Minkowskian product of Finsler spaces and Berwald connection

Dedicated to Professor Dr. Makoto Matsumoto on the occasion of his sixtieth birthday

By

Tsutomu Okada

(Communicated by Prof. H. Toda, March 24, 1981)

In the present paper, we shall first show Theorem 1: The Berwald connection of a Finsler space is the h-connection [1], [3] which is uniquely determined from the fundamental function by four axioms. A hint as to this theorem has been got from J. Grifone [2]. Next, using Theorem 1 we shall prove Theorem 2: The Berwald connection of any Minkowskian product of Finsler spaces coincides with that of the Euclidean product of these Finsler spaces. Finally, we shall obtain Theorem 3 on geodesics of the Minkowskian product of Finsler spaces.

The terminology and notations in the present paper are referred to M. Matsumoto's monograph [1].

The author wishes to express his sincere gratitude to Professor Dr. M. Matsumoto for the invaluable suggestions and encouragement and also to his colleagues for many useful discussions.

§ 1. Berwald connection

Let M be a C^{∞} manifold and $T M$ the tangent bundle of M. And let (x^{i}), $i=1,2, \ldots, n$, be local coordinates of M and $\left(x^{i}, y^{i}\right)$ the canonical local coordinates of $T M$. We denote by $s_{0}(T M)$ the zero section of $T M$ and $(T M)_{0} \equiv T M-s_{0}(T M)$. A positively homogeneous domain is defined as a subdomain D of $T M$ such that if $y \in D$ then $t y \in D$ for any $t \in \boldsymbol{R}^{+}-(0)$, where \boldsymbol{R}^{+}is the non-negative real line.

Definition 1. A Finsler space (M, F) is a pair of a C^{∞} manifold M and a C^{1} function $F: T M \rightarrow \boldsymbol{R}^{+}$such that
(A) $F(y)=0$ if and only if $y \in s_{0}(T M)$,
(B) $F(t y)=t^{2} F(y)$ for $t \in \boldsymbol{R}^{+}$
(C) F is C^{∞} on a positively homogeneous domain D_{1},
(D) $g_{i j} \equiv \frac{\partial^{2} F}{\partial y^{i} \partial y^{j}}$ is nondegenerate on a positively homogeneous domain $D_{2}\left(\subset D_{1}\right)$.
We call F the fundamental function of Finsler space (M, F).
Remark 1. It is obvious that if $D_{1}=T M$ then (M, F) is a Riemann space. In $\S 1$ we may take $D_{1}=D_{2}=(T M)_{0}$, but in $\S 2$ and $\S 3$ those domains should be restricted as occasion calls. (See Remark 5 and 8)

Coefficients $G_{k j}^{i}$ of the Berwald connection of a Finsler space (M, F) are given on D_{2} by

$$
\begin{aligned}
& G^{j}=\frac{1}{2} g^{i k}\left(\frac{\partial^{2} F}{\partial x^{r} \partial y^{k}} y^{r}-\frac{\partial F}{\partial x^{k}}\right), \\
& G_{j}^{i}=\frac{\partial G^{i}}{\partial y^{j}}, \quad G_{k j}^{i}=\frac{\partial G_{i}^{i}}{\partial y^{k}} .
\end{aligned}
$$

Theorem 1. The Berwald connection of a Finsler space (M, F) is the h_{1} connection which is uniquely determined on D_{2} by the following four axioms:
(a) The h-covariant derivatives of the fundamental function $F_{; i}=0$.
(b) The deflection tensor $D_{j}^{i} \equiv y_{; j}^{i}=0$.
(c) The (v)hv-torsion tensor $P_{j k}^{i}=0$.
(d) The (h)h-torsion tensor $T_{j k}^{i}=0$.

Proof. In terms of canonical local coordinates, we denote coefficients of the above h-connection by $\left(F_{j k}^{i}, F_{j}^{i}\right)$. Then these axioms are written as
(a) $\quad F_{; i}=\frac{\partial F}{\partial x^{i}}-\frac{\partial F}{\partial y} F_{i}^{\prime}=0$,
(b) $D_{j}^{i}=-F_{j}^{i}+y^{l} F_{i j}^{i}=0$,
(c) $\quad P_{j k}^{i}=\frac{\partial F_{j}^{i}}{\partial y^{k}}-F_{k j}^{i}=0$,
(d) $\quad T_{j k}^{i}=F_{j k}^{i}-F_{k j}^{i}=0$.

