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Introduction

In this paper we shall introduce three kinds of notions concerning the con-
vergence of holomorphic abelian differentials with finite Dirichlet norms on the
augmented Teichmiiller spaces of compact Riemann surfaces, and investigate re-
la tionsh ip  am ong  them . Here, w e  c a ll th e m  the m etrical convergence, the
geometrical convergence and the convergence in the sense of the measured folications
(see  §  l-1 ). The metrical convergence, the most basic one, has been investigated
by many authors (cf. [3], [4] and [ 8 ] ) .  The geometrical convergence concerns the
trajectory structures of the square of holomorphic abelian differentials, which was
originally investigated by K. Strebel and J. A. Jenkins (cf. [6], [9] and [1 0 ] ) . Finally
the definition of the convergence in the sense of the measured foliations is motivated
by the excellent work of Hubbard and Masur [5], (also see [7]).

The main results of this paper state that the geometrical convergence implies
the metrical convergence, and that the metrical convergence implies the convergence
in the sense of the measured foliations (Theorem 2 and 3-(i)). Also we give suitable
conditions under which the converses hold (Theorem 1 and 3-(ii)).

In § 1, we state the definitions of the conformal topology and three kinds of
convergence, and summarize the main results in this paper. Next in §2 we give
several examples which clearify the distinction among those kinds of convegence.
All proofs will appear in § 3.

§ 1 .  Definitions and main results

1.1. Let R* be a compact Riemann surface of genus g(< 2), and Tg  and t g  be the
Teichmiiller space and the augmented Teichmiiller space, respectively, (with the base
point R*). For the definition of t, see [1 ] and [ 2 ] .  We denote by N(R) the set
of nodes of R for every R e t ,  and by <R 1, R2 J> a deformation from R , onto R2,

tha t is, a continuous marking-preserving surjection from  R , onto  R 2  such that
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f 1 R 2 —N( R2 )
 is  a homeomorphism into R , and •

- 1 (p) is either a node of R , or a
simple loop ( , namely, a closed Jordan curve) on R , for every p e N (R , ) .  For
every deformation <R 1 , R2, f>  and every Borel set E on R2 —  N (R2) we denote by
D(f, E) the maximal dilatation of f - 'I E and call a sequence 1<Rk , R0 , f k >l ,  an
admissible sequence if lim D (fk , R o — K)=1 for every neighbourhood K of N(R o ).

k-00
Then we can define the conformal topology on t o b y  the following condition; Rk
converges to R , in the sense of conformal topology if and only if there is an admis-
sible sequence {<R„, R o ,,f,>}k°,, of deformations. W e assume that t g is equipped
with this conformal topology.

In this paper, we investigate relationship among various kinds of convergence of
holomorphic abelain differentials on t g . For the sake o f simplicity, we restrict
ourselves to the case of holomorphic differentials with a finite norm (, namely, ele-
ments of r a (R—N(R))), and set for every R e 'r g

A (R )(=  l a (R— N(R)))= {0: 0 is holomorphic and with a finite Dirichlet norm
on R—N(R)}.

R em ark . The conformal topology on the Teichmilller space Tg is equivalent
with the usual Teichmfiller topology. A lso  note the following fact; for every
R E Tr  let T(R)= IS E tg : there is a deformation <R, S, f> such that f  is a homeomor-
phisml, then we can show that T(R) equipped with the conformal topology is identi-
fied with the product space of a finite number of the Teichmilller spaces with the
Teichmfiller topology (cf. [11] I, Proposition 2).

We start with three definitions on the convergence of holomorphic differentials
on p g . First suppose that Rk converges to  Ro on Da , and that Ok e A(R k ) be given
for every k. Let {<R k , R0 , f k >}7,'=, b e  an admissible sequence o f deformations.
Recalling that 1 ',  can be identified with the augmented Teichmilller space Î ( G * )  of
the normalized fuchsian group G* associated with R* (cf. [2]), let Gk e D(G*) corre-
spond to Rk, Q(Gk) be the part of the region of discontinuity of Gk representing Rk ,
and ak(z)dz and Fk (z) be the lifts of Ok  on 52(Ck ) and f IV  on S2(G0 ) which induces the
prescribed isomorphism between Go and Gk, respectively, for every k. Then it is
known ([2 ] Lemma 1) tha t Gk converges to  G, elementwise (with respect to  the
prescribed isomorphism) and  Fk converges to the identity locally uniformly on
Q(G0 ).

