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In the present paper, we shall first show Theorem 1: T he B erw ald  connection
of a  Finsler space is the 11-connection [1], [3] which is uniquely determined from
the fundamental function by four ax io m s. A hint as to this theorem has been got
from  J. G rifone [2]. N ext, using Theorem  I w e shall prove Theorem  2: The
Berwald connection of any Minkowskian product of Finsler spaces coincides with
that of the  Euclidean product o f these Finsler spaces. Finally, we shall obtain
Theorem 3 on geodesics of the Minkowskian product of Finsler spaces.

The terminology and notations in the present paper are referred to M. Matsu-
moto's monograph [1].

T h e  au thor w ishes to  express his sincere gratitude to  P ro fe sso r  D r. M.
Matsumoto for the invaluable suggestions and encouragement and also to his col-
leagues for many useful discussions.

§1. Berw ald connection

Let M  be a  C D  manifold and TM the tangent bundle o f  M . A n d  le t (x ') ,
1=1, n ,  be local coordinates of M  and (xi, y1)  the canonical local coordinates
o f  T M . We denote by s o(TM) the zero section of TM and (TM) o _ TM—so (TM).
A positively homogeneous domain is defined as a subdomain D of TM such that if
ye  D then ty e D for any t E R+ — (0), where R+ is the non-negative real line.

Definition 1. A Finsler space (M , F ) is a pair of a C'D manifold M and a C 1

function F: TM— Ii+  such that
(A) F(y)= O if and only if y E So (T M ),
(B) F (ty )= t 2 F(y) for t E R+
(C )  F is C  on a positively homogeneous domain D,,
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(D )  gii =o v i a v i  i s  nondegenerate o n  a  positively homogeneous domain

D 2 ( C b l )1
We call F the fundam ental function of Finsler space (M , F).

Remark 1. It is obvious that if D 1 =T M  then (M , F) is a Riemann space . In
§ 1  we may take D, = D 2 =(T M ) 0 ,  but in § 2  and § 3  those domains should be re-
stricted as occasion calls. (See Rem ark 5 and 8)

Coefficients Gi j  of the B erw ald connection of a Finsler space (M , F) are given
on D 2 by

o i k (   2 F  
= 2 qxray ka x k  ) '

aGi;
k j av ,  .

Theorem 1. T he B erw ald connection of  a  Finsler space (M , F)  i s  the  h-
connection which is uniquely determined on D 2 by the following f our axioms:

(a) The h-covariant derivatives of the fundamental function F ;1 =0.
(b) The deflection tensor
(c) The (v)hv-torsion tensor
(d) The (h)h-torsion tensor T iik =0.

P ro o f . In terms of canonical local coordinates, we denote coefficients of the
above h-connection by (Fij k , Fii ). Then these axioms are written as

a F  aF(a) F

(b) Dif = — y 'F f i=0 ,

0Fi.(e) — Fiq=0,

(d) T =  F iik — = O .

It is well-known that the Berwald connection ( G , G i ) satisfies these axioms.
Now, from (c) and (d) we have

. . aFik OF";

(1.1) =  av , .

The partial differentiation of (b) by yk and (1.1) lead us to

(1.2) ayk Y  = 0 .

Differentiating (a) by y i and putting gp —a y
a

i
2
a
F

y i , we get

(1.3) ag
a x ii' y  — gpF1— gisysFip=0.
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Moreover, the differentiation of (1.3) by yk leads us to

s  OF; i 

(1.4) eg fkg g a y k
_ 0

- g  i k i

aq ikwhere we put gjk i= 3y 1 •
we obtain

Contracting (1.4) by y i and using (1.1), (1.2) and (b),

(1.5) •
ax , y ' —2g - g g k l Fli  =O.

Applying the Christoffel process [1] to (1.3) and (1.5), by (d) we see

k , f ly i - k1Fii=0,

where { i, k, j}  = 4-( a
agx• + (-3k -ckii  Therefore

(1.6) F1)= {6}  yi -

where /,/} and  g 1, -gksg i s t . In  th e  following, th e  suffix 0  means
contraction by y. Contracting (1.6) by we get

(1.7) Ft,= l oko l = 2Gk .