It is well-known that the Berwald connection ($G_{j k}^{i}, G_{j}^{i}$) satisfies these axioms.
Now, from (c) and (d) we have

$$
\begin{equation*}
F_{j k}^{i}=F_{k j}^{i}=\frac{\partial F_{k}^{i}}{\partial y^{j}}=\frac{\partial F_{j}^{i}}{\partial y^{k}} \tag{1.1}
\end{equation*}
$$

The partial differentiation of (b) by $y^{\boldsymbol{k}}$ and (1.1) lead us to

$$
\begin{equation*}
\frac{\partial F_{l j}^{i}}{\partial y^{k}} y^{l}=0 \tag{1.2}
\end{equation*}
$$

Differentiating (a) by y^{j} and putting $g_{j l}=\frac{\partial^{2} F}{\partial y^{j} \partial y^{l}}$, we get

$$
\begin{equation*}
\frac{\partial g_{j l}}{\partial x^{i}} y^{l}-g_{j l} F_{i}^{l}-g_{l s} y^{s} F_{j i}^{l}=0 \tag{1.3}
\end{equation*}
$$

Morec ver, the differentiation of (1.3) by y^{k} leads us to

$$
\begin{equation*}
\frac{\partial g_{i k}}{\partial x^{i}}-2 g_{j k l} F_{i}^{l}-g_{j l} F_{k i}^{l}-g_{k l} F_{j i}^{l}-g_{l s} y^{s} \frac{\partial F_{j i}^{l}}{\partial y^{k}}=0, \tag{1.4}
\end{equation*}
$$

where we put $g_{j k l}=\frac{1}{2} \frac{\partial a_{j k}}{\partial y^{l}}$. Contracting (1.4) by y^{i} and using (1.1), (1.2) and (b), we obtain

$$
\begin{equation*}
\frac{\partial g_{j k}}{\partial x^{i}} y^{i}-2 g_{j k l} F_{i}^{l} y^{i}-g_{j l} F_{k}^{l}-g_{k l} F_{j}^{l}=0 . \tag{1.5}
\end{equation*}
$$

Applying the Christoffel process [1] to (1.3) and (1.5), by (d) we see

$$
\{i, k, j\} y^{i}-g_{j k l} F_{i}^{\prime} y^{i}-g_{k l} F_{j}^{\prime}=0,
$$

where $\{i, k, j\}=\frac{1}{2}\left(\frac{\partial g_{j k}}{\partial x^{i}}+\frac{\partial g_{k i}}{\partial x^{j}}-\frac{\partial g_{i j}}{\partial x^{k}}\right)$. Therefore

$$
F_{j}^{k}=\left\{\begin{array}{l}
k \tag{1.6}\\
i
\end{array}\right\} y^{i}-g_{j l}^{k} F_{i}^{l} y^{i},
$$

where $\left\{{ }_{i}^{k}\right\}=g^{k l}\{i, l, j\}$ and $g_{j l}^{k}=g^{k s} g_{j s l}$. In the following, the suffix 0 means contraction by y. Contracting (1.6) by y^{j}, we get

$$
F_{0}^{k}=\left\{\begin{array}{c}
k \tag{1.7}\\
00
\end{array}\right\}=2 G^{k} .
$$

Substituting (1.7) into (1.6), we have

$$
F_{j}^{k}=\left\{\begin{array}{l}
k \tag{1.8}\\
0_{j}
\end{array}\right\}-g_{l j}^{k}\left\{0_{0}^{l}\right\}=\frac{1}{2} \frac{\partial\left\{\left\{_{00}^{k}\right\}\right.}{\partial y^{j}}=G_{j}^{k} .
$$

Hence, from (c) we obtain

$$
F_{i j}^{k}=\frac{1}{2} \frac{\partial^{2}\left\{\begin{array}{l}
k \tag{1.9}\\
\partial y^{i} \partial y^{j}
\end{array}\right.}{\partial y_{i j}} .
$$

These three equations (1.7), (1.8) and (1.9) complete the proof.
Remark 2. Differentiating (1.5) by y^{i} and using (1.4), we see

$$
\begin{equation*}
2 g_{i j k ; 0}+g_{10} \frac{\partial F_{j i}^{l}}{\partial y^{k}}=0 . \tag{1.10}
\end{equation*}
$$

Therefore, from (1.4) we obtain

$$
\begin{equation*}
g_{j k ; i}=-2 g_{i j k ; 0} . \tag{1.11}
\end{equation*}
$$

This is a well-known equation, showing that the Berwald connection is not h-metrical in general although (a) is satisfied.

Remark 3. [M. Matsumoto] The equations (1.7) are also got directly as follows. Differentiating (a) by y^{j}, we see

$$
\begin{equation*}
\frac{\partial^{2} F}{\partial x^{i} \partial y^{j}}-\frac{\partial^{2} F}{\partial y^{k} \partial y^{j}} F_{i}^{k}-\frac{\partial F}{\partial y^{k}} \frac{\partial F_{i}^{k}}{\partial y^{j}}=0 . \tag{1.3}
\end{equation*}
$$

Contracting (1.3)' by y^{i} and using (b), (c) and (d), we have

$$
\begin{equation*}
\frac{\partial^{2} F}{\partial x^{0} \partial y^{j}}-\frac{\partial^{2} F}{\partial y^{k} \partial y^{j}} F_{v}^{k}-\frac{\partial F}{\partial y^{k}} F_{j}^{k}=0 . \tag{1.12}
\end{equation*}
$$

