately from (3.15), (3.16) and
8.17).

§ 4. Proof of Theorem 2

Taking account that B may be expressed as

0o, 13 0
3—577'}‘—2’ ;}{-——(bj—ﬂj)'l‘(bj nj)@}
1 {le@n+e@nll+d@,o,

we have for all geCy (I'X RY)

—Re<e®*'B? (1) g, 9>e= —Re {e®*'N? (1) g, g0
_ﬂ<62ﬁlxlc (.’L‘, t) g, g>0_—Re <625|1'[d(x’ t) g, g>0 .
Moreover we have

—Re ("IN (1) g, 9

= f (=Re (514" (u+ik)§ (-, ik) .5 (-, k) } dk

=0 [ 19 .0 I'dk= (= O [9]:.
Then by setting
d,=inf(—Re d(x, 1)), ¢, =supc(z,?)
we have an estimation

4.1 —Re<{B” (W) g, >={A—c) 1+ (d:—O)} [g]i.

Lemma 4.1. Let us denote by M a bounded subset of B>(I"). For
a pair of M and a positive constant v we can choose positive constant
a, and C,, m=1,2, --- with the following properties: for every B satisfy-
ing

(4-2) {bf("t)’c('!t);tERl}CM
and
(4.3) i "”Z’fl g; <a, for all (z,f)el xR

an estimate
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4.4 (0] <C,[B® () gln, vYgECTU'XRY
holds for all p verifying
(4. 5) A—c)u+d,—C=>ry.

Proof. For m=0 (4.4) follows from (4.1) on the condition (4.5).
Note that when B satisfies (4.2) we have estimates

(4.6) [g]m+1<cﬂm{[3<‘><mg] +[gg] +[g]m}, vgeCr (I'x RY)

for all #>—0, and m=0,1, 2, --, which are derived by the same process as
(3.11). For any g Cy (I' X R") it holds thag

g _ 0(6;—ny) 99
B(a) vy B(&) j——"%4) Y9
) B 5z 9 Bo(wg) - jL:l TR
00 071 1) _0d)
ot 0t Z=<at3xj 0t0x, |x|> 5e19

from which we have

[Bow%] <[ZBoWw0| +Calo)mn+C 101,

where azsup(Z . Suppse that (4. 4) holds when a<<a,. Then

‘ ac
it follows that

2] e

<c, {[(% (B® (1) g]m +C’ag]ns+C” [g]m} :

The substitution this inquality into (4. 6) gives

Lo] w1 <<Cr { [Bm W) gl nei+alglnat+ [B(m ) glm}.

Therefore we see that (4.4) holds for m+1 if « is sufficinetly small. Since
(4. 4) holds for m=0 on the condition (4.5) Lemma is proved by the induc-
tion. Q.E.D.

Corollary. Let M be a bounded subset of C*(I'). Suppose that B
satisfies (4.2) and

jﬁ_ 108, (z, £) /0t] + 10c (z, £) /0t|<atn, V(x.8) CT'X [T, 00,

where T, m=1,2, -+ are positive constants such that T,<T,.,.. Then
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Sfor u satisfying
(I—c)u+d,—C>y, di= inf (—Red(x ?))
(2, t)ET [T}, )

we have an estimate

4.7) [9]n<C,[B? () g]n+1. YgeCy(I'xRY.

Proof. Let us set B” (4)g=h. Following the process of Corollary of
Proposition 3.3 we can decompose ¢g as g=g,+¢, in such a way that

(4- 8) [{,71] mgcm [h] m

and B® (1) g,=h for t<T,+1, and hy=—B® () g, +h verifies
(4' 9) [ha] mgcm [h] m+1

and

supp hsCI'X [T, 00).