Substituting (1.7) into (1.6), we have

1
(1.8) alokol Fk = { k.) - g  k . { I }0,1 oo 2  a y ; -

Hence, from (c) we obtain
82{4,01 = G „

(1.9) Fk 
2  ay iay i t i .

These three equations (1.7), (1.8) and (1.9) complete the proof.

Remark 2. Differentiating (1.5) by yi and using (1.4), we see

ar i

(1 . 1 0 ) a y k2 9iik ;o+glo j  =O .

Therefore, from (1.4) we obtain

(1.11) g  j k ; i
= — 2

g  i jk ;O •

This is a well-known equation, showing that the Berwald connection is not h-metrical
in general although (a) is satisfied.

Remark 3. [M . M a tsu m o to ] T he  equations (1.7) a re  also got directly as
follows. Differentiating (a) by we see

(1.3)'
02 F 0 2 F  F , k  a F  aFt _ o

ax ia y ; — a y ka y ; a y "  a y ;  —
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Contracting (1.3)' by yi and using (b), (c) and (d), we have

(112) 0 2 F   _  a2F  F k _  OF  c k
axoay i ay kay  u y k  I "  •

The last equations and (a) imply

(1.13)

Thus we obtain

(1.7)

a 2 F
k 

k  
—g

O F

ax00), 
_  

a x j.

F ,6 = g , i (  0 2 F OF 
=  k—

axtlayi a x J  —

§2. Minkowsli ian product of Finsier spaces

Let ql be a C° function : R+ x R+ -÷R+ such that

(a) '1'(q', q 2 ) = 0 if and only if (q' , q 2 ) =(0, 0),

(fl) 1q2)=tW(q1, q2 ) for t E R+

( y )  W is C  on RS-  x RoF, where RI is the positive real line,

(
6

) 1 A  0  0 on RS x , A = 1, 2,aq .4

a2v, 4  W 1 W2 —  2W W 12 0 0  on RS x RS, where

Remark 4 .  I-1(p', p 2).=_71(4 ( 1)2p ,  ( p 2 )2 )  is  C '  o n  R o x R o i f  a n d  only if
W(ql, q 2 )  is  C '  on R  x  RI, w here R o i s  the real line except O. Putting GA B =

0 2T,
a p A a p y , we have

t1 =G1IG22— (G12) 2

on R o x R o . Moreover, putting 0(pl , p 2 ) = N '21'1; ( pl, p 2 ) , we get

0 3  a2o
—p 1p 2  I ap2

on R o x R o . Therefore, zl = 0 identically if and only if (1) is linear homogeneous with
respect to  p ' and p2 o n  R, x R o . F or example, '11 =

+ ( q 2 ) r s )1 7  satisfies all
1conditions (2)— (c) provided r , but it does not satisfy (g) if r 1

Definition 2. A  Finsler space (M , F ) is called the  Minkowskian product of
1 2

Finsler spaces (M 1, F ) and (M 2 , F ) with respect to  a  product function W if M =
1 2

M i  X  M 2  and F = P (F ,  F ) .  Especially, in case of + q 2 it is  ca lled  the Eu-
clidean product of these Finsler spaces.

(s)

Let (xa) (resp.(x 1 ))  b e  local coordinates of M , (resp. M 2 )  and (x°, y°) (resp.
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(x", y")) the canonical local coordinates of TM, (resp. TM 2 ). We shall refer to the
local coordinates (x i)=(x ", x 2 ) adapted to the product manifold M , X  M 2=  M  and
the canonical local coordinates (xi, yi)=(xu, x 2 , ya, y 2 )  adap ted  to  T(M , x M 2 )=
T M . Throughout the remainder of the present paper, the ranges of indices are
as follows: a, b, c,... =1, r ;  z  /3, y,... = r+1, r+2 ..... , +s ( = n ) ;  j, k,... =1,

n; A , B=1, 2.
1 2

A I a 2F 2 iy2F
Assuming that F  is  C '  on (TM 4 )0  and putting gab — a p a a v b , go — a y Œ a v p ,

1
the metric tensor g i i  of the Minkowskian product (M, F) of Finsler spaces (M 1 , F)