Definition 1. Let {Rk } o , {0,} 0  and  {ak(z)dz}rç o  be  as above. W e say that
Ok converges to 00  m etrically  if one of following (equivalent) conditions holds.

1) There is an admissible sequence {<Rk , R0 , f > } 1  of deformations such that
the equation

(*) urn 11° I t) (0 E = °k-4cc,

holds for every compact set E of Ro — N(R0 ).
2) F or every  admissible sequence {<R,„ R o , f„>},f,_ , o f  deformations, the

equation (*) holds for every compact set E of R0 — N(Ro).
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3 )  ak (z) converges to a 0 (z ) locally uniformly on 12(G0 ).
Here ()C f  i s  the pull-back of Ok on Ro  N ( R 0 )  by fk-1 and j 11, means the Din -
chid  norm  on E.

The proof of the equivalence of the conditions I), 2 )  and 3) can be shown by
the same argument as in [8] § 3.3 (also cf. [11] Il § 2 Proposition), hence omitted.

Remark. The metrical convergence of holomorphic differentials on pg has been
investigated by various authors. W e cite here only [3] and [4], and for the case of
general open Riemann surfaces, see [8].

Next we set for every R

C A(R )= ;0  E A(R): 0 2 has closed trajectories} .

H ere w e say that a holomorphic quadratic differential 0 o n  R— N(R) has closed
trajectories if for every component R ' of R— N(R) either 0 0  or the point set U4,

consisting of all compact regular trajectories of 0  is dense on R ' (cf. [ 9 ] ) .  Recall
that each component of U , is a doubly connected region. And for every 0 e CA(R)
we call each component of UO2 a characteristic r i n g  dom ain of 0. Then the set of
all characteristic ring domains of 0 can be represented by the set of the free homotopy
classes on R— N(R) (m odulo {+  I }, i.e. without orientation) of all compact regular
trajectories of 02 . We denote the latter set by L(0), and for every c e L(0) the chara-
cteristic ring domain of 0 corresponding to c b y  Ife ,o . And for every c e L(0) with
OE CA(R) we write by 111 0 and a 0 , respectively, the modulus of W 0 and the length
of any trajectory of 0 2 in W,.,0 with respect to the metric induced by 02 . In the sequel,

we always assume that ev ery  c e L(0) is  orien ted  so  that ac „,= 0 > 0  (with any

loop c' in c).

Defintion 2. Let R k  converge to  Ro on t, and Ok e CA(R k) be given for every
k. Then w e say that Ok converges to 0, geom etrically  if the following conditions
are satisfied.

I) L(0k ) contains L(0 0 ) including orientation for every sufficiently large k.

2 )  lirn  111
'

, = m , 0
0
 and liuni 0 , for every  cc  L(0 0 ).

k  or,

3) l i r n  A , (R k —N(R k ) — lim
k c e L ( O o )

= 0 ,

-

,E L ( 00)

2

where A 0(E) is the area of E with respect to the metric induced by 92 •

H ere note  that ar ,0 a n d  a,n i is the circum ference and the height o f 14/,,,
with respect to  the m etric induced by 02 . So, roughly speaking, Ok converges to
00 geometrically if and only if each Wc ,o , converges to  1/1/. 00 including the size and ori-
entation for every ce L(00 ) and other 14/t.,0,  become to be empty as k tends to  + co.

Finally we consider every 0 EA(R) as a measured foliation (F, p), namely, with
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leaves 0=01 and  the transverse measure dp=11m 01. For the  definition and
basic facts about measured foliations, see [5] Ch. I § 1.

Definition 3. Let Rk converge to  R , on Do , Ok e A(R k ) be given for every k and
(Fk , pk ) be the measured foliation induced by O k fo r every k. Then we say that Ok

Sconverges to 0, in the sense of the measured foliations if urn Ok= a
 Ç
 0,00 (a>0)
d

for some loop d  on R0 — N(R0 ) when 0 0 # 0, and for every free homotopy class c
of a simple loop on R 0 — N(R 0 ), it holds that

lim L,„(c)= L r o (c),
k-•00

where L F (c)=infC E C d p  for every measured foliation (F, p).