The last equations and (a) imply

$$
\begin{equation*}
g_{k j} F_{0}^{k}=\frac{\partial^{2} F}{\partial x^{0} \partial y^{j}}-\frac{\partial F}{\partial x^{j}} . \tag{1.13}
\end{equation*}
$$

Thus we obtain

$$
\begin{equation*}
F_{0}^{k}=g^{k j}\left(\frac{\partial^{2} F}{\partial x^{0} \partial y^{j}}-\frac{\partial F}{\partial x^{j}}\right)=2 G^{k} . \tag{1.7}
\end{equation*}
$$

§ 2. Minkowskian product of Finsler spaces

Let Ψ be a C^{0} function: $\boldsymbol{R}^{+} \times \boldsymbol{R}^{+} \rightarrow \boldsymbol{R}^{+}$such that
(α) $\Psi\left(q^{1}, q^{2}\right)=0$ if and only if $\left(q^{1}, q^{2}\right)=(0,0)$,
(β) $\Psi\left(t q^{1}, t q^{2}\right)=t \Psi\left(q^{1}, q^{2}\right)$ for $t \in \boldsymbol{R}^{+}$,
(γ) Ψ is C^{∞} on $\boldsymbol{R}_{0}^{+} \times \boldsymbol{R}_{0}^{+}$, where \boldsymbol{R}_{j}^{+}is the positive real line,
(δ) $\Psi_{A} \equiv \frac{\partial \Psi}{\partial q^{4}} \neq 0$ on $\boldsymbol{R}_{0}^{+} \times \boldsymbol{R}_{0}^{+}, A=1,2$,
(ع) $\Delta \equiv \Psi_{1} \Psi_{2}-2 \Psi \Psi_{12} \neq 0$ on $\boldsymbol{R}_{0}^{+} \times \boldsymbol{R}_{0}^{+}$, where $\Psi_{12}=\frac{\partial^{2} \Psi}{\partial q^{1} \partial q^{2}}$.
Remark 4. $\widetilde{\Psi}\left(p^{1}, p^{2}\right) \equiv \Psi\left(\frac{1}{2}\left(p^{1}\right)^{2}, \frac{1}{2}\left(p^{2}\right)^{2}\right)$ is C^{∞} on $\boldsymbol{R}_{0} \times \boldsymbol{R}_{0}$ if and only if $\Psi\left(q^{1}, q^{2}\right)$ is C^{∞} on $\boldsymbol{R}_{0}^{+} \times \boldsymbol{R}_{0}^{+}$, where \boldsymbol{R}_{0} is the real line except 0 . Putting $G_{A B}=$ $\frac{\partial^{2} \tilde{\Psi}}{\partial p^{A} \partial p^{B}}$, we have

$$
\Delta=G_{11} G_{22}-\left(G_{12}\right)^{2}
$$

on $\boldsymbol{R}_{0} \times \boldsymbol{R}_{0}$. Moreover, putting $\Phi\left(p^{1}, p^{2}\right)=\sqrt{2}\left(p^{1}, p^{2}\right)$, we get

$$
\Delta=-\frac{\Phi^{3}}{p^{1} p^{2}} \frac{\partial^{2} \Phi}{\partial p^{1} \partial p^{2}}
$$

on $\boldsymbol{R}_{0} \times \boldsymbol{R}_{0}$. Therefore, $\Delta=0$ identically if and only if Φ is linear homogeneous with respect to p^{1} and p^{2} on $\boldsymbol{R}_{0} \times \boldsymbol{R}_{0}$. For example, $\Psi=\left(\left(q^{1}\right)^{r}+\left(q^{2}\right)^{r}\right)^{\frac{1}{r}}$ satisfies all conditions $(\alpha) \sim(\varepsilon)$ provided $r \neq \frac{1}{2}$, but it does not satisfy (ε) if $r=\frac{1}{2}$.

Definition 2. A Finsler space (M, F) is called the Minkowskian product of Finsler spaces $\left(M_{1}, \stackrel{1}{F}\right)$ and $\left(M_{2}, \stackrel{2}{F}\right)$ with respect to a product function Ψ if $M=$ $M_{1} \times M_{2}$ and $F=\Psi(F, \stackrel{2}{F})$. Especially, in case of $\Psi=q^{1}+q^{2}$ it is called the Euclidean product of these Finsler spaces.

