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In the present paper, we shall first show Theorem 1: The Berwald connection
of a Finsler space is the h-connection [1], [3] which is uniquely determined from
the fundamental function by four axioms. A hint as to this theorem has been got
from J. Grifone [2]. Next, using Theorem | we shall prove Theorem 2: The
Berwald connection of any Minkowskian product of Finsler spaces coincides with
that of the Euclidean product of these Finsler spaces. Finally, we shall obtain
Theorem 3 on geodesics of the Minkowskian product of Finsler spaces.

The terminology and notations in the present paper are referred to M. Matsu-
moto’s monograph [1].

The author wishes to express his sincere gratitude to Professor Dr. M.
Matsumoto for the invaluable suggestions and encouragement and also to his col-
leagues for many useful discussions.

§1. Berwald connection

Let M be a C* manifold and TM the tangent bundle of M. And let (x),
i=1, 2,..., n, be local coordinates of M and (x¢, y¥) the canonical local coordinates
of TM. We denote by so(TM) the zero section of TM and (TM)y=TM —so(TM).
A positively homogeneous -domain is defined as a subdomain D of TM such that if
yeD then tye D for any te Rt —(0), where R* is the non-negative real line.

Definition 1. A Finsler space (M, F) is a pair of a C* manifold M and a C!
function F: TM —R* such that

(A) F(y)=0 if and only if y € so(TM),

(B) F(ty)=t*F(y) for te R*

(C) F is C* on a positively homogeneous domain D,
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2
(D) giisa“%;—j is nondegenerate on a positively homogeneous domain

Dz(C-Dx)‘-
We call F the fundamental function of Finsler space (M, F).

Remark 1. It is obvious that if D, =TM then (M, F) is a Riemann space. In
§1 we may take D, =D,=(TM),, but in §2 and §3 those domains should be re-
stricted as occasion calls. (See Remark 5 and 8)

Coefficients G} ; of the Berwald connection of a Finsler space (M, F) are given
on D, by

= gin 0*F . OF

Gi=79 <3x 61”“ 6\“)
oG’ i _ 0Gi;

G ops”’ Gij= ay"’ :

Theorem 1. The Berwald connection of a Finsler space (M, F) is the h-
connection which is uniquely determined on D, by the following four axioms:

(a) The h-covariant derivatives of the fundamental function F ;=0.

(b) The deflection tensor Di=yi;=0.

(c) The (v)hv-torsion tensor P,k =

(d) The (h)h-torsion tensor T,,.—O

Proof. In terms of canonical local coordinates, we denote coefficients of the
above h-connection by (Fi,, Fi). Then these axioms are written as

_OF _0F ,_
@ F oxt é’vF =0,
(b) Di=—Fi+y!Fi,=0,

(c) j'k=a—‘— Fi;=0,
(d) TJA_ ij_o

It is well-known that the Berwald connection (Gi,, G%) satisfies these axioms.
Now, from (c) and (d) we have
OF, _OF;

(1.1) Fiu=Fi="3 k="

The partial differentiation of (b) by y* and (1.1) lead us to

aFlrl,l_O

,
(1.2) oyk

2
Differentiating (a) by y/ and putting g "’=5;z67t'3€y—” we get

(1.3) %gxf’v —9;Fi—g,yF}=0.
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Morecver, the differentiation of (1.3) by y* leads us to

a i aFl‘i
(1.4) ai',-k'_zgjleg_ngchi—gkzFIji_gts.Vs ay’J‘ =0,
where we put gj,‘,=% aa'a)-)";‘». Contracting (1.4) by yi and using (1.1), (1.2) and (b),
we obtain -
09 jk i_n Flyi—g, Fl—g, F.=0
(1.5) 2y =29 Fiy' —giFk— gt ;=0

oxt
Applying the Christoffel process [1] to (1.3) and (1.5), by (d) we see

{i, k,j}y"—g,-k,Fﬁy"—gk:Fﬂ:O’

where {i, k, j} =% aag)é," + %i"l' - %qt‘,{ > Therefore

(1.6) Fk={}}yi—gk Fiyi,

where {%}=g*'{i, l,j} and g}=g"g;,. In the following, the suffix O means
contraction by y. Contracting (1.6) by y/, we get

(1.7) F5={oko}=20k-
Substituting (1.7) into (1.6), we have

(1.8) Fh= {4} - alytdo} =3 240}

NI.._
KSY
<

-~

Hence, from (c) we obtain

2 {do} _ G},.

k —
(1.9) Fiy=5 518

J

o) —

These three equations (1.7), (1.8) and (1.9) complete the proof.
Remark 2. Differentiating (1.5) by y! and using (1.4), we see

aF""
(1.10) 29ijk;0t 910 avlk =0.
Therefore, from (1.4) we obtain
(1.11) 9ik:i=—29ijks0-

This is a well-known equation, showing that the Berwald connection is not h-metrical
in general although (a) is satisfied.