The first condition in Definition 3 is only for the distinction between 0 and
—0. The relation between holomorphic quadratic differentials and measured foli-
ations has been investigated by J. Hubbard and H. Masur, see [5] and [7].

1.2. First as the relation between the metrical convergence and the geometrical
convergence, we can show the following

Theorem 1. L et R „ converge to R , o n  T ; an d  Oke CA(R,) converges to  00

eCA(R o ) m etrically . A lso suppose that

I) 5o  i s  real for every  cEL(0 0 ), and
e

2) lim sup 110d R , 0011Ro•

Then 09 converges to 0, geometrically.

Theorem 2. L et R k converge to R , o n  Tg an d  Oke CA(R 9 )  converge to 00 e
CA(R 0 ) geom etrically . T hen the assumption I) in  Theorem  I holds, lim1109 11R k =
110

0
11

R 0
 an d  09 converges to 0, metrically.

Corollary 1 (cf . [10] Theorem 2). L e t RI, converge to R0  o n  the  Teichmiiller
space T, and Ok e CA(R9 ) be given for every k .  Then 09 converges to 00  geometri-
cally  if  and only  if  Ok converges to 00 m etrically  and 1 Ok is real for every c e L(00 )
and every sufficiently large k.

Remark 1. B oth assum ptions I) a n d  2 )  in  Theorem  I a r e  necessary. In
particular, there is an example of {00,T..., which converges to some 0 0 e CA(R o )
metrically and satisfies the assumption 1) and the condition

3) 110 k 11Rk are uniformly bounded,

but does not converges to 00  geometrically. See § 2 Example 1 and 2.

Next by using Hubbard-Masur's theorem ([5] and [7]), we can show the follwing



Convergence of holomorphic abelian differentials 297

relation between the metrical convergence and the convergence in the sense of the
measured foliations.

Theorem 3 . Le t R k  converge to R o  o n  t g a n d  Ok e A(R k ) be given fo r  every k.
(i) I f  0, converges to 0, m etrica lly , then Ok converges to 0, in  the sense of the

inecsured fo lia tions.
(ii) f  O k converges to 0, in  the  sense of the m easured foliations and it holds

that

Ok„R,3 ) are un iform ly bounded,

then 0, converges to 00  m e trica lly .

Corollary 2. (c f .  [5] In tro d u c tio n  a n d  [7] Theorem 3 ) .  O n  th e  Teichm011er

space Tg , th e  m etrica l convergence is equiva lent to  the  convergence in  th e  sense
of the measured foliations.

Remark 2 . In (i) of Theorem 3, 10„11„ k  need not to be uniform ly bounded.
See § 2 Example 3. On the other hand, without the assumption 3). the assertion of
Theorem 3 (ii) does not necessarily holds. See § 2 Example 4.

Finally combining Theorems I, 2 and 3, we have at once the following relations
between the geometrical convergence and the convergence in the sense of the measured
foliations.

Corollary 3 . L e t R k  converge to R , on t g a n d  0, e CA(R k ) converge to 0 0  E

CA(R 0 ) in  the sense o f the m easured foliations. A lso suppose that

1) Ok is  re a l fo r e v e ry  k and e v e ry  c e L(0 0 ), and

2) lirn sup 11 011Ro •
k-.00

Then Ok converges to 00  geom etrically.

Corollary 4 . L e t R k  converge to  R , o n  pg a n d  Ok E  CA(R k) converge to  0,e
CA(R o ) geometrically, then Ok converges to 00  in the sense of the measured fo lia tions.

Remark 3 . All of convergences can be defined for more general holomorphic
abelian differentials, and some results are known (cf. [8], [10] and [11]). But to
generalize results in this section, we need more complicated conditions, hence we shall
not go into such generalizations.

All proofs of Theorems and Corollaries in this section will appear in § 3.