Let us denote by B an operator satisfying B =B for t=T,, and the condition
on the coefficients of Lemma 4.1 for all #z&R'. Then by Lemma 4.1 we
have g, such that

(4.10) B? (1) g, = hs
supp ¢, C ' X [T, o)
(4 11) [gz] mSCm [hS] m e

Since B? (4)g,=B® (4)g,, we have that g=g,+¢, from the uniqueness of
solutions of (4.10). Now (4.7) follows from (4. 8) and (4.11). Q.E.D.
Lemma 4.2, Suppose that B satisfies (1.4). For any y satisfying
(4.12) (I—e)u+d,—C>0,
the equation
BY (1) g=h

for he H"'(I'X R") such that supp hC I' X [0, o0) has a solution uniquely
in H"(I'X R") and which wverifies

(4‘ 13) [g] mSCm [h] m+1
supp gC I" X [0, o0).
Proof. let BY be the operator introduced in § 2. Since the coefficients

of BY are independent of 7 for t=2N we can apply Corollary of Proposition
3.3 and obtain ¢y verifying
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BY () gy="h
and gy€ H*(I'X R"), supp gyCI'X [0, 00). We see immediately that
by (-, ), cn(-,t); t= R} is a bounded set in C*(I")
and that for any a>0 it holds

3310y (e 1) /0114 [dex (@, 6 /00l <a, Ve=T.
i=

where T, is independent of N. Hence applying Corollary of Lemma 4.1 we
have

(4.14) (98] n<Co[2] 11,
where C,, is independent of N. Let N'>N. Then
BY® (1) (g —gx) = — (BY® (1) =B (1)) g,
and since supp (BY'® (1) — B (1)) gy I’ X [N, o0) we have
supp (9w —gx) I X [N, o0)
namely
(4.15) gw=¢y for t<N.

Now (4.14) and (4.15) imply that gy converges to some element in H™ (/"
X RY) when N tends to infinity. Let us denote it by g. Then it holds that

g=gy for :<N
(9] <Culh]nss.
We have
B® () =h
because
BY () g—h=B(g—gy) + (B — B") g,
and the right-hand side equals zero for ¢<{N. Thus Lemma 4.2 is proved.

Q.E.D.

If d, is choosen in such a way that (1.3) implies (4. 12) for some #<<0
and T, the exponential decay of solutions of (P) follows from Lemma 4.2
and Proposition 3.1. Thus Theorem 2 is proved.

§5. Proofs Theorems 3, 4 and 35

Lemma 5.1. Suppose that an estimate
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C
5.1 Bzl PO >(c— slzl |2
RG] (e (P)g,g)|_<0 ] 1>||e gl

holds for all Re p=—71 and g C=(I"), where ¢ and v are positive con-
stants. If

(5.2) ("B () g, 9)#0  for all Re p=0

JSor any g0, there exist 7' and ¢’ positive constants such that
(5.3) [ (€' BY () g, 9) I=c'|€g|?, Rep=—7

holds for all geC>(I).

Proof. It follows from (5.1) that there exists A>0 such that
6.9 [ (¥ B (p)g, g)|> le’t='g|®

when Rep>—7 and |p|>=A. Using the consideration in the proof of Pro-
position 3.3 we obtain from (5.2) the existence of B (p)~' in L*(I).
And it turns out that for every Rep=>0 B®(p) ' is a continuous mapping
from L?(I") into H'(I"). Note that B (p) depends continuously on p as
L (H'(I"), L*(I"'))-valued function. Therefore we have

a,=inf{|B® @) gle: gl =1, Rep=0, [p|<<A}>0.
Then there exists 7'>0 such that
(5. 5) 1B® @) gl=ar/2 for all |g|,=1

holds for all Re p=>—7', |p|<<A. Combining (5. 4) and (5.5) we have (5.3).
Q.E.D.

Let us set

39 (D) =45+~ 310, n,>~—+—<b, )
2 3z,

+0 jEﬂ (by—n)z;/|lx|+c(x)p.

Denote by A(g) a set of complex numbers z=a-+1ib satisfying the following
properties: for & such that {k;6=—Im(e®"*'BP (k) g,q)}=¢, all a=R.
For b such that {k;6=—Im(e?"*'BP (ik)g, q)} = S+,

a<inf{—Re (?*' B (ik)g,q)}.
kES

Lemma 5.2. Suppose that d(x) €C>(I") satisfies
(5. 6) (d(x)g,9) €4(9), Ygel ), |gl=1
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and that B® ) = BP (p) +d(x) verifies the condition (5.1). Then (3.9)
holds.
Proof. Let g€C>(I") and g0. Set for i=0
F,(p) = (°*(BP (p) +d(x) =) g,9).