Let $\left(x^{a}\right)$ (resp. $\left(x^{\alpha}\right)$) be local coordinates of $M_{1}\left(\right.$ resp. $\left.M_{2}\right)$ and (x^{a}, y^{a}) (resp.
$\left(x^{\alpha}, y^{\alpha}\right)$) the canonical local coordinates of $T M_{1}\left(\right.$ resp. $\left.T M_{2}\right)$. We shall refer to the local coordinates $\left(x^{i}\right)=\left(x^{a}, x^{\alpha}\right)$ adapted to the product manifold $M_{1} \times M_{2}=M$ and the canonical local coordinates $\left(x^{i}, y^{i}\right)=\left(x^{a}, x^{x}, y^{a}, y^{\alpha}\right)$ adapted to $T\left(M_{1} \times M_{2}\right)=$ $T M$. Throughout the remainder of the present paper, the ranges of indices are as follows : $a, b, c, \ldots=1,2, \ldots, r ; \alpha, \beta, \gamma, \ldots=r+1, r+2, \ldots, r+s(=n) ; i, j, k, \ldots=1$, $2, \ldots, n ; A, B=1,2$.

Assuming that $\stackrel{A}{F}$ is C^{∞} on $\left(T M_{A}\right)_{0}$ and putting $\stackrel{1}{g}_{a b}=\frac{\partial^{2} \stackrel{1}{F}}{\partial y^{a} \partial y^{b}}, \stackrel{2}{g}_{\alpha \beta}=\frac{\partial^{2} \stackrel{2}{F}}{\partial y^{\alpha} \partial y^{\beta}}$, the metric tensor $g_{i j}$ of the Minkowskian product (M, F) of Finsler spaces $\left(M_{1}, \stackrel{1}{F}\right)$ and $\left(M_{2}, F\right)$ with respect to Ψ is written

$$
\left\{\begin{array}{l}
g_{a b}=\lambda_{r}^{c} g_{c h}^{\prime}, \tag{2.1}\\
g_{a \beta}=\lambda_{a}^{2} g_{\gamma \beta}^{2}=i_{\beta}^{c} g_{c a}^{\prime}, \\
g_{x \beta}=i_{\alpha}^{*} g_{; \beta}^{2},
\end{array}\right.
$$

on $\left(T M_{1}\right)_{0} \times\left(T M_{2}\right)_{0}$, where

$$
\begin{aligned}
& \stackrel{1}{r_{a}}=\frac{\partial \stackrel{1}{F}}{\partial y^{a}}, \quad{ }_{r^{a}}^{r^{2}}=\frac{\partial \stackrel{2}{F}}{\partial y^{\alpha}}, \quad \Psi_{A B}=\frac{\partial^{2} \Psi}{\partial q^{A} \partial q^{B}} .
\end{aligned}
$$

If conditions (δ) and (ε) are satisfied, then the reciprocal $\left(\omega_{j}^{k}\right)$ of $\left(\lambda_{i}^{j}\right)$ is given by
on $\left(T M_{1}\right)_{0} \times\left(T M_{2}\right)_{0}$, where

$$
\begin{equation*}
\Psi^{11}=\frac{-\Psi_{11} \Psi_{2}}{\Delta \Psi_{1}}, \quad \Psi^{12}=\frac{-\Psi_{12}}{\Delta}, \quad \Psi^{22}=\frac{-\Psi_{22} \Psi_{1}}{\Delta \Psi_{2}} . \tag{2.4}
\end{equation*}
$$

Moreover, if $\left(\stackrel{1}{g_{a b}}\right)$ (resp. $\left.\left(\underset{\alpha}{g_{\alpha \beta}}\right)\right)$ is nondegenerate on $\left(T M_{1}\right)_{0}$ (resp. $\left.\left(T M_{2}\right)_{0}\right)$ and its reciprocal is denoted by $\left(g^{b c}\right)\left(\right.$ resp. $\left(g^{2} g^{\beta j i}\right)$, then the reciprocal $\left(g^{j k}\right)$ of $\left(g_{i j}\right)$ is written as

$$
\left\{\begin{array}{l}
g^{a c}=g^{a b} \omega_{b}^{c}, \tag{2.5}\\
g^{a \gamma}=g^{\frac{1}{a b}} \omega_{b}^{\gamma}=g^{2}{ }^{z \beta} \omega_{\beta}^{a}, \\
g^{\alpha \gamma}=g^{2 \beta} \omega_{\beta}^{\gamma}
\end{array}\right.
$$

on $\left(T M_{1}\right)_{0} \times\left(T M_{2}\right)_{0}$.

Remark 5. It is obvious [6] that if the fundamental function F of the Euclidean product (M, F) of Finsler spaces $\left(M_{1}, \stackrel{\downarrow}{F}\right)$ and $\left(M_{2}, \stackrel{2}{F}\right)$ is C^{2} on $(T M)_{0}$, then all $(M, F),\left(M_{1}, \stackrel{1}{F}\right)$ and $\left(M_{2}, \stackrel{2}{F}\right)$ are Riemann spaces. In case of Minkowskian product, it is not true in general. For example, when the fundamental function
 $\Psi=\sqrt{\left(q^{1}\right)^{2}+\left(q^{2}\right)^{2}}$, the fundamental function $F=\Psi\left(F,{ }_{F}^{2}\right)$ of Minkowskian product of $\left(M_{1}, F\right)$ and $\left(M_{2}, \stackrel{2}{F}\right)$ is C^{2} on $(T M)_{0}$, but then $\left(g_{i j}\right)$ is degenerate on $s_{0}\left(T M_{1}\right) \times$ $\left(T M_{2}\right)_{0} \cup\left(T M_{1}\right)_{0} \times s_{0}\left(T M_{2}\right)$. (See Remark 8)

Now, we shall show that the Berwald connection of the Minkowskian product space is independent of ψ.