§2. Examples

The holomorphic reproducing differential 0 "  on R e To for a  loop d is, by
definition, the holomorphic abelian differential on R  such that (a), Re 0 „ ) , =

d
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for every square integrable harmonic differential w on R .  And for R EDq  T g ,  the
holomorphic reproducing differential Od, R can be defined if d does not pass through
N (R ), b y  p u tt in g  Od, R 0d0 R, , R, o n  each  com ponent R ' o f  R — N (R ) . Because
T m  Od R= d x  c (the intersection number of d and c  as 1-cycles), we have by [10]e
Lemma 6 that 0 d ,„ e C A (R ) . Note that w e can take as d a degenerate loop freely
homotopie to a puncture of R— N(R), and then 0„. R -a- - O. N o w  as an application of
main theorems, we can show the following

Proposition. Let RA  converges to R o  on f ",,, and d be a  loop on R 0 — N(R 0 ).
T hen  Od , R , conv erges to Od•Ro m etrically , geom etrically  and  in the sense  o f  the
measured .foliations.

The proof will be given in § 3.

Example 1. Let Ro  be the two-sheeted covering surface over the z-sphere sewed
along [—  2, — 1], [1, 2] and [,./ —1, — \,/ —1], and  e  correspond to the loop on the
z-sphere separating { — 2, 2} from others. Then 00 E-2.-0 e ,„0 can be written in the form

azdz
—4)(7 4 - 1 )

with a suitable real a, hence L(0 0 ) = {c} . N ow  fix  a loop c ' such that c x c' =1, and
Iset R k =R o  and Ok = oo +-k oc.,,„ for every positive k. Then it is clear that every

0 e CA (R k ),  0  converges to 0 0 metrically and limk : k 11°k1112k=110011Ro•B u t  1111° k =
r

- 
L

C
'
 X C O, and hence Ok can  not converge to.0 0 geometrically.k

Example 2. Let R (r) b e  the two-sheeted covering surface o ver the z-sphere
sewed along [— 2, —1], [1, 2] and [0, r] for every r with 0 < r < I. Then w e can see
that

0 =  o z 2 _4)( z 2 — ])z(z — r)
NI — I (7., — d)dz

d 

belongs to CA ()(r)) for every d with r < d  < 1 .  Now note tha t if d (, hence also r)

tends to zero, then Od converges to  zero, where e corresponds to  the loop on the
e

z-sphere separating 10, r}  from  others. So w e can choose dk so sm all that
belongs to the interval (0, k) for any r with 0 < r <d k . Fix such dk for every k, then

it can be seen that m,,,, a ,  tends to + cc as r tends to zero for any fixed k. Hence we
I.can shoose , so sm all that m e d ,d , =(a e ,o d ,) - 2  for every k. Finally set RA =  R(rk ) and

Ok = Od, for every k, then we can see that RA converges to R0 , the two sheeted covering
surface over the z-sphere with a node over :=O  ans sewed along [— 2, I] and [1, 2],
on D2, and that O k converges to

— Idz
0 0 =  o z 2 1)( z 2_ 4 )

0 0 =

m etrically. A lso it is easily seen that the assum ption I) of Theorem 1 is satisfied.
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But because L(0 0 ) and A ok ( We ,o ,) =a.,,,, • m r.,0,,= 1, Ok does not converges geome-
trically to 00 . Note that in this example, 110d R , are uniformly bounded.

Example 3. In above Example 2, replace r, with smaller r,  for which
k .(a c ,,,,,,) - 2 . Then Ok still converges to  00  metrically, b u t MO Mk ? I r ',)  tensd t o  + oc.
Here note th a t, in  general, lim inf M 110011R„ if  ok converges to  00 metrically.

(See Lemma 1-2) in § 3.)

Example 4. Let Rk be the two-sheeted covering surface over the z-sphere sewed
along [ -  k ,  -  I] , [1, k ] a n d  [ \ / -  I ,  -  \ [-1 ], and

kzdz0 , -
,  

for every positive k. Then as in Example I, O k  CA(R k ) for every k and L(0k ) consists
of the same single e le m e n t. And it is clear that Rk converges to  R0 , the two-sheeted
covering surface over the z-shphere w ith a  node over z= + cx) and  sewed along
( - co, -  I], [I , + c o )  a n d  [  -  I ,  -  -  1 ] ,  and Ok converges metrically to zdz I,11- z 4 ,
which has poles at punctures of R0 -N (R 0 ). So w e see that 110k 11Rk tends t o  + co.