Then F,(p) is analytic in Rep>—0, for all A2=0. (5.1) implies that for
some A>0

F,(p)#0 for all [p|=A Rep=>—r.
From the definition of A(g) we have for all 1=>0
(e(d(x) —1)g,9) €49,
which shows for all 2>0
F,(ik)#0 for all kER.
On the other hand we have from (3.12) that
6.7 F, (p)#0, VYRep=>-—7

for 1, sufficiently large. Then by taking account of the continuity with re-
spect to A we see that the number of zeros of F,(p) is same for all 1=0.
And it follows from (5.7) that this number is zero. Then

F,(p)#0, Rep=0,
which is nothing but (5.2). By the previous lemma (5.1) and (5. 2) imply
3.9). Q.E.D.
Proof of Theorem 5. Suppose that d(x) verifies for some ¢>0
Re d(x) <H(x) —2¢.

Then we have from Theorem 3.2 that for some A>0

(5.8)  —Re(¢"™'BP (p)g, 9)=c|e g Repz—§,|p|>A.

Due to Lemma 5.2, in order to apply Proposition 3.3 it suffices to verify
(5.6).

Note that an estimate

HIm{(As (B)S, ) + (A RS HHSCUX S+ 1 XA

follows from the consideration on §5 of [4]. Then we have

m (A RS, HI<IR (X F I+ 1 X f 1)) + CUAXS I+ I XS 1D
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<CIkl| £1,
which implies that
[Im ("' A" (ik) g, 9) |<CIR]|| €'"g]|%.
Since
Im (% B (ik) 9. 9) =Im (*=14" (ik) g, )
HIm (330, (70, ') 4k (e (2)0,0)
we have for |k|<<A
[Im (”*1 BP (k) g. 9) |< (sup 16— 2n]) | X.eg}.+ CA| &g

Suppose that
(5.9) IIm (e B (ik) g, g) [=Cc| g ]|".
Then it is necessary to hold
(5.10) (sup [6—n)) | X" g[li,=> (C.— CA) | €7'g .
(5.18) of [4] shows
(5. 11) —Re (AP (ik) g, 9) = [ X" |13 — Clkl| g%
(5.10) and (5.11) imply that

—Re (e”*1 A7 (ik) g, g) = (sup [6—n]) 71 (C.—2CA) | &g
Therefore if we choose C; sufficiently large (5.9) implies

—Re(e® BP (k) g, 9) > (®*'H(x)g,g) for all |k|<<A.
Thus (5.6) is shown.

Proof of Theorem 3. First let us show that

Im (e®=' " (ik) g, g) =0
holds for any k=0 and ¢g==0. Suppose that for some ¢ and k=0
(5.12) Im (¢®1¥1 4" (ik) g, g) =0 .
Set

u(x) =e=U? (ik, g; x).
Then we see that

U+ u(x) =0

ulp ="y
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Ou

— & O (k) g
on |r

and that it satisfies the radiation condition of Sommerfeld. Then

Ozj‘ {(A+kz)u-22—u(ﬂA+k’)u}a’x
2n(izI<R}

lperettyas [, (anete)as.

Note that %iﬂd5= (€@ 4"? (ik) g, g) is real. The radiation condition of
ron
Sommerfeld implies

jlzl R(%_‘_u%&)ds Z‘kj |2|*dS+o0(1l) as R—oo.

Since k%0 we have
j lu|!dS=0(1) as R—oo.
|z|=R

By Rellich’s uniqueness theorem z=0 holds. This isa contradiction. Thus
(5.12) is proved.
Next consider for k=

w(x) =&"U 0, g3 2)

2 0u.

satisfies Au=0 and |z|u(x) and |z are bounded in £. Then it

Z;
follows that

0= j Aunidz = — j 0u yas j |Aul'dz .
I} r on 2
Then

(7 4" (0) g, g) = g” 7dS—— f IVu|tdz .
2
By Asakura’s result

L V| dz=> L 6, 2|*dS = (°'96, (%) 0, 9)

where
0o(x) =<x—Q, n(x) lz—QI™
Therefore if d(x) <0,(x) for all x&€l" we have

(®*d(x)g,9) €4(9), 9+0.
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Thus (5.6) holds for d(x) verifying (1.6).