Remark 3. [M. Matsumoto] The equations (1.7) are also got directly as
follows. Differentiating (a) by y/, we see :

, 0)F  0*F ., OF OF% _
(1.3) Oxidy’ ay"aiji oyk dyJ =0.
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Contracting (1.3)’ by y* and using (b), (c) and (d), we have

0*F 02F oF
1. A A A -/ SU. A - .
( 12) (7x°(3yf a.vkayf FU a.‘,k FJ 0.

The last equations and (a) imply

. J0*F oF
19 9sFb= 000 ~ a7

Thus we obtain

) ) &*F oF
7 k—gki( 0 _ 97 V\=>qGk
0.7 Pi=0(styr ~ ) =20"

§2. Minkowskian product of Finsler spaces

Let ¥ be a C° function: R*xR*—R* such that

() WY(q', ¢®)=0if and only if (¢, ¢*)=(0, 0),

(B) Y(q', tg*)=1t¥(q", q*) for te R*,

(y) Wis C* on R x R}, where R is the positive real line,

(8) WAE%}.;eo on RExRE. A=1.2,

2
() A=W, ¥,—2¥¥,,#0 on R x R}, where ¥,, =0t .
0q'0q
Remark 4. ¥(p!, p?)= l1’(%(p')2, %(pz)z) is C* on RyxR, if and only if
¥(q!, q?) is C* on R} xR}, where R, is the real line except 0. Putting G, z=
2
.6—1%3’—173«, we have

4=G,G,,—(Gy)?
on R, x R,. Moreover, putting &(p', p)=+20(p', p?), we get

__ P 0
p'p? Op'op?
on Ry xR,. Therefore, 4=0 identically if and only if @ is linear homogeneous with
respect to p! and p?> on RyxR,. For example, ‘P=((q’)’+(q2)’)]7 satisfies all
conditions («) ~(c) provided r# L, but it does not satisfy (&) if r=—;~.

Definition 2. A lFins]er space2 (M, F) is called the Minkowskian product of
Finsler spaces (M,, F) and (M, F) with respect to a product function ¥ if M=
M;xM, and F=‘I’(II’, Ig). Especially, in case of ¥=q'+4¢? it is called the Eu-
clidean product of these Finsler spaces.

Let (x2) (resp.(x%)) be local coordinates of M, (resp. M,) and (x?, y*) (resp.
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(x*, y*)) the canonical local coordinates of TM, (resp. TM,). We shall refer to the
local coordinates (xi)=(x“, x*) adapted to the product manifold M, x M,=M and
the canonical local coordinates (xi, y¥)=(x4, x*, y4, y*) adapted to T(M, x M,)=
TM. Throughout the remainder of the present paper, the ranges of indices are
as follows: a, b, c,...=1,2,....rs0, B, yoe. =r+ 1, r+2,..,r+s(=n); i, j, k... =1,
2,....n; A, B=1, 2.

. A Lo 62F1’ 2 02;
Assuming that F is C* on (TM,), and putting Gar=" 5 agyb" g“":}'y’ﬁa}”’

1
the metric tensor g;; of the Minkowskian product (M, F) of Finsler spaces (M,, F)
2
and (M., F) with respect to ¥ is written

1
Gab= ;':;gchs

L2 o
(2.]) gnﬂ=/'¢’1g','ﬂ=/'flgra'
L2
gzﬂz/';g;-ﬂ~
on (TM,)q x(TM,),, where
1 1
)w‘; =¥ 55+ ¥, TUPRIN Lh= Yiavay?,

2 2
re=Wr, e A=V0.+Yap,rt,

1 2
V_OF 2 _O0F o, _ Y
YaZgpar PaT gpee Var= guaggn-

If conditions () and (&) are satisfied, then the reciprocal (w¥) of (4{) is given by

1 1
wi= 05+ Yy wp=W12r,p7,
(2.3) :
w;,=‘l“2v »e w}=—lz~(),,+‘l’22v,,|
on (TM,)q x(TM ), where
-Yy.\v -y 2 4
2.4 i " Tul2 g2 "1 22 — Ta20,
(2.4) av, ¥ Y R AV,

. l 2 .
Moreover, if (g,,) (resp. (fq“”)) is nor}degenerate on (TM ), (resp.(TM,),) and its

reciprocal is denoted by (g®<) (resp. (g#7)). then the reciprocal (g7*) of (g;;) is written
as

2
@) 01 =gl =g oj,

on (TM )y X (TM ,),.
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Remark 5. It is obvious [6] that if the fundamental function F of the Eu-
. . 2
clidean product (M, F) of Finsler spaces (M, F) and (M;, F)is C? on (TM),, then

1 2
all (M, F), (M, F) and (M,, F) are Riemann spaces. In case of Minkowskian

product, it is not true in general.  For example, when the fundamental function
F= '-é—V"@,,J}“')Vy“)"'""\";,\"" (resp. F =wl-\ Uapes(X*)1*yP 739 ) and the product function
¥ =_(q")?+(g??, the fundamental function F= ‘P(’l-l, 1'2) of Minkowskian product
of (M, l~l) and (M,, I-Z) is C2 on (TM),, but then (g;;) is degenerate on so(TM ) x

(TM,)o U(TM ) X so( TM,). (See Remark 8)

Now, we shall show that the Berwald conncction of thc Minkowskian product
spacc is independent of V.