On the other hand, we can see that  L ( c ) = O for every k  and every class c cor-
responding to a simple loop on Ro -N (R o ), where (F„, p,) is the measured foliation
induced by Ok • H e n c e  Ok converges to 00 0  in the sense of the measured foliations.

Example 5. As indicated in Example 3 and 4, the convergence in the sense of
the measured foliations does not always mean the convergence as representations of
the minimal number of geometrical intersections. W e give here another example.
Let R k  be the two-sheeted covering surface over the z-shpere sewed crosswise along

1[ -  2 ,  -  1 ], r k , - 1  and [ I ,  2], and

a ,(z  - -1
1
(
.
7  + 1)d z

2  — 4 )(Z 2 —  1)(z - r k )(z  k
l +  I)

1fo r  ev e ry  k ,  w h ere  r ,  a n d  a ,  a re  t a k e n  s o  t h a t  -  l <  <  k - 1, ak > 0  and

2 12 (1/10-1
O k  =2 Ok = I. A l s o  let c , and c, correspond loops on the :-sphere

1
separating {- 1, r k } a n d  {2, -2 },  respectively, from  others. Then for every k  the
measured foliation (F k , pk ) induced by Ok represents the geometric intersection number
with e1 +e 2 , that is , L (d )= c,)+ i(d, e 2 ) for every free homotopy class ci, where

e) means the minimal number of geometrical intersections between d  and e.
On the other hand, w e can show th a t lim ac , R k = 0  and 0, converges to some

k-0«,
00 E CA(R o )  geometrically (, hence also metrically and in the sense of the measured
foliations), where Ro  i s  the  lim it o f R k  on Î .  B u t  0 0 represen ts the  geometric
intersection number with only e 2 o n  R0 -N (R0).
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§3 . Proofs

We first show the following lemmas.

Lemma 1 (c f .  [11] I I  C o ro lla ry  1 )  L e t R k  converge to R ,  on Ty ,  k  e A(R k )

converge to 00  E A(R 0 ) m e trica lly  and d be a  loop on R o — N(R 0 ) (considering as a

loop on R 0 ). Then it holds that

1) lim Ok =  0 0 , and
k — ,c  d d

2) lim inf MO T? , 110 011Ro .
k-ct,

P ro o f.  F irs t  le t  f<R k , R o , fk M ,  be an admissible sequence of deformations,
a n d  fi Gk M. 0 , {S2(Gk )} 0 , {Fk(z);,__, a n d  tak(z)rk'=, be  a s  in  Definition I. A ls o
let d, e G0  correspond to  the loop d  and set dk =F k .d0 .F k

- 1  (which corresponds to
d on Rk ) for every k. Then as noted in § I, we have that for any point a eS7(G0 )

lim F k (a)= a  a n d  lim dk oFk (a) --= do (a).
k—■cc

And from the  assumption, a k (z) converges to a 0 (z) locally uniformly on
hence we conclude that

F k(a) 1 ‘10 (a)
urn lim ak(z)dr= ao(z)dz =5 0 0 .
k . a )  d F k(a) a d

Thus we have the assertion I).
Next for every compact set E on R0 — N(R0 ) we have that

110 kIli k1 1 0 k I1 -, ,
( E) D(fk, E) - 1 .110of and

110 c.f17111E 110 011E 110 0 — Okc.f TI ME.

Because lim D(fk , E)= I, we conclude by 2) of Definition I that

lim inf „ ,110,11„.

And since E is arbitrary we conclude the assertion 2). q. e. d.

Corollary 5. Let R k  converge to R o  o n  T, and Ok E A(R k ) converge to 0 0 e A(R o )

m etrica lly . Then 11m110 1,1112,=110 011Ro •

P r o o f .  This follows at once from Lemma l-1) and the period relation (, or
directly, from 2) of Definition 1 with E= R o ). q. e. d.