Proof of Theorem 4.

Suppose that

d (x) <min (0, (x), H(x)) —2¢

holds. Then it follows that

—Re (' B? (p)g.9) = —Re (" (A (p) +d(2)) g, 9)

>e|eg|®

for all Rep>—¢/2, |p|=A, where the constant A is independent of & (x)
satisfying (A-II) and (A-III). Then we have

(5.13) [ () gll=e|le*g]  for Rep=>—e/2, [p|=A.

On the other hand for [p|<<A, Rep>—71 (£ P (p) +d(x)) ! exists and uni-
formly bounded. Then by using the estimate (3.11)

[ (") +d) g, <CAlgl,
for all Rep>—7, [p/<<A. When the a of (1.9) is not so large it holds that

j=1 0x; =

0z, |z

I LEHYT), L2(T))

| (O (p) + D) || canrary,eary

Since the left-hand side is equal to |B® () — (£ P ®) +d) | ranas.iery the
above inequality implies

(5.14) [ B (p)gl|=clegll, vgeC=(T).
By combiming (5.13) and (5.14) we have (3.9).
Remark. Till now we showed the existence and uniform boundedness

of B (p) ! for Rep=—7, >0, which imply the exponential decay of solu-
tions of (P). Suppose that B (p) ' exists and satisfies

| B® )| <C for all Rep=>—7.

Then we see easily that for any d(z) such that
sup|d (z) | <~
C
(B® () +d(x)) " also exists and uniformly bounded in Rep>>—7. Then

we have also the exponential decay of solutions for anther boundary operator

B+d.
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§ 6. Proof of theorem 3.2
We showed in [4] an inequality
—Re ("' P B)g.0) = (u—C)||""'g]*, Rep>—0,.

Examing the estimates used in [4] we see that in order to obtain (3.8) it
suffices to show an estimate
szl o

(6.1 —Re(e*S

—iktaCWI N =Bt 3Ty
m(P) e —5n—(u, m(@)e *e g,x,t)dt,g)m

Cm,e

——me "y
1+ |p+ik| |

> (" (u+ H(x) —e) X9, Xi0) m—
for all g€ Cy (I'y) when [, is choosen sufficiently small. After this we show
(6.1). Let s(6) be a mapping

I,=— [0'107 610] X [_0'20» 020] 0= (0., 02 —s5(0) el

such that s(¢) = (0y, 0s, ¢ (03, 02) ),

(6.2) 9 0y—0, j=1,2.
00,

w1 =52 ) (55 (o)~ (Gorra) )
Remark that it follows from (6. 2) that

ohY
00,

Set

=0, Vil k.

=0

Let us denote by f(d,7) a solution of

i hl/()af af =1

lLi=1 661 00’,
(6.3) 0F| —y,
005 150
FO,7) =0

where 7= (7, 1) €= {7, %) ; "' +7=1}. Let Iy be a small neighborhood
in I" of s,=0 and 0(s,7) be a function belonging to C>([7,) defined by
0(s(o),m) =F(0,m). For fixed 0<B,<<1 consider an equation

B0 (s(a). 1) —0(s(c"), M} =alo—0a",§")

p, & el B<B<1, g, 6’1, If we choose I, sufficiently small there exist
C>functions «a(g,0d’,8,7) and & (0,0, 8, %) satisfying the above equality for
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all 6,0'€1,, 8,<p<1,7€2 and
«@(0,0,8.7) =F
£0,0,8,m) =1.

Further more we have from (6. 3)

of da | 0f da _
0¢, 06, 00, 00,

at 6=0"=0

(6. 4) . -
0_f@$,+0f 0¢, =0 at 6=0"=0 for j=1,2.