2
and (M 2 ,  F) with respect to  tP is written

(2.1)

a b = »,;g eh,

2
= 21g 711=  / 4g

,  1

2
g  = TR,

on (T M ,), x (TM 2 )0 , where
1

W1 6 ti. + 4P11.1'„.1' , ) )‘; = ( P12.1"„» ' ,

2 2
; = ;:e; I / 26 e( + 1 11 22VŒ)' ,

1 21 O F 2 OF 02(P_Y a —  o v a  , Y qf
qa = - .1

---,2 , AB 0  ACgl  B

If conditions (6) and (E) are satisfied, then the reciprocal (w.ki ) of ( 4 )  is given by

1

(j

4 = +  "y = W12 ) , b y

2
co Y=  (57+ W22 1, 1.7w h:=  W12 .1

2, 0 0- ,
tP2

on (TM ,)„x (TM 2 ),,, where

(2.4) w il_ W_— !PI1V2 12 W 12W 2 2  — (1 /22(P1 
 L I A I P 2  •

1 2
Moreover, if (gab ) (resp. (go ))  is nondegenerate on (TM 1 )0  (resp.(TM 2 )0 )  and its

2
reciprocal is denoted by (gbe)(resp.(gv)), then the reciprocal (0 )  of (g 11) is written
as

1f  g at. = g ab a q ,

1 2
g a7 = g ab o 4  =_- g '/ fi a l ,

2
g ay = g2/30)fi

(1 .2)

(2.3)

(2.5)

on (TM 1 )0  x (TM 2 )0 .
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Remark 5 .  It is  obv ious [6 ] th a t  if the fundamental function F  of the Eu-
2

clidean product (M, F) of Fins ler spaces (M ,, F) and (M 2 , F) is  C2 on (TM) 0 , then
2

a ll (M , F), (M ,, F ) and (M 2 , F ) are Riemann spaces. I n  case of Minkowskian
product, it  is  n o t tru e  in g e n e ra l .  For example, when the fundamental function

2
bJr=  i.eVd (resp. F = --;-) vo ,„j ( xg)y 2 1 . , ‘ )  )  and the product function

I 2
\ /(q 1)2 ± ( q 2)2 ,

1 2
of (M,, F) and (M „  F )  is C2 on ( TM) ° ,  but then (g 11) is degenerate on so (TM,)x
( T1142)0 U ( TM 1 )0  x s o (TM 2 ). (See Remark 8)

Now, wc shall show tha t the Berwald connection of the Minkowskian product
space is independent of W.

Theorem 2 .  The Berwald connection of the Minkowskian product o f Finsler
2

spaces (M ,, F) and (M 2 , F) with respect to any product function V ' coincides w ith
the Berwald connection of the Euclidean product of these Finsler spaces on (T M ,) ,x

(TM 2 )0  p rov ided  tha t ( re s p . li)  exists and is  nondegenerate on (TM 1)0  (resp.

(TM ,) 0 ).

2
P r o o f .  In term s of canonical local coordinates, let Gy„ (resp. GL) be coeffi-

cients of the Berwald connection of (M,, F) (resp. (M 2 , F)). Next, in terms of the
adapted canonical local coordinates, let Gi .k  be coefficients of the Berwald connection

2
Br e of the Euclidean product of (M e , F) and (M,, F). Then it is obvious that on
( TM 1 )0 x(TM 2 )0

2
G‘b'e =Gr, c.,

(2.6)
G70 , =-GL.=G;43 ,.=Gh, =0.

Now, B r e  is  an h-connection on M which satisfies three axioms (b), (c) and (d) in
in Theorem I. As for (a), the h-covariant derivatives with respect to  BF" of the

I 2
fundamental function F =  9 '(F , F ) of the Minkowskian product space are written as

1 2
P ( OF _  OF G b  v , _O W  OFv k

'

a  
a q 'V 'x a  eyb  C "

-0 q 2  e y f l  k " .