Lemma 2. Let R k  converge to Ro  o n  I ',  and Ok eA(R k ) be given fo r  every posi-

tive k. If 110 II, k .,R k  are uniform ly bounded, then we can take a  subsequence {Ok o } ,

which converges to some 00  E A(R 0 ) m etrica lly.

P ro o f. W e can show similarly a s  the  proof o f  [ I l]  I I  Proposition tha t if
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110k11Rk a re  uniformly bounded then ak(z) are locally uniformly bounded on Q(Go ).
Hence {a k( z ) } , ,  makes a normal family, which implies the assertion. q. e. d.

Proof of Theorem 2. Let Rk converge to Ro on Ty and Ok E CA(R k ) converge to
00  E CA(R o ) geometrically. Then by 2) and 3) in Definition 2, we have that

lim 110,11i =lim 2 E (1.,,,,•nt c ,o k = 2 E c 00 • ni,., 0 . = 110
k—■1) ceLlOol c e L (0 0 )

In  particular, 110k11R„ a r e  uniformly bounded, hence by Lemma 2 w e can take a
subsequence {0,,,} , converging to some 0'0 E A(Ro) metrically. Now fix c E L(0,)
and let c' be a loop on R, in the class c, then by Lemma 1-1) we see that

lim 0 , = 0'0 ( ,  which is positive), hence
" .

10 ;1 0; = lim 0 -
k, =lim a ac,00.

C' C' c '

And by Lemma 1-2), 0 R.— nr,„ R k  „11 < 1 1 1 1 1  11°I; =110011Ro. Hence by the uniqueness of

so-called Jenkins' extremal metric ([6 ] Theorem 1) w e conclude that 10,1

Because 00'  is positive for every c e L(00 ), we have that hence taking a

subsequence is unnecessary, and we have that Ok converges to 00 metrically. Finally
it is clear from I) in  Definition 2 that the assumption 1) in  Theorem 1 holds, and
we have the assertions. q. e. d.

Lemma 3 (cf. [10] Theorem 1). Let {R k },f.,.0 and  1 0 ,1 _ , be as in Lem m a 1,
and f<R k , R 0 , fk >nc_, be an admissible sequence of d e fo rm a tio n s . Suppose that

06 has a closed trajectory, say c, a n d  Ok is real for every k. Then for every E> 0,
c

there is an N such that (it has a closed trajectory, say ek , such that .f k (ck ) is contained
in  LIAO fo r every k > N ,  where U (c )  is  the set of a ll p o in ts  on the component of

R—N(R) conta in ing  c  whose distance induced by 
10 0 1

 f r o m  c  is  less than e (, i.e.
the v-neighbourhood of c).

P roo f. By considering only sufficiently small e, we may assume that Uk(c) is a
doubly connected region whose boundary components are closed trajectrories of 0,2,
freely homotopic to c. Let a point p on e be fixed, zo  be  a lift of p on 0(G 0 ) and
Vk(c) be the lift of U (c ) on Q(G 0 ) containing zo . Then because Fk (z) converges to
the identity locally uniformly on 0(G 0 ), we may assume that Fk(z o ) is contained in
Vk12 (c) for every k.

z
Next let uk(z)—

_ 
Im a k(z)d z on the component o f  v,,(c) n Q(G,) containing

Fk(z.) 
zo  f o r  every k. Note tha t uk(z ) are harmonic, and {u 0 (z )= 0 }  and  {uo (z)=  +e}
are the lifts of c and the boundary components of Uk(c), respectively. Now because
a k (z) converges to a 0 (z) locally uniformly on  Q(G0 ) and Fk (z o )  converges to zo , by
assumptions, we can conclude that uk(z) converges to uo (z), and hence uk(Fk(z)) also
converges to tio (z), uniformly on I/(c) n E for every compact set E in Q(G0 ). Hence
in particular, there is an N  such that for every k >  N, we can find a suitably long arc
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from  F„(z o )  contained i n  l z  tik(Fk(z ))= 0} w hich is contained in 1/,(c) and covers
a compact loop, say c'k , in U ( c )  freely homotopic to c. Then from the construction,
w e see that ck = f k- '(cD  is a  closed trajectory of 0,2 on Rk - N(R k )  for every k> N.

q.e.d.