Theorem 2. The Berwald connection of the Minkowskian product of Finsler
spaces (M, I'l) and (M, l%) with respect to any product function ¥ coincides with
the Berwald connection of the Euclidean product of these Finsler spaces on (TM ), X
(TM,)y provided that g}a,, (resp. é,l,) exists and is nondegenerate on (TM ), (resp.
(TM,),).

Proof. In terms of canonical local coordmates, let G . (resp. (%j,‘y) be coeffi-
cients of the Berwald connection of (M, F) (resp. (M ,, F)) Next, in terms of the
adapted canonical local coordinates, let G . be coei’ﬁcnents of the Berwald connection
BI'¢ of the Euclidean product of (M, F) and (M,, F) Then it is obvious that on
(TM )o X (TM ),

1

2
[ =Gi.. Gj,=Gj,.
G4, =Gt =G§.=Gj.=0.

(2.6)

Now, B¢ is an h-connection on M which satisfies three axioms (b), (¢) and (d) in
in Theorem 1. As for (a), the h-covariant derivatives with respect to BI'¢ of the

12 .
fundamental function F=W(F, F) of the Minkowskian product space are written as

1 1
QW[ OF oF,., .\ v oF
Fw‘@?ﬁ(é.\a ayrCca ) dq? 377 F%a
27 oy oF ¥ OF
— OF A =By _('___M bk
Fia ~oq? <6\ e ! > 0q' Ql*"G“']

Therefore F =0 au. satisfied, because the h-covariant derivatives of the fundamcntal
functxon F (resp. F) w1th respect to the Berwald connection (G ) (resp. (G,,,)) of

(M, F) (resp. (M ,, F)) vanish and G!,=G%,=0. Hence, from uniqueness of the
Berwald connection in Theorem | this connection BI'*=(G¥%;) is nothmg but the

Berwald connection of Finsler space (M, F), M=M xM,, F= ‘I’(F F)

A Finsler space is called a Berwald space iff its Berwald connection is linear,
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or the coefficients of the Berwald connection do not depend on yi. Concerning
Berwald spaces, the following are immediately deduced from Theorem 2.

1 2
Corollary 1. [7] If both Finsler spaces (M, F) and (M,, F) are Berwald
spaces, then the Minkowskian product of these spaces with respect to any ¥ is a
Beirwald space.

In particular we have

Corollary 2. If both (M, l-l") and (M,, l%') are Riemann spaces, then the
Minkowskian product of these spaces with respect to any ¥ is a Berwald space and
its Berwald connection is Levi-Civita’s connection on the product Riemann mani-
fold M| x M,.

§3. Geodesics of Minkowskian product space

A geodesic xi(t) with an affine parameter t of a Finsler space (M., F), or an
extremal of the cnergy integral §F<x"(t), %‘>dt, satisfies Euler-Lagrange differ-
ential equations ¢;=0, where o

e.=_£’~_<_3_€ _OF Y
Fode\oyi)  axy dt -’

That t is an affine parameter is implied from

dfF _

Lemma 1. -(F—e,-_l .
o, ,i—igf AN 6Fd._vj 0F \_dF
PlOOj. e;y —-dt <6y"'v ) <5._v‘~ —(% +~a—-{‘—'] >_—dE .

Now, let (M, F) be the Minkowskian product of Finsler spaces (M, I}) and

2
(M5, F) with respect to ¥. Preparing for the following theorem, stronger con-
ditions for ¥ than (), (8) and (¢) must be intrdoduced as follows;

(sy) YisC* on (R*xR%),=R*xR*—(0,0),
(s3) ¥,#0 on (R*xRY), A=I,2,
(s¢) 4=V, ¥,-2¥¥,,#0 on (R*xRY),.

Putting
' d(OF\_OF * _d[3F\ oF
"a=7(aya>‘a? "'«=71f(¢w)‘5;?'
we have

2
Lemma 2. (1) Under the condition (sy), if c:,,=0 and ¢,=0, then ¢;=0. (2)
1 2
Under the conditions (sy), (s6) and (se), if e,=0, then ¢,=0 and e,=0.
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12
Proof. From F='(F, F), we see

2
1
+ ll/ ,di).pm

e,= Ie +<'l’ g

”dt
3.