Theorem 2. The Berwald connection of the Minkowskian product of Finsler spaces $\left(M_{1}, \stackrel{1}{F}\right)$ and $\left(M_{2}, \stackrel{2}{F}\right)$ with respect to any product function Ψ coincides with the Berwald connection of the Euclidean product of these Finsler spaces on $\left(T M_{1}\right)_{0} \times$ $\left(T M_{2}\right)_{0}$ provided that $\stackrel{1}{g}_{a b}\left(\right.$ resp. $\left.\stackrel{2}{g}_{\alpha \beta}\right)$ exists and is nondegenerate on $\left(T M_{1}\right)_{0}$ (resp. $\left.\left(T M_{2}\right)_{0}\right)$.

Proof. In terms of canonical local coordinates, let ${ }_{G}^{\dot{G}}{ }_{b c}^{a}$ (resp. ${\left.\underset{G}{\beta}{ }_{\gamma}^{\alpha}\right) \text { be coeffi- }}_{2}$ cients of the Berwald connection of $\left(M_{1}, \stackrel{1}{F}\right)\left(\right.$ resp. $\left.\left(M_{2}, \stackrel{2}{F}\right)\right)$. Next, in terms of the adapted canonical local coordinates, let $G_{j k}^{i}$ be coefficients of the Berwald connection $B \Gamma^{e}$ of the Euclidean product of $\left(M_{1}, \stackrel{\prime}{F}\right)$ and $\left(M_{2}, \stackrel{2}{F}\right)$. Then it is obvious that on $\left(T M_{1}\right)_{0} \times\left(T M_{2}\right)_{0}$

$$
\left\{\begin{array}{l}
G_{b c}^{a}=G_{b c}^{a}, \quad G_{\beta j}^{\alpha}=G_{\beta ;}^{\alpha}, \tag{2.6}\\
G_{\beta, j}^{a}=G_{b c}^{\alpha}=G_{\beta c}^{a}=G_{\beta c}^{\alpha}=0 .
\end{array}\right.
$$

Now, $B \Gamma^{e}$ is an h-connection on M which satisfies three axioms (b), (c) and (d) in in Theorem 1. As for (a), the h-covariant derivatives with respect to $B \Gamma^{\circ}$ of the fundamental function $F=\Psi(\stackrel{1}{F}, \stackrel{2}{F})$ of the Minkowskian product space are written as

Therefore $F_{: i}=0$ are satisfied, because the h-covariant derivatives of the fundamental function $\stackrel{1}{F}$ (resp. $\stackrel{2}{F}$) with respect to the Berwald connection $\left(\dot{G}_{b c}^{a}\right)$ (resp. $\left(\stackrel{G}{G}_{\beta \gamma}^{\alpha}\right)$) of $\left(M_{1}, \stackrel{1}{F}\right)\left(\right.$ resp. $\left.\left(M_{2}, \stackrel{2}{F}\right)\right)$ vanish and $G_{k \alpha}^{b}=G_{k a}^{\beta}=0$. Hence, from uniqueness of the Berwald connection in Theorem 1 this connection $B \Gamma^{e}=\left(G_{j k}^{i}\right)$ is nothing but the Berwald connection of Finsler space $(M, F), M=M_{1} \times M_{2}, F=\Psi(\stackrel{1}{F}, \stackrel{2}{F})$.

A Finsler space is called a Berwald space iff its Berwald connection is linear,
or the coefficients of the Berwald connection do not depend on y^{i}. Concerning Berwald spaces, the following are immediately deduced from Theorem 2.

Corollary 1. [7] If both Finsler spaces $\left(M_{1}, \stackrel{1}{F}\right)$ and $\left(M_{2}, \stackrel{2}{F}\right)$ are Berwald spaces, then the Minkowskian product of these spaces with respect to any Ψ is a Berwald space.

In particular we have
Corollary 2. If both $\left(M_{1}, \stackrel{\perp}{F}\right)$ and $\left(M_{2}, \stackrel{2}{F}\right)$ are Riemann spaces, then the Minkowskian product of these spaces with respect to any Ψ is a Berwald space and its Berwald connection is Levi-Civita's connection on the product Riemann manifold $M_{1} \times M_{2}$.