06, 00, 00, 00,

Remark that 0(s, %) introduced in the above varies a little from 0(s, %) used
in [4]. But concerning the estimates for Gf/;, j=1,2,3 we do not have to
change the process. We will use the same notations as [4].

(CVIB) (s(0), £) =0 (s(0), £) Ll dk L” da L de’ L do’ L dr’
X exp{tk(t—t'+alo—0",§ D)} pu(a)*Kaw(s(07),t)h(s(07), )
—0(s(0), 9) L: dk j da--+0(s(0), £) Ll dak r da
= (Vwh) (s(0), ) + (Vuh) (s(0), 1),

where @, is a positive constant determined later. By using a change of varia-

bles
(V) ((0). 8) =0 (5 (0), £) L dk L‘” B L dn £ ao | ar
xexp{tk(B(O(s(0),7) —0(s(0"), ) +t—t")} () *ak’

xBEL9 ((577': ;;) B0, )Y h(s(@), D),

where (3, depends on @, ¢’, 7 but there exists §,>0 such that 8,8, for all
g, 0,y if I, is small.
For the purpose of the construction of §/, consider an asymptotic solution

of the equation

<<%+ﬂ>2—d>u=0 in 2x R

with an oscillatory value
ulx,t) =v(s, t)exp{tk(t+R0(s,7))} on I'XR'

for

(6. 5) 0<p<l—g, &>0.
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Let ¢(x,7,8) be a solution of

¢ (s, 1,8 =R0(s, 1) on I”
(V9)?=1 in 2

(6.6)
8y
0.

Note that ¢(x, 7, f) verifying (6.6) is a C*-function of ze R, €3 and B
of (6.5) and all derivatives with respect to x, 7 and j are bounded in 2, &
and B of (6.5). We set p=u-+ik and ask for a solution « in the form

6.7 u(x, t;p) =exp{ik(+¢(x,7,0))} -Gz, t:p).
exp{—ik(t+9)} - <<%+ﬂ>2—A>u

(k1) — (RO -G+ 2 ik + 1) (%f—wc)

—2ikV¢-VG—ikA¢)-G+<<aa

—t+ﬂ>z—A>G

=ik<26—G—2V¢)-VG—A¢)-G+2/xG>
ot

+ (((%+/1>2——A>G+2ﬂ<aa—(t;+ﬂG> + G .

Restricted to u,=>u=>—0, construct G(z, ¢;p) vanishing the right-hand side
of the equality asymptotically. Set

Gz, t;p) Nio(ik) G, (z, t: 1)

and determine G; successively. G, is required to verify

%Cti'—szGo— (AG—24)Gy=0 in xR

(6.8)6
Gi(x,t) =v(x,t) on I'x R
and Gj, j==1 must verify

3G,

2—62-—2V¢-VG,— (Ap—24)G,
(6.8, =— ((%ﬁ ﬂ)z—' A)G/-l —2u (a—(;;;‘—‘+ uGH> —1'Gy,

Gj=0 in FXRI

The solution Gj,j=0,1,2,3, -+ of (6.8); are determined uniquely for given
function v(x, ), therefore there exists G(x, £;p) with required properties.
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Construct G(x, ¢:p) following the above process for v (s, £) with param-
eters 07,7, 8

v (s(0), ) =0 (s (0), ) 1. (0, 0, 0, B)) (G, 0", 7, B)%

and denote this G(x, t;p) by G(x, ¢;0’,7%,8,p). Using this G

Wi, h: z, £) = Lp dk L dB L a7 fda' jdz’
X exp {ik (¢ (z, B, 7) —BO(s(d"),7) +¢t—1¢")}
XG(x,t;0°,9,8, )R (s(0"),t")h(s(0’), )
Evidently
(6.9 Wi, bz, t) | rup=Vnh.
Next consider dG),,/0n

6.10) OWult, h:z,0)

on
= [ [explit O ©@), m 065, m) +2-2}]
X (ikg_fc+%€i> B (s(0), 'Y h (s(07), ).
Let us set

Ih= j jexp[ 1.1 9% Gran
0n
ITh= j jexp[ 196 e .
on

Let 4 be of the form ¢ (s)e 'm(2).