. :~ 2
e —(Pze +<W2|(;F v’zz'(’(lg)."z

By Lemma | (IF/dI—e y“and a'F/dt— v*; thereforc we have

.

e, =/rbe,+ilbey,
- ! 11) 2
e,=/be,+ /e,

on (TM), provided (sy) is satisfied (See (2.2)). Moreover, the last equations lead us
o . ,

(3.3) 2

1
[e,,=co,‘,e ctwjie.,,
eg=wpe, +wﬂe

on (TM), provided (sy), (s0) and (s¢) are satisfied (See (2.3)). (3.2) and (3.3) complete
the proofs of (1) and (2) respectively.

1
Remark 6. ¥ =((q")+(q?)"), r=2, 3,..., satisfies (sy), but not (sd) and (se).
Following ¥'s are examples satisfying all (sy), (sd) and (se).

(1) ¥Y=¢q'+¢? (Euclidean)
2) ¥v= .I,-'{q'+q2+((.q‘)’+(qz)’ 'l’}-, r=23,.,[7]

(3) t,/=((ql)2+3ql‘12+(112)2)17
(4) ¥=Q2q'+39?*/(q' +q%)
(5) ‘l’=((q‘)2+3q’<12+(q2)2)/(¢]'+¢12)

Concerning geodesics of the Minkowskian product of two Finsler spaces, we
obtain from Lemma 2 the following theorem, which is a generalization of the result
[8] showed in case of the Minkowskian product of two Riemann spaces.

Theorem 3 Let a Fmsle; space (M, F) be the Minkowskian product omeslel
spaces (M, F) and (M ,, F) with respect to a product funcnon v,
(a) Under the condition (sy), any geodesic of (M, F) (;esp (M, F)) ts a geo-

desic of (M, F). That is to say, the Finsler space (M, F) (resp. (M, F)) is a
totally geodesic subspace of the Finsler space (M, F).
(b) Under the conditions (sy), (sd) and (se) the pro;ectlon of any geodesu of

(M, F) into M, (resp. M,) is a geodesic of (M, F) (resp.(M,, F)).
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Proof (a) As F is C' on TM, and positively homogeneous of degree 2 with

respect to y*, we see %I:;:O on so(TM,). Therefore, we have e =0 if y4(1)=0
identically.

A geodesic (x (1), x*) (\" being constant) with an affine parameter 1 of the
subspace (M, F) satisfies e =0, and ‘T‘O imply e =0 by the above notice.

Hence, by Lemma 2 (1) we obtain e;=0. Thus the curve (x“(1), x’) is a geodesic

with an affine parameter t of (M, F). As to geodesic of (M, F), it is proved
similarly.
(b) We consider a geodesnc (x(1), x*(1)) with an affine parameter of (M, F).

By Lemma 2 (2) ¢;=0 imply (“=0. Hence, the curve (x4(t), x*) (x* being constant)

projected into M, is a geodesic with an affine parameter t of (M,, F). The proof
as to the curve projected into M, is done similarly.

Remark 7. Ifﬁ is CZ on (TM ,)g, A=, 2, then we have

1 T 1 ‘
en=gub‘;l?_+2Ga on (TMI)O,
(3.4) s g
€y =q1ﬁ_t-i"t"+2Gz on (TMZ)O’
where
1 1 2
ZGl“ = .__‘a_'f_li:__.,.‘)h __QE . 2 2 = azE__.—. ﬂ —_— aF .
Oxboye Ox¢ OxPoyp* O0x*

The equations (3.4) together with (3.2) and (2.1) lead us to

1 2

G“ = )~ZG', + AgGﬂ,
(3.5) T2
G,=78G,+ 4G,
where

i FOF

1]

YT aiey LA P

1 2
Moreover, if (g,,) (resp. (g,p)) is nondegenerate on (TM ), (resp. (TM,),), then from
(3.5) and (2.5) we obtain

i 2
(3.6) G=G, G*=G*
on (TM,)q x (TM,)o, Where
. R 2 2 2
Gi=¢'G;, G*=g**G,, G*=g*'G,.
This is another proof of Theorem 2.

Remark 8. If ¥ satisfies (sy), (sd) and F= ‘I’(ll', I'Z) is C? on (TM),, then both
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| 2
(M,, F) and (M,, F) are Riemann spaces. Hence, by Corollary 2 of Theorem 2
the Minkowskian product (M, F) of these spaces is Berwald space with Levi-Civita's
connection,

2 OpF

2
Because y, =+ =1 <" (reSp. "= 6£z 1 6F>

1 2
are C' on (TM), under the above conditions. Therefore, y, (resp. y,) are C! on
1 2
TM  (resp. TM,). Thus F (resp. F) is C2 on TM (resp. TM ).
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