Proof  of  T heorem  1. W ithout loss of generality, we may assume th a t N (R k )

is empty for every positive k. Also recall that W,, 0 can be mapped conformally onto
a n  annulus {r,< Izi<  I I  w ith  re = exp ( - 2nni,.. 0 0 )  for every c e L(0 0 ). We denote
by i c i ,

 the  closed trajectory of 01; in W,.. 0 0 corresponding to and by
the subregion of W  co rresp o nd ing  to  fr <1.71<il for every c e  L(0 0 ). Fix e> 0 so
sm all tha t 4e< I -m ax tr e ; CE L(0 0 )I, and let a n d  c2 = fo r  every
C e L(0 0 ). T h en  b ecau se  lc ; c e L(00 ) and i = 1, 21 is finite in number, we can find
an N as follows by the assumption I) and Lemma 3; for every c  L (0 0 ) and i =1, 2,
there is a closed trajectory, say cu , of 0 2,7 freely homotopic to  c such that M c and
fac 2 ,,) are contained in Wc ,, _ 2 „,, a n d  kl, . „ 2 „  respectively, for every k> N .  In
particular, w e can see from  L em m a I-l) that L(0 k)  contains L(0 0 ) for every k> N
(, i.e . 1) in Definition 2 holds).

M oreover w e have th a t fo r  e v e ry  k> N, fk ( con ta ins W
c , r , , +  2 E , 1  — 2 g  

for
every c e L(0 0 ), for c l ,k and c, k are closed trajectories in the same W 0 1 . And because
D

e
=

W c , r ,  + 2 g  1- 2 c  is relatively compact on Ro
ceL(00) 2

- N ( R o ) , and hence lim D( fk , DE )

= 1, we can see from above that

I -
lim inf ni c ,0 „ >-5-7r log  ( )  for every  c e L (0 0 ).

k-co

Since e can be chosen arbitrarily small we conclude that

(*) lim inf ni c  '0 ,‘ > nz,,„°(-= 
L

(  I ir c ) )  for every CE L(0 0 ).

On the other hand, by Lemma I-1) we have that

k
lim a 0 l i m 1 00 = a ,, 0 0 .

Hence from (*) we have that

lim  in f  0 lirn inf 2. E  a 2
 0  • i n  0k C ,  kceL(00)

> E  22. a „, 0 o • 110011i0.
ce I .( 00)

Thus from the assumption 2) we can conclude that

lirn11 0 k II ii„ = l im  2  E  a 2c,0„ n i O =• 2 E ac ,00 • 111, , 00 ,c, k
k—■oo cEL (no) ceL (00)

and hence lim m 01, =  me ,0 0 for every c e L(00 ) and

[ —I 110  1124 , o k e q i i e , o 0 1 =  O.2 k  R k
ceL(0o)
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Namely, we have shown that 2) and 3) in Definition 2 holds. q. e. d.

Remark. Under the same assumptions of Theorem I, we can show also that
1) the Carathéodory k e rn e l o f  I fk( , is  e q u a l  to  W e .  for every

ce L(00), and
2) for every p  and every ce L(00 ), fk (t e ,,,,,) converges t o  te ,p ,  where tc , , ,k  is

defined for 0, similarly as te ,,, for 0 0 . ( S e e  the proofs of [10] Lemma 5 and Corol-
lary 2.)

Also note that, in the above proof, we only used the assumption that 0 0  eCA(R 0 ),
but not the ones that 0, E C A ( R k ) .  So we might generalize Definition 2 slightly by
assuming only 0 0 must have closed trajectories, but others may not.