§ 3. Geodesics of Minkowskian product space

A geodesic $x^{i}(t)$ with an affine parameter t of a Finsler space (M, F), or an extremal of the energy integral $\int F\left(x^{i}(t), \frac{d x^{i}}{d t}\right) d t$, satisfies Euler-Lagrange differential equations $e_{i}=0$, where

$$
e_{i}=\frac{d}{d t}\left(\frac{\partial F}{\partial y^{i}}\right)-\frac{\partial F}{\partial x_{i}}, \quad y^{i}=\frac{d x^{i}}{d t}
$$

That t is an affine parameter is implied from
Lemma 1. $\frac{d F}{d t}=e_{i},{ }^{\prime}$.

$$
\text { Proof. } \quad e_{i} y^{i}=\frac{d}{d t}\left(\frac{\partial F}{\partial y^{i}} y^{i}\right)-\left(\frac{\partial F}{\partial y^{i}} \frac{d y^{i}}{d t}+\frac{\partial F}{\partial x^{i}} y^{i}\right)=\frac{d F}{d t} .
$$

Now, let (M, F) be the Minkowskian product of Finsler spaces $\left(M_{1}, F\right)$ and $\left(M_{2}, F\right)$ with respect to Ψ. Preparing for the following theorem, stronger conditions for Ψ than $(\gamma),(\delta)$ and (ε) must be intrdoduced as follows;

$$
\begin{aligned}
& (s \gamma) \quad \Psi \text { is } C^{\infty} \quad \text { on } \quad\left(\boldsymbol{R}^{+} \times \boldsymbol{R}^{+}\right)_{0} \equiv \boldsymbol{R}^{+} \times \boldsymbol{R}^{+}-(0,0), \\
& (s \delta) \quad \Psi_{A} \neq 0 \quad \text { on }\left(\boldsymbol{R}^{+} \times \boldsymbol{R}^{+}\right)_{0}, \quad A=1,2, \\
& (s \varepsilon) \quad \Delta \equiv \Psi_{1} \Psi_{2}-2 \Psi \Psi_{12} \neq 0 \quad \text { on } \quad\left(\boldsymbol{R}^{+} \times \boldsymbol{R}^{+}\right)_{0} .
\end{aligned}
$$

Putting

$$
\stackrel{1}{e}_{a}=\frac{d}{d t}\left(\frac{\partial \dot{F}}{\partial y^{a}}\right)-\frac{\partial \dot{F}}{\partial x^{a}}, \quad \stackrel{2}{e}_{x}=\frac{d}{d t}\left(\frac{\partial F^{2}}{d y^{x}}\right)-\frac{\partial F^{2}}{\partial x^{\bar{z}}},
$$

we have
Lemma 2. (1) Under the condition ($s \gamma$), if $e_{a}^{1}=0$ and ${\underset{e}{e}}_{2}^{2}=0$, then $e_{i}=0$. Under the conditions (s γ), ($s \delta$) and $(s \varepsilon)$, if $e_{i}=0$, then $\stackrel{1}{e}_{a}=0$ and ${\underset{e}{e}}_{2}^{2}=0$.

Proof. From $F=\Psi(\stackrel{1}{F}, \stackrel{2}{F})$, we see

$$
\left\{\begin{array}{l}
e_{a}=\Psi_{1} e_{a}^{\prime}+\left(\Psi_{11} \frac{d \dot{F}^{\prime}}{d t}+\Psi_{12} \frac{d{ }^{2}}{d t}\right) y^{\prime} \tag{3.1}\\
\left.e_{x}=\Psi_{2}{ }_{2}^{2} e_{x}+\left(\Psi_{21} \frac{d \dot{F}^{\prime}}{d t}+\Psi_{22} \frac{d^{2}}{d t}\right)\right)^{2}
\end{array}\right.
$$

By Lemma $1 d d^{\prime} / d t=\stackrel{1}{e_{a}}!^{\prime \prime}$ and $d{ }^{2} / d t=\stackrel{2}{e_{x}} y^{\prime x}$; therefore we have

$$
\left\{\begin{array}{l}
e_{a}=\lambda_{a}^{b} e_{b}^{1}+i_{a}^{B} e_{\beta}^{2}, \tag{3.2}\\
e_{x}=i_{\alpha}^{b} e_{b}+i_{\alpha}^{B} e_{\beta}^{2}
\end{array}\right.
$$

on $(T M)_{0}$ provided $(s \gamma)$ is satisfied (See (2.2)). Moreover, the last equations lead us to

$$
\left\{\begin{array}{l}
e_{b}^{\prime}=\omega_{b}^{c} e_{c}+\omega_{b}^{\ddot{0}} e_{\ddot{\prime}}, \tag{3.3}\\
{ }_{2}^{2}=\omega_{\beta}^{c} e_{c}+\omega_{\beta}^{\gamma} e_{\gamma}
\end{array}\right.
$$

on ($T M)_{0}$ provided ($s \gamma$), ($s \delta$) and ($s \varepsilon$) are satisfied (See (2.3)). (3.2) and (3.3) complete the proofs of (1) and (2) respectively.