1h=wj dk wdﬁjdﬂj da’j dat’
R! 8o z Ig I,

X exp[tk{B(0(s(0),n) —0(s(0"), M) +¢—¢"}]

x ikgjii@ ©), 8, 1:(@) 2akﬁ%’:;§)ag (@) e m (")

_ I'“j—(l—"’) j...j:],huzh.

Since supp (1 —w) Nsupp @ =¢, I, is considered as a pseudodifferential operator
in I'X R! of the class S™. Then for any m, m’ there exists a constant C,, ..
such that
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oo oo 172
@1 | [ erhar <Cun a+#) gl [ e m 0 rae)

Let A, (k) be an operator defined for g=Cy (I"y) by
Au(B) g = j”dﬂj 1 jda'-exp{iw(oc(a),n) —0(s("), M)}

<k 6(0),7,6) n@Wa 81 Do),

Then Ih be represented as

() (5(@).0) = [ ety gm (s ity
which implies
6.12) j:e""‘ (L) (5(6), £ dt = Ay (B) g- 7 (u+ i) .

Since 0(s,7) satisfies

Z h”(G) (S(G) 77) (5(6) 7) =1

1.0=

we have
) s
5—(5(0'),77,3)=—~/1—B, for all ce1,.
n

By taking account of the form of the equation which a(g, ¢’,%,3) and
& (0,0, B) satisfy we see immediately the relations

[ a(d,0’,7,8) =a(d’,0,7,8)

§(0,0’,1,8) =§"(07,0,7,8.
D¢, a)
D@, B)

and ¢’. Therefore we have

Then we have that -

(6,0',7m,8) is also symmetric with respect to ¢

(Loru@a,q) = [ao (a8 [an (a0 -exp i @@, 1) ~0G @), D))

2 2 D(E a)
X k(—V1—F) ()R D, ﬁ)g(s(d))g(s(d))

~(, zi,uq,, ®9),

namely

(6.13) Re (A (k) g, 9) =0.
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Combining (6.11), (6.12) and (6.13) it holds that

—8|z| ©
6. 14 Re(et & 70 7 o (g e () dt
619 [Re(e1 2 | eI e (©) dr, 0).)
<Cn- - 9|5 .
Ikl
In the next place consider IIh. From the relation which satisfies G we
have
—v1-g%C G 2 (v9).(v6)— (Lap—n)G
B =, 20— (Gav-s)
1 0 0G
G 2 Rl 2 — o0
(2w ) = 8)G+24(3C +46G) +42G) - (moa k)
Then

ITh— j j ¢11 32 k2~ +j L/T?(W) (VG Jish

1 ~ 1 1 ~
+ jf —<;7-<—A'— JGrah+ f“'f“———~ Kih
Ji—g\g oY AEEen Vicga TE?
=IIh+ILA+IIR+110.
Concerning I/, since

0G _ 0o 2aD(G’,a)
ot 0t D(u,B)

and supp 0o N supp B =¢
0t
it follows that

6. 15) “ W TLh Al

Cm m’ j‘m —pt 2 7
< _Hmm # i 't
SR Hgllo< e m()ld>

Consider ILh.

(V) s+ (VG) (s () =,,$= 1(0) 00 (s(0),n) 0G (s(d))

00’, ao_l
_ o a0f(0,) 0 D¢, o
J.l=h 06; 06,<( XI(Q) aD("]’B) >.

From (6.4) and the fact 7/*(0) =0, it follows that
(6. 16) (V) (VG)(s0) =0

Using supp (1 —w) Nsupp @ =¢ ILh is represented as

ILh= L 5 (it k) { jdﬁjdn fdr

cexp {ikB (0 (s (a), ) —0(s(a"),m))}a(a,d’,B,7) /czg(S(ff’))}dk
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4+ (operator of class S™®) A,

where @ (0,0, 8,7) =0. therefore for any ¢>0 we have

(6.17) e~ *IIh dt

-

<9t Coe L 1) 0y

for all g(s) €Cy (I'y) with support contained in a sufficiently small neighbor-
hoof of s,
Concerning II,h we have immediately