2 2 I

aVi   (  OF _  OFG 0  , ,i )  OW O F  Gb v k; — (V  0 .,:_ ay ,  , J —a q , ay b ka. •

Therefore F. 1= 0  are satisfied, because the h-covariant derivatives of the fundamental
I 2 I 2

function F (resp. F ) w ith respect to the Berwald connection (Gg e ) (resp. (Gk.)) of
1 2

(M ,, F) (resp. ( M 2 , F )) vanish and GL=Gf,„=0. Hence, from uniqueness of the
Berwald connection in Theorem 1 this connection BIC =(Gk) is  n o th in g  but the

1 2
Berwald connection of Finsler space (M , F ), M = M , X  M 2 ,  F =  9 '(F , F).

the fundamental function F=W (F, F) of Minkowskian product

(2.7)

A  Finsler space is called a Bel-wait' space iff its  Berwald connection is linear,
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or the coefficients of the Berwald connection d o  not depend o n  y t . Concerning
Berwald spaces, the following are immediately deduced from Theorem 2.

1 2
Corollary 1. [7] I f  both Finsler spaces (M ,, F) an d  (M 2 , F) are B erw ald

spaces, then the M inkowskian product of  these spaces w ith respect to  any  t/' is a
Berwald space.

In particular we have
2

Corollary 2. I f  b o th  ( A l  F )  and (M 2 , F)  a re  R iem ann spaces, then the
Minkowskian product of these spaces with respect to any LP is a B erwald space and
its Berwald connection is Levi-Civita's connection on the product R iem an,' m ani-
fold A l 1 x  M 2.

§ 3 . Geodesics of Minkowskian product space

A geodesic x l(t) w ith an af f ine param eter t o f  a  Finsler space (M , F), or an
• xiextremal o f th e  energy integral 1F(x l(t), d

' ) d t ,  satisfies Euler-Lagrange differ-

ential equations ei = 0 , where

d  ( OF
t =  diA 0y i 0.v i '

That t is an affine parameter is implied from

dFLemma 1. - clt- = e t i ' •

x• d_y — dt •

=  d ( 0 F (0 F a FProof. ' dt ) ilt ) dt •

Now, let (M , F) be the  Minkowskian product o f Finsler spaces (M ,, 1) and
2

(M 2 , F) with respect t o  'P. Preparing for the  following theorem, stronger con-
ditions for V' than (y), (S) and (a) must be intrdoduced as follows;

(sy) `P is C o n  (R + x R +) 0 == R+ x R+ —(0, 0),

(so) A O 0  o n  ( R +  x  R + ) , ,  A =  l, 2,

( s e )  4 T 2 - 2 T P 1 2 0 0  o n  (R + x R + )o•

Putting
1 I 2 2

d  ( eF2  _   d   ( OF 
dt 0101) e =  dt W v 2 a  X 2

we have
1 2

Lemma 2. (1) Under the condition (sy ), if  e„=0  and  e=-0 , then e 1 = 0 .  (2)
2

Under the conditions (sy), (sS) and (se), if e 1 =-0, then e„=0 and e„=0.
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I 2
P ro o f . From F= T (F, F), we see

2
i f ,  It y  dF d.F 

a =
/

r  l e a "  dt 12 d t ) )  "
2

y
 2  , dF d..F 2

2 e 2 M r  2 1  d t 2 2  dt
2 2

By Lemma I dF/d t=e a y " and dFldt=e,y 2 ; therefore we have

I 2

(3.2)
{  ea = ).„beb + i.le o ,

e ,=;. OEbeh +4,e 1,
I 2

on (TM) 0 provided (sy) is satisfied (See (2.2)). Moreover, the last equations lead us
to

I

(3.3)•
i e b =coge r +a4e.,,,

efi =coe c.+ (i)) e.
2

'

on (TM) 0  provided (sy),(sa) and (se) are satisfied (See (2.3)). (3 .2 ) and (3.3) complete
the proofs of (1) and (2) respectively.

Remark 6. VI =((c -P )r +(q 2 )r) , r = 2, 3,..., satisfies (sy), but not (sa) and (se).
Following Vs are examples satisfying all (s)'), (sa) and (se).