Remark 6. $\psi=\left(\left(q^{1}\right)^{r}+\left(q^{2}\right)^{r}\right)^{\frac{1}{r}}, r=2,3, \ldots$, satisfies $(s \gamma)$, but not $(s \delta)$ and $(s \varepsilon)$. Following ' Ψ 's are examples satisfying all $(s \gamma),(s \delta)$ and $(s \varepsilon)$.
(1) $\psi=q^{1}+q^{2}$ (Euclidean)
(2) $\Psi=\frac{1}{2}\left\{q^{1}+q^{2}+\left(\left(q^{1}\right)^{r}+\left(q^{2}\right)^{r}\right)^{\frac{1}{r}}\right\}, r=2,3, \ldots,[7]$
(3) $\Psi=\left(\left(q^{1}\right)^{2}+3 q^{1} q^{2}+\left(q^{2}\right)^{2}\right)^{\frac{1}{2}}$
(4) $\quad \Psi=\left(2 q^{1}+3 q^{2}\right)^{2} /\left(q^{1}+q^{2}\right)$
(5) $\quad \Psi=\left(\left(q^{1}\right)^{2}+3 q^{1} q^{2}+\left(q^{2}\right)^{2}\right) /\left(q^{1}+q^{2}\right)$

Concerning geodesics of the Minkowskian product of two Finsler spaces, we obtain from Lemma 2 the following theorem, which is a generalization of the result [8] showed in case of the Minkowskian product of two Riemann spaces.

Theorem 3. Let a Finsler space (M, F) be the Minkowskian product of Finsler spaces $\left(M_{1}, \stackrel{1}{F}\right)$ and $\left(M_{2}, \stackrel{2}{F}\right)$ with respect to a product function Ψ.
(a) Under the condition ($s \gamma$), any geodesic of $\left(M_{1}, \stackrel{1}{F}\right)\left(r e s p .\left(M_{2}, \stackrel{2}{F}\right)\right)$ is a geodesic of (M, F). That is to say, the Finsler space $\left(M_{1}, \stackrel{1}{F}\right)\left(\operatorname{resp} .\left(M_{2}, \stackrel{2}{F}\right)\right)$ is a totally geodesic subspace of the Finsler space (M, F).
(b) Under the conditions ($s \gamma$), ($s \delta$) and ($(\varepsilon \varepsilon)$, the projection of any geodesic of (M, F) into $M_{1}\left(\right.$ resp. $\left.M_{2}\right)$ is a geodesic of $\left(M_{1}, \stackrel{1}{F}\right)\left(\right.$ resp. $\left(M_{2}, \stackrel{2}{F}\right)$).

Proof (a) As $\stackrel{2}{F}$ is C^{1} on $T M_{2}$ and positively homogeneous of degree 2 with respect to y^{α}, we see $\frac{\partial F^{2}}{\partial y^{\alpha}}=0$ on $s_{0}\left(T M_{2}\right)$. Therefore, we have $e_{\alpha}^{2}=0$ if $y^{\alpha}(t)=0$ identically.

A geodesic $\left(x^{a}(t), x^{x}\right)\left(x^{x}\right.$ being constant) with an affine parameter t of the subspace $\left(M_{1}, \stackrel{1}{F}\right)$ satisfies $\stackrel{1}{e_{a}}=0$, and $\frac{d x^{x}}{d t}=0$ imply $\stackrel{2}{e}_{\alpha}^{2}=0$ by the above notice. Hence, by Lemma $2(1)$ we obtain $e_{i}=0$. Thus the curve $\left(x^{a}(t), x^{x}\right)$ is a geodesic with an affine parameter t of (M, F). As to geodesic of $\left(M_{2}, \stackrel{2}{F}\right)$, it is proved similarly.
(b) We consider a geodesic $\left(x^{a}(t), x^{x}(t)\right)$ with an affine parameter of (M, F). By Lemma 2 (2) $e_{i}=0$ imply $\mathfrak{c}_{a}^{\prime}=0$. Hence, the curve $\left(x^{a}(t), x^{\alpha}\right)\left(x^{\alpha}\right.$ being constant) projected into M_{1} is a geodesic with an affine parameter t of $\left(M_{1}, \stackrel{1}{F}\right)$. The proof as to the curve projected into M_{2} is done similarly.