Now to prove Theorem 3, we need the Hubbard-Masur's theorem which state
that on every R e 7; every measured foliation is induced by the unique holomorphic
quadratic differential (, see [5] and [7]). In particular, by recalling that every
element of A(R) can be considered as a holomorphic differential on the union of com-
pact surfaces obtained from R —N(R) by filling the punctures for every R e t g , we
have the following

Lemma 4. Let R o t ,  and 0, 0' e A(R) be given. And write (F , p) and (F', p')
the measured foliations induced by 0 and 0 ', respectively. Suppose that L ,(c )=
L F ,(c) for every non-trivial free homotopy class c of simple loop on R— N(R), then

it holds that 0  0 '  or —0'

Proof of Theorem 3. ( i )  The assertion (i) is also contained essentially in the
Hubbard-Masur's theorem (cf. [5 ]  Lemma 2.11), hence we give a rather sketchy
p ro o f . Suppose that Ok converges to 0 0  metrically, i.e. ak (z) converges to a 0 (z) locally
uniformly on SAGO. Then for any compact arc cl on 52(G0 ),  lim I Im ak (z)dzl=

1 Im ao (z)dzi, hence we can show that
d

d

(*) lim sup L I<  L , o ( c )  for every free homotopy class e,

where {(F k , pk )};:', 0 are as in D efin ition  3 . S o  if L (c)=  O , then  w e have that
lim L E ,(c)= L F 0 (c).
k-oo

If not, we can find a closed curve co on R, in the class c which is quasitransversal
to  F , (, and hence L F .(c)=- dp o . Cf. [5 ] Ch. Il § 3.) Also recall that critical

co
points of Fk (, i.e. zeros of ak (z)) converges to those of Fo including multiplicity, and
that any compact arc in transversal open arc of eo  is also transversal to F k for every
sufficiently large k , where E0 i s  a lift of co on Q(G 0 ). Hence, for any given e >0,
we can make quasitransversal closed curves c k in the class c on Rk which satisfies that
Jim inf Ç d i i k > Ç dp . 0 — c, by deforming Z., in a suitable neighbourhood of theck co
union of critical leaves and points of Z.„ and projecting onto Rk . And because e is
arbitrary, we can conclude from (*) that Jim  L  F

k  (C)= L  F o (C ) even if L F 0 ( c )0 0 .  Thus
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we can conclude from Lemma 1-1) converges to  00 in  th e  sense of the measured
foliations.

(ii) Next suppose that Ok converges to  00 in  the sense of measured foliations,
then for every loop c j im  04,T = 1 are bounded, f o r  1m 5 0 , <L F ,(c), which con-

c.
verges to L F o (c). Let {ci } , be a set of simple closed curves which gives a canonical
homology basis on the union of compact surfaces obtained from R o — N(Ro )  by
filling the punctures. Then, taking a subsequence if necessary, we may assume that
a1,11=Im  1  0 , converges to, say a1,0  fo r  every i, and le t 0; e A(R 0 )  be the unique

Now by the assumption 3) and Lemma 2, we may also assume, again taking a
subsequence if necessary, that Ok converges to some 0'6 e A(R o ) metrically. Then by

Lemma 1-1) it holds that lm = a1,0  for every i, hence from the uniqueness we
ci

see that 0'0 0 16. Thus taking a subsequence of this paragraph is unnecessary and Ok

converges to  0'0  metrically. Then by Theorem 3-(i), w e have th a t 4 0(c)=1.,, o'(c)
for every class c, where (Fo , n'o ) is the measured foliation induced by 0 .  Hence by
Lemma 1-1) and 4 we conclude that 0 ;  00 . Thus taking a subsequence of the last
paragraph is also unnecessary, and  the  given sequence { 0 , } 1 converges to  00

metrically, q. e. d.

Proof  of  Proposition. We can show similarly as in the proof of [11] II Theorem
1 that converges to Od,Ro metrically, and hence also in the sense of the measured
foliations by Theorem 3-(i). Also by Lemma 1-1) it ho lds tha t lim =

k—■cc —

lim 2 1. Od ' R,= 2 1 Od R° = 1161d,Roli Ro• And becasue Od,Rk=d x c=Im1 Od R
ok-.00 d d 

for every c e  L(00 ) , we conclude by Theorem 1 tha t Od ,R k  converges to  04 ,R 0
 also

geometrically, q. e. d.

Proofs o f  C oro llaries. Corollary 1 follows from Theorem 1 and 2 by using
Corollary 5, and Corollary 2 follows from Theorem 3, where the condition 3) in
(ii) can be shown by using P roposition . Corollary 3 and 4 follows at once from
Theorem 1 and 3-(ii) and Theorem 2 and 3-(i), respectively.
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