(I)
 

T  =a' + q 2 (Euclidean)

(2) J =  5 4 q 1+  q 2  + ( ( g l ) r + ( q 2)r n , =2, 3,..., [7]

(4)

(3)

t

tp = ( ( q 1)2 + 3.7 1q 2 + ( q 2 )2 )2

=(2q 1 + 3q2 ) 2 /(q + q 2 )

tp = 4(11)2 +30 1q 2 + ( q 2)2 N 1  + , 12)(5)

Concerning geodesics of the Minkowskian product of two Finsier spaces, we
obtain from Lemma 2 the following theorem, which is a generalization of the result
[8] showed in case of the Minkowskian product of two Riemann spaces.

Theorem 3. Let a Finsler space (M, F) be the Minkoivskian product of Finsler
2

spaces (M ,, F) and (M ,, F) with respect to a product function T.
2

(a) Under the condition (sy), any geodesic of (M 1 , F) (resp. (M 2 , F)) is a geo-
1 2

degic o f  (M , F) . T hat is  to  say , the Finsler space (M ,, F) (resp. (M 2 , F)) is a
totally geodesic subspace of  the Finsler space (M, F).

(b) Under the conditions (s)'), (sa) and (se), the projection of  any geodesic of
2

(M , F) into M, (re,sp. M 2 ) is a geodesic of  (M ,, F)(re.sp.(M 2 , F)).

(3.1)
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2
Proof ( a )  As F  is C ' on TM 2 a n d  positively homogeneous of degree 2 with

2
2

respect to  y 2 ,  we see
F

 = 0  on  s 0 (714 2 ). Therefore, we have e„=0 if y 2 (t)=0
av2

identically.
A  geodesic (xa(t), x 2 )  (X2  be ing  constant) w ith  an  affine parameter t of the

i 1 d.V2subspace (M , F )  satisfies ea = 0 , a n d  = 0  imply e 2 = 0  b y  th e  above notice.
dt

Hence, by Lemma 2 (1) we obtain e ; = 0 . T h u s  the curve (xa(t), x 2 ) is a  geodesic
2

with an affine parameter t  of (M , F). A s to geodesic of (M 2 , F) , it is proved
similarly.

( b )  We consider a  geodesic (xu(t), x 2 (t)) with an affine parameter of (M, F).
By Lemma 2 (2) e,= 0 imply c„= O. H e n c e , the curve ()Mt), x") (x 2  being constant)

I
projected into M 1 is  a  geodesic with an affine parameter t of (M , ,  F ) .  The proof
as to the curve projected into M 2  is done similarly.

A
Remark 7. If F is C 2  on (TM A )0 , A =1, 2, then we have

e;a = , , d e  _, ..),_!
,../ b d t1 - ' - '  a on (TM00,

(3.4)

{

2 2 d u fl 2_
e2 = g o -iii -- +2G, on ( T M 2 ) 0 ,

where
2 2

1
— =

0 2 F eF 2 0 2 F
2 „G   2 G „   ,P oxbow , 

r 

8x"' e x / J a y .) a.v •
The equations (3.4) together with (3.2) and (2.1) lead us to

G ),,Gh, ,, +
(3.5) 1 2

G 2 = 2 1X b + 13,

where

2 G  —  0
2 F aF, e x i a v i

2
Moreover, if (gab ) (resp. (go )) is nondegenerate on (TM ,) 0 (resp.(TM 2 )0 ), then from
(3.5) and (2.5) we obtain

2
(3.6) G a=G ", G 2 =G 2

on (TM 1)0  x (TM 2 )0 , where
I I 2 2 2

Ga  =g a b G b ,  G2 = g 2I3Gfl.

This is another proof of Theorem 2.

Remark 8. If satisfies (sy), (s6) and F =tP ( i ,  i )  is C 2  on (TM) 0 , then both
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2
(M  F )  and (M 2 , F) are Riemann spaces. Hence, by Corollary 2  of Theorem 2
the Minkowskian product (M, F) of these spaces is Berwald space with Levi-Civita's
connection.

2
I

t 2 OFI  OF)aF _ (resp. y ay . - - -41
2 O Y

Because y v
, ay a

1 2
are C ' on (TM) 0 under the above conditions. Therefore, V a (resp. y a )  are C ' on

2
TM, (resp. TM 2 ). Thus F (rcsp. F) is C2 on TM, (resp. TM 2 ).
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