Remark 7. If \hat{F} is C^{2} on $\left(T M_{A}\right)_{0}, A=1,2$, then we have

$$
\left\{\begin{array}{lll}
e_{a}^{\prime}=\stackrel{1}{g}_{a b} \frac{d y^{b}}{d t}+2 G_{a}^{\prime} & \text { on } \quad\left(T M_{1}\right)_{0} \tag{3.4}\\
\stackrel{2}{e}_{\alpha}=\stackrel{2}{g_{\alpha \beta}} \frac{d y^{\beta}}{d t}+2 G_{\alpha}^{2} & \text { on } \quad\left(T M_{2}\right)_{0}
\end{array}\right.
$$

where

$$
2 \stackrel{1}{G}_{a}=\frac{\partial^{2} \stackrel{1}{F}}{\partial x^{b} \partial y^{a}} y^{b}-\frac{\partial \stackrel{1}{F}}{\partial x^{a}}, \quad 2 \stackrel{2}{G}_{\alpha}^{2}=\frac{\partial^{2} \stackrel{2}{F}}{\partial x^{\beta} \partial y^{, x}} y^{\beta}-\frac{\partial F^{2}}{\partial x^{\alpha}} .
$$

The equations (3.4) together with (3.2) and (2.1) lead us to

$$
\left\{\begin{array}{l}
G_{a}=\lambda_{a}^{b} \dot{G}_{b}+\lambda_{a}^{\beta} \stackrel{2}{G}_{\beta}, \tag{3.5}\\
G_{x}=\lambda_{\alpha}^{b} G_{b}+\lambda_{\alpha}^{\beta} \mathbf{G}_{\beta},
\end{array}\right.
$$

where

$$
2 G_{i}=\frac{\partial^{2} F}{\partial x^{j} \partial y^{i}} y^{j}-\frac{\partial F}{\partial x^{i}} .
$$

Moreover, if $\left(\stackrel{1}{g}_{a b}\right)$ (resp. $\left.\left(\stackrel{2}{g}_{\alpha \beta}\right)\right)$ is nondegenerate on $\left(T M_{1}\right)_{0}$ (resp. $\left.\left(T M_{2}\right)_{0}\right)$, then from (3.5) and (2.5) we obtain

$$
\begin{equation*}
G^{a}=\dot{G}^{a}, \quad G^{\alpha}=\stackrel{2}{G^{\alpha}} \tag{3.6}
\end{equation*}
$$

on $\left(T M_{1}\right)_{0} \times\left(T M_{2}\right)_{0}$, where

$$
G^{i}=g^{i j} G_{j}, \quad \dot{G}^{a}=\stackrel{1}{g^{a} b} \dot{1}_{b}, \quad \stackrel{2}{G}^{\alpha}=\stackrel{2}{g^{\alpha \beta}} \stackrel{2}{G}_{\beta} .
$$

This is another proof of Theorem 2.
Remark 8. If ψ satisfies $(s \gamma),(s \delta)$ and $F=\Psi(\stackrel{1}{F}, \stackrel{2}{F})$ is C^{2} on $(T M)_{0}$, then both
$\left(M_{1}, \stackrel{1}{F}\right)$ and $\left(M_{2}, \stackrel{2}{F}\right)$ are Riemann spaces. Hence, by Corollary 2 of Theorem 2 the Minkowskian product (M, F) of these spaces is Berwald space with Levi-Civita's connection.

$$
\text { Because }{\stackrel{1}{y^{\prime}}}_{a} \equiv \frac{\partial \stackrel{1}{F}}{\partial y^{a}}=\frac{1}{\Psi_{1}} \frac{\partial F}{\partial y^{a}}\left(\text { resp. } \stackrel{2}{1}_{x} \equiv \frac{\partial \stackrel{2}{F}}{\partial y^{x}}=\frac{1}{\Psi_{2}} \frac{\partial F}{\partial y^{x}}\right)
$$

are C^{1} on $(T M)_{0}$ under the above conditions. Therefore, $\stackrel{1}{y}_{a}$ (resp. $\stackrel{2}{y}_{\alpha}$) are C^{1} on $T M_{1}\left(\operatorname{resp} . T M_{2}\right)$. Thus $\stackrel{1}{F}(\operatorname{resp} . \stackrel{2}{F})$ is C^{2} on $T M_{1}\left(\operatorname{resp} . T M_{2}\right)$.

References

[1] M. Matsumoto, Foundation of Finsler geometry and special Finsler spaces, to appear.
[2] J. Grifone, Structure presque-tangente et connexions, Ann. Inst. Fourier, 22 (1972), 287338.
[3] T. Okada, Theory of pair-connections, (Japanese. English summary), Sci. Eng. Rev. Doshisha Univ., 5 (1964), 133-152.
[4] T. Okada, The holonomy group of Finsler connection I. The holonomy group of the V-connection, Tensor, N. S., 27 (1973), 229-239.
[5] T. Okada and S. Numata, On generalized C-reducible Finsler spaces, Tensor, N. S., 35 (1981), 313-318.
[6] J. D. Diaz et G. Grangier, Courbure et holonomie des vairétés finslériennes, Tensor, N. S., 30 (1976), 95-109.
[7] Z. I. Szabó, Positive definite Berwald spaces, Tensor, N. S., 35 (1981), 25-39.
[8] H. Hu, A Finslerian product of two Riemannian spaces, Science Record, N. S., 3 (1959), 446-448.

Faculty of Engineering, Doshisha University