, C
6.18 WA LA dE| <—2 m
(6.18) eI i) <3510l

ey )

Consider ILh. First check up on the value of 4¢. According to [7]
and [8] we know that the value of 4y at x of ¢ verifing (V¢)*=11is equal
to two times of the mean curvature of a surface {y;¢(y) =¢(x)} at x with
respect to (—V¢). Now, when ¢(x, 8, 7) satisfies (6. 6), the mean curvature

at y=0 with respect to — V¢ of the surface {y; ¢ (¥, 8, 7) =¢ (0, 5,7} is given
by

{ (0381 + 7iK2) + = ‘/—52 (Mik1 + M2ks) }

where k; and £, denote the principale curvature with respect to —n of I' at
x=0. Then we have for all 0<<f<1

(6.19) —AY(0, B, ) =k, + Ky =2H .
Define A, (k) by

Aa@®g= ("B [ an [do’-exp i80) (@), 1) =@, M)}
e AN V2 2D(§ a) ’
X A=) (FAVGEO, 8,1 — 1) 1@k T D00,

Then we have

ILh = j G551 (-t i) Ay (B) gk + (operator of class S-=) A ,

which implies

(6. 20) “ j " e L hdt — 7 (-t iE) e

o 172
<Co A+ 1) gl [ 1em ) 2ar)
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On the other hand by a change of variables

A= |

1§12a0 k|

a (s’ exp <o -0, &
A=) (L) (@) 8.1 (€D ().

Taking account of (6.19), for any ¢>0 we have

6.21) —Re(Aua(®)0,0)n=(H O + 21— )1 Xuglh— 2| X0l
2 1+ |k

for all geCy (I'y,) with small support, where

(Xu9) (5(0)) = j dt jda exp (0 — 0", £y, (181/8) %0 (s (7).

1§12, k]

From the estimates (6.15), (6.17), (6.18), (6.20) and (6.21) it follows
that

(6-22) —Re <e2‘”" J‘w eI (g =" u) dt, g>
> (H©) +u1—¢) | Xuglt— -Em gl .
1+ |&|

Then (6.14) and (6.22) imply

—0&| x| o A
(6.23) —Re <e26|zl_/%>$ c—tkzo;Wn (4, e"*g-e~"'m; z, £) dt, g>
m —o0 n m

Cn
“llgl

>(HO) +u—e) || Xueg||t—
= (HQO) +p—e) | Xue"g| 1+ |£]

for all geCy (I'y) if we take [, sufficiently small neighborhood of s,
Secondly consider an asymptotic solution Gf;, for boundary data C{/)ph.
If we choose @, and I, sufficiently small there exists a solution of

0(s(0),¢&, a) =ala,§"> for s(0) el
(V) i=1 in 2

9%
6n<

and ¢ (x, &, a) depends smoothly on « and §’. Then by the same process
we may construct an asymptotic solution

CT)Vw(.a, h; x, t) = j dk jaod(l j deé’ j do’
R! 0 p Is

cexp{ik (P (e, &, ) —ala’, E5+t—t)}G(x, 1, &, a, p)

~akfo (s(@),t)Yh(s@),t).
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Note that —;—.h/; (0, &, )— H(0) becomes arbitrary small by choosing ¢, small.

Then we have

lx| oo (i
(6.24) —Re <e”"' e e"”“a—%”’ (u, e’""'g-e~*m; x, t) dt, g>

m -+ ik) an

= (H ) + =) [ Xuegln — Cn g

+ |&|

where

(Xig) (s () = j ds jdo'-exp (=0, &g (s(0).

[§1<aolk|

Set G, (t, by, £) =Yooy, hy s t) + W, by 2, ). Evidently

Yy Iy e, ) Ilu<n, =P

Let us denote by %,(/, l;.x,t) the solution of

<<£+ﬂ> )z(x’t)=_<<%+ﬂ>2—A>CWx(u,h;x,t)

z(x, t) =0 on I'x R,

Then by the same consideration on %, in [4] we have

6.2 5[ IDIZ G hs w0l de<Co [ G o) it

Therefore we obtain (6.1) from (6.23) and (6.24